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Variational theory of bulk 4He with shadow wave functions:
Ground state and the phonon-maxon-roton spectrum
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We apply an efficient optimization scheme to shadow wave functions~SWF’s! for the ground state of liquid
and solid4He. Results improve on previous variational energies in both phases. In the liquid, the gain over a
wave function with only pair and triplet correlations increases with density, providing a quantitative estimate
of the increasing effect of higher-order correlations. The discrepancy with the exact ground-state energy is
nearly constant over a wide range of densities, yielding excellent estimates for the equilibrium, freezing, and
melting densities. The optimal SWF’s can be represented with high precision by density-independent sets of
variational parameters for the liquid and the solid phases. An extensive study of ground-state properties
demonstrates the uniformly good quality of the variational description afforded by the optimized SWF’s. Based
on such an accurate representation of the ground state, and including the correct long-range correlations due to
the zero-point motion of phonons, we compute the excitation spectrum and the strength of the single quasi-
particle excitation peak. While the use of optimized SWF’s confirms the accuracy of previous studies in the
maxon-roton region, the proper treatment of long-range correlations allows us to extend to the phonon region
the agreement between theory and experiment. We simulate relatively large systems in order to explore the
long-wavelength regime in detail. Even down to wave vectors where the excitation energy exhibits a highly
linear dispersion, which would suggest a harmonic phonon mode, the kinetic and potential energies of the
excitation are far from verifying equipartition. This result is supported by additional diffusion Monte Carlo
simulations within the fixed node approximation. We locate the onset of the harmonic regime for the long-
wavelength excitations at an extremely small value of the wave vector,k&0.05 Å21.
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I. INTRODUCTION

The variational theory of strongly interacting bosons, li
the condensed phases of4He, has been developed to a hig
level and it has reached a good accuracy at least for
ground state1,2 at the equilibrium density. Fully optimized
forms for the ground-state wave functionsC have been ob-
tained when the interparticle correlations inC have been
truncated to the three-body level, i.e.,C contains two-body
~Jastrow! and triplet terms. Computations based on Eul
Lagrange equations within hypernetted chain schemes1 as
well as on Monte Carlo basis set optimization2 have been
performed. The saturation density of liquid4He is in fairly
good agreement with experiment and with results of ex
stochastic methods and the variational binding energy
about 0.2 K above the correct value,2 with a deviation of
3%. The accuracy decreases at higher density and in fac
deviation reaches about 8% at the freezing density. This
been taken as an indication that correlations beyond
PRB 580163-1829/98/58~2!/909~16!/$15.00
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three-body level become important at such high density.
one moves into the solid andC is augmented by localizing
factors, one regains accuracy in the energy with a devia
from the correct value of order of 0.2 K.

Much less satisfactory is the situation with the excit
states. With the method of correlated basis functions the
cited states wave functionCk of momentum\k is written as
a productCk5FkC of the ground stateC0 and of an exci-
tation operatorFk . Fk is expressed as a polynomial in th
density-fluctuation operators$rk%. At lowest orderFk simply
coincides with rk5( jexp(ik•r j ) and this represents th
Feynman form for the excited states.3 Terms beyond the lin-
ear one introduce the so-called backflow effects. In a diff
ent, but related, approach, the least action principle is use
a time-dependent form of wave function.4 This last theory
has been developed up to the level corresponding to o
body and two-body time-dependent correlations. Within su
methods a number of approximations have to be introdu
and this affects the reliability of the results. Sometimes ev
909 © 1998 The American Physical Society
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an adjustable parameter has been introduced such tha
roton energy, for instance, is in agreement w
experiments.5 Results obtained under controlled approxim
tion give a roton energy that is in the range of 10 K
equilibrium density, almost 20% above experiment and
results are even poorer at higher density. Also, the few c
putations of the strengthZ(k) of the single excitation peak in
the dynamical structure factorS(k,v) show a large discrep
ancy from the experimental neutron-scattering results.6,7

An alternative approach has been developed in the va
tional theory of strongly interacting bosons; the method
shadow wave function~SWF! ~Refs. 8, 9 and 10!. Here cor-
relations beyond the pair level are introduced by coupling
position variables of the particles to subsidiary variables,
shadow variables. This wave function contains three p
correlating factors ~in terms of their logarithms, three
pseudopotentials!, the particle-particle, the particle-shadow
and the shadow-shadow one. Integration over the subsid
variables introduces in an implicit way effective correlatio
between the particles and these correlations are not limite
pair or triplet terms but terms at all orders are genera
Different motivations for such representation of the groun
state wave function have been presented. In one of th
each shadow variable associated to a particle is interprete
a way to represent in the ground state the excluded volu
due to the zero-point motion of the hard core particle.11 The
initial motivation for introducing the SWF has been that
describes the crystalline phase without explicitly break
the translational invariance of the wave function: localizat
of particles is obtained via interparticle correlations.8 It turns
out that inclusion of physically motivated attractive corre
tions in the shadow-shadow pseudopotential leads to a ra
accurate ground-state energy also in the liquid phase.10 How-
ever, whereas optimization of the particle-particle pseudo
tential has been already achieved, a full optimization of
SWF was never attempted. This made somewhat incomp
the comparison between SWF and the optimized Jast
plus triplet wave function and unassessed the full exten
the role of correlations beyond the triplet level.

The interest in the SWF method11 has been strongly en
hanced by the discovery that this formalism could be
tended in a natural way to treat excited states like
phonon-roton excitation branch12 or a vortex line.13 For in-
stance, by the simple provision that the momentum carry
factor in Ck is a density fluctuation in the subsidiary var
ables, one has a parameter-free wave function that giv
roton energy at the level of the best correlated basis func
results. The explanation of such a good result is that swi
ing the density fluctuation from the particle to the subsidia
variables allows for the presence of backflow effects in
particle variable. In addition, this backflow is represented
terms to all orders in the density fluctuation$rk% of the real
variables.14 In a similar way, writing the phase factors for
vortex line in terms of the subsidiary variables allows for t
backflow effects and for a delocalized vorticity and also
this case a strongly improved description of the vortex line
obtained in terms of a lower excitation energy.15

In the present paper we address in the first place the p
lem of a full optimization of the SWF, both in the liquid an
in the solid phase. The first motivation is to assess in
liquid phase the role of correlations beyond the triplet le
the
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and, in the solid phase, to perform a detailed compari
between a wave function without explicitly broken trans
tional symmetry like the SWF and the standard wave fu
tion with localizing factors. In the second place, an accur
ground-state wave function is a preliminary step in the stu
of excited states. Careful optimization of the ground state
important in order to be sure that information on the exci
states are not biased by an inadequate ground state. Fur
more, we include the long-range part of the correlations d
to the zero-point motion of phonons.

Starting from this optimized SWF we also study th
phonon-maxon-roton excited states in the liquid phase.
goal is to verify to what extent the excellent results that w
obtained with a less accurate representation of the S
ground state16,17 remain valid when the optimized SW
ground state is used. Previous results in the maxon and in
roton regions were in excellent agreement with experime
The situation was less satisfactory in the high-frequen
phonon region.16,17 Another motivation for the present com
putation is to verify if the inclusion of the long-range corr
lations in the ground state is important to obtain the corr
description of the phonon excitations. Finally, the compu
tions of Refs. 16 and 17 gave a rather unexpected result
high-frequency phonons equipartition between kinetic a
potential energy as expected for long-wavelength phon
was not observed. In order to verify if this is an artifact of t
SWF, we supplement the variational computation with a d
fusion Monte Carlo~DMC! simulation with fixed nodes.

The contents of the paper are as follows. In Sec. II
optimization procedure of the SWF is described and the
sults for the energy, correlations, and Bose-Einstein cond
sate are presented. In Sec. III the method of computation
the excited states in the liquid phase is presented and
results for the excitation spectrum and for the strength of
single excitation peak inS(k,v) are given. In this section the
results for high-energy phonons as given by SWF and
DMC are also presented. Section IV is left for the conc
sions.

II. WAVE-FUNCTION OPTIMIZATION
AND GROUND-STATE PROPERTIES

The SWF is a trial function introduced for variation
Monte Carlo studies of ground-state properties of liquid a
solid 4He. Formalism and applications are reviewed in R
11. For the ground state of a homogeneous system oN
bosons, we write the SWF in the form

C~R!5Fp~R!E Q~R,S!Fs~S!dS. ~1!

