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Fluorescence-detected magnetic resonance~FDMR! allows one to monitor magnetic resonance phenomena
via fluorescence. Experimental FDMR data obtained using single triplet-state chromophore guest molecules in
a low-temperature organic host matrix are analyzed using a stochastic approach to describe triplet electron spin
dephasing resulting from frequency fluctuationsUt induced by host-matrix proton spin dynamics. Modeling
the fluctuationsUt by a sum ofN independent random telegraph processes with the same jump raten but
different variancessk we construct an exact set of equations for the density matrix of a five-level molecule
averaged over fluctuation historiesUt. These equations provide a basis to study non-Markovian effects of
microwave-~MW-! field-dependent dephasing in the FDMR response of a molecule undergoing slow fluctua-
tionsUt (s2/n2>1, s25(sk

2) to a MW field that is resonant with a transition between triplet spin substates.
Both frequency- and time-domain FDMR phenomena such as~i! power-broadened FDMR line shapes,~ii !
FDMR Hahn echo signals, and~iii ! FDMR free induction decay are studied. Analytical expressions for the
FDMR response are obtained in the casen@kj

i wherekj
i is an intersystem crossing rate. Experimental data on

power-broadened line shapes for a pentacene1p-terphenyl pair which demonstrate a pronounced effect of
MW-field-suppressed dephasing are explained in the context of the theory.@S0163-1829~98!00337-3#
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I. INTRODUCTION

Since the first pioneering observations of absorption1 and
fluorescence2,3 spectra of single chromophore molecules e
bedded in low-temperature host matrices, a variety of exp
mental methods have been applied to uncover different k
of behavior of individual guest molecules in solids which a
usually hidden by conventional ensemble averaging. Inh
ently single-molecule phenomena such as spec
diffusion,4–6 photon bunching,2,7 and antibunching8 have
been observed. Additionally, a new field of condensed ma
spectroscopy, single molecular spectroscopy~SMS!, has
been advanced and developed. Using sensitive techni
one can now measure the distribution of spectroscopic
rameters associated with different individual molecul
Moreover, it is possible to study the interactions of a sin
molecule with its nanoscopic local environment and to u
cover the dynamics of various processes occurring in
neighborhood of the molecule~see, e.g., for a review Refs.
and 10 and the recent book in Ref. 11!.

Of increasing importance in SMS is fluorescence-detec
magnetic resonance~FDMR!, where one observes changes
the fluorescence intensity of an optically excited individu
molecule that occur when the molecule interacts with a
pulsed microwave~MW! field that resonantly drives trans
tions between molecular triplet electron spin substates. It
been demonstrated in Refs. 12–22 that this combination
SMS and electron paramagnetic resonance~EPR! methods is
PRB 580163-1829/98/58~14!/8997~21!/$15.00
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very useful for obtaining a wealth of information abo
single triplet electron spins. Observations of FDMR lin
shapes,12,13 of the influence of microwaves on the fluore
cence intensity correlation functiong(2)(t),7,15,18,19 and of
the fluorescence recovery following a pulsed MW field15

provide data on the transition frequencies between trip
spin substates, the intersystem crossings rates for diffe
triplet substates, isotopic effects,16,19,20,22etc., for single pen-
tacene~Pc! molecules inp-terphenyl~PT! crystals~the ‘‘hy-
drogen atom’’ of SMS!. Furthermore, owing to the long-tim
scale character of FDMR experiments where temporal a
aging replaces conventional ensemble averaging,14 coherent
transient phenomena such as nutation14 and the two-pulse
Hahn spin echo17 have been observed on single triplet spi
and used to characterize the dynamical processes in the
bedding matrix that contribute to triplet spin dephasing.

In the simplest case the information about triplet sp
dephasing is reduced to the determination of a depha
time T2 obtained by fitting the FDMR experimental data u
ing calculations based on the well-known Bloch equatio
~BE’s!. Such descriptions15 have provided approximate
agreement with observations but could not explain some
portant features of the experimental data, especially in
case of strong MW fields. Meanwhile, as was recogniz
long ago,23–25 the BE-based theories are correct only wh
the dynamics of the embedding matrix~bath! is very fast so
that one can neglect the correlation timetc of the triplet-
spin–matrix interactions in comparison with the other r
8997 © 1998 The American Physical Society



ip
n

ub
o
s
s
f

s.
ep

e,
w

.

bu
i

n
te
on
lie
-

n

ri
le
n
a

y-

e
p
ro
re
o

th
o

n
ol

we
by
le
si-
m

o
fre
n

d
th

ted
c.
e-

ls
-
c
gh

a
e
e-
out

p-
rive

lent
ua-

s a

e

let
be-
fast
ive

ld
e
e-

re
,
s

8998 PRB 58S. Ya. KILIN et al.
evant characteristic times~e.g., with T2). At liquid helium
temperatures the main source for pure dephasing of a tr
spin of a typical chromophore guest molecule in an orga
host matrix originates from the fluctuationsUt of its reso-
nance frequency due to interactions with nuclear~proton!
spins in the host matrix26 which perform mutual flip-flops in
a random way and modulate stochastically the triplet s
state energies via hyperfine dipole-dipole interactions. Fr
the analysis26 of phosphorescence-detected magnetic re
nance~PDMR! experiments on ensembles of triplet spin
one can expect the fluctuationsUt to be slow in the sense o
the Kubo classification:27 s>n, wheres is the variance of
the fluctuationsUt andn is the average proton flip-flop rate
Under these conditions there is no longer a time scale s
ration between the correlation timetc;n21 of the bath and
the dephasing timeTdeph of a triplet spin. As a consequenc
the standard Markov-type BE’s are no longer valid and ne
non-Markovian effects begin to be important~see, e.g., Refs
28–35 and references therein!. The relaxation of a triplet
spin then depends not only on the state which it is in,
also on its past history—the pathway through which
reached that state. In other words, memory effects begi
play a role. In particular, one of the most important expec
non-Markovian effects is the dependence of fluctuati
induced triplet spin dephasing on the strength of an app
MW field. A sufficiently strong MW field can suppress com
pletely the dephasing.23 This effect is analogous to ‘‘spin
locking’’ known long ago in the PDMR spectroscopy of a
ensemble of spins~see, e.g., Refs. 36–39!. In the present
paper, we use the stochastic approach of Kubo to desc
the pure dephasing of a triplet spin due to the host nuc
spin dynamics and study its manifestations in differe
FDMR phenomena in guest-host systems with slow deph
ing fluctuationsUt. To be more specific we use in our anal
sis the parameter values typical for the Pc1PT system. We
demonstrated the agreement between theory and experim
on the observations of power-broadened FDMR line sha
of single Pc molecules in PT crystals which show a p
nounced effect of MW-field-suppressed dephasing. Mo
over, we discuss the time-domain FDMR phenomena
single molecules: the FDMR free induction decay and
FDMR Hahn echo. Preliminary versions of the theory and
its applications to describe previous experimental data on~i!
the power-broadened FDMR line shapes,~ii ! the transient
nutations,~iii ! the fluorescence intensity correlation functio
and~iv! the FDMR Hahn echo on single triplet-state Pc m
ecules in PT crystal have appeared in Refs. 40–42.

