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Variational theory of bulk “He with shadow wave functions:
Ground state and the phonon-maxon-roton spectrum

S. Moroni
The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 1-34014 Trieste, Italy

D. E. Galli
Istituto Nazionale di Fisica della Materia, via Celoria 16, 1-20133 Milano, Italy
and Dipartimento di Fisica, Universitdegli Studi di Milano, via Celoria 16, 1-20133 Milano, Italy

S. Fantoni
International School for Advanced Studies, Via Beirut 2/4, 1-34014 Trieste, ltaly

L. Reatto
Istituto Nazionale di Fisica della Materia, via Celoria 16, 1-20133 Milano, Italy
and Dipartimento di Fisica, Universitdegli Studi di Milano, via Celoria 16, 1-20133 Milano, Italy
(Received 6 February 1998

We apply an efficient optimization scheme to shadow wave functi®Wér’s) for the ground state of liquid
and solid*He. Results improve on previous variational energies in both phases. In the liquid, the gain over a
wave function with only pair and triplet correlations increases with density, providing a quantitative estimate
of the increasing effect of higher-order correlations. The discrepancy with the exact ground-state energy is
nearly constant over a wide range of densities, yielding excellent estimates for the equilibrium, freezing, and
melting densities. The optimal SWF's can be represented with high precision by density-independent sets of
variational parameters for the liquid and the solid phases. An extensive study of ground-state properties
demonstrates the uniformly good quality of the variational description afforded by the optimized SWF'’s. Based
on such an accurate representation of the ground state, and including the correct long-range correlations due to
the zero-point motion of phonons, we compute the excitation spectrum and the strength of the single quasi-
particle excitation peak. While the use of optimized SWF's confirms the accuracy of previous studies in the
maxon-roton region, the proper treatment of long-range correlations allows us to extend to the phonon region
the agreement between theory and experiment. We simulate relatively large systems in order to explore the
long-wavelength regime in detail. Even down to wave vectors where the excitation energy exhibits a highly
linear dispersion, which would suggest a harmonic phonon mode, the kinetic and potential energies of the
excitation are far from verifying equipartition. This result is supported by additional diffusion Monte Carlo
simulations within the fixed node approximation. We locate the onset of the harmonic regime for the long-
wavelength excitations at an extremely small value of the wave vdctod,05 AL,
[S0163-182698)00126-X

[. INTRODUCTION three-body level become important at such high density. As
one moves into the solid anél is augmented by localizing
The variational theory of strongly interacting bosons, likefactors, one regains accuracy in the energy with a deviation
the condensed phases tle, has been developed to a high from the correct value of order of 0.2 K.
level and it has reached a good accuracy at least for the Much less satisfactory is the situation with the excited
ground statk? at the equilibrium density. Fully optimized states. With the method of correlated basis functions the ex-
forms for the ground-state wave functiods have been ob- cited states wave functiof, of momentunvik is written as
tained when the interparticle correlations in have been a product¥,=F,V of the ground stat&d’, and of an exci-
truncated to the three-body level, i.&, contains two-body tation operator~,. F, is expressed as a polynomial in the
(Jastrow and triplet terms. Computations based on Euler-density-fluctuation operatofg,}. At lowest order, simply
Lagrange equations within hypernetted chain schérass coincides with pk=2;expfk-r;) and this represents the
well as on Monte Carlo basis set optimizafidmave been Feynman form for the excited stat%§erms beyond the lin-
performed. The saturation density of liquftHe is in fairly  ear one introduce the so-called backflow effects. In a differ-
good agreement with experiment and with results of exaceént, but related, approach, the least action principle is used in
stochastic methods and the variational binding energy im time-dependent form of wave functidriThis last theory
about 0.2 K above the correct valtiayith a deviation of has been developed up to the level corresponding to one-
3%. The accuracy decreases at higher density and in fact thmdy and two-body time-dependent correlations. Within such
deviation reaches about 8% at the freezing density. This havethods a number of approximations have to be introduced
been taken as an indication that correlations beyond thand this affects the reliability of the results. Sometimes even
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an adjustable parameter has been introduced such that thed, in the solid phase, to perform a detailed comparison
roton energy, for instance, is in agreement withbetween a wave function without explicitly broken transla-
experiments. Results obtained under controlled approxima-tional symmetry like the SWF and the standard wave func-
tion give a roton energy that is in the range of 10 K attion with localizing factors. In the second place, an accurate
equilibrium density, almost 20% above experiment and th@round-state wave function is a preliminary step in the study
results are even poorer at higher density. Also, the few com@f excited states. Careful optimization of the ground state is
putations of the strengthi(k) of the single excitation peak in Important in order to be sure that information on the excited
the dynamical structure fact@(k, ») show a large discrep- states are not biased by an inadequate ground state. Further-
ancy from the experimental neutron-scattering retits. more, we include the long-range part of the correlations due

An alternative approach has been developed in the varig? the Zero-point motion O_f phonons.

tional theory of strongly interacting bosons; the method of Starting from this opt_|m|zed SW.F we _als_o study the
shadow wave functiolSWF (Refs. 8, 9 and 10 Here cor- phon_on—maxpn-roton excited states in the liquid phase. The
relations beyond the pair level are introduced by coupling thégoal.Is to ve_rlfy to what extent the excellent rgsults that were
position variables of the particles to subsidiary variables, th@btained W'thl;"‘ Iess. accurate representation .Of the SWF
shadow variables. This wave function contains three paiground statb?* remain Vf"‘“d when t_he optimized SWF
correlating factors(in terms of their logarithms, three ground state Is used_. Previous results in the maxon anq in the
pseudopotentia)s the particle-particle, the particle-shadow, roton regions were in excellgnt agreement W't.h experiment.
and the shadow-shadow one. Integration over the subsidiary“a situation gVSS less satlsfactgry in the high-frequency
variables introduces in an implicit way effective correlations honon regiori>" Another motivation for the present com-

between the particles and these correlations are not limited u'tat|or.1 Is to verify if the mplgsmn of the Iong-(ange corre-
ations in the ground state is important to obtain the correct

pair or triplet terms but terms at all orders are generate 5 i tthe ph itati Finallv. th )
Different motivations for such representation of the ground-_escrlp lon of the phonon excitations. Finally, the computa-

state wave function have been presented. In one of thesg.Ons of Refs. 16 and 17 gave a “”!t.hef unexpecteq re;ult: for
each shadow variable associated to a particle is interpreted @h-frequency phonons equipartition between kinetic and

a way to represent in the ground state the excluded vqumBOtential energy as expected fqr It')ng'-wgveleng'th phonons
due to the zero-point motion of the hard core partiéi@he  WaS not observed. In order to verify if this is an artifact of the

initial motivation for introducing the SWF has been that it SWF, we supplement the variational computation with a dif-

; . : - . _fusion Monte Carlog DMC) simulation with fixed nodes.
d bes th tall h thout licitly break
escribes e clyslatine pnase witotk expicity breaking The contents of the paper are as follows. In Sec. Il the

the translational invariance of the wave function: localization timizati q f the SWF is d ibed and th

of particles is obtained via interparticle correlatiSristurns opltlmflzatlk(])n procedure o | t'e |dsBescr:E'e ta.n € dre—

out that inclusion of physically motivated attractive correla- SU!tS Tor n€ energy, correialions, and Bose-Einstein conden-
pte are presented. In Sec. Il the method of computation for

tions in the shadow-shadow pseudopotential leads to a rath i . N ;

accurate ground-state energy also in the liquid pA&iw- the excited states in the liquid phase is presented and the

ever, whereas optimization of the particle-particle pseuOlopor_esults for the excitation spectrum and for the strength of the
ingle excitation peak iS(k, w) are given. In this section the

tential has been already achieved, a full optimization of the’ its for hiah h . by SWE and b
SWF was never attempted. This made somewhat incomple sults for high-energy phonons as given by and by
MC are also presented. Section IV is left for the conclu-

the comparison between SWF and the optimized Jastrow.
plus triplet wave function and unassessed the full extent oplons:
the role of correlations beyond the triplet level.