Here R5$r1 , . . . ,rN% are the coordinates of the particle
S5$s1 , . . . ,sN% is a set of auxiliary~shadow! variables,Fp
and Fs are Jastrow pair products of particle and shad
coordinates, respectively, andQ(R,S)5exp@2(iusp(ur i
2si u)# is a coupling function between particles and shado
Early SWF calculations used a McMillan form8 for both the
pseudopotential up entering the Jastrow factorFp
5exp@2(i,jup(rij)# and for the~similarly defined! shadow
pseudopotentialus . A Gaussian has been used so far for t
shadow-particle coupling.
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TABLE I. Energy per particle in K of liquid and fcc solid4He. For the variational results, OJOT~G!
denotes a Feenberg function with optimal pair and triplet correlations, times a Gaussian one-body fa
the solid;O2B1A(S) is a SWF with optimized particle correlations; OSWF0 is the optimized SWF obtained
from the basis set expansion, and OSWF the density-independent fitted form given in Eq.~8!. The last
column lists the nominally exact DMC results. All calculations use theHFDHE2 potential~Ref. 18!.

r (Å23) OJOT~G! O2B1A(S) OSWF0 OSWF DMC

Liquid
0.0196 26.854~2! a 26.695~27! b 26.81~2! 26.765~8! 27.012~2! a

0.0207 26.886~6! 27.111~5! a

0.0218 26.901~4! a 26.789~23! b 26.95~2! 26.937~6! 27.143~4! a

0.0229 26.913~6!

0.0240 26.811~5! 27.017~6! a

0.0251 26.634~7!

0.0262 25.991~8! a 26.286~22! b 26.38~2! 26.350~6! 26.557~10! a

fcc solid
0.0293 25.51~1! 25.414~11! b 25.55~2! 25.566~5! 25.759~6!

0.0303 25.237~6!

0.0313 24.815~4! 25.009~5!

0.0323 24.319~6!

0.0329 23.765~12! b 24.06~2!

0.0335 23.70~1! 23.71~3!

0.0343 23.092~7!

0.0353 22.40~1! 22.132~12! b 22.40~2! 22.339~8! 22.641~6!

aReference 2.
bReference 10.
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We remind that a SWF has the ability to describe b
liquid and crystalline phases within the same functional fo
featuring Bose symmetry and translational invarian
whereas the Feenberg wave functions that have to be su
mented with a Nosanow one-body factor in the solid pha
In addition, integration over shadow coordinates implici
introduces correlations between particles at all orders.

A natural question arises as to whether the SWF, bey
its appealing formal properties, also provides a quantitativ
accurate variational description of the condensed phase
4He. Recently, a major improvement in the energy up
bounds has been achieved using the so-calledO2B1A(S)
SWF,10 which features~i! the physically motivated inclusion
of an attractive part in the shadow pseudopotentialus and~ii !
the full numerical optimization of the particle-partic
pseudopotentialup . However, thisO2B1A(S) wave func-
tion gives relatively too little binding in the low-density liq
uid and in the high-density solid, which results in a po
equation of state. Furthermore, as shown in Table I, it is
as accurate as a Feenberg form with optimized two-
three-body correlations times a Nosanow Gaussian facto
the solid phase, which we will call OJOT~G!, except in the
liquid close to freezing where the quality of the OJOT wa
function is severely limited by the neglect of higher-ord
correlations.2

In this section we discuss the extension of the numer
optimization procedure toall the pseudopotentialsup , us ,
andusp . Despite the fact that a full optimization proves im
possible using standard techniques, we manage to ge
best energy upper boundsfor both the liquid and the solid
Even more important, the discrepancy between the va
tional and the exact ground-state energy is nearly consta
h
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the whole density range considered, yielding anextremely
good equation of state, including excellent estimates for th
equilibrium, freezing, and melting densities. The treatm
of long-range correlations is also discussed.

A. Optimization procedure

The SWF optimization is carried out for systems ofN
564 atoms in the liquid phase orN5108 atoms in the fcc
solid with periodic boundary conditions. The use of the
relatively small systems is justified by additional calculatio
for N5180 and 256 for the liquid at equilibrium density
which gave neither a significant improvement of the ene
nor a sizeable change of the correlation functions. As us
the shadow and the particle pseudopotentials are smoo
cutoff at a distance corresponding to half the simulation b
side.19 The Hamiltonian is

H52
\2

2m
¹21V~R!52

\2

2m(
i 51

N

¹ i
21 (

i , j 51

N

v~r i j !, ~2!

wherev(r ) is theHFDHE2 Aziz potential.18

We adopt a computationally efficient scheme previou
used to fully optimize two- and three-body correlations in
Feenberg wave function for liquid4He and 3He.2 All the
pseudopotentials of the SWF are expanded according
ux(r )5ux

0(r )@11(max
mbx

m(r )#, wherex is eitherp, s, or sp,
and the basis functionsbx

m(r ) are Fourier components de
fined in the appropriate range of interparticle distances w
suitable boundary conditions. The reference functionsux

0 ,
which correspond to theM1A(S) SWF of Ref. 10, are Mc-
Millan, scaled Aziz, and harmonic pseudopotentials for
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912 PRB 58S. MORONI, D. E. GALLI, S. FANTONI, AND L. REATTO
particle, shadow, and particle-shadow correlations, resp
tively. Twenty basis functionsbx

m for each pseudopotentia
are more than adequate. A linear combinationS2 of the total
energy and its variance is minimized with respect to the
efficientsax

m using the reweighting method and taking adva
tage of the linearity in the variational parameters of lnC.2

Since the procedure is described in detail elsewhere,2 we
only need to establish the notation to discuss a couple
specific points for the implementation with the SWF. Briefl
a step of the reweighting method20 consists of~i! sampling a
set ofM configurations from the square of a wave functi
with variational parametersa0, and~ii ! using this fixed set to
estimate the quantityS2 for different choices of the varia-
tional parametersa. We recall that when sampling the squa
of the SWFC(R), also the integrals over the shadow va
ables are done stochastically;8 this introducesN ‘‘left’’
shadowSL andN ‘‘right’’ shadow SR, so that a configuration
is defined byX5$R,SL ,SR%. The quantity we minimize is
thus

S2~a!5

(
i

M

@El ~a;Xi !2Ē#2W~Xi !

(
i

M

W~Xi !

, ~3!

where thelocal energyis given by8

El ~a;X!5
HC~X!

C~X!

5V~R!2
\2

2m

3
¹2Fp~R!@Q~R,SL!1Q~R,SR!#

Fp~R!@Q~R,SL!1Q~R,SR!#
, ~4!

and theweightsare given by

W~a;X!5
Fp

2~R!Q~R,SL!Q~R,SR!Fs~SL!Fs~SR!

Fp;0
2 ~R!Q0~R,SL!Q0~R,SR!Fs;0~SL!Fs;0~SR!

.

~5!

The subscript 0 in the last equation denotes the wave fu
tion with parametersa0, from which theXi are sampled. The
constantĒ in Eq. ~3! tunes the weight with which the ave
age of the local energy and its variance enter their lin
combinationS2. The wave functionC with the parametersa
that minimizesS2(a) is then used to generate a new set
configurations and the procedure is iterated to converge

Use of reweighting allows one to explore accurately a
efficiently the parameter space, provideda is not too far from
the valuesa0 used for the sampling. This ‘‘distance’’ in pa
rameter space is measured in terms of the dispersion o
weightsW(Xi): a large dispersion implies that only few co
figurations contribute to the sums in Eq.~3!, giving an esti-
mate forS2 with poor statistics. If the dispersion exceeds
prefixed threshold, the minimization routine is stopped an
new iteration of the reweighting procedure is started.

For each iteration we useM;10 000 statistically-
independent configurations generated with a generalized
c-
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tropolis algorithm. In order to reduce the strong autocorre
tions along the random walk, typical of the scaled Az
SWF,10 we first move thei th particle once sampling a
Gaussian centered at (si

L1si
R)/2, and then thei th ‘‘left’’ and

‘‘right’’ shadows three times sampling Gaussians centere
r i , all the Gaussians having widths tuned to achieve
optimal acceptance rates.