The organization of the paper is as follows. In Sec. II
introduce the model of a five-level single molecule driven
optical and MW fields. Starting from a stochastic Liouvil
equation for the molecule with fluctuating triplet spin tran
tion frequency, we deduce the equations for the density
trix of a molecule averaged over the fluctuationsUt. An
additional averaging over an inhomogeneous distribution
possible frequencies of resonant triplet spin transition
quencies, resulting from different proton spin configuratio
of the Pc molecule, is also discussed. A model ofN random
telegraph processes for the fluctuationsUt is introduced and
an exact set of equations is derived which can be use
calculate the average density matrix of a molecule. In
case when the intersystem crossing rateskj

i are small in com-
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parison with the host spin flip-flop raten, these equations
reduce to much simpler equations describing the isola
evolution of two resonant triplet spin sublevels only. In Se
III we apply the general theory to study frequency- and tim
domain FDMR phenomena including~i! the power-
broadened FDMR line shape~Sec. III A! and~ii ! the FDMR
free induction~FI! decay and the FDMR Hahn echo~Sec.
III B !. Simple analytical expressions for the FDMR signa
are obtained whenkj

i !n. Experimental data on power
broadened FDMRX-Z transition line shapes of single P
molecules in PT crystals are fit at low, medium, and hi
MW field strengths with n/2p530 kHz and s/2p
585 kHz. It is shown that the FDMR FI decay rate after
p/2 pulse in the Pc1PT system is determined mainly by th
inhomogeneous distribution while the FDMR Hahn echo d
cay can serve as a sensitive tool to derive information ab
the model parametersn and s. Section IV concludes the
article with a brief discussion of the main results. The A
pendix contains some lengthy calculations needed to de
the basic equations~16a!–~16d!. Additionally, we construct
and discuss in the Appendix the other completely equiva
version of these equations, being well known as the eq
tions of the sudden modulation theory.

II. THEORY

A. Model and general discussion

We describe a single guest chromophore molecule a
five-level quantum system~Fig. 1! where u0& is the ground
singlet stateS0 of the molecule,u1& is its excited singlet state
S1 , and uT& (T5X,Y,Z) are three substates into which th
lowest excited triplet stateT1 is split ~in zero magnetic field!
by magnetic dipolar interaction of the two unpaired trip
electrons.43 All molecular states are zero-phonon states
cause they are the only essential ones due to a very
internal conversion processes within their respect
vibrational-state manifolds.

The molecule is driven by a saturating cw laser fie
E(t)5E1exp(2iv0t)1c.c. that is in near resonance with th
optical molecular transition 1-0. In general, the optical fr

FIG. 1. Model of a five-level system for a single chromopho
molecule in a low-temperature matrix.S0 is the lowest singlet state
S1 is the first excited singlet state, andT5X,Y,Z are three substate
of the first excited zero-field-split triplet stateT1 . Intersystem
crossings~ISC’s! S1→T and T→S0 occur with rateskT

1 and k0
T ,

respectively. The laser field is in resonance with theS1-S0 transition
while microwaves are resonant with theX-Z transition. Triplet sub-
state energiesET fluctuate due to stochastic interactionsUT

t of the
triplet electron spin with the host matrix nuclear~proton! spins un-
dergoing mutual flip-flops in a random way.
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quencyv10 of a single guest molecule in a low-temperatu
host matrix is subjected to spectral diffusion which can ar
for example, as a result of the interaction of the molec
with neighboring two-level systems in the host matrix whi
undergo phonon-assisted tunneling transitions that lea
instantaneous jumps in the molecule’s optical transition
quency. There have been numerous experimental~see, e.g.,
Refs. 5 and 44–47! and theoretical48,49 studies of such jum-
plike optical spectral diffusion of a single molecule in crys
or amorphous matrices. However, spectral diffusion does
play a role in the FDMR experiments,14,15,17 which are of
main interest in this article, since the samples of Pc1PT
mixed crystals are specially prepared to suppress spe
diffusion ~the samples have no domain structure respons
for presence of structural tunneling two-level systems a
thus for spectral diffusion48!. Let us recall also that previou
ensemble experiments on Pc1PT mixed crystals50 have also
revealed the complete linewidth of the Pc optical transit
to be lifetime limited; i.e., it had no additional pure depha
ing contribution resulting from any frequency fluctuation
Therefore, below we treat the optical transition 1-0 as hav
constant frequency. Absorption of a photon from the opti
field brings the molecule from ground state 0 to excited s
1 with an induced absorption rateB10uopt (B10 is the differ-
ential Einstein coefficient anduopt is the optical radiation
density! while the spontaneous emission events having raA
return it back to state 0 with emission of fluorescence p
tons. Counts of these fluorescence photons by an approp
detector provide a measured signal in the FDMR techniq

By means of intersystem crossings~ISC’s! the singlet
statesS0 ,S1 of a molecule are connected with the tripl
substatesT. Owing to ISC eventsS1→T the molecule re-
laxes from state 1 to the triplet substatesT with rateskT

1 . The
ISC processes result also in transitions from substatesT to
the ground singlet state 0 with ratesk0

T . As a rule, the
population/depopulation rateskT

1 ,k0
T of triplet substates are

different for different substatesT, depending on the symme
try of the molecule. In particular, most of the planar aroma
molecules which are of main interest in this article have ra
kT

1 andk0
T of the two inplane sublevelsX,Y which are similar

and higher by a factor of;10–100 than those of the out-o
plane sublevelZ.51 As a result, the average steady-sta
populations of the triplet sublevels of the molecule exci
by a resonant cw optical field and subjected to ISC tran
tions are inherently different and it is this circumstance t
provides a physical basis for the FDMR technique. For
molecules in PT crystal the rateskT