The interest in the SWF methtidhas been strongly en- Il. WAVE-FUNCTION OPTIMIZATION
hanced by the discovery that this formalism could be ex- AND GROUND-STATE PROPERTIES

tended in a natural way to treat excited states like the . . L .
phonon-roton excitation branthor a vortex linet For in- The SWF is a trial function introduced for variational

stance, by the simple provision that the momentum calrryin(‘!j\/lc’_m‘f1 Carlo studies of ground-state properties of liquid and
factor in ¥, is a density fluctuation in the subsidiary vari- 5°lid "He. Formalism and applications are reviewed in Ref.
ables, one has a parameter-free wave function that gives &~ FOr the ground state of a homogeneous systeril of
roton energy at the level of the best correlated basis functioR°SONS, we write the SWF in the form

results. The explanation of such a good result is that switch-

ing the density fluctuation from the particle to the subsidiary _

variables allows for the presence of backflow effects in the \P(R)_(DP(R)f O(R,5)P4(S)dS @
particle variable. In addition, this backflow is represented by

terms to all orders in the density fluctuatigm} of the real Here R={ry, ... ry} are the coordinates of the particles,
variables** In a similar way, writing the phase factors for a S={sy, ... s} is a set of auxiliaryshadow variables,®,

vortex line in terms of the subsidiary variables allows for theand ® are Jastrow pair products of particle and shadow
backflow effects and for a delocalized vorticity and also incoordinates, respectively, andd(R,S)=exd —Zus[r;
this case a strongly improved description of the vortex line is— /)] is a coupling function between particles and shadows.
obtained in terms of a lower excitation energy. Early SWF calculations used a McMillan fofrfor both the

In the present paper we address in the first place the prolpseudopotential u, entering the Jastrow factor®,
lem of a full optimization of the SWF, both in the liquid and =ex{ —2;;u,(r;j)] and for the(similarly defined shadow
in the solid phase. The first motivation is to assess in th@gseudopotential;. A Gaussian has been used so far for the
liquid phase the role of correlations beyond the triplet levelshadow-particle coupling.
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TABLE |. Energy per particle in K of liquid and fcc solidHe. For the variational results, 0JQ3)
denotes a Feenberg function with optimal pair and triplet correlations, times a Gaussian one-body factor in
the solid;02B+ A(S) is a SWF with optimized particle correlations; OSWE the optimized SWF obtained
from the basis set expansion, and OSWF the density-independent fitted form given (8).E§he last
column lists the nominally exact DMC results. All calculations useHtfeDHE2 potential(Ref. 18.

p (A9 0JOTG) 02B+A(S) OSWHR OSWF DMC
Liquid

0.0196 —6.8542) 2 —6.69527)° —6.81(2) —6.7658) —7.0132)2

0.0207 —6.8866) -7.11%5)2

0.0218 —6.9014) 2 —6.78923) " —6.952) —6.9376) —7.1434) 2

0.0229 —6.9136)

0.0240 —6.8115) —7.0176) 8

0.0251 —6.6347)

0.0262 —5.9918) @ —6.28622)° -6.392) —6.3506) —6.55710) 2
fcc solid

0.0293 —5.51(1) —5.41411)° —5.552) —5.5665) —5.7596)

0.0303 —5.2376)

0.0313 —4.8154) —5.0095)

0.0323 —4.3196)

0.0329 —3.76512) P —4.062)

0.0335 —3.701) —-3.713)

0.0343 —3.09237)

0.0353 —2.400) —2.13712)° —2.4002) —2.3398) —2.6416)

8Reference 2.
bReference 10.

We remind that a SWF has the ability to describe boththe whole density range considered, yielding extremely
liquid and crystalline phases within the same functional formgood equation of statencluding excellent estimates for the
featuring Bose symmetry and translational invariancegquilibrium, freezing, and melting densities. The treatment
whereas the Feenberg wave functions that have to be supplef long-range correlations is also discussed.
mented with a Nosanow one-body factor in the solid phase.

In addition, integration over shadow coordinates implicitly A. Optimization procedure

introduces correlations between particles at all orders. h T ied
A natural question arises as to whether the SWF, beyond 1he SWF optimization is carried out for systems Nof
=64 atoms in the liquid phase &=108 atoms in the fcc

its appealing formal properties, also provides a quantitatively” ™ < e L
accurate variational description of the condensed phases gPlid With periodic boundary conditions. The use of these
4He. Recently, a major improvement in the energy uppelrelatlvely small systems is justified by additional calculations

bounds has been achieved using the so-calle®+ A(S) for_N=180 and 256 fqr t_h_e quu_id at equilibrium density,
SWF10 which featuregi) the physically motivated inclusion which gave neither a significant improvement of the energy

of an attractive part in the shadow pseudopotentjand(ii) nhor ahsi(zjeable ((:jhar:]ge of _thle corregition fun_c'Tions. As usual:,
the full numerical optimization of the particle-particle the ?f a ovc\j/_an the particle ggeu o;r)]oﬁenr:las. ar? ;mogt y
pseudopotentiall, . However, thisO2B +A(S) wave func- cutoff at a distance corresponding to half the simulation box

tion gives relatively too little binding in the low-density lig- side.® The Hamiltonian is

uid and in the high-density solid, which results in a poor 52 p2 N N

equation of state. Furthermore, as sh'own in Table litisnot | __ —V24+V(R)=— _2 V24 2 o(r), (2
as accurate as a Feenberg form with optimized two- and 2m 2m= i '
three-body correlations times a Nosanow Gaussian factor in ] ) 18

the solid phase, which we will call OJQG), except in the Wherev(r) is theHFDHE2 Aziz potential.

liquid close to freezing where the quality of the OJOT wave We adopt a computationally efficient scheme previously
function is severely limited by the neglect of higher-orderused to fully optimize two- and three-body correlations in a

correlationg Feenberg wave function for liquidHe and 3He? All the
In this section we discuss the extension of the numericapseUdolo(?tem'aIS of the SWF are expanded according to
optimization procedure tall the pseudopotentials,, us,  Ux(N)=Ux(r)[1+2,ab5(r)], wherex is eitherp, s, orsp,

andug,. Despite the fact that a full optimization proves im- and the basis functionb;(r) are Fourier components de-
possible using standard techniques, we manage to get thi@ed in the appropriate range of interparticle distances with
best energy upper boundsr both the liquid and the solid. suitable boundary conditions. The reference functiuﬁs
Even more important, the discrepancy between the variawhich correspond to th + A(S) SWF of Ref. 10, are Mc-
tional and the exact ground-state energy is nearly constant iMillan, scaled Aziz, and harmonic pseudopotentials for the
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particle, shadow, and particle-shadow correlations, respedropolis algorithm. In order to reduce the strong autocorrela-
tively. Twenty basis functiong’ for each pseudopotential tions along the random walk, typical of the scaled Aziz
are more than adequate. A linear combinafidnof the total  SWF;® we first move theith particle once sampling a
energy and its variance is minimized with respect to the coGaussian centered a¢+5%)/2, and then théth “left” and
efficientsaZ using the reweighting method and taking advan-"right” shadows three times sampling Gaussians centered at
tage of the linearity in the variational parameters o¥[h ri, all the Gaussians having widths tuned to achieve the
Since the procedure is described in detail elsewheve, optimal acceptance rates.
only need to establish the notation to discuss a couple of The finite number of configurations used for the reweight-
specific points for the implementation with the SWF. Briefly, ing gives a statistical bias to the optimal variational param-
a step of the reweighting methdctonsists of(i) sampling a  eters. If we keep iterating the optimization procedure after
set of M configurations from the square of a wave functionconvergence, the energy fluctuates within 1 to 10 2 K,
with variational parameters, and(ii) using this fixed set to depending on the phase and the density of the system. This is
estimate the quantity.? for different choices of the varia- our estimate for the accuracy on the energy of the “optimal”
tional parametera. We recall that when sampling the square wave function.
of the SWFW(R), also the integrals over the shadow vari- One often uses variance minimization rather than energy
ables are done stochasticaflythis introducesN “left” minimization?! exploiting the zero variance principle of the
shadowS- andN “right” shadow SR, so that a configuration local energy(namely, if ¥ is an exact eigenstate éf then
is defined byX={R,S, ,Sg}. The quantity we minimize is HW(R)/¥(R) is obviously a constant The SWF, on the
thus other hand, does not have a zero variance principle, because
the local energy of Eq(4) contains fluctuations from the
M _ (unavoidablé sampling of the shadow variables. We never-
> [EA(aX)—EJPW(X)) thelessmustgive some weight to the variance ¥f because
S2(a)= : o , (3y Wwe saw that an unconstrained minimization of the energy
would lead to an uncontrolled increase of the variance, par-
Z W(Xi) ticularly in the liquid at low density.
A more serious drawback is the inadequacy of standard
where thelocal energyis given by reweighting for the optimization of a highly parametrized
form for the shadow pseudopotential. The reason is that
HW(X) the growth of the dispersion of the weigh®§(X;) upon
W(X) variation of the parametersis much faster than the corre-
sponding change & ?: with the number of configuratiord
we use, the change B2 that we can induce in a step of the