The finite number of configurations used for the reweig
ing gives a statistical bias to the optimal variational para
eters. If we keep iterating the optimization procedure af
convergence, the energy fluctuates within 1 to 331022 K,
depending on the phase and the density of the system. Th
our estimate for the accuracy on the energy of the ‘‘optima
wave function.

One often uses variance minimization rather than ene
minimization,21 exploiting the zero variance principle of th
local energy~namely, if C is an exact eigenstate ofH then
HC(R)/C(R) is obviously a constant!. The SWF, on the
other hand, does not have a zero variance principle, bec
the local energy of Eq.~4! contains fluctuations from the
~unavoidable! sampling of the shadow variables. We neve
thelessmustgive some weight to the variance inS2 because
we saw that an unconstrained minimization of the ene
would lead to an uncontrolled increase of the variance, p
ticularly in the liquid at low density.

A more serious drawback is the inadequacy of stand
reweighting for the optimization of a highly parametrize
form for the shadow pseudopotentialus . The reason is tha
the growth of the dispersion of the weightsW(Xi) upon
variation of the parametersa is much faster than the corre
sponding change ofS2: with the number of configurationsM
we use, the change inS2 that we can induce in a step of th
reweighting procedure by varyingus is not statistically
meaningful.

In some cases a similar problem has been circumvent22

by setting all the weightsW(Xi) in Eq. ~3! equal to 1. To test
this possibility we have to use an estimator for the lo
energy which, unlike the one shown in Eq.~4!, explicitly
containsFs ~since the dependence ofS2 on Fs through the
weights has to be suppressed!. Such an estimator can b
obtained by simply takingR and R-S as independent vari
ables in Eq.~1!. Unfortunately, the variance of this new e
timator is so large that its use in the optimization scheme
not been useful.

In conclusion, we can fully optimize, under the constra
that the variance remains within an acceptable level, the
ticle pseudopotentialup and the particle-shadow couplin
usp . A much larger computational effort, or a better alg
rithm, would be needed to effectively optimize the shad
pseudopotential and the present results only represent a
tially optimized shadow pseudopotential. In any case,
results give a rigorous upper bound to the energy and no
is introduced.

B. Results

The optimized correlation factorsf x(r )5exp@2ux(r)#
~solid line! are displayed in Fig. 1, together with the
valuesf x

0 in the M1A(S) function ~dashed!, for the case of
liquid 4He at equilibrium density. The optimal particle co
relation f p behaves like in the OJOT Feenberg wa



ffe

ow
d

e
he
iz
th
ly

th
pa

n

ed
e.
ach
the

tted

ri-
n is
s,
use
tion
-

in

on
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function2 or in theO2B1A(S) SWF.10 The irregular wavy
behavior of the shadow correlationf s is due to the problem
discussed at the end of the previous section, and the di
ence fromf s

0 is probably not particularly meaningful.
The really new result is the optimized particle-shad

correlation, which sharply peaks at nonzero distance. Mo
fication of the simple Gaussianf sp

0 could be expected on th
grounds of the path-integral analogy with improving t
free-particle approximation to the density matrix, but the s
of the effect was totally unanticipated. In the solid phase,
shape off sp is still non-Gaussian, but the peak is strong
suppressed~see Fig. 2!.

In order to offer a more transferable representation of
optimized pseudopotential than given by the basis set ex
sion, we fit them to simpler expressions:

f p~r !5expF2S p1exp@2p2~r 2p3!2#

1p4exp@2p5~r 2p6!2#1
p7

e1r p8
D G , ~6!

f sp~r !5
exp@2~p1r !2#

p21p3r 21p4r 31p5r 41p6r 51p7r 6
, ~7!

FIG. 1. Optimized correlation functionsf x ~solid line! and their
valuesf x

0 before optimization~dashed! as a function of interparticle
distance, for liquid4He at equilibrium density.
r-

i-

e
e

e
n-

f s~r !5expF2S 2
p1

6

e1r 6
2

p2
8

e1r 8
1

p3
10

e1r 10
1

p4
12

e1r 12

1
p5

14

e1r 14
1

p6
16

e1r 16D G . ~8!

The constante50.1 is used to regularize the correlatio
functions at the origin.

It turns out that the density dependence of the optimiz
f x’s is very weak within either the solid or the liquid phas
For this reason we only fit one set of parameters for e
phase. The fitted parameters are listed in Table II, and
resulting correlation functionsf x are shown in Fig. 2. We
will denote by OSWF0 the original optimized SWF given in
terms of the basis set expansions, and by OSWF the fi
form of Eqs.~8!.

The energies found with the OSWF0 are listed in Table I,
together with previous variational and DMC results, at va
ous densities in the liquid and solid phases. Compariso
made with the nominally exact results of DMC simulation
rather than with the experimental equation of state, beca
we want to assess the accuracy of the variational calcula
rather than the reliability of the model potential. The im
provement over the best previous SWF calculation (O2B
1A(S), Ref. 10! is significant, ranging from about 0.1 K in
the liquid to almost 0.3 K at the highest density considered

FIG. 2. Density-independent fits for the optimized correlati
functions f x of the liquid ~full line! and the solid~dashed! as a
function of interparticle distance.
14
89

5

TABLE II. Variational parameters. Lengths are in Å.

Liquid Solid

f r f rs f s f r f rs f s

p1 0.865 51 20.466 76 2.554 76 10.654 90 20.625 20 3.733 34
p2 1.772 76 0.994 03 3.874 94 0.902 98 1.003 19 2.609
p3 1.618 82 23.824 17 3.669 45 0.627 07 0.289 43 3.013
p4 0.055 71 6.858 91 2.213 21 0.034 31 21.127 69 3.077 20
p5 0.607 52 23.677 84 0.868 45 3.722 18 3.016 1
p6 4.194 70 0.985 46 4.081 23 22.706 78 2.952 80
p7 204.646 74 639.605 88 0.705 99
p8 6.838 99 11.427 01
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the solid. The OSWF0 also outdoes the OJOT Feenbe
wave function.2 The difference is small at the equilibrium
density, but grows rapidly in the liquid as the density i
creases, showing that correlations beyond triplets, whose
portance increases with density in the liquid, are effectiv
accounted for in the OSWF0. In quantitative terms, thes
effects can be roughly estimated as follows. Comparison
tween the results of optimized Jastrow and OJOT shows
triplet correlations lower the energy by 0.8 K atreq and by 1
K at freezing density. The OSWF0 gains 0.05 K over OJOT
at req and this is a lower bound for the contribution of co
relations beyond the triplet level. In fact, we may susp
that in OSWF0 the triplet correlations are not fully optimize
because it is likely that by the present SWF one cannot g
erate an arbitrary form of triplet correlations. Said in diffe
ent terms, we expect that a further~small! improvement in
the energy will be obtained if the OSWF0 is supplemented
by an explicit triplet term. In support of this argument w
note that the OSWF0 energy is slightly above the OJOT re
sult at the lowest density of the present computation, ab
10% belowreq . This suggests that the actual contribution
correlations beyond the triplet level in OSWF0 is of order of
0.1 K at req , i.e., about 1

8 of the triplet contribution. At
freezing density, correlations beyond the triplet level give
least a contribution equal to 0.4 K,1

3 of the triplet contribu-
tion, and this shows how rapidly these high-order corre
tions increase with density. In the solid phase at high dens
OSWF0 and OJOTG give essentially equivalent results.
melting density, the SWF gives an energy that is 0.07
below the OJOTG result. This last wave function is not pro
erly Bose symmetric and the only computation23 in which
the localizing Gaussians have been symmetrized as a pe
nent ~i.e., a symmetrized product! of Gaussians gave an in

TABLE III. Fit parameters of the equation of state.

Liquid Solid

OSWF DMC OSWF DMC
E0 26.9378 27.1443 26.2100 26.5116
B 14.9101 13.2590 19.4387 0.0028
C 8.2699 9.7102 6.6727 13.5286
r0 0.0220 0.0219 0.0249 0.0213

FIG. 3. Equation of state of4He at T50. Lines are broken
across the coexistence region.
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creased energy. This shows that a SWF gives a significa
improved description also of a low-density solid. It is n
known if this improvement is due to non-Gaussian effects
to correlations beyond the triplet level. The geometry of t
simulation cell and the periodic boundary conditions dict
the kind of ordered crystalline phase can be obtained wit
SWF and in the present computation we have only stud
the fcc crystal. It is useful to notice that recently it has be
found24 that within the SWF the stable solid phase is the h
crystal, in agreement with experiment.