1 and k0
T have been

determined in Ref. 15 to be equal tokX
15663103 s21,

kY
15293103 s21, kZ

150.283103 s21, and k0
X520

3103 s21, k0
Y5203103 s21, and k0

Z51.23103 s21 ~it
should be noted that the investigations of Ref. 18 have
vealed variations of these rates among different single
molecules, but to simplify matters, we use the above val
in our calculations!. Given these rates and a spontaneo
emission rateA5433106 s21 for the Pc singlet-single
transition,15 one finds that, under conditions of optical sat
ration ~for an optical Rabi frequency 2V5923106

s21 whereV52p10E
1/\ andp10 is the transition 1-0 dipole

moment matrix element! the average population
of the substateX in steady state will be the largest amon
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the five levels: rXX
(0)st.0.4582, rYY

(0)st.0.2013, rZZ
(0)st

.0.0324, r11
(0)st.0.1388, andr00

(0)st.0.1623.
In FDMR spectroscopy, two of the three molecular trip

substates are coupled by a cw or pulsed MW fieldB(t)
5B1exp(2ivt)1c.c., resulting in a rearrangement of tripl
substates populations which, in turn, modifies the fluor
cence intensity in the singlet-singlet channel. Moreover,
MW field creates a coherent superposition of the triplet s
states. To be more specific we will assume in what follo
that the MW field is nearly resonant with the transitio
X-Z (v.vXZ). In contrast to the optical channel 1-0, th
frequencyvXZ is subjected to fluctuations; i.e., it is a sto
chastic process:vXZ

t 5v̄XZ1Ut (Ut5UX
t 2UZ

t , ^Ut&50).
In organic impurity crystals at low temperature the fluctu
tions Ut originate mainly from the interactions of a triple
electron spin with fluctuating nuclear~proton! spins in the
host matrix.26 As is well known, the fluctuations destroy th
MW-field-induced coherence or, in other words, result in
pure dephasing of the transitionX-Z. The characteristics o
fluctuationsUt ~correlation timetc , variances, etc.! and, as
well, their manifestations in various FDMR phenomena a
of the main interest in this article. Again, it should be und
stood that due to irregularities of the host crystal lattice,
statistical characteristics of fluctuationsUt can vary from
molecule to molecule and the great advantage of sin
molecule spectroscopy is the opportunity to study the dis
bution of these characteristics among different single ch
mophore molecules.

In the presence of optical and MW fields and of ISC tra
sitions, the single molecule acts as a five-state system ex
iting quantum jumps of three types:~i! jumps between sin-
glet statesS0 andS1 accompanied by absorption or emissio
of photons,~ii ! jumps between singlet and triplet states~tran-
sitions S1→T and T→S0) which result in emission of
phonons, and~iii ! jumps between resonant triplet substatesX
and Z with induced absorption or emission of MW fiel
quanta. Typically the spontaneous emission rateA is much
larger than the ISC transition probabilitieskT

1 , k0
T (A

;108 s21, kT
1 , k0

T;102–104 s21). In a saturating optical
field, there are many fluorescence photons emitted before
molecule is shelved in one of the long-lived triplet substat
After the molecule returns back to the ground state due to
ISC T→0 transition, the absorption-emission cycles in t
1-0 optical channel are restored until the next ISC transit
to the triplet state. As a result, fluorescence photons emi
by a molecule are grouped in bunches of average duratio
the order of 2/kT

1 ~Ref. 7! separated by totally dark interval
whose average duration is determined by the average
dence time of a molecule in the triplet state. Thus, the
tailed stochastic dynamics of a single molecule is rat
complicated and is characterized by many time scales
principle, this jumplike evolution of a molecule can be d
scribed ~and simulated! in terms of continuous quantum
measurement theory,52 in which emission of fluorescenc
photons on the 1-0 transition and emission of phonons
ISC transitions 1→T, T→0, constitute measurements th
result in the projection of a molecule into a particular qua
tum state. Continuous measurement theory has been ap
previously to a simple model system, consisting of a sing
laser-driven, two-level chromophore molecule strong
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coupled to a single tunneling two-level system~TLS! in an
amorphous host matrix.53 In this case, the molecula
quantum-jump dynamics is described in terms of a stocha
~four-state! semi-Markov process. The quantum Liouvil
equations for the density operator of the combined quan
system ‘‘molecule1TLS’’ were constructed within the con
text of continuous measurement theory and used to calcu
the conditional jump probabilities and the waiting time d
tributions. An extension of the theory of Ref. 53 to our fiv
level molecule can be performed in a straightforward wa

In many cases, however, the above detailed descriptio
a single molecule’s evolution is excessive and, from a th
retical viewpoint, one can simplify matters by obtaining on
some average information on the state of the molecule. In
case of FDMR spectroscopy of single triplet spins, o
monitors the average fluorescence intensity^I t& or the
second-order correlation function of the fluorescence int
sity g(2)(t)5^I tI t1t&/^I t&2 as a function of the applied MW
field. Owing to the inherently low signal/noise ratio, it is th
necessary to accumulate signals during a rather long pe
of time. Usually the duration of a full FDMR experiment
very large in comparison with the average total length
‘‘bright’’ and ‘‘dark’’ periods of fluorescence. For example
the observations of FDMR line shapes, which show up
changes in the average fluorescence intensity when one s
slowly the cw MW field frequency through the EPR res
nancevXZ ~or vYZ), consists of many scans with the typic
time for each scan equal to 10 s~Ref. 15! and the full ex-
periment taking a few minutes. In experiments on FDM
coherent transients such as Ref. 14 on FDMR nutation
Ref. 17 on a FDMR echo, a molecule is subjected to a
quence of MW pulses, each representing a ‘‘single trans
experiment.’’ The sequence of pulses is repeated many ti
with the delay between the sequences sufficiently long
allow the molecule to return to its steady-state respons
the absence of MW fields. The fluorescence photons
counted during some observation timetobs after the last
pulse in a single sequence which, typically, is equal to 1
Thus, during a complete FDMR experiment using either
or pulsed MW fields, a molecule has time to enter the trip
state many times, interacting there each time with the M
field and experiencing a random changeDw5*dxUx in the
relative phase of the resonant substatesX and Z in accor-
dance with the specific history of stochastic frequency fl
tuationsUt during the triplet state lifetime. Long-time-sca
FDMR experiments average over individual histories o
molecule in a triplet state and, as a result, the theoret
description of such experiments can be given in terms of
density matrix of the system. Conventionally, this method
associated with some ensemble averaging which, in ordin
spectroscopy, is just the average over many different m
ecules. In the case of a single triplet electron spin this
semble averaging is replaced by time averaging14 over en-
sembles of experiments on a single molecule. Both kinds
averaging are equivalent, in accordance with the ergo
principle. Thus the FDMR observables@the average fluores
cence intensitŷI t& and the second-order correlation functio
of the fluorescence intensityg(2)(t)# are proportional to the
excited singlet-state population^r11