E (a;X)=

2
=V(R)—

2m reweighting procedure by varyingg is not statistically
2 meaningful.
V@,(RI[O(R,S)+O(R,Sg)] (4) In some cases a similar problem has been circumvénted
O (RI[O(R,S)+O(R,SR)] ’ by setting all the weight8V(X;) in Eq.(3) equal to 1. To test

this possibility we have to use an estimator for the local
energy which, unlike the one shown in E@), explicitly
) contains®, (since the dependence &f on ® through the
_ P5(RIO(R,S)O(R,Sr) (S ) Py(Sr) weights has to be suppres(e@uch an estimator can be
(I)rz);o(R)®0(RvSL)®0(RvSR)q)s;O(SL)(DS;O(SR) ' obtaingd by simply takindR and R-S as indepenQent vari-
(5) ables in Eq.(1). Unfortunately, the variance of this new es-
timator is so large that its use in the optimization scheme has
The subscript 0 in the last equation denotes the wave funGot been useful.
tion with parameters,, from which theX; are sampled. The  |n conclusion, we can fully optimize, under the constraint
constantE in Eq. (3) tunes the weight with which the aver- that the variance remains within an acceptable level, the par-
age of the local energy and its variance enter their lineaticle pseudopotentiali, and the particle-shadow coupling
combinations 2. The wave function? with the parametera Usp- A much larger computational effort, or a better algo-
that minimizess 2(a) is then used to generate a new set ofrithm, would be needed to effectively optimize the shadow
configurations and the procedure is iterated to convergenc@seudopotential and the present results only represent a par-
Use of reweighting allows one to explore accurately andially optimized shadow pseudopotential. In any case, our
efficiently the parameter space, providet not too far from  results give a rigorous upper bound to the energy and no bias
the valuesa, used for the sampling. This “distance” in pa- is introduced.
rameter space is measured in terms of the dispersion of the
weightsW(X;): a large dispersion implies that only few con-
figurations contribute to the sums in E®), giving an esti-
mate forS? with poor statistics. If the dispersion exceeds a The optimized correlation factord,(r)=exd —u(r)]
prefixed threshold, the minimization routine is stopped and 4solid line) are displayed in Fig. 1, together with their
new iteration of the reweighting procedure is started. valuesf? in the M +A(S) function (dashed, for the case of
For each iteration we useVl~10000 statistically- liquid *He at equilibrium density. The optimal particle cor-
independent configurations generated with a generalized Meelation f, behaves like in the OJOT Feenberg wave

and theweightsare given by

W(a; X)

B. Results
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r (4)

FIG. 1. Optimized correlation functiorfs (solid line) and their FIG. 2. Density-independent fits for the optimized correlation
valuesf? before optimizatior(dashedias a function of interparticle  functions f, of the liquid (full line) and the solid(dashed as a
distance, for liquid*He at equilibrium density. function of interparticle distance.

behavior of the shadow correlatidg is due to the problem
discussed at the end of the previous section, and the differ-
ence fromf? is probably not particularly meaningful. pit pid ”

functior? or in the O2B+A(S) SWF1° The irregular wavy . (r)—exp{ ( p3 p3 p3’ Pz’
(N=exgd —| -

e+r® e+r8 e+rl0 4112

®

The really new result is the optimized particle-shadow +
correlation, which sharply peaks at nonzero distance. Modi-
fication of the simple GaUSS'd@P could be expected on the o ¢ongrante=0.1 is used to regularize the correlation
grounds of the path-integral analogy with improving thefunctions at the origin.
free-particle approximation to'the density matrixZ but the size |1 t,s out that the density dependence of the optimized
of the effect was totally unanticipated. In the solid phase, thg s is very weak within either the solid or the liquid phase.
shape off, is still non-Gaussian, but the peak is strongly For this reason we only fit one set of parameters for each

suppressedsee Fig. 2 _ phase. The fitted parameters are listed in Table Il, and the
In order to offer a more transferable representation of th(?esulting correlation functions, are shown in Fig. 2. We

o_ptimized'pseudopott'antial than givep by the basis set exparyi|| denote by OSWE the original optimized SWF given in
sion, we fit them to simpler expressions: terms of the basis set expansions, and by OSWF the fitted
form of Egs.(8).
5 The energies found with the OSWAEre listed in Table |,
fo(r)=exp —| p1exd —pa(r —ps)°] together with previous variational and DMC results, at vari-
ous densities in the liquid and solid phases. Comparison is
made with the nominally exact results of DMC simulations,

etr* e+rl6

+paexy — ps(r —pe)*]+ i ] (6)  rather than with the experimental equation of state, because
etrPe we want to assess the accuracy of the variational calculation
rather than the reliability of the model potential. The im-
exd — (p11)?] provement over_thg b_est previous_ SWEF calculati@?B _
foo(r)= 1 . (D +A(S), Ref. 10 is significant, ranging from about 0.1 K in
P Po+ Par 2+ par3+ psr*+ per®+ por® the liquid to almost 0.3 K at the highest density considered in

TABLE |I. Variational parameters. Lengths are in A,

Liquid Solid

fr er fS fr er fS
p1 0.86551 —0.466 76 2.554 76 10.654 90 —0.625 20 3.73334
P> 1.772 76 0.994 03 3.87494 0.902 98 1.003 19 2.609 14
p3 1.618 82 —3.824 17 3.669 45 0.627 07 0.289 43 3.013 89
Pa 0.05571 6.858 91 221321 0.03431 —1.12769 3.077 20
Ps 0.607 52 —-3.67784 0.868 45 3.722 18 3.016 15
Ps 4.194 70 0.985 46 4.081 23 —2.706 78 2.952 80
p; 204.646 74 639.605 88 0.705 99

Ps 6.838 99 11.427 01
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=3 ‘ T T o] TABLE IV. Equilibrium, freezing, and melting densities inA.
L /7 -
r — lquid A OSWF DMC Expt.
—4 - ---- solid /P A
r «  OSWF . 1 Peq 0.0220 0.0219 0.0218
r o DMC S/ 1 Dire 0.0256 0.0258 0.0258
2 5r P N Pmel 0.0286 0.0290 0.0280
= : p/i/ :
L o i
6 ] creased energy. This shows that a SWF gives a significantly
r s ] improved description also of a low-density solid. It is not
e ;;\\.,,./:/.//./ N known if this improvement is due to non-Gaussian effects or
i ‘*‘9/ L to correlations beyond the triplet level. The geometry of the

0.020 0.025 0.030 0.035 simulation cell and the periodic boundary conditions dictate

o (A9 the kind of ordered crystalline phase can be obtained with a

SWF and in the present computation we have only studied

the fcc crystal. It is useful to notice that recently it has been

foundP* that within the SWF the stable solid phase is the hcp
crystal, in agreement with experiment.

Table | also lists the energies calculated with the fitted

FIG. 3. Equation of state ofHe at T=0. Lines are broken
across the coexistence region.

the solid. The OSW§- also outdoes the OJOT Feenberg

\év:xsitfunk;:ljltoriow: r(;lffi?j:enizetrlfe S"mﬁiltlj ?Str:ﬁeegggg?um_ OSWEF. It appears that using a density-independent form in
creaseyé shO\?vin thath):or)rlelations bqe ond triplets Who);e ime-aCh phaséthat may be very convenient for the simulation
' 9 . 1ons beyond Hriplets, .~ 'of inhomogeneous systejmdoes not downgrade severely the
portance increases with density in the liquid, are effectively

accounted for in the OSWF In quantitative terms, these qugrl;:ye/ gifﬁtgrir\:\éaevgefwecggqhe OSWF energies and the DMC
effects can be roughly estimated as follows. Comparison be-

S results is almost constant in the whole density range consid-
tween the results of optimized Jastrow and OJOT shows thae?red which means that the equation of statg is vgell repro-

triplet correlations lower the energy by 0.8 K@l and by 1 d . .