Table I also lists the energies calculated with the fitt
OSWF. It appears that using a density-independent form
each phase~that may be very convenient for the simulatio
of inhomogeneous systems! does not downgrade severely th
quality of the wave function.

The difference between the OSWF energies and the D
results is almost constant in the whole density range con
ered, which means that the equation of state is well rep
duced. The OSWF and DMC equations of state are show
Fig. 3. The lines are cubic fits of the form

E~r!5E01B@~r2r0!/r0#21C@~r2r0!/r0#3 ~9!

to the calculated energies. The parameters of the fit are
ported in Table III. From the fitted equation of state we c
culate the equilibrium, freezing, and melting densities, a
list them in Table IV. The agreement between OSWF a
DMC is excellent. Also the pressure and the chemical pot
tial computed from the OSWF equation of state, shown
Fig. 4, compare favorably with the exact results. Only
doubly differentiated quantities, such as the sound velo
and the compressibility~Fig. 5! do some discrepancies be
come evident.

We conclude this section with a comparison of OSW
and DMC results for quantities that are not directly deriv
from the total energy. In this case the DMC results areex-
trapolated estimators20 and are biased by the trial functio

TABLE IV. Equilibrium, freezing, and melting densities in Å23.

OSWF DMC Expt.

req 0.0220 0.0219 0.0218
r f re 0.0256 0.0258 0.0258
rmel 0.0286 0.0290 0.0280

FIG. 4. PressureP and chemical potentialm.
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adopted in the simulation. The comparison is therefore a
stringent test, but the uniformly good agreement found
nevertheless a meaningful assessment of the global g
quality of the OSWF.

We show in Fig. 6 the pair distribution functiong(r ) and
list in Table V the kinetic energy. The one-body dens
matrix n(r ) is calculated as described in Ref. 8, except t
the normalization is not determined by matching differe
estimators for large and short distances, but simply fitting
known normalization and curvature at the origin,

n~r !512
mT

3\2
r 21O~r 3!,

whereT is the kinetic energy. The uncertainty in the norm
ization is less than 1% in the present calculation. The c
densate fraction, computed as the average ofn(r ) for r
.4.5 Å, is listed in Table VI together with the results
other simulations. A statistical error is reported in the tab
However, there is probably larger uncertainty due to the w
of calculatingn0 from the one-body density matrixn(r ): for
example, the results of OJOT and DMC are fitted to simu
tion data for bothn(r ) and its Fourier transformn̂(k), the
momentum distribution,assuminga particular functional

FIG. 5. Sound velocityc and compressibilityk.

FIG. 6. Comparison between the OSWF, OJOT, and DMC
sults for the pair distribution function at the equilibrium density
the liquid, 0.0218 Å23, and at the melting density in the solid
0.0293 Å23.
ss
s
od

t
t
e

-
-

.
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form;25 the OSWF0 result, and probably all the others, a
obtained by averagingn(r ) on some ‘‘larger ’’ range. Note
that DMC and Green-function Monte Carlo are equivale
‘‘exact’’ algorithms, the difference in the results being due
the bias on the extrapolated estimators from different t
wave functions~DMC uses OJOT!. The path-integral Monte
Carlo result has no systematic bias, but is calculated fo
temperature of 1.18 K.

C. Long-range correlations

All the above results are obtained using short-ran
pseudopotentials. Actually, it is known26 that the zero-point
motion of long-wavelength phonons induces in the wa
function a long-ranger 22 correlation. This issue is particu
larly relevant in the present work that aims at a realis
characterization of the excitation spectrum,including
phonons.

TABLE V. Kinetic energy per particle in K of the liquid and fcc
solid. The OJOT and DMC data for the liquid are taken from Ref

r (Å23) OJOT OSWF DMC

Liquid
0.0196 11.936~7! 12.377~10! 11.688~11!

0.0207 13.069~7! 13.393~7! 12.881~21!

0.0218 14.233~8! 14.506~6! 14.049~18!

0.0229 15.702~6!

0.0240 16.846~8! 16.997~6! 16.428~23!

0.0251 18.369~7!

0.0262 19.639~13! 19.822~10! 19.312~26!

fcc solid
0.0293 25.53~2! 25.793~9! 25.040~47!

0.0303 27.428~7!

0.0313 29.065~9! 28.128~33!

0.0323 30.683~11!

0.0343 33.891~13!

0.0353 35.15~2! 35.444~12! 34.454~43!

TABLE VI. Condensate fraction in4He from various calcula-
tions. Densities in Å23.

r50.0218 r50.0262

M1M~S! a 0.0451~3!

M1A~S! a 0.077~5!

VMC O2B1A~S! a 0.081~4!

OJOT 0.0869~4! 0.0415~3!

OSWF0 0.081~1! 0.036~1!

GFMC b 0.092~1! 0.037~2!

DMC c 0.0717~5! 0.0271~6!

PIMC d 0.069~10!

aReference 10.
bR. M. Panoff and P. A. Whitlock, Can. J. Phys.65, 1409~1987!.
cReference 25.
dD. M. Ceperley and E. L. Pollock, Can. J. Phys.65, 1416~1987!.
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We therefore add a long-range tail of the form sugges
in Ref. 26 to the shadow pseudopotentialus , namely,

us~r !5us
sr~r !1us

lr ~r !5us
sr~r !1

1

2

mc

p2r\

1

r 21kc
21

,

~10!

whereus
sr is the short-range term of Eq.~8!, c is the sound

velocity, andkc is a cutoff parameter for the onset of ther 22

behavior. Note that in the SWF the long-range tail can
added to eitherup or us , or it can be split between the two
we chooseus for consistency with the excited state wa
function, discussed in the next section, which has
density-fluctuation operator acting on the shadow variab

In periodic boundary conditions, whileus
sr vanishes at

half the simulation box side,us
lr (si j ) includes the correlation

between shadowi and all the images of shadowj in the
periodically repeated simulation cell.28 The long-range con-
tribution to lnC,

2(
i , j

us
lr ~si j !5

1

2 (
kÞ0;uku,kmax

ûs
lr ~k!r2krk , ~11!

is evaluated in reciprocal space: herek are the reciproca
lattice vectors~RLV’s! of the simulation cell,ûs

lr is the Fou-
rier transform ofus

lr , andrk5( j 51
N exp(2ik•r j ) are the col-

lective coordinates. We choosekmax such as to restrict the
sum to the first 25 stars of RLV’s.

With c given by the OSWF equation of state of Eq.~3!,
simulations of large (N5256) systems with different value
of kc have been performed at equilibrium and freezing d

TABLE VII. Ground-state energies per particle in K~total E0,
kinetic K, and potentialU) for a system withN5256.

req r f re

OSWF OSWF1phonon OSWF OSWF1phonon
E0 26.919~4! 26.971~5! 26.324~7! 26.343~5!

K 14.630~5! 14.462~7! 19.96~1! 19.924~7!

U 221.549~5! 221.433~4! 226.284~6! 226.267~6!
d

e

e
s.

-

sity. Results are shown in Table VII. In both cases the ene
is lowered by the phonon term and the optimal value ofkc
turns out to be 0.25 Å21. The improvement in the variationa
upper bound for the energy is small at the freezing den
but it is as large as 0.05 K atreq . This gives by far the bes
estimate of the binding energy of liquid4He, 26.971
60.005 K, less than 2.5% above the experimental value

With this wave function we can evaluate the effect
long-range correlations up to a maximum wavelength eq
to the simulation box side. In particular, the static structu
factor S(k)5^r2krk&/N, calculated at the RLV’s for a sys
tem ofN5256 atoms at the equilibrium and freezing densi
is shown in Fig. 7. The inclusion ofus

lr brings the simulation
results in agreement with the predicted26 long-wavelength
behavior, S(k)5\k/2mc1O(k2), as well as with experi-
ment.