t & averaged over fluctua
tions Ut and it will be our aim below to calculate this qua
tity.
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An additional feature of FDMR experiments is the nece
sity to take into account the distributionP(v̄XZ) of possible
frequenciesv̄XZ of the transitionX-Z with frequenciesv̄XZ
corresponding to some specific configuration of proton sp
of a molecule. This configuration introduces a shift in t
energies of substatesX,Z owing to hyperfine interactions
~hfi’s! between a triplet electron spinS51 and the surround-
ing proton spins.12,15During the triplet-state lifetime the trip
let electron spin influences strongly the proton spins at
chromophore molecule; consequently they become ener
cally detuned from the proton spins in the host matrix a
for that reason, cannot participate in energy-conserving m
tual flip-flops with the bulk proton spins. That is why the
chromophore molecule proton spins are usually termed
‘‘frozen’’ spins or a ‘‘frozen configuration’’ of spins. After
the molecule returns back to the ground singlet state
electron spin vanishes, its influence on the chromoph
molecule proton spins disappears, and they acquire an op
tunity to change their spin state through flip-flops with pr
ton spins in the host matrix. Therefore, when a molec
reenters the triplet state, the configuration of its proton sp
can differ from the previous one and, as a consequence
frequencyv̄XZ of the transitionX-Z can be changed slightly
During the long FDMR experiment time all possible proto
spin configurations are sampled and thus the popula
^r11

t & of state 1 must additionally be averaged over the d

tribution P(v̄XZ): r̄11
t 5*dv̄XZ^r11

t &P(v̄XZ). It is this

doubly averaged populationr̄11
t of the excited singlet state

which is monitored in FDMR experiments. In fact, the di
tribution P(v̄XZ) is the single-molecule equivalent of a co
ventional inhomogeneous frequency distribution. In the c
of the Pc molecule the distributionP(v̄XZ) is strongly asym-
metric with full width at half maximum ~FWHM!
;5 MHz.15,54 Note that, in principle, one can modify th
distribution P(v̄XZ) by deuteration~by using the other
chemical substitutions! of chromophore molecules or o
guest crystal molecules as well. For example, in the cas
Pc1PT samples with deuterated Pc/PT molecules19–22 the
distributionP(v̄XZ) is practically eliminated due to strongl
(;40 times! decreased hfi’s resulting from a reduced deu
rium nuclear moment which is approximately 6 tim
smaller than that of a proton. Below we will discuss t
FDMR experiments made using usual nondeuterated sam
with nonisotopically substituted carbons.

First we discuss the calculation of^r11
t &. The standard

method of solution is to construct equations for the avera
density matrix̂ r i j

t &, which are usually referred to as mast
equations~ME’s!, and then to solve them with respect to th
desired element̂r11

t &. The simplest form of the master equ
tions is the well-known BE’s.24,55 These equations incorpo
rate the ISC transitions and the spontaneous transitio
→0 through rate coefficients in equations for diagonal d
sity matrix elementŝr i i

t &. The transitions contribute also t
the dephasing rates of relevant transitions. An additio
source for dephasing is fluctuations of the transition f
quency, usually referred to as pure dephasing. In the B
such effects are incorporated by additive contributions to
dephasing rate coefficients. For example, the decay rat
the coherence between the triplet substatesX andZ is equal
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to GXZ5AXZ1KXZ ~with a dephasing timeT2XZ
5GXZ

21),

whose nonadiabatic partAXZ5(k0
X1k0

Z)/2 is connected with
escapes of molecules from statesX and Z due to ISC pro-
cesses and whose adiabatic partKXZ results from frequency
fluctuationsUt associated with the transitionX-Z.

Meanwhile, as has demonstrated long ago in magn
resonance23–25 and more recently in optical spectrosco
~see, e.g., Refs. 28–35 and references therein!, the BE’s pro-
vide an appropriate description of a pure dephasing only
those cases when the correlation timetc of dephasing fluc-
tuationsUt ~or, equivalently, their inverse spectrum wid
gc

215tc) is negligible in comparison with other character
tic time scales of the system, such as the inverse MW fi
Rabi frequencytMW5(2W)21 (W52pXZB1/\ andpXZ is
the X-Z transition dipole moment matrix element! and the
dephasing timeT2XZ

itself. Under these conditions one ca

take the fluctuationsUt to be d correlated@the correlation
time tc50 and the correlation function ^UtU0&
52KXZd(t), KXZ5*0

`dt^UtU0&#. If, however, the condi-
tion tc!tMW is violated, pure dephasing processes beco
MW field dependent and, at large MW field intensity wh
2Wtc@1, one can expect the dephasing to be suppres
completely by the MW field. Spectroscopically, such su
pression will manifest itself as a difference between exp
mental observations and predictions of the BE’s. We
known effects of this nature, which have been stud
experimentally in other systems, are deviations from the
predictions of power-broadened line shapes in gases56,57 or
of decay rates of coherent transients in impurity ion crys
like Pr31:LaF3 ~Ref. 58! or ruby ~Refs. 59 and 60!. As ap-
plied to PDMR experiments on ensembles of spins the s
pression of triplet spin dephasing by a MW field has be
discussed in Refs. 37 and 61 where this effect has b
termed as ‘‘spin locking.’’ Note also that, generally, th
character of the MW field dependence of dephasing proc
proves to be different for systems with fast fluctuatio
(stc!1; s is the variance of frequency fluctuations! and
for systems with slow fluctuations (stc>1).27 To describe
FDMR phenomena in systems where the conventional B
fail, one needs to use a ‘‘generalized master equatio
~GME’s! ~see, e.g., Refs. 29–35! or some other equivalen
approaches. Hereinafter we use a stochastic-model appr
with some specific model for the fluctuationsUt whose
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known statistical properties provide us with the possibility
exactlyaverage overUt histories and to obtain simple ana
lytical expressions for the observables.