. . : uced. The OSWF and DMC equations of state are shown in
K at freezmg_ d(_ansny. The OSWHgains 0.05 K over oJoTt Fig. 3. The lines are cubic fits of the form
at peq and this is a lower bound for the contribution of cor-
relat!ons beyond the triplet Ievgl. In fact, we may .su'spect E(p)=Eo+B[(p—po)/pol?+C[(p—po)pol® (9
that in OSWIH the triplet correlations are not fully optimized , )
because it is likely that by the present SWF one cannot geri® the calculated energies. The parameters of the fit are re-
erate an arbitrary form of triplet correlations. Said in differ- Ported in Table lll. From the fitted equation of state we cal-
ent terms, we expect that a furtheamal) improvement in c_:ulate the_ equilibrium, freezing, and melting densities, and
the energy will be obtained if the OSWHRs supplemented list th_em in Table IV. The agreement between O_SWF and
by an explicit triplet term. In support of this argument we DMC is excellent. Also the pressure a_nd the chemical poten-
note that the OSWFenergy is slightly above the OJOT re- t|§1l computed from the OSW_F equation of state, shown in
sult at the lowest density of the present computation, abodfid- 4, compare favorably with the exact results. Only in
10% belowp,,. This suggests that the actual contribution ofdoubly differentiated quantities, such as the sound velocity
correlations beyond the triplet level in OSW of order of ~ @nd the compressibilityFig. 5 do some discrepancies be-
0.1 K at peq, i-€., abouti of the triplet contribution. At ¢OM€ evident.

freezing density, correlations beyond the triplet level give at W€ conclude this section with a comparison of OSWF
least a contribution equal to 0.4 &,of the triplet contribu- and DMC results for quantities that are not directly derived

tion, and this shows how rapidly these high-order correla’om the total energy. In this case the DMC results exe
rapolated estimator® and are biased by the trial function

tions increase with density. In the solid phase at high densit)},
OSWHR, and OJOTG give essentially equivalent results. At

melting density, the SWF gives an energy that is 0.07 K o T 1%
below the OJOTG result. This last wave function is not prop- i —
erly Bose symmetric and the only computafidin which I 50
the localizing Gaussians have been symmetrized as a perma- -
nent(i.e., a symmetrized prodycbf Gaussians gave an in- 2 i <
. _ 5 50 10 ~
TABLE lll. Fit parameters of the equation of state. ~ - z
o i
Liquid Solid "
0 . 0
OSWF DMC OSWF DMC I A ]
Eg —6.9378 —7.1443 —6.2100 —6.5116 i ]
B 14.9101 13.2590 19.4387 0.0028 -5 = e 210
C 8.2699 9.7102 6.6727 13.5286 p (A-9)
Po 0.0220 0.0219 0.0249 0.0213

FIG. 4. Pressur® and chemical potentigk.
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TABLE V. Kinetic energy per particle in K of the liquid and fcc
solid. The OJOT and DMC data for the liquid are taken from Ref. 2.
600
= p (A9 0JOT OSWF DMC
- X Liquid
E 400 ‘Q?, 0.0196 11.93@) 12.37710) 11.68811)
~ 2 0.0207 13.069) 13.3937) 12.88121)
° 3 0.0218 14.23®) 14.5066) 14.04918)
= 0.0229 15.70%)
200 0.0240 16.84) 16.9976) 16.42823)
0.0251 18.369)
T T S R ‘ 0.0262 19.63AL3 19.82210) 19.31226)
0.02 0.025 0.03 0.035
poA fce solid
FIG. 5. Sound velocite and compressibility. 0.0293 25.5@) 25.7939) 25.04047)
0.0303 27.42@)
adopted in the simulation. The comparison is therefore a 1e3.0313 29.0660) 28.12833)
stringent test, but the uniformly good agreement found i20.0323 30.68@L1)
nevertheless a meaningful assessment of the global goaio343 33.89(13)
quality of the OSWF. 0.0353 35.1B) 35.44412) 34.45443)

We show in Fig. 6 the pair distribution functigy(r) and
list in Table V the kinetic energy. The one-body density
matrix n(r) is calculated as described in Ref. 8, except thaform;?® the OSWH result, and probably all the others, are
the normalization is not determined by matching differentobtained by averaging(r) on some “larger” range. Note
estimators for large and short distances, but simply fitting théhat DMC and Green-function Monte Carlo are equivalent
known normalization and curvature at the origin, “exact” algorithms, the difference in the results being due to
the bias on the extrapolated estimators from different trial
wave functiongDMC uses OJOT. The path-integral Monte
Carlo result has no systematic bias, but is calculated for a
temperature of 1.18 K.
whereT is the kinetic energy. The uncertainty in the normal-
ization is less than 1% in the present calculation. The con-

densate fraction, computed as the averagen(of) for r

>45 A, is listed in Table VI together with the results of All the above results are Obta\%%fd using short-range
other simulations. A statistical error is reported in the table PS€udopotentials. Actually, it is knowhthat the zero-point

However, there is probably larger uncertainty due to the way"otion of Iong-wavelg:r;gth phonons induces in the wave
of calculatingn, from the one-body density matrix(r): for function a Iong-range correlation. This issue is particu-
example, the results of OJOT and DMC are fitted to simulalarly relevant in the present work that aims at a realistic

tion data for bothn(r) and its Fourier transforrfn(k), the cniﬁ)crtgrlzatlon of the excitation spectrunmcluding
momentum distribution,assuminga particular functional P '

n=1-" 2003
nr)=1——r rT),
342

C. Long-range correlations

5 TABLE VI. Condensate fraction irfHe from various calcula-

[T L BN tions. Densities in A3.
. p= 0.0293
L . p=0.0218 p=0.0262
15 p= 0.0218 —
i ] M+M(S) 2 0.04513)
i 1 M+A(S) 2 0.0775)
Eor 5 VMC 02B+A(S) 2 0.0814)
i ] 0JOT 0.086¢4) 0.041%3)
i ] OSWF, 0.0811) 0.0361)
05— —
. . GFMCP 0.0921) 0.0372)
I A ] DMC ¢ 0.07175) 0.02716)
ol
0 2 4 6 8
r (4) PIMC ¢ 0.06910)

FIG. 6. Comparison between the OSWF, OJOT, and DMC re~Reference 10.
sults for the pair distribution function at the equilibrium density in PR. M. Panoff and P. A. Whitlock, Can. J. Phyg5, 1409(1987.
the liquid, 0.0218 A3, and at the melting density in the solid, “Reference 25.
0.0293 A3, dD. M. Ceperley and E. L. Pollock, Can. J. Phgs, 1416(1987).
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TABLE VII. Ground-state energies per particle in (kotal E,
kinetic K, and potentialJ) for a system withN=256.
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sity. Results are shown in Table VII. In both cases the energy
is lowered by the phonon term and the optimal value of
turns out to be 0.25 A. The improvement in the variational

Peq Ptre upper bound for the energy is small at the freezing density
OSWF  OSWFphonon OSWF  OSWAFphonon butitis as large as 0.05 K atq. This gives by far the best
E, —6.919(4) —6.971(5 -6324(7) —6.343(5) estimate of the binding energy of I|qU|dHe, -6.971
K  14.630(5) 14.462(7) 19.96(1) 19.924(7) +0.005 K, less than 2.5% above the experimental value.
U —21549(5 —21.433(4) —26.284(6) -—26.267(6) With this wave function we can evaluate the effect of

long-range correlations up to a maximum wavelength equal
to the simulation box side. In particular, the static structure

We therefore add a long-range tail of the form suggested@ctor S(k) =(p_kpk)/N, calculated at the RLV's for a sys-

in Ref. 26 to the shadow pseudopotentigl namely,

tem of N= 256 atoms at the equilibrium and freezing density,
is shown in Fig. 7. The inclusion cnfsr brings the simulation

| mec 1 results in agreement with the predicttdong-wavelength
ug(r) =ug'(r +ug (N=ug'(nN+5 ———-——, behavior, S(k) =#k/2mc+O(k?), as well as with experi-
wph re+Kk; ment.

(10

whereus' is the short-range term of E¢g), c is the sound
velocity, andk, is a cutoff parameter for the onset of the?