III. EXCITED STATES SHADOW WAVE FUNCTION

The SWF variational technique has been extended
study excited-states properties of superfluid4He.12 The
method is a generalization of the Feynman ansatz3 in which
a wave function for an excited stateCk , of momentum\k,
is obtained by introducing a suitable momentum carry
factor in the ground-state wave function. The interpretat
of the shadow variables as a way to represent the effec
the zero-point motion of hard-core particles suggests that
effect should be present in a similar way also in the exci
states of low energy. Therefore, a natural representatio
the wave function for the excited states was obtained12 by
expressing the density fluctuations in terms of the shad
variablessk5( jexp@ik•sj # . The resulting structure ofCk is
similar to the Feynman’s form, however it turns out14 that in
this wave function the density fluctuationsk induces implic-
itly terms of all orders in the density fluctuation of the re
variables, i.e., backflow is already included and it is not li
ited to terms of low order in the density fluctuationsrk .

A significant improvement over these earlier results w
obtained by introducing explicit backflow terms inCk .16,17

Indeed, in the original wave function of Ref. 12 no vari
tional parameter for the excited states is present and the f
FIG. 7. OSWFS(k) for liquid 4He at equilibrium density~a!, and at freezing density~b! with ~filled circles! and without~empty circles!
the phonon correction, with the sound velocity from the equation of state of Fig. 3 (c5248 m/s at equilibrium density,c5383 m/s at
freezing density! andkc50.25 Å21. The solid line indicates the correct smallk slope, and the diamonds are experimental results~Ref. 27!.
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PRB 58 917VARIATIONAL THEORY OF BULK 4He WITH SHADOW . . .
of backflow is uniquely determined by the correlations b
tween shadow variables,14 i.e., by a ground-state property.
is remarkable that such a parameter–free wave function
ready gives good results,12 but a more adequateCk should
contain the possibility to optimize the backflow included
it. A more accurate SWF for the excited state includes
explicit backflow term and has the form16,17

Ck~R!5Fp~R!E dSQ~R,S!Fs~S!dk , ~12!

whereFp , Q(R,S), and Fs(S) are the correlating factor
for the ground state while the momentum carrying factor
Eq. ~12! is

dk5(
j

eik•[sj 1( l ~Þ j !~sj 2sl !l~ usj 2sl u!] . ~13!

It is easy to show that this wave function is an eigenstate
linear momentum with value\k. If l(s)50, dk is simply a
density fluctuation in the shadow variables and the w
function of Ref. 12 is recovered. Forl(s) a short-range form
is assumed:

l~s!5H A@~s/r 0!22#2e2@~s2r 0!/w#2
s<2r 0 ,

0 s>2r 0 .
~14!

A, r 0, and w are the variational parameters for the excit
stateCk and their values are determined by minimization
the expectation value of the Hamiltonian; in principle th
values can depend on the wave vectork of the excitation.
With the wave function given by Eq.~12!, the SWF tech-
nique is able to reproduce the excitation spectrumE(k) of
superfluid4He with an accuracy at the level of a good var
tional ground-statecalculation.16,17

In the present work we repeat the computation for
excited states using the improved ground-state descrip
afforded by the OSWF. In fact, the excitation energy is o
tained as the difference between two expectation value
that there is no strict variational principle forE(k). There-
fore, it is important to use a wave function as good as p
sible. We also include the properr 22 long-range correlations
due to the zero-point motion of phonons, in order to addr
two issues that remained unsolved from the previous com
tations. In the first place, the excitation spectrum obtaine
Refs. 16 and 17 shows the typical linear behavior expecte
the phonon region but with an artificial finite-energy extrap
lation atk50. We can now verify if this was originated b
the absence of long-range correlations in the wave funct
Second, the excitation spectrum derives from the sum of
-
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excitation kinetic energy and the excitation potential ene
of the state. For a smallk phonon, a harmonic oscillation o
local density, there is equipartition between the two. At t
smallest wave vector considered in Refs. 16 and 17k
50.369 Å21), in the region whereE(k) is roughly linear,
no tendency to reach equipartition was observed. In
present calculation it is possible to verify whether this is
artifact due to the lack of long-range correlations, or t
harmonic regime indeed sets in only at substantially sma
values ofk. In this respect, additional DMC simulations a
performed to exclude the possibility of a variational bi
coming from the structure of the SWF.

A. Algorithm and technical aspects

The excitation energy spectrumE(k) is defined as the
difference between two extensive quantities: the expecta
value of the total energy for the excited state of moment
\k and that for the ground state

E~k!5
^CkuĤuCk&

^CkuCk&
2

^CuĤuC&

^CuC&
. ~15!

Notice that this is a very demanding task for a MC comp
tation becauseE(k) is typically one hundredth or less of th
total energies and prior to Ref. 12 it was not clear that su
a computation would be feasible.

The computation of the energy of an excited state is ba
on a random walk generated for the ground state. This
necessary because the square modulus of the excited-
wave function is positive definite only after integration ov
the shadow variables. We use the same kind of reweigh
technique described for the optimization procedure of
ground state, so that the energy spectrum can be writte
terms of averages over the random walk generated for
ground state in the extended space$R,SL ,SR% as follows:

E~k!5

K d2k
L dk

R ĤC

C
L

~R,SL ,SR!

^d2k
L dk

R&~R,SL ,SR!

2K ĤC

C
L

~R,SL ,SR!

.

~16!

d2k
L dk

R is thek-dependent weight of the local energyĤC/C
defined in Eq.~4!. dk

L is the density fluctuation modified b
backflow for shadowsSL and dk

R for shadowsSR . The de-
nominator in the first term of Eq.~16! derives from the nor-
malization ofCk . All three averages in Eq.~16! are taken
with respect to the same configurations generated usin
standard Metropolis algorithm for the ground state w
asymptotic probability given by
p~R,SL ,SR!5
Fp~R!2Q~R,SL!Q~R,SR!Fs~SL!Fs~SR!

E dRdSLdSRFp~R!2Q~R,SL!Q~R,SR!Fs~SL!Fs~SR!

. ~17!
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The reweighting technique is, on the other hand, adva
geous because the fluctuation effects coming from the a
ages in Eq.~16! are correlated and this reduces the varian
of E(k).

We have studied systems composed of 2564He atoms in
a cubic box with periodic boundary conditions both at eq
librium (req50.0218 Å23) and freezing density (r f r

50.0262 Å23). In this way the smaller wave vector com
patible with the periodic boundary condition of the system
k52p/L50.276 Å21 at req (L is the side of the simula
tion cell! andk50.294 Å21 at r f r , well inside the phonon
region of the spectrum at both densities. The computa
has been performed for thek vectors compatible with peri
odic boundary conditions along the principal directio
~111!, ~110!, and ~100!. Only around the roton minimum
we have also consideredk in other directions in order to
better locate the position of this roton minimum.

Many of the allowed wave vectorsk are equivalent. It is
convenient to take the average ofd2k

L dk
R in Eq. ~16! over the

stars of equivalentk. Moreover, eachdk is a combination of
trigonometric functions of the kind sin@2p/L(nxsi

x1nysi
y

1nzsi
z)# or cos@2p/L(nxsi

x1nysi
y1nzsi

z)#. It is convenient to ex-
press all these functions in terms of sin(2psi

(x,y,z)/L) and
cos(2psi

(x,y,z)/L) via standard trigonometric relations in ord
to avoid the direct calculation of many sine and cosine fu
tions that are more time consuming than sums or produc

In order to have an acceptable statistic forE(k), the simu-
lation has to be much longer than that necessary for
ground state. Typically, we have used runs of order o
3107 Monte Carlo steps in our computation. Here o
Monte Carlo step coincides with a trial move of all the 3N
variables (N5256, N real, and 2N shadows: left and right!
in the simulation cell one at a time.

With the excited-state wave function Eq.~12! one has to
compute many times the excitation spectrum, one for ev
set of variational parameters for the excited state:E(k)
5E(k,A,r 0 ,w). This causes a large increase of the com
tational cost of the code with respect to the excited-s
SWF that does not contain an explicit backflow contributio
Therefore, some preliminary run has to be done in orde
determine the useful range of values forA,r 0 ,w. In any case
the calculation ofE(k,A,r 0 ,w) for every combination of
A,r 0 ,w exploits the random walk generated from the grou
state that remains the most time-consuming part of the c
and that is generated once for all. We have found t
E(k,A,r 0 ,w) is most sensitive to the amplitudeA of the
explicit backflow term; moreover, the optimal value ofA
depends strongly on the wave vector of the excitation. T
dependence ofE(k) on the range parametersr 0 and w is
rather weak. In order to keep the code to a reasonable c
putational cost, we have chosen to fix the parametersr 0 and
w to the optimal value for the roton region (r 052.81 Å at
both densities,w51.53 Å at equilibrium density andw
51.02 Å at freezing density!, whereasA has to be optimized
at eachk. From the point of view of the computational co
of the code, the inclusion of the long-range correlation in
ground state affects only the generation of the random w
of the ground state, but the presence of the long-range ta
the pseudopotentialus of the shadow variables modifies th
implicit backflow contained inCk . This is not a problem in
a-
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our computation because the backflow contribution is imp
tant only for an accurate description of the roton and max
regions of the spectrum. For these regions it is clear that
long-range behavior of the total backflow has less imp
tance in the description of the excited state than the sh
range part that can be optimized through the explicit con
bution.