B. Basic equations

To construct the master equation for a five-level molec
interacting with optical and MW fields, we start with th
stochastic Liouville equation for the density matrix of th
molecule, including fluctuations of theX-Z transition fre-
quency. The density matrix evolves as

ṙ t5Dr t2 iFU tr t1r 0 , ~1!

where r t is a column vector whose elementsr i
t ( i

51, . . . ,8) are density matrix elements r i
t

5(r10
t ,r11

t ,r00
t ,r01

t ,rYY
t ,rXZ

t ,D t,rZX
t ), where D t5(rXX

t

2rZZ
t )/2. In a basis rotating at both the optical and MW fie

frequencies and in the rotating wave approximation, the m
trix D of Eq. ~1! is time independent and of the form

D5DV1DK1DW , ~2!

where

DV5S 2 i« iV 2 iV 0

iV 2A 0 2 iV Z4,4

2 iV A 0 iV

0 2 iV iV i«2A/2

Z4,4 Z4,4

D ~3!

and

DW5S Z5,5 Z5,3

2 id 2 iA2W 0

Z5,3 2 iA2W 0 2 iA2W

0 2 iA2W id

D ~4!

are matrices describing the dynamical interactions of
molecule with the optical and MW fields@2V and« are the
Rabi frequency and detuning for the optical field~which acts
on the 0→1 transition!, 2W, andd are the Rabi frequency
and detuning for the MW field~which acts on theX-Z tran-
sition!, and Zm,n are m3n block matrices with zero ele
ments# and
DK51
2kT/2 0 0 0 0 0 0 0

0 2kT 0 0 0 0 0 0

0 2k0
X1Z 2k0

X1Z 0 k0
Y2k0

X1Z 0 2k0
X2Z 0

0 0 0 2kT/2 0 0 0 0

0 kY
1 0 0 2k0

Y 0 0 0

0 0 0 0 0 2k0
X1Z 0 0

0 2kX2Z
1 1k0

X2Z/2 k0
X2Z/2 0 k0

X2Z/2 0 2k0
X1Z 0

0 0 0 0 0 0 0 2k0
X1Z

2 ~5!
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is the matrix accounting for the ISC processes withkT5kX
1

1kY
11kZ

1 , k0
X6Z5(k0

X6k0
Z)/2, andkX2Z

1 5(kX
12kZ

1)/2. The
second term in Eq.~1! takes into account the effects of fre
quency fluctuationsUt on the coherencesrXZ

t ,rZX
t ; there-

fore, the matrixF has two nonzero elements only:

F5S Z5,5 Z3,5

1 0 0

Z5,3 0 0 0

0 0 21

D . ~6!

The vector r 0 in Eq. ~1! has components r 0i

5(0,0,k0
X1Z ,0,0,0,2k0

X2Z/2,0). This inhomogeneous term
results from our having used the normalization condit
rXX

t 1rZZ
t 512(r11

t 1r00
t 1rYY

t ) to eliminate rXX
t 1rZZ

t .
Note that Eq.~1! without the second term coincides with th
BE’s written in matrix form for the five-level system, if on
puts in the latterT2XZ

21 5k0
X1Z , i.e., supposes pure dephasi

of the X-Z transition to be absent. Furthermore, if the M
field is absent, one can put, in Eq.~1!, D5DV1DK and
cancel the second term since the coherencesrXZ

t ,rZX
t vanish

and the fluctuationsUt are unimportant in this limit.
Our choice for the vectorr t, which is composed of den

sity matrix elements in a different way than is usua
adopted in the conventional ‘‘Feynman-Vernon-Helwart
vector description of two-level system dynamics,55,62 pro-
vides an opportunity to express the matricesDW and F in
terms of the standard spin matricesSx and Sz (S51) in a
Cartesian representation63

DW5S Z5,5 Z3,5

Z5,3 2 i ~dSz12WSx!
D , F5S Z5,5 Z3,5

Z5,3 Sz
D .

~7!

Then, using the commutation rules for these matri
@Sz ,Sx#5 iSy , @Sy ,Sz#5 iSx ,@Sx ,Sy#5 iSz , we are able
perform some calculations analytically~see below!.

For timest!(kj
i )21, when one can neglect the ISC tra

sitions, it is possible to omit the matrixDK in Eq. ~2! and
then, taking into account the commutativity of the matrixDV
with the matricesDW andF, obtain from Eq.~1! the reduced
closed matrix equation

r̃̇ t52 i ~dSz12WSx! r̃
t2 iSzU

tr̃ t ~8!

for the three-dimensional vectorr̃ t having componentsr̃ a
t

5(rXZ
t ,D t,rZX

t ) (a51,2,3) describing the evolution of th
triplet substatesX and Z under the action of the MW field
The two-level system described by Eq.~8! can be considered
as ‘‘closed’’ on this time scale with total populationrXX

t

1rZZ
t constant, but not equal to unity. Note that the desc

tion of a molecule as a two-level system, consisting of re
nant triplet substates, is conventionally used in theories
optically detected magnetic resonance spectroscopy~see,
e.g., Ref. 37! and is especially effective when one conside
transient FDMR phenomena~see Sec. III B!.

Returning to Eq.~1!, averaging over realizations of th
stochastic processUt, and substituting the formal solution o
Eq. ~1! into 2 iF ^Utr t& one obtains the evolution equatio
for the average vectorRt5^r t&:
s

-
-

of

s

Ṙt5DRt2E
0

t

dtLt2t^UtUtr t&1r 0 , Lt2t5FeD~ t2t!F.

~9!

This equation, however, is not a ME owing to the presen
of the correlation function̂UtUtr t& in the integral term. The
simplest case, when Eq.~9! becomes closed with respect
the vectorRt, is that ofd-correlated fluctuationsUt, when
^UtUtr t&52KXZd(t2t)Rt. In that limit, the integral over
time in Eq.~9! disappears, reducing it to the standard Bloc
type master equation for a five-level quantum system hav
the X-Z transition pure dephasing rate equal toKXZ . In real
systems, where the correlation time is nonvanishing, the
relation function^UtUtr t& is nonzero forut2tu<tc , thus
requiring one to take into account non-Markovian effec
i.e., the ‘‘memory’’ of the history of the system on a tim
scale;tc . One such effect is the dependence of dephas
processes on the MW field characteristics owing to the p
ence of matrixDW in the kernelLt2t5FeD(t2t)F of the
integral term in Eq.~9!. It follows from Eq. ~6! that the
matrix kernel Lt2t has only four nonzero elementsL66

t

5(expDt)66, L68
t 52(expDt)68, L86

t 52(expDt)86, andL88
t

5(expDt)88; i.e., the integral terms in Eqs.~9! appear only
in the equations for the componentsR6

t 5^rXZ
t &, R8

t

5^rZX
t & along with the correlation functions

^UtUtrXZ
t &, ^UtUtrZX

t &.
If the fluctuations are fast on a time scale;(kj

i )21, one
can average the reduced stochastic equation~8! over fluctua-
tion historiesUt to obtain the equation forR̃t5^ r̃ t&:

R8 t52 i ~dSz12WSx!R̃
t

2E
0

t

dtSze
2 i ~dSz12WSx!~ t2t!Sz^U

tUt r̃ t&, ~10!

whose correlation function̂UtUt r̃ t& is nonvanishing for
ut2tu<tc only. The kernelL̃ t2t5Sze

2 i (dSz12WSx)(t2t)Sz of
this equation contains only four nonzero elements and ca
calculated explicitly using commutation properties
spin S51 operators. Thus, one can use the well-kno
relations exp$2i(dSz12WSx)t%5exp$2iV(cSz1sSx)t%5exp
$2iVSz8t% exp$2i(dSz12WSx)t%5exp$2iV(cSz1sSx)t%5exp
$2iVSz8t%5exp$2iuSy%exp$2iVSzt%exp$iuSy%, where c
5cosu5d/V, s5sinu52W/V, V5(d214W2)1/2 is the gen-
eralized Rabi frequency of the MW field, andSz85cSz

1sSx5exp$2iuSy%Szexp$iuSy% is the Sz operator in the
‘‘MW-field-dressed-state’’ basis~the transformation to this
basis is performed by the unitary transformationE8
5exp$2iuSy%Eexp$iuSy%), and operator identities exp$bSi%
5I2Si

21Si
2chb1Sishb (i5x,y,z),63 to obtain the operator re

lation exp$2iV(cSz1sSx)t%5I2iSz8sinVt1Sz8
2(cosVt21).

Using these relations, one finds

L̃ t2t5S f 1
t2t 0 f 2

t2t

0 0 0

f 2
t2t 0 ~ f 1

t2t!*
D , ~11!

where

f 1
t 5

s2

2
1S c21

s2

2 D cosVt2 ic sin Vt, ~12a!
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f 2
t 52

s2

2
~cosVt21!. ~12b!

In turn, the kernelLt2t of the complete equation~9! can be
expressed, at small timest!(kj

i )21, in terms of the kernel

L̃ t2t of the reduced equation~11! as follows:

Lt2t5S Z5,5 Z3,5

Z5,3 L̃ t2tD . ~13!

For the systems under discussion, typical correlat
timestc are of the order of the inverse average frequency
proton spin flip-flops in the host matrix~approximately sev-
eral ms), while typical triplet substate lifetimes due to IS
processes are on the order of tens of microseconds or m
Since the kernel in Eq.~9! is nonvanishing only for times o
order of the correlation timetc , which defines the ‘‘life-
time’’ of the correlation function̂ UtUtr t&, one can use the
approximate form of the kernel~11!–~13! in Eq. ~9!. Further-
more, if Vtc>1, then sinV(t2t) and cosV(t2t) oscillate
rapidly on a time scale oftc , allowing one to neglect the
contributions from oscillating terms in Eqs.~12a! and~12b!.
As a result, the kernel in Eq.~9! can be approximated as

Lt2t5
s2

2 S Z5,5 Z3,5

1 0 1

Z5,3 0 0 0

1 0 1

D . ~14!

The dephasing terms in this case are expressed in Eq~9!
through the time integrals of the correlation functio
^UtUtrXZ

t &, ^UtUtrZX
t &.

In some cases the correlation function^UtUtr t& can be
factored aŝ UtUt&Rt, converting Eq.~9! into a ME. For
example, in the case of weak and fast fluctuationsUt, when
stc!1, ^UtUtr t&'^UtUt&Rt @this approximation is consis
tent with a perturbative solution of Eq.~9! to second order in
Ut ~Ref. 64!#. In the case of strong and slow fluctuatio
stc>1, which is of the main interest in this paper, the c
culation of the correlation function̂UtUtr t& is possible only
using some specific stochastic models for the fluctuationsUt

whose statistical properties provide some kind of relat
between̂ UtUtr t& andRt. In particular, within the model of
a symmetric random telegraph~RT! process for the fluctua
tions Ut, where the quantityU undergoes instantaneou
jumps between two valuesU5s and U52s with equal
transition probability densitiesws→2s5w2s→s5n @the cor-
relation function for the RT process is^UtU0&
5s2exp(22nt), correlation timetc5(2n)21#, the decou-
pling procedurê UtUtr t&5^UtUt&Rt is exact64,65 and valid
for arbitrary ratios of the parameterss,n. For this reason the
RT model is widely used in stochastic theories of dephas
processes, especially, in the theory of the field-modified p
dephasing~see, e.g., Refs. 29–31, 66, and 67!.

The RT model, however, is a highly simplified stochas
model. It provides a proper description of experimental d
for systems with weak fluctuations only for which the ‘‘na
rowing’’ parameters2tc

2<1. Physically this model corre
sponds to the situation where there is only one nuclear~pro-
ton! spin S51/2 in the vicinity of a chromophore molecul
n
f

re.

-

n

g
re

a

and it is this neighboring spin, undergoing transitions b
tween its states at random moments of time, which mo
lates stochastically the triplet substate energies through
diagonal part of its dipole-dipole interaction with the tripl
electron spin. In real molecular systems there are many
ping proton spins around an impurity molecule and, the
fore, in this case it seems to be more suitable to model
fluctuationsUt by a sum ofN independent random telegrap
processes,Ut5(k51

N Uk
t , with each component processUk

t

having the same jump frequencyn, equal to the average
flipping rate of proton spins in the host matrix, but differe
~in general case! variancessk according to different dis-
tances between the proton spins and the triplet electron s
Below we refer to this model as anN RT. As is known well,
in the case of equal variancessk at N→` theN RT process
becomes, according to the central limit theorem, a Gau
Markovian ~normal! process. For this reason it is ofte
named a ‘‘pre-Gaussian process.’’68 Note, however, that with
different variancessk this Gaussian limit is not valid~see,
e.g., Ref. 69!.