Ill. EXCITED STATES SHADOW WAVE FUNCTION

behavior. Note that in the SWF the long-range tail can be Tho SWE variational technique has been extended to

added to eitheu,, or ug, or it can be split between the two

» study excited-states properties of superfluitie!? The

we chooseus for consistency with the excited state wave pethod is a generalization of the Feynman arisatavhich

function, discussed in the next section, which has th
density-fluctuation operator acting on the shadow variables

In periodic boundary conditions, whileg" vanishes at
half the simulation box sideu'sr(sij) includes the correlation
between shadow and all the images of shadoyin the
periodically repeated simulation céfi.The long-range con-
tribution to In¥,

= e 2k¢0;%<k

is evaluated in reciprocal space: héceare the reciprocal
lattice vectorgRLV's) of the simulation cellp!! is the Fou-
rier transform ofu'sr , andpk:EJN=lexp(—ik- r;) are the col-
lective coordinates. We choosg,,, such as to restrict the
sum to the first 25 stars of RLV's.

With ¢ given by the OSWF equation of state of E§),

U (K)p o, (A1)

max

& wave function for an excited stafie, , of momentunvik,
is obtained by introducing a suitable momentum carrying
factor in the ground-state wave function. The interpretation
of the shadow variables as a way to represent the effect of
the zero-point motion of hard-core particles suggests that this
effect should be present in a similar way also in the excited
states of low energy. Therefore, a natural representation of
the wave function for the excited states was obtalifdxy
expressing the density fluctuations in terms of the shadow
variableso,=Z;exdik-s;] . The resulting structure oF, is
similar to the Feynman’s form, however it turns Buhat in
this wave function the density fluctuatiery induces implic-
itly terms of all orders in the density fluctuation of the real
variables, i.e., backflow is already included and it is not lim-
ited to terms of low order in the density fluctuatiops.

A significant improvement over these earlier results was
obtained by introducing explicit backflow terms ¥, .16

simulations of large {=256) systems with different values Indeed, in the original wave function of Ref. 12 no varia-
of k. have been performed at equilibrium and freezing dentional parameter for the excited states is present and the form

T M 7 T
4
I',
(@ s 00 )
’
’,’ IS
. <
02+ Vil Ooe 1 M
. e ooe P
[e] ,’ ()o ’/’
N o o,’8<><> o
e 70 -
(\’J' 1:‘) L4 ’z’ ° .
0 /’
@ <
0.1 | VQ ’,’ A
3 + . J
y% o] /’0’
9'9 "/’ L
,9 ,’I,
’l, '/,
0.0 k- : al -
0.0 065 1.0 065 1.0
kIAT] k[A]

FIG. 7. OSWFS(k) for liquid “He at equilibrium densitya), and at freezing densitip) with (filled circles and without(empty circleg
the phonon correction, with the sound velocity from the equation of state of Fig=248 m/s at equilibrium densityz=383 m/s at
freezing densityandk,=0.25 A~1. The solid line indicates the correct smialslope, and the diamonds are experimental regRies. 27.
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of backflow is uniquely determined by the correlations be-excitation kinetic energy and the excitation potential energy
tween shadow variablé$,i.e., by a ground-state property. It of the state. For a small phonon, a harmonic oscillation of
is remarkable that such a parameter—free wave function alecal density, there is equipartition between the two. At the
ready gives good result,but a more adequat®, should smallest wave vector considered in Refs. 16 and k7 (
contain the possibility to optimize the backflow included in =0.369 A1), in the region wheré(k) is roughly linear,
it. A more accurate SWF for the excited state includes amo tendency to reach equipartition was observed. In the
explicit backflow term and has the fotft’ present calculation it is possible to verify whether this is an
artifact due to the lack of long-range correlations, or the
harmonic regime indeed sets in only at substantially smaller
‘l’k(R)=‘I’p(R)J dSO(R,S)P(S) 4, (12)  values ofk. In this respect, additional DMC simulations are
performed to exclude the possibility of a variational bias

where®,, O(R,S), and ®(S) are the correlating factors coming from the structure of the SWF.

for the ground state while the momentum carrying factor in
Eq. (12 i
q-(12)is A. Algorithm and technical aspects
The excitation energy spectrui(k) is defined as the
8=, ek st s—sh, (13)  difference between two extensive quantities: the expectation
i value of the total energy for the excited state of momentum

_ _ o _ fik and that for the ground state
It is easy to show that this wave function is an eigenstate of

linear momentum with valuék. If N(s)=0, &, is simply a

density fluctuation in the shadow variables and the wave <\yk||3||qfk> <qf||3||xp>
function of Ref. 12 is recovered. Fa(s) a short-range form E(k)= Wy (W) (15
is assumed: KTk

Notice that this is a very demanding task for a MC compu-
2e-[(s—ro? g<2 tation beca_usE(k) is _typically one hundredth or less of the
A(S) = Al(slro)—2]%€ S=2fo, (14 total energies and prior to Ref. 12 it was not clear that such
0 S=2r,. a computation would be feasible.
The computation of the energy of an excited state is based
A, ro, andw are the variational parameters for the excitedon a random walk generated for the ground state. This is
stateW, and their values are determined by minimization ofnecessary because the square modulus of the excited-state
the expectation value of the Hamiltonian; in principle their wave function is positive definite only after integration over
values can depend on the wave vedtoof the excitation. the shadow variables. We use the same kind of reweighting
With the wave function given by Eq12), the SWF tech- technique described for the optimization procedure of the
nique is able to reproduce the excitation spectiith) of ~ ground state, so that the energy spectrum can be written in
superfluid*He with an accuracy at the level of a good varia- terms of averages over the random walk generated for the

tional ground-statecalculation*®t? ground state in the extended spd&eS, ,Sg} as follows:
In the present work we repeat the computation for the .

excited states using the improved ground-state description SR HY

afforded by the OSWF. In fact, the excitation energy is ob- k% RS S |AW

tained as the difference between two expectation values so  g(k)= — LR _<_> )

that there is no strict variational principle f&i(k). There- (5_k5k>(R,sL,sR) v RS, .Sg)

fore, it is important to use a wave function as good as pos- (16)

sible. We also include the proper? long-range correlations

due to the zero-point motion of phonons, in order to addres§-k5k is thek- dependent weight of the local energyV/ ¥

two issues that remained unsolved from the previous compudefined in Eq(4). &y is the denS|ty fluctuation modified by
tations. In the first place, the excitation spectrum obtained ipackflow for shadowsS, and &% for shadowsSg. The de-
Refs. 16 and 17 shows the typical linear behavior expected inominator in the first term of Eq16) derives from the nor-

the phonon region but with an artificial finite-energy extrapo-malization of ¥, .. All three averages in Eq16) are taken
lation atk=0. We can now verify if this was originated by with respect to the same configurations generated using a
the absence of long-range correlations in the wave functiorstandard Metropolis algorithm for the ground state with
Second, the excitation spectrum derives from the sum of thasymptotic probability given by

Dp(R)ZO(R,S)O(R,Sp)P(S) (S
(R.S,,Sr) = p(RTO(R,S)O(R,Sg) (S, ) P(Sg) | w

J’dRd$d5R®p(R)2®(R,SL)@)(R,SR)(I)s(SL)CI)S(SR)
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The reweighting technique is, on the other hand, advantasur computation because the backflow contribution is impor-
geous because the fluctuation effects coming from the avetant only for an accurate description of the roton and maxon
ages in Eq(16) are correlated and this reduces the varianceegions of the spectrum. For these regions it is clear that the
of E(k). long-range behavior of the total backflow has less impor-

We have studied systems composed of 26@ atoms in  tance in the description of the excited state than the short-
a cubic box with periodic boundary conditions both at equi-fange part that can be optimized through the explicit contri-
librium (peq=0.0218 A3 and freezing density g,  Pution.

=0.0262 A 3). In this way the smaller wave vector com- Another quantity directly related to the excited state and
patible with the periodic boundary condition of the system isWhICh IS possml_e to Ca'C‘_J'aFe during our simulation IS the
k=2m/L=0.276 AL at pq (L is the side of the simula- strength of the single excitation peZKk) in the dynamical
tion cell) andk=0.294 A‘iqatp well inside the phonon structure facto5(k,w). The excitation spectrum is measured
region of the spe.ctrum at botr:raensities The computatiortl)y inelastic neutron scattering that gives the dynamical struc-
' - ture factorS(q,w). At low temperaturesT=1 K or below,

zgisc bgggn%zrrf;r?gg d]ictci)(r)rfze;Focrtgrstrfgmp??ﬁl:%i\lwgnepcetirgnsS(k’w) consists of a sharp peak and of a broad contribution
(111, (110, and (100. Only around the roton minimum so that it is usual to decomposik, ) as follows:

we have also considerdd in other directions in order to
better locate the position of this roton minimum.