Another quantity directly related to the excited state a
which is possible to calculate during our simulation is t
strength of the single excitation peakZ(k) in the dynamical
structure factorS(k,v). The excitation spectrum is measure
by inelastic neutron scattering that gives the dynamical str
ture factorS(q,v). At low temperatures,T.1 K or below,
S(k,v) consists of a sharp peak and of a broad contribut
so that it is usual to decomposeS(k,v) as follows:

S~k,v!5Z~k!d„v2E~k!/\…1Sm~k,v!. ~18!

Z(k) gives the strength of the sharp peak andSm gives what
is called the multiphonon~more properly multiexcitation!
background, i.e., the contribution in which the neutron e
changes energy with two or more excitations.29 From the
sum rule

E
2`

`

S~q,v!dv5S~k!5
1

N
^r2krk&, ~19!

in terms of the static structure factorS(k), it is clear that the
ratio f (k)5Z(k)/S(k) gives the efficiency of the single ex
citation scattering process: this important quantity is a m
sure of the departure of the excited state from a simple d
sity fluctuation in the system. If the excitation were a simp
density wave, as given by the Feynman wave function,
ratio would be one and this is found experimentally to be
case fork&0.5 Å21. f (k) has a maximum but significantly
below one in the roton region whereas it is minimum f
maxons and at the end point whereZ(k) is vanishing. Stan-
dard variational theory of rotons overestimatesZ(k) and a
typical value is 1.2.7 From the expression ofS(k,v) it turns
out that Z(k) can be obtained from the formulaZ(k)
5u^CkurkuC&u2. Using SWF and the reweighting techniqu
we get

Z~k!5
u^d2k

L rk&~R,SL ,SR!u21u^d2k
R rk&~R,SL ,SR!u2

2N^d2k
L dk

R&~R,SL ,SR!

. ~20!

Sparse averaging and data blocking are the stand
Monte Carlo techniques used in the calculation ofE(k) and
Z(k). From the averages and the standard deviations of
various estimators computed in the single blocks we ge
measure of the statistical uncertainty of the computati
Agreement between the average of the values ofE(k) ob-
tained in each single block and the final cumulative avera
is an indication of the convergence of the algorithm. T
configurations of the 3N variables have been generated
each density for the computation ofE(k) on a CRAY T3E
with 128 processors working in parallel. The efficiency
the parallel algorithm is very high~about 100%! because we
have run in parallel 128 statistically independent simulatio
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spending little time in communicating the accumulated v
ues for the various estimators only at the end of each bl
to calculate the averages.

B. Results

In Fig. 8 we show the excitation spectrum computed
equilibrium density with the SWF that contains the corre
long-range contribution due to the zero-point motion
phonons. In this figure we also show the excitation spectr
computed in Ref. 17 for a system of 108 particles witho
this contribution but with the correlation functions optimize
with the basis set method. We can see that the newE(k) has
the correct behavior for smallk. This indicates that in Ref
17 the wrong behavior ofE(k) in the phonon region was du
to the absence of the long-range part in the pseudopoten
This is what we find also at freezing density. At this dens
the computed energy spectrum can be seen in Fig. 9. U
changing the density of the system, all the experimental
tures ofE(k) are reproduced by our theory: the roton ener

FIG. 8. ~circles! Excitation spectrum computed for a system
256 particles for a fully optimized excited state SWF that conta
the long-range correlations due to the zero point motion of phon
~diamonds! Excitation spectrum computed for a system of 108 p
ticles for a fully optimized excited state SWF without the lon
range correlations.~squares! Excitation spectrum for a double roto
excitation.

FIG. 9. The same as Fig. 8 at freezing density.
-
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decreases and the maxonE(k) increases at the larger densi
and the roton wave vector is displaced to a larger val
Therefore, not only the maxon and roton energies are v
satisfactory but also the correspondingk vectors. Note that
the only input in this microscopic calculation is the inte
atomic interaction between4He atoms. One can also see th
the inclusion of the long-range contribution to pseudopot
tials affects only the phonon region of the excited spectru
In Table VIII we report the roton energies found in th
present computation to be compared with our previo
results17 obtained with short-range pseudopotentials and w
the experimental values.30 In the present computation w
haveE(k) for many more values ofk in the roton region but
the statistical uncertainty inE(k) is still too large to extract a
meaningful effective mass for the roton.

As already found in Ref. 17, the energy of the state w
SWF ~12! is in significant disagreement with experiment
two cases: at largeq above 2.5 Å21 and in the maxon re-
gion at the freezing density. Outside these regions the de
tion from experiment at both densities is of the order of 5
at all wave vectors. In thek regions where there is a signifi
cant disagreement between our results and the experim
data, the experimentalE(k) is about twice the roton energ
so that we might expect that these excitations are a mix
of single and double excitations. The relevance of this ar
ment was proved in Ref. 17 where the computation has b
extended to a double roton excited state. This is obtained
replacing in Eq.~12! dk by dqdk2q , q and uk2qu being
equal to the roton wave vector. The SWF for this doub
roton excited state is then given by

Ck~R!5Fp~R!E dSQ~R,S!Fs~S!dqdk2q . ~21!

Using the reweighting technique, the spectrumEdb(k) of this
excitation can be computed through the formula

Edb~k!5

K d2q
L dq2k

L dq
Rdk2q

R ĤC

C
L

~R,SL ,SR!

^d2q
L dq2k

L dq
Rdk2q

R &~R,SL ,SR!

2K ĤC

C
L

~R,SL ,SR!

. ~22!

The results obtained in Ref. 17 for few values ofk are also
reported in Figs. 8 and 9. Where the computed spect
E(k) is in significant disagreement with the experimen
data, the energy of a double excitation is below the one
the single excitation and close to experiment. This pro
that under these conditionsCk , given in Eq.~12!, is not a
good representation of the excited state and a mixture
states should be considered. The results for the double r
excitation has been obtained with a SWF that does not

TABLE VIII. Roton energies in K.

Short range~Ref. 17! Long range Expt.~Ref. 30!

req 9.05 ~29! 9.04 ~16! 8.61 ~01!

r f re 7.73 ~25! 7.59 ~18! 7.30 ~02!

s
s.
-
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FIG. 10. ~a! Kinetic excitation energy~filled circles! and potential excitation energy~open circles! for a fully optimized SWF that
includes the long-range correlations, at equilibrium density.~b! The same as~a! at freezing density.
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clude the long-range correlations due to the zero-point m
tion of phonons. This however is not a problem because
have seen that these correlations do not affect the exc
states built with density fluctuation in which the wave vec
is in the roton region.

We have computed separately the kineticK(k) and the
potential U(k) contribution to the excitation spectrum an
the results are shown in Fig. 10 for equilibrium and freez
density. We see that the potential energy contribution
E(k) has the tendency to be negative and it has a nega
minimum in the roton region or slightly beyond it. In ou
theory the roton energy of about 9 K at equilibrium dens
corresponds to about21.5 K of potential energy and to 10.
K of kinetic energy. At freezing the potential energy of
roton is23 K and the kinetic energy is 10.6 K so that mo
of the depression of the roton energy at the larger densit
due to the lowering of the potential energy. These findin
are in agreement with an earlier computation based
SWF,31 where the negative contribution of the potential e
ergy to the energy of a roton was shown to be due to
enhanced short-range order in the excited state. This, in
has been related to the experimental observation that
height of the main peak ofS(k) is an increasing function o
temperature in the superfluid phase of4He.32
-
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We now consider the region of small wave vectors. Fro
Fig. 10 we can see thatU(k) is negative also in the phono
region whereE(k) is roughly linear. Therefore there is sti
no tendency to reach equipartition even if the excited-s
wave function includes the long-range contribution due
the zero-point motion of phonons. This point will be furth
discussed in the next subsection where comparison betw
these results and those obtained from a DMC calcula
within the fixed node approximation will be presented.