The N RT model has been used previously in vario
theories to describe dephasing processes due to spin-sp
teractions and to calculate decays of coherent transients~spin
echoes, free induction decay, etc.! in spin systems with slow
frequency fluctuations.70–72Most recently48,49 this model has
been applied in SMS spectroscopy to describe
observations5 of spectral diffusion in an optical singlet
singlet transition of single Pc molecules in PT crystals due
the interactions of a Pc molecule with a multitude of tunn
ing TLS’s formed by the two lowest states in a double-w
potential describing librations of the central phenyl ring
terphenyl molecules between two possible stable position48

It should be emphasized that here we extend the previouN
RT model stochastic theories in that our calculations of
response of a molecule to external fields are based onexact
equations@Eqs. ~16a!–~16d!# describing the experimentally
monitored average behavior of a molecule. In contrast
previous theories, these equations take into accountsimulta-
neouseffects on a molecule both of stochastic fluctuatio
Ut5(k51

N Uk
t and of external fields and, in principle, they a

applicable to calculateanydesired response of a molecule
external fields~not only of the echo and FI decay signals
in Refs. 70 and 71 or of the linear line shape as in Ref. 4!.
In particular, these equations take into account the influe
of the MW field on the triplet electron spin dephasing i
duced by flipping proton spins and thus make it possible
describe in a proper way the suppression of dephasing
MW fields. Note that the assumption of equal up and do
jump rates for the component processesUk

t ~the high-
temperature assumption! is used here for simplicity and ca
be eliminated straightforwardly within the context of th
model @see Eq.~A4! in the Appendix#.

Each component RT processUk
t is characterized by a cor

relation function of the form̂Uk
t Uk

t& (k)5sk
2exp$22n(t2t)%,

where^•••& (k) denotes averaging over all realizations of t
processUk

t . Using the known properties of RT proces
(Uk

t )25sk
2 and^Uk

t Uk
tr t& (k)5^Uk

t Uk
t& (k)^r

t& (k) , and keeping
in mind that the vectorr t is a functional of all processesUk

t ,
one can represent the correlation function^UtUtr t& in Eqs.
~9! as
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^UtUtr t&5e22n~ t2t!S (
k51

N

sk
2Rt12 (

k,l ~kÞ l !

N

^Uk
tUl

tr t& D ,

~15!

i.e., express the correlation function in terms of theone-time
averagesRt and ^Uk

tUl
tr t&. The angular bracketŝ•••&

without indices here mean the total average over poss
realizations ofall component processesUk

t . Clearly, within
the N RT model the decoupling procedurêUtUtr t&
.^UtUt&Rt is equivalent to neglecting the second sum
Eq. ~15! which is valid only if the fluctuationsUt are fast and
weak so that the conditions<2n is fulfilled, where s
5A(sk

2. In the opposite case of slow and strong fluctuatio
s>2n this procedure is not valid and a closed master eq
tion for Rt cannot be constructed. Thus, under these co
tions other approaches must be used to describe FDMR
periments.

One such approach has been proposed in the gen
theory of dynamical systems under stochastic influen
~see, e.g., Refs. 65 and 73! where, in particular, the powerfu
method of differentiation formulas has been developed
average the relevant stochastic differential equations. In
Appendix we show that by applying sequentially the diffe
entiation formula for single RT processes,73 d^Uk

tr t& (k) /dt

522n^Uk
tr t& (k)1^Uk

t ṙ t& (k) , whereṙ t is the right-hand part
of Eq. ~1!, one can construct anexact system of coupled
matrix differential equations

Ṙt5DRt2 iF(
k

N

R$k%t1r 0 , ~16a!

Ṙ$k%t5~D22nI !R$k%t2 iF(
lÞk

N

R$k,l %t2 isk
2FRt, ~16b!

Ṙ$k,l %t5~D24nI !R$k,l %t2 iF (
mÞk,l

N

R$k,l ,m%t2 isk
2FR$ l %t

2 is l
2FR$k%t, ~16c!

•••

Ṙ$1, . . . ,N%t5~D22NnI !R$1, . . . ,N%t

2 iF(
k

N

R$1, . . . ,k21,k11, . . . ,N%t ~16d!

for the averages Rt5^r t&, R$k%t5^Uk
t r t&, R$k,l %t

5^Uk
t Ul

tr t&, . . . ,R$1, . . . ,N%t5^U1
t
•••UN

t r t&. Equations
~16a!–~16d! are used below to calculate exactly the avera
optically detected responseR2

t 5^r11
t & of a molecule to a

MW field and compare it both with experimental data a
with approximate calculations.

The total dimensionality of Eqs.~16a!–~16d! for our five-
level molecule is 832N; hence, it increases rapidly with th
numberN of the component RT processes. Therefore, fr
the computational viewpoint, it is desirable to haveN as
small as possible. On the other hand, however,N must be
large enough to approximate well the total effect of ma
le

s
a-
i-
x-

ral
s

o
e

-

e

y

flipping proton spins in the surrounding host crystal to t
single triplet spin. Analysis has shown that such a minim
but sufficient numberN of RT processes in the model i
determined mainly by the value of the ratios/2n: the higher
the ratio is, the larger must be the numberN of component
RT processes in the model. In Sec. III we show that for
investigated Pc1PT systems/2n.1.4 and four componen
processes (N54) are sufficient to fit well the experimenta
observations within ourN RT model. For this reason exac
calculations with Eqs.~16a!–~16d! are restricted in this work
to N<4.

In the Appendix we describe additionally the other mo
conventional method that can be used to average Eq.~1! over
fluctuation histories. The method is known as sudden mo
lation theory.24,32–34,74,75 According to this method Eqs
~16a!–~16d! are replaced by Eq.~A10! for so-called ‘‘end
marginal’’ averagesR[l1 , . . . ,lN] t which are partial average
of the vectorr t over only those histories of all compone
processesUk

t which end at timet at some specific valueUk

5lksk , wherelk5sgn(Uk) ~see also Refs. 76 and 77 for
review and references!. It should be stressed that Eq.~A10!
is completely equivalent to Eqs.~16a!–~16d! and, in prin-
ciple, can be used to calculate^r11

t &. Note also that the inte-
grodifferential equations~9! can be obtained from Eqs
~16a!–~16d! if one substitutes the formal solution of Eq
~16b! into Eq. ~16a!. Furthermore, in the limit of a large
jump raten and total variances, one recovers the limit of
the Bloch equations with pure dephasing rateKXZ5s2/2n.

If kj
i !n, Eqs.~16a!–~16d! can be simplified significantly.

According to Eqs. ~16a!–~16d!, the averages
R$k%t, R$k,l %t, . . . ,R$1, . . . ,N%t decay with rates
2n,4n, . . . ,2Nn@kj

i and, as a consequence, it is possible
neglect DK in Eq. ~2! and replace the matrixD in Eqs.
~16b!–~16d! by DV1DW . Moreover, whenkj

i !n, there are

two time scales in the problem. The vectorr̃ t

5(rXZ
t ,D t,rZX

t ) evolves on a time scale;tc5(2n)21,
while other elements ofRt evolve on a time scale (kj

i )21

@tc . Taking into account that the operatorF acts as a pro-
jection operator onto the three-dimensional subspace or̃ t,
one finds that, fort,(kj

i )21, one can replace the comple
832N by 832N matrix equations~16a!–~16d! by the 3
32N by 332N matrix equations

R8 t52 i ~dSz12WSx!R̃
t2 iSz(

k

N

R̃$k%t, ~17a!