Many of the allowed wave vectols are equivalent. It is
convenient to take the average&f, s in Eq. (16) over the

S(k,w)=Z(k) 5(w—E(k)/1)+ Sp(K, ). (18

Z(k) gives the strength of the sharp peak &@)dgives what

: . oo is called the multiphonor{imore properly multiexcitation
stars of equivalerit. Moreover, eacl, is a combination of background, i.e., the contribution in which the neutron ex-

trigonometric functions of the k'n(,j i/ L(hxg"(”Lnysy changes energy with two or more excitatidiissrom the
+n,8)] or cog2a/L(ns+ng+ns)]. Itis convenient to ex-  ¢,m rule

press all these functions in terms of sin€¥?/L) and

cos(2rs"¥?/L) via standard trigonometric relations in order . 1

to avoid the direct calculation of many sine and cosine func- J S(q,w)dw=S(k)= N{p,kpk>, (29
tions that are more time consuming than sums or products. *°°

In order to have an acceptable statisticEgk), the simu-

lation has to be much longer than that necessary for thjan tlerms of the static structure faCt.S(.k)’ itis clear Fhat the
ground state. Typically, we have used runs of order of 2ali0 T(k)=Z(k)/S(k) gives the efficiency of the single ex-

%10’ Monte Carlo steps in our computation. Here cmecitation scattering process: this _important quantity_is a mea-
Monte Carlo step coincides with a trial move of all thal 3 sure of the .dep.arture of the excited stqte from a S|mp|_e~ den-
variables N=256, N real, and A shadows: left and right sity fI_uctuat|on in th.e system. If the excitation were aIS|mpIt_-:‘
in the simulation cell one at a time. densny wave, as given by t_he Feynman wave function, this
With the excited-state wave function E(.2) one has to ratio would be one and this is found experimentally to be the

compute many times the excitation spectrum, one for ever ase fork=0.5 A% f(k) has a maximum but significantly

set of variational parameters for the excited stdf¢k) elow one (;n mﬁ rotog re_glton r:/gereas itis rr]r_ummsl{[m for
=E(k,A,ro,w). This causes a large increase of the Compu_maxons and at tne end point w &) is vanisning. >tan-
; éiard variational theory of rotons overestimai#®k) and a

SWF that does not contain an explicit backflow contribution,YPical value is 1.7 From the expression @(K,) it turns

- - hat Z(k) can be obtained from the formulZ(k)
Therefore, some preliminary run has to be done in order @ut 1 . o 4
determine the useful range of values Aary,w. In any case (Wil pil ¥)|2. Using SWF and the reweighting technique

the calculation ofE(k,A,rq,w) for every combination of we get
A,rg,w exploits the random walk generated from the ground

state that remains the most time-consuming part of the code |<5Ekpk>(R,sL 'SR)|2+ |<5kapk><R,sL ,SR)IZ
and that is generated once for all. We have found that  Z(k)= TR (20)
E(k,A,ro,w) is most sensitive to the amplitudé of the 2N<5_k5k>(R'SL'SR)

explicit backflow term; moreover, the optimal value Af

depends strongly on the wave vector of the excitation. The Sparse averaging and data blocking are the standard
dependence oE(k) on the range parameterg andw is  Monte Carlo techniques used in the calculatiorE¢k) and
rather weak. In order to keep the code to a reasonable conz{k). From the averages and the standard deviations of the
putational cost, we have chosen to fix the parameigend  various estimators computed in the single blocks we get a
w to the optimal value for the roton regiomy=2.81 A at measure of the statistical uncertainty of the computation.
both densitiesw=1.53 A at equilibrium density andv  Agreement between the average of the valueE@) ob-
=1.02 A at freezing densilywhereasA has to be optimized tained in each single block and the final cumulative averages
at eachk. From the point of view of the computational cost is an indication of the convergence of the algorithm. The
of the code, the inclusion of the long-range correlation in theconfigurations of the B variables have been generated at
ground state affects only the generation of the random walleach density for the computation B{k) on a CRAY T3E

of the ground state, but the presence of the long-range tail iwith 128 processors working in parallel. The efficiency of
the pseudopotential of the shadow variables modifies the the parallel algorithm is very higtabout 100% because we
implicit backflow contained inV . This is not a problem in have run in parallel 128 statistically independent simulations,
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TABLE VIII. Roton energies in K.

Short ranggRef. 17 Long range Expt(Ref. 30

Peq 9.05(29)
Pfre 7.73(29

9.04(16)
7.59(19)

8.61(01)
7.30(02

decreases and the maxBfk) increases at the larger density
and the roton wave vector is displaced to a larger value.
Therefore, not only the maxon and roton energies are very
satisfactory but also the correspondikgectors. Note that
the only input in this microscopic calculation is the inter-
atomic interaction betweefHe atoms. One can also see that
the inclusion of the long-range contribution to pseudopoten-
tials affects only the phonon region of the excited spectrum.
In Table VIII we report the roton energies found in the

FIG. 8. (circles Excitation spectrum computed for a system of present computation to be compared with our previous

256 particles for a fully optimized excited state SWF that containsresu|t§7 obtained with short-range pseudopotentials and with
the long-range correlations due to the zero point motion of phononst,ne experimental valué® In the present computation we
(diamonds Excitation spectrum computed for a system of 108 IOar'haveE(k) for many more values df in the roton region but
ticles for a fu.”y optimized ex_mte_d state SWF without the long- the statistical uncertainty i (k) is still too large to extract a
range correlationgsquaresExcitation spectrum for a double roton meaningful effective mass for the roton

itation. i '
excitation As already found in Ref. 17, the energy of the state with

spending little time in communicating the accumulated val-SWF (12) is in significant disagreement with experiment in

: 1 i
ues for the various estimators only at the end of each blocRVO cases: at Ia_rgq aboye 2.5 '& and in the_maxon re-
to calculate the averages. gion at the freezing density. Outside these regions the devia-

tion from experiment at both densities is of the order of 5%

at all wave vectors. In thk regions where there is a signifi-

cant disagreement between our results and the experimental
In Fig. 8 we show the excitation spectrum computed atlata, the experiment&(k) is about twice the roton energy

equilibrium density with the SWF that contains the correctso that we might expect that these excitations are a mixture

long-range contribution due to the zero-point motion ofof single and double excitations. The relevance of this argu-

phonons. In this figure we also show the excitation spectrunment was proved in Ref. 17 where the computation has been

computed in Ref. 17 for a system of 108 particles withoutextended to a double roton excited state. This is obtained by

this contribution but with the correlation functions optimized replacing in Eq.(12) & by 646c—q. q and |k—q| being

with the basis set method. We can see that the Bfqy has  equal to the roton wave vector. The SWF for this double

the correct behavior for smal. This indicates that in Ref. roton excited state is then given by

17 the wrong behavior dE(k) in the phonon region was due

to the absence of the long-range part in the pseudopotentials.

B. Results

This is what we find also at freezing density. At this density
the computed energy spectrum can be seen in Fig. 9. Up
changing the density of the system, all the experimental fe
tures ofE(k) are reproduced by our theory: the roton energy

E(k) [K]

20.0

10.0 -

N
o ol te)

0.0
0.0

FIG

1.0 2.0 3.0
kIAT]

. 9. The same as Fig. 8 at freezing density.