In Fig. 11 we show our results for the static structu
factorS(k) and for the strengthZ(k) of the single excitation
peak inS(k,v) both at freezing and equilibrium densitie
The result for the relative strength of this peak, i.e.,f (k)
5Z(k)/S(k) is compared with experiment in Fig. 12. The
is a good agreement especially with recent results,33 and this
is important because this quantity is rather sensitive to
structure of the wave function. The present theory appear
be the first one able to give a quantitative description ofZ(k)
in the roton region.f (k) in the roton region is almost densit
independent, but in the maxon region there is a signific
decrease off (k) at the higher density. This is also what
found experimentally.33 f (k), especially in the maxon re
gion, is very sensitive to the backflow contained in SW
~12!, more than what is found forE(k); the irregularities in
FIG. 11. ~a! Static structure factor~open circles! S(k), strength of the single excitation peak~triangles! Z(k) at equilibrium density.~plus!
DMC results forS(k). ~b! The same as~a! at freezing density.
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FIG. 12. ~a! f (k)5Z(k)/S(k) computed at equilibrium density~filled circles! compared with recent experimental data~plus! ~Ref. 33!
and experimental data~Ref. 6!. ~b! The same as~a! at freezing density.
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Fig. 12 are therefore due to the discrete set of values of
amplitude of the explicit backflow contribution used in th
MC simulation. As can be seen in Fig. 11 the long-ran
contributions due the zero-point motion of phonons stron
affects the results ofZ(k) in the phonon region where th
excitations are simple density fluctuations and theref
Z(k)→S(k) for k→0. In this region we now have a goo
description also forZ(k). It should be noticed thatZ(k) and
f (k), given by the present theory, are not reliable in thek
regions where, as discussed above, the energy of a do
roton excitation is below that of the single excitation.

C. Long-wavelength excitations

The variational study of the phonon-maxon-roton sp
trum with the SWF yields the unexpected result, shown
Fig. 10, that equipartition between kinetic and potential
ergy of the phonon is far from being fulfilled even for wav
vectors down to;0.2 Å21, where the excitation energy ex
hibits a nearly linear dispersion~see Fig. 10!. We now
present results obtained with the fixed node diffusion Mo
Carlo ~FNDMC! method that support, in this respect, t
reliability of the variational calculation.

Although the implementation of DMC with SWF i
possible,34 here we follow the standard approach and use
OJOT wave function,2 supplemented by the correct long
range tail26 in the pair correlation, as the trial functionC of
the ground state. For the excited state we take a linear c
bination

Ck~R!5
1

2
~r2k1rk!C~R!5(

i
cos~k•r i !C~R! ~23!

of two degenerate excitations, so that the trial function
real, which is convenient for the DMC simulation.

The DMC algorithm gives theexactenergy of the Boson
ground state. For the excited state the wave function is
positive, and thesign problemmakes the exact algorithm
unstable. We avoid this problem by forcing the rando
walks not to cross the nodes of the trial function: this is
FN approximation, which consists of assuming that the t
excited state and the trial functionCk have the same nodes.35

Such an assumption is certainly not correct for the sim
e

e
y

e
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form of Eq. ~23! that neglects backflow, and a recent DM
calculation36 of the excitation spectrum shows that even im
proving the nodal structure with the inclusion of backflo
correlations in the form of Eq.~13!, the FN approximation
gives poor results for the maxon and roton energies.

Nevertheless, the FN bias vanishes as the nodal struc
of the trial function becomes exact, which is precisely wh
we expect in the long-wavelength region of interest in t
context: we will resort to the comparison with the expe
mental excitation energy to establish the range of wave v
tors where the FNDMC calculation is reliable, and we w
examine the behavior of the potential and kinetic excitat
energies in this range.

We also note that the nodal structure of excited sta
lacks, in general, the tiling property,35 and a further bias may
be introduced depending on which nodal pockets have b
populated at the beginning of the simulation. Indeed,
found occasionally slightly different results from differe
sets of simulations, the effect being however small for
purpose of the present discussion.

DMC simulations are performed for 64 atoms in a cub
box and for 128 atoms in a box withLx5Ly5Lz/2, at equi-
librium density. Since a direct application of the reweighti
method to the DMC configurations is not possible, we ta
energy differences between independent runs for the exc
and the ground state. Results are complemented by va
tional simulations with the OJOT wave function; the latt
are extended also to a system of 256 atoms in a box w
Lx5Ly5Lz/4, whose smallest RLV is 0.11 Å21, using the
reweighting method. We use such elongated simulat
boxes in order to reach smaller wave vectors than would
allowed by a cubic box with the same number of particl
Comparison between results obtained with boxes of differ
shape shows that the excitation energies are not affecte
geometrical factors.

The results forE(k) are shown in Fig. 13. The VMC
excitation spectrum closely follows the Feynma
approximation,3 E(k)5\2/@2mS(k)#, where for the static
structure factor the result of the same VMC calculation h
been used. This is an expected result, in view of the fact
the excited state is of the Feynman form~23!, and indicates
that the OJOT wave function with the correct long-range
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is a good representation of the ground state. Note that
Feynman approximation becomes exact in the lo
wavelength limit. The DMC calculation gives improved r
sults, and comes in agreement with experiment atk
50.22 Å21. For this wave vector the potential energy of t
excitation, shown in Fig. 14, is still negative. The variation
calculation, which also appears to be accurate at smak
from the comparison with both DMC and experimental da
shows that the potential energy becomes positive only
wave vectors less than 0.1 Å21.

To summarize, we judge the accuracy of the FNDM
calculation on the basis of the comparison with the exp
mental excitation energy, which is favorable for long wav
length, say,k&0.2 Å21. In this range, we can assume tha
corresponding accuracy is guaranteed by the algorithm
for the kinetic and potential energies separately, and they
still far from equipartition. This in turn supports the finding
obtained by the variational method with either the OSWF
the OJOT wave function: the fact that the harmonic regi
sets in at exceedingly small wave vectors appears to b
robust result. From the present calculations we infer that

FIG. 13. Excitation spectrum of liquid4He at equilibrium den-
sity calculated by VMC and FNDMC with the trial function of Eq
~23! for the excited state. The FNDMC result atk50.369 is taken
from Ref. 37. Experimental data and the Feynman approxima
are shown as well.

FIG. 14. Kinetic and potential excitation energy of liquid4He at
equilibrium density calculated by VMC and FN-DMC with the tri
function of Eq.~23! for the excited state. The FN-DMC results a
mixed estimators~Ref. 20!.
he
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uipartition is only reached at a wave vector below 0.05 Å21

or at a wavelength larger than 120 Å, about 50 times
atomic diameter. It is a totally unexpected result that
macroscopic limit is reached only at such large distances

IV. CONCLUSION

We have presented an extensive study based on
shadow wave function technique of the ground state of liq
and solid 4He and of the main excited states in the liqu
phase. Our results confirm that the SWF approach is a v
powerful technique to handle strongly interacting boso
presently it provides the most accurate variational desc
tion of the ground-state energy of4He both in the liquid and
in the solid phase as well as of the phonon-maxon-ro
excitation spectrum. The typical accuracy is 3% for t
ground state and 5% for the excited states. The quality of
results is not limited to the energetics but it includes qua
ties like the pair distribution function, the Bose-Einstein co
densate fraction or, for the excited states, the strength of
single excitation peak inS(k,v).

One aspect, rather remarkable of SWF, is its uniform
curacy in the description of the properties of4He as a func-
tion of density. It is well known to the many-body practitio
ners how all standard techniques find increasing difficult
in treating a strongly interacting system as the density
increased. With respect to the ground state, the deviatio
Jastrow as well of Jastrow plus triplet energy from the c
rect value is a strongly increasing function of density. W
respect to roton excitation, to recover the simple fact that
roton energy at freezing is smaller than equilibrium to
quite substantial effort from many-body theory.37 The situa-
tion is quite different with SWF. At equilibrium density
SWF with short-range correlations overestimates the grou
state energy by 0.19 K, the difference is 0.18 K at freez
density and 0.19 K in the solid at melting. The roton ener
is overestimated by 0.43 K atreq and by 0.29 K at freezing
density.

It seems clear that SWF must contain some of the imp
tant features that govern the behavior of the system as
entanglement of the particles become so strong that the
calized regime of the solid is approached. We believe t
this is not unrelated to the fact that the same wave functio
able to describe also this solid phase when the densit
large enough. The technique of subsidiary variables emb
ied in the SWF can be seen as a mathematical way to a
for correlations in the wave function beyond the pair a
triplet level. The uniform accuracy in the description of4He
as a function of density suggests that in SWF there is m
than a simple mathematical trick and that the shadow v
ables have some physical relevance. We find particularly
tractive the analogy with a path-integral representation
which a shadow variable is related to the center of mass
fragment of a path integral of a particle. This view led to t
suggestion9 that the shadow pseudopotential should cont
an attractive part and this is verified by the present com
tation. This interpretation gives also an explanation of o
result that the pseudopotentials are rather density inde
dent within the liquid or within the solid phase but there is
significant jump as one moves from one phase to the ot
In fact, the paths in which a quantum particle is mapped

n
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qualitatively rather different in the solid phase, in which
path will be strongly localized around an equilibrium po
tion, with respect to the paths in a fluid where no such loc
ization is present. In the first case we can expect a ra
Gaussian-like particle-shadow correlation as it is found
the present computation, whereas a more complex beha
can be expected in the liquid phase.

In the SWF the localization of particles arises via inte
particle correlations as a phenomenon of spontaneously
ken symmetry. In the perspective of SWF the Gaussian
calization factors that are introduced in the standard the
of quantum solids are nothing but a mean-field represe
tion of the many-particle correlations implicitly present
the SWF. The fact that SWF is as accurate as the stan
wave function in a solid at high density, and is superior at
lowest densities close to melting, has an important impli
tion. In fact, the study of disorder phenomena in a quant
solid was essentially out of reach of variational theory in
standard formulation. These phenomena can be treated
very natural way by SWF because Bose symmetry is gu
anteed at the outset and the relaxation of equilibrium posi
is automatically included. Some applications of SWF
study the liquid-solid interface and a vacancy in the crys
have been already performed. The accuracy of SWF in tr
ing the bulk solid, as found in the present work, is also
good basis for an accurate treatment of disorder phenom
in the solid.

In the present treatment of the ground state we have
included the long-range correlations due to the zero-p
motion of phonons. The effect on the ground-state energ
small as expected, but it is gratifying that it is in the directi
of lowering the energy.

The presence of these long-range correlations is impor
when excited states are considered. Only in this case
finds the expected linear behavior of the excitation energ
the phonon region. Also, this is not unexpected but this is
first time within variational MC in which a consistent de
scription of the full phonon-maxon-roton excitation
achieved. As mentioned above, the typical deviation of
excitation spectrum from experiment is 5%, both at equil
rium and at freezing density. We would like to point out th
within the Feenberg form the presently best wave funct
for the ground state, the OJOT one, overestimates
ground-state energy at freezing density by 9%, about th
times larger than the value of OSWF for the ground state
almost twice our result for the roton energy. This gives
measure of the improvement of the variational theory
tained with SWF.

The experimental excitation spectrumE(k) has a small
deviation from linearity ink up to a rather large value ofk,
of order of 0.6 Å21. This excitation appears to be the exte
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sion to microscopick of sound waves, i.e., of harmonic den
sity fluctuations. Therefore, we were rather surprised
some earlier results in which no tendency was found for
excited state to reach equipartition between potential and
netic energy. This result is confirmed in the present SW
computation in which the long-range phonon correlations
included in the ground state and the size of the system
increased so that the lowestk is 0.25 Å21 ~at req). In order
to assess the accuracy of this result, we have compleme
the SWF computation of the phonon excited states wit
DMC computation with fixed nodes~Feynman nodes! as
well as a variational computation of the Feynman form w
the OJOT ground state. These different computations m
ally agree that there is a wide range ofk values in which
E(k) is essentially linear but there is no equipartition b
tween kinetic and potential energy. This is still true at t
lowest k value ~0.1 Å21) we could reach in our simulation
and we can infer that equipartition is reached only at 0
Å21. This corresponds to a wavelength in excess of 100
so that there is a substantial range of long-wavelen
phonons in which these excitations are not harmonic den
fluctuations as indicated by the macroscopic theory. This
expected result calls for further investigation.

We should mention some negative aspects of SWF.
introduction of the subsidiary variables slows down sign
cantly the convergence of a MC run and rather long autoc
relation effects set in in the presence of the attractive in
shadow correlations. In addition, the zero variance prope
is no more satisfied and, in fact, we have been able
achieve only a partial optimization of the intershado
pseudopotential.

With respect to future developments, we expect that S
will be very useful in situations in which a quasicrystallin
order sets in, like in adsorbed phases on strong binding s
strates or around impurities like positive ions. Up to now t
SWF technique has been only applied to4He, which is char-
acterized by an almost impenetrable core. It is known a
that soft-core potentials, like the Coulombic one, deve
rather strong short-range correlations under suitable co
tions, in particular when the freezing transition is a
proached. We expect the SWF will be rather useful also
these cases. Finally, we should mention the application
SWF to fermions, like3He. How to formulate a proper SWF
for fermions is already known11 and some preliminary com
putation gives very promising results. We expect that t
will be a major area of development of SWF.

ACKNOWLEDGMENTS

This work was supported by the INFM under Progetto
Supercalcolo. It was conducted in part using the CINEC
supercomputer resources~T3E!.
v.
1E. Krotscheck, Phys. Rev. B33, 3158~1986!.
2S. Moroni, S. Fantoni, and G. Senatore, Phys. Rev. B52, 13 547

~1995!.
3R. P. Feynman, Phys. Rev.94, 262 ~1954!.
4M. Saarela and J. Suominen, inCondensed Matter Theories, ed-

ited by J. Keller~Plenum, New York, 1989!, Vol. 4, p. 377.
5E. Krotscheck, Phys. Rev. B31, 4258~1985!.
6R. A. Cowley and A. D. B. Woods, Can. J. Phys.49, 177~1971!.
7M. Manousakis and V. R. Pandharipande, Phys. Rev. B30, 5062

~1984!; ibid. 33, 150 ~1986!.
8S. Vitiello, K. Runge, G. V. Chester, and M. H. Kalos, Phys. Re

B 42, 228 ~1990!.



.

-

v.

s.

p.

s.

T.

tt.

. J
y

B

ev.

-

tt.

ett.
s,

W.

al

924 PRB 58S. MORONI, D. E. GALLI, S. FANTONI, AND L. REATTO
9L. Reatto and G. L. Masserini, Phys. Rev. B38, 4516~1988!.
10T. McFarland, S. Vitiello, L. Reatto, G. V. Chester, and M. H

Kalos, Phys. Rev. B50, 13 577~1994!.
11For a review, see L. Reatto, inProgress in Computational Phys

ics of Matter, edited by L. Reatto and F. Manghi~World Scien-
tific, Singapore, 1995!, p. 43; M. H. Kalos and L. Reatto,ibid. p.
99.

12W. Wu, S. A. Vitiello, L. Reatto, and M. H. Kalos, Phys. Re
Lett. 67, 1446~1991!.

13S. A. Vitiello, L. Reatto, M. H. Kalos, and G. V. Chester, Phy
Rev. B54, 1205~1996!.

14L. Reatto, S. A. Vitiello, and G. L. Masserini, J. Low Tem
Phys.93, 879 ~1993!.

15M. Sadd, G. V. Chester, and L. Reatto, Phys. Rev. Lett.79, 2490
~1997!.

16D. E. Galli, L. Reatto, and S. A. Vitiello, J. Low Temp. Phy
101, 755 ~1995!.

17D. E. Galli, E. Cecchetti, and L. Reatto, Phys. Rev. Lett.77, 5401
~1996!.

18R. A. Aziz, V. P. S. Nain, J. S. Carely, W. L. Taylor, and J.
Conville, J. Chem. Phys.70, 4330~1979!.

19A pseudopotentialux(r ) not vanishing atr 5L/2, whereL is the

simulation box side, is redefined asūx(r )5ux(r )1ux(L2r )
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