\Irk(R)zcbp(R)f dSO(R,SP(S) 8,8 4.  (21)

gl?sing the reweighting technique, the spectraga(k) of this

excitation can be computed through the formula

Hw
L L R R
<5_q5q_k5qak_q—q, >
(RS, .SR)

L L GR.R
<5_q5q_k5q5k—q>(R,SL,SR)

v (RS_,Sp)

The results obtained in Ref. 17 for few valueskoére also
reported in Figs. 8 and 9. Where the computed spectrum
E(k) is in significant disagreement with the experimental
data, the energy of a double excitation is below the one of
the single excitation and close to experiment. This proves
that under these conditionk, , given in Eq.(12), is not a
good representation of the excited state and a mixture of
states should be considered. The results for the double roton
excitation has been obtained with a SWF that does not in-

Eqn(k) =

(22)
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FIG. 10. (a) Kinetic excitation energyfilled circles and potential excitation energyppen circle for a fully optimized SWF that
includes the long-range correlations, at equilibrium densify The same a$a) at freezing density.

clude the long-range correlations due to the zero-point mo- We now consider the region of small wave vectors. From
tion of phonons. This however is not a problem because wé&ig. 10 we can see that(k) is negative also in the phonon
have seen that these correlations do not affect the excitaggion whereE(k) is roughly linear. Therefore there is still
states built with density fluctuation in which the wave vectorno tendency to reach equipartition even if the excited-state
is in the roton region. wave function includes the long-range contribution due to
We have computed separately the kingfitk) and the the zero-point motion of phonons. This point will be further
potential U (k) contribution to the excitation spectrum and discussed in the next subsection where comparison between
the results are shown in Fig. 10 for equilibrium and freezingthese results and those obtained from a DMC calculation
density. We see that the potential energy contribution tawithin the fixed node approximation will be presented.
E(k) has the tendency to be negative and it has a negative In Fig. 11 we show our results for the static structure
minimum in the roton region or slightly beyond it. In our factor S(k) and for the strengtZ(k) of the single excitation
theory the roton energy of about 9 K at equilibrium densitypeak inS(k,w) both at freezing and equilibrium densities.
corresponds to about 1.5 K of potential energy and to 10.5 The result for the relative strength of this peak, i&k)
K of kinetic energy. At freezing the potential energy of a =Z(k)/S(k) is compared with experiment in Fig. 12. There
roton is—3 K and the kinetic energy is 10.6 K so that mostis a good agreement especially with recent restiles)d this
of the depression of the roton energy at the larger density iss important because this quantity is rather sensitive to the
due to the lowering of the potential energy. These findingsstructure of the wave function. The present theory appears to
are in agreement with an earlier computation based ote the first one able to give a quantitative descriptio# (@)
SWF3! where the negative contribution of the potential en-in the roton regionf (k) in the roton region is almost density
ergy to the energy of a roton was shown to be due to aindependent, but in the maxon region there is a significant
enhanced short-range order in the excited state. This, in faoflecrease of (k) at the higher density. This is also what is
has been related to the experimental observation that thieund experimentally® f(k), especially in the maxon re-
height of the main peak d8(k) is an increasing function of gion, is very sensitive to the backflow contained in SWF
temperature in the superfluid phase“tfe 3 (12), more than what is found fdE(k); the irregularities in
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FIG. 11. (a) Static structure factaopen circles S(k), strength of the single excitation pe@kangles Z(k) at equilibrium density(plus)
DMC results forS(k). (b) The same a$a) at freezing density.
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FIG. 12. (a) f(k)=2Z(k)/S(k) computed at equilibrium densitfilled circles compared with recent experimental dgmus) (Ref. 33
and experimental datdef. 6. (b) The same aga) at freezing density.

Fig. 12 are therefore due to the discrete set of values of thiarm of Eq. (23) that neglects backflow, and a recent DMC
amplitude of the explicit backflow contribution used in the calculatiori® of the excitation spectrum shows that even im-
MC simulation. As can be seen in Fig. 11 the long-rangeproving the nodal structure with the inclusion of backflow
contributions due the zero-point motion of phonons stronglycorrelations in the form of Eq13), the FN approximation
affects the results oZ(k) in the phonon region where the gives poor results for the maxon and roton energies.
excitations are simple density fluctuations and therefore Nevertheless, the FN bias vanishes as the nodal structure
Z(k)—S(k) for k—0. In this region we now have a good of the trial function becomes exact, which is precisely what
description also foZ(k). It should be noticed thaZ(k) and  \ye expect in the long-wavelength region of interest in this

f(k), given by the present theory, are not reliable in ke context: we will resort to the comparison with the experi-

regions where, as discussed above, the energy of a doublgenia) excitation energy to establish the range of wave vec-
roton excitation is below that of the single excitation.

tors where the FNDMC calculation is reliable, and we will
examine the behavior of the potential and kinetic excitation
C. Long-wavelength excitations energies in this range.

The variational study of the phonon-maxon-roton spec- We also note that the nodal structure of excited states
trum with the SWF yields the unexpected result, shown irlacks, in general, the tiling propertj.and a further bias may
Fig. 10, that equipartition between kinetic and potential enbe introduced depending on which nodal pockets have been
ergy of the phonon is far from being fulfilled even for wave populated at the beginning of the simulation. Indeed, we
vectors down to~0.2 A~%, where the excitation energy ex- found occasionally slightly different results from different
hibits a nearly linear dispersiofsee Fig. 10 We now Sets of simulations, the effect being however small for the
present results obtained with the fixed node diffusion MontgPurpose of the present discussion.

Carlo (FNDMC) method that support, in this respect, the DMC simulations are performed for 64 atoms in a cubic
reliability of the variational calculation. box and for 128 atoms in a box with,=L,=L,/2, at equi-

Although the implementation of DMC with SWF is librium density. Since a direct application of the reweighting
possible®* here we follow the standard approach and use thénethod to the DMC configurations is not possible, we take
0JOT wave functior}, supplemented by the correct long- energy differences between independent runs for the excited
range taif® in the pair correlation, as the trial functioh of ~ and the ground state. Results are complemented by varia-
the ground state. For the excited state we take a linear contional simulations with the OJOT wave function; the latter
bination are extended also to a system of 256 atoms in a box with

Ly=Ly=L,/4, whose smallest RLV is 0.11 A, using the
1 reweighting method. We use such elongated simulation
V(R)= E(P—k+Pk)‘I’(R):Z cogk-rj)¥(R) (23 poxes in order to reach smaller wave vectors than would be
allowed by a cubic box with the same number of particles.
of two degenerate excitations, so that the trial function isComparison between results obtained with boxes of different
real, which is convenient for the DMC simulation. shape shows that the excitation energies are not affected by

The DMC algorithm gives thexactenergy of the Boson geometrical factors.
ground state. For the excited state the wave function is not The results forE(k) are shown in Fig. 13. The VMC
positive, and thesign problemmakes the exact algorithm excitation spectrum closely follows the Feynman
unstable. We avoid this problem by forcing the randomapproximatior? E(k)=#%2/[2mSk)], where for the static
walks not to cross the nodes of the trial function: this is thestructure factor the result of the same VMC calculation has
FN approximation, which consists of assuming that the trudeen used. This is an expected result, in view of the fact that
excited state and the trial functiol, have the same nodés. the excited state is of the Feynman fo(@8), and indicates
Such an assumption is certainly not correct for the simplghat the OJOT wave function with the correct long-range tail
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15 L I I I uipartition is only reached at a wave vector below 0.05*A
| VMC --- Feynman | or at a wavelength larger than 120 A, about 50 times the
L © ﬁffgg — BXP 4l atomic diameter. It is a totally unexpected result that the
o[ * N6 ,;F( b macroscopic limit is reached only at such large distances.
g T /B
: r 9/% 1 IV. CONCLUSION
\’M.a i // )
= 5L ] We have presented an extensive study based on the
I . %% DMC i shadow wave function technique of the ground state of liquid
L 4 s N=128 and solid *He and of the main excited states in the liquid
- x N=108 4 phase. Our results confirm that the SWF approach is a very
o L .D. {\I._l&.l. N powerful technique to handle strongly interacting bosons:
0 0.1 02 03 04 05 presently it provides the most accurate variational descrip-
k (A tion of the ground-state energy 6He both in the liquid and

o o o in the solid phase as well as of the phonon-maxon-roton
_ FIG. 13. Excitation spectrum of Ilqu_ldHe at t_equlllbrlgm den-  aycitation spectrum. The typical accuracy is 3% for the
sity calculated t_)y VMC and FNDMC with the trial functu_on of Eq. ground state and 5% for the excited states. The quality of the
1523) f%r tfhe;xzted S.tate'tTlhs 't:ND'V(;Cﬂ:esglmt:O'%g IS ta'_‘e”t_ results is not limited to the energetics but it includes quanti-
a[:)emshoew.n as‘ W)éﬁe”men al dafa and the -eynman approximaliollies jike the pair distribution function, the Bose-Einstein con-
' densate fraction or, for the excited states, the strength of the
: . single excitation peak iB(k,w).
is a good representation of the ground state. Note that the gne aspect ra?ther rer(nark)able of SWE. is its uniform ac-
Feynman approximation becomes exact in the long- ; ' L )
wavelength limit. The DMC calculation gives improved re- ;g:]agégrggﬁ d?tsglwé?lnkggwﬁ t%rct)ﬁ:rrtr';;ﬂ?; ZS a fur;.c;. i
; X ) y. y-body practitio
sults, and comes in agreement with experiment kat

=0.22 A% For this wave vector the potential energy of the ners hO.W all standard 'techmq'ues find increasing dlffICl'JltIe'S

o g e ; ’ in treating a strongly interacting system as the density is

excitation, shown in Fig. 14, is still negative. The variational . d. With h d he deviati f
calculation, which also appears to be accurate at sknall Increased. With respect to the ground state, the deviation o
from the cc;m arison with both DMC and experimental dataJastrow as well of Jastrow plus triplet energy from the cor-
P P rect value is a strongly increasing function of density. With

\?vg?/vgsvét?;r;h:eesioiﬁgtr:acl) ipirgy becomes positive only foFespect to roton excitation, to recover the simple fact that the
: roton energy at freezing is smaller than equilibrium took

To sgmmarize, we _judge the accuracy Of. the FNDMC.quite substantial effort from many-body thed?The situa-
calculation on the basis of the comparison with the experis

mental excitation energy, which is favorable for lon wave-tion 's quite different with SWF. At equilibrium density
_1gy, : g SWF with short-range correlations overestimates the ground-
length, sayk=0.2 A~1.In this range, we can assume that a

. . . state energy by 0.19 K, the difference is 0.18 K at freezing
corresponding accuracy is guaranteed by the algorithm als&ensity and 0.19 K in the solid at melting. The roton energy
for the kinetic and potential energies separately, and they are X ;

still far from equipartition. This in turn supports the findings ?e?]\éﬁ;esnmated by 0.43 K @q and by 0.29 K at freezing
obtained by the variational method with either the OSWF or It seems clear that SWF must contain some of the impor-

the O.JOT wave ft_mctlon: the fact that the harmonic re9IM&ant features that govern the behavior of the system as the
sets in at exceedingly small wave vectors appears to be a

. s entanglement of the particles become so strong that the lo-
robust result. From the present calculations we infer that 0 zlized regime of the solid is approached. We believe that

this is not unrelated to the fact that the same wave function is

15 L e ] able to describe also this solid phase when the density is
C 0 ® ] large enough. The technique of subsidiary variables embod-
r & MC ] ied in the SWF can be seen as a mathematical way to allow

o or 5 © N=256 for correlations in the wave function beyond the pair and

=0 § v N=128 1 triplet level. The uniform accuracy in the description‘ie

g 5[ * N=64 1 as a function of density suggests that in SWF there is more
s F @ T, #°° than a simple mathematical trick and that the shadow vari-
= o @0 i ables have some physical relevance. We find particularly at-
or e § o f’m DMC tractive the analogy with a path-integral representation in
- L a N=128 A which a shadow variable is related to the center of mass of a

-5 — o N=64 — fragment of a path integral of a particle. This view led to the

— '0'2' : '0'4' : 'olsl : Iolsl s suggestioﬁthat the shadiovy psegt_dopotential should contain
’ L (A—l)i ' an attractive part and _thls is verified by the present compu-
tation. This interpretation gives also an explanation of our
FIG. 14. Kinetic and potential excitation energy of liqfile at ~ result that the pseudopotentials are rather density indepen-
equilibrium density calculated by VMC and FN-DMC with the trial dent within the liquid or within the solid phase but there is a
function of Eq.(23) for the excited state. The FN-DMC results are significant jump as one moves from one phase to the other.
mixed estimator¢Ref. 20. In fact, the paths in which a quantum patrticle is mapped are

[=}
-
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qualitatively rather different in the solid phase, in which asion to microscopik of sound waves, i.e., of harmonic den-

path will be strongly localized around an equilibrium posi- sity fluctuations. Therefore, we were rather surprised by
tion, with respect to the paths in a fluid where no such localsome earlier results in which no tendency was found for the
ization is present. In the first case we can expect a rathe#xcited state to reach equipartition between potential and ki-
Gaussian-like particle-shadow correlation as it is found innetic energy. This result is confirmed in the present SWF
the present computation, whereas a more complex behavig@mputation in which the long-range phonon correlations are
can be expected in the liquid phase. !ncluded in the ground state and the15|ze of the system is

In the SWF the localization of particles arises via inter-increased so that the lowdstis 0.25 A™* (at peg). In order

particle correlations as a phenomenon of spontaneously brd@ @SSess the accuracy of this result, we have complemented
ken symmetry. In the perspective of SWF the Gaussian lo"€ SWF computation of the phonon excited states with a
calization factors that are introduced in the standard theor MC computation with fixed node¢-eynman nodgsas

. . - ell as a variational computation of the Feynman form with
O.f quantum solids are nothing bu_t a mean.—flleld representathe OJOT ground state 'ﬁ)'hese different coym utations mutu-
tion of the many-particle correlations implicitly present in I ?h t th - ' ofval put hich
the SWF. The fact that SWF is as accurate as the standaftly 29r€€ that there is a wide range folvalues in whic

wave function in a solid at high density, and is superior at th : (k) |sk_esst_ent|al(ljy I|ntea:_ ?Ut there H?hno_eql:_ll??rtltlont lt)ﬁ
lowest densities close to melting, has an important implica-Ween INEtic and potential energy. 1his 1S still true at the

tion. In fact, the study of disorder phenomena in a quantunllOWEStk valug (0.1 A% we coq[d re_ach in our simulation
and we can infer that equipartition is reached only at 0.05

solid was essentially out of reach of variational theory in the% 7 Thi d | hi £100 A
standard formulation. These phenomena can be treated in . This corresponds to a wavelength in excess o '
o that there is a substantial range of long-wavelength

very natural way by SWF because Bose symmetry is guars . . e . .
y y by y yisg honons in which these excitations are not harmonic density

anteed at the outset and the relaxation of equilibrium positio ) . . )
is automatically included. Some applications of SWF to!Uctuations as indicated by the macroscopic theory. This un-
pxpected result calls for further investigation.

study the liquid-solid interface and a vacancy in the crysta ) .

have been already performed. The accuracy of SWF in treat- We ShOUId mention some negative aspects of SW.F' T_he
ing the bulk solid, as found in the present work, is also amtroducuon of the subsidiary variables slows down signifi-
good basis for an accurate treatment of disorder phenomerfl:c‘;f‘nﬂ,y the convergence of a MC run and rather Iong.aut.ocor-
in the solid. relation effects set in in the presence of the attractive inter-

In the present treatment of the ground state we have alsf’)hadow correlat_ior_15. In add?tion, the zero variance property
included the long-range correlations due to the zero-poin'ls r?.o morel sausﬂed.alnd, In fact_, we fhaxe t_)een ;b(lje to
motion of phonons. The effect on the ground-state energy igC |e(;/e only ? partial optimization of the intershadow
small as expected, but it is gratifying that it is in the direction pseudopotential.
of lowering the energy. With respect to future developments, we expect that SWF

The presence of these long-range correlations is importar‘ﬂ’iII be very us_eful_ in situations in which a quasic_rysf[alline
when excited states are considered. Only in this case orfdder Sets in, like in adsorbed phases on strong binding sub-

finds the expected linear behavior of the excitation energy i trates oLa'roun(rj] im;z)urities I:ke pol.f,it:j\ge ions.h.Uﬁ .to nr?w the
the phonon region. Also, this is not unexpected but this is the’ /" technique has been only applied'tde, which is char-

first time within variational MC in which a consistent de- 2cterized by an almost impenetrable core. It is known also
scription of the full phonon-maxon-roton excitation is that soft-core potentials, like the Coulombic one, develop

achieved. As mentioned above, the typical deviation of thd@ther strong short-range correlations under suitable condi-
excitation spectrum from experiment is 5%, both at equilib—t'ons’hIn 4 particular Whhen the frﬁleémg tkr]ansmo? IISI ap-
rium and at freezing density. We would like to point out thatProached. We expect the SWF will be rather useful also in

within the Feenberg form the presently best wave functionthese cases. F|nal_ly, we should mention the application of
for the ground state, the OJOT one, overestimates th WF to_ferm!ons, like’He. How to formulatea}proper SWF
ground-state energy at freezing density by 9%, about thret?" fermions is already knowin and some preliminary com--
times larger than the value of OSWF for the ground state anfutation gives very promising results. We expect that this
almost twice our result for the roton energy. This gives aVill P& @ major area of development of SWF.
measure of the improvement of the variational theory ob-
tained with SWF.

The experimental excitation spectruf(k) has a small This work was supported by the INFM under Progetto di
deviation from linearity ink up to a rather large value &f Supercalcolo. It was conducted in part using the CINECA
of order of 0.6 A1, This excitation appears to be the exten- supercomputer resourc€s3E).
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