R8 $k%t52 i ~dSz12WSx22inI !R̃$k%t2 iSz(
lÞk

N

R̃$k,l %t

2 isk
2SzR̃

t, ~17b!

R8 $k,l %t52 i ~dSz12WSx24inI !R̃$k,l %t

2 iSz (
mÞk,l

N

R̃$k,l ,m%t

2 isk
2SzR̃

$ l %t2 is l
2SzR̃

$k%t, ~17c!

•••
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R8 $1, . . . ,N%t52 i ~dSz12WSx22NinI !R̃$1, . . . ,N%t

2 iSz(
k

N

R̃$1, . . . ,k21,k11, . . . ,N%t ~17d!

for the averages R̃t5^ r̃ t&, R̃$k%t5^Uk
t r̃ t&, R̃$k,l %t

5^Uk
t Ul

tr̃ t&, . . . ,R̃$1, . . . ,N%t5^U1
t
•••UN

t r̃ t&, supposing that
the other components of vectors Rt, R$k%t,
R$k,l %t, . . . ,R$1, . . . ,N%t are constant on this time scale. Due
the conditiont,(kj

i )21, we also are able to omit the inho

mogeneous vector r̃ 0 with the components
„0,2(k0

X2k0
Z)/4,0… on right-hand part of Eq.~17a!. Equa-

tions ~17a!–~17d! are especially useful in calculating th
transient FDMR response of a molecule to a pulsed M
field ~see Sec. III B!. Note that analogous theories of op
cally detected magnetic resonance~ODMR! phenomena
have been given in which one considers in detail only t
resonant triplet substates with the other states of the m
ecule serving as population sources or sinks~see, e.g., Ref.
37!. Our version, Eqs.~17a!–~17d!, differs from previous
theories in that we use a stochastic approach and take
account a nonvanishing correlation time for the tripl
substate frequency fluctuations.

III. APPLICATIONS

The general formalism developed in Sec. II can be use
model both cw and transient experiments. In this paper
es
n

s,

e

o
l-

to
-

to
e

calculate~i! MW-power-broadened FDMR line shapes a
~ii ! coherent transients such as fluorescence-detected fre
duction decay and fluorescence-detected two-pulse ec
on single molecules. The theory is used to fit the availa
experimental data on single Pc molecules in crystalline
By considering both time- and frequency-domain measu
ments, we can understand how triplet spin pure depha
mechanisms operate in both the time and frequency doma
Preliminary results have been published in Refs. 40–
along with additional descriptions of experiments in whi
transient nutation14 and the second-order correlation functio
g(2)(t) of the fluorescence intensity have been measured15 in
the Pc1PT system.

A. Power-broadened FDMR line shapes

The FDMR line shape is a measure of the average fl
rescence intensity as a function of the frequencyv of the cw
MW field driving the triplet manifold. As was discussed pr
viously this line shape is the convolution of the steady-st
homogeneous line shapêr11

st(v)& with the distribution

P(v̄XZ) of X-Z transition frequencies: I st(d)
;*dDP(D)^r11

st(D2d)&.
It is instructive first to calculate the homogeneous li

shapê r11
st(v)& when the system is described by the conve

tional BE’s. In this case theexactsteady-state solutionr11
st is
r11
st~d!5

r11
~0!st

11r11
~0!st Bxzumw

11Bxzumw~1/k0
X11/k0

Z!
~1/k0

Z21/k0
X!~kX

1/k0
X2kZ

1/k0
Z!

, ~18!

where

r11
~0!st5

1

2

4V2~G/Ã!

G214V2~G/Ã!~11kX
1/2k0

X1kY
1/2k0

Y1kZ
1/2k0

Z!
~19!
the

c-

t-
is the steady-state population of state 1 when an exactly r
nant optical field drives the singlet transition and there is
MW field driving the triplet transitions,

Bxzumw52W2g/~d21g2! ~20!

is the Einstein coefficient for MW-field-induced transition
G5Ã/21K10 is the optical 1-0 transition linewidth withÃ
5A1kX

11kY
11kZ

1 andK10 a pure dephasing contribution~re-
call that for the Pc1PT systemK1050,50 which is also the
case for most other impurity molecules incrystalline host
matrices!, andg5(k0

X1k0
Z)/21KXZ is the total linewidth of

the X-Z transition with a pure dephasing contributionKXZ
resulting from d-correlated~in the Bloch case! frequency
fluctuationsUt.

Equations~18!–~20! describe a homogeneous FDMR lin
shaper11

st(d) that is symmetric aboutd50. The population
o-
o
r11

st(d) decreases from its valuer11
(0)st at large MW field de-

tunings d to a minimum r11
st(d50) at d50. The relative

decrease at line center compared with the line wings in
case of strong MW fields, 2W@g, is

E5@r11
~0!st2r11

st~d50!#/r11
~0!st

5F11
1

r11
~0!st

~1/k0
X11/k0

Z!

~1/k0
Z21/k0

X!~kX
1/k0

X2kZ
1/k0

Z!
G21

. ~21!

The quantityE can be thought of as a measure of the effe
tiveness of the FDMR technique. In the case of the Pc1PT
pair, using ISC rates from Table 1 of Ref. 15, one findsE
;0.27.

It is worthwhile pointing out that, according to Eqs.~18!
and ~21!, the FDMR effect is absent if~i! kX

1/k0
X5kZ

1/k0
Z or

~ii ! k0
X5k0

Z . In other words, if the populating and depopula
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ing rates of the two triplet substates of the molecule
proportional to each other or if their lifetimes are equal, t
application of a MW field that couples these two substa
does not influence the population of state 1. IfkX

1/k0
X

5kZ
1/k0

Z , then the populationsrXX
(0)st5(kX

1/k0
X)r11

(0)st and
rZZ

(0)st5(kZ
1/k0

Z)r11
(0)st are equal in the absence of an appli

MW field, and this relationship is unchanged after the M
field is switched on. Ifk0

X5k0
Z , the MW field results in a

specific redistribution of the populations in the five-level sy
tem, but leaves the state 1 population unchanged.

The half widthh ~half width at half height of the dip! of
the line shaper11

st(d), calculated from Eq.~18!, is given by

h25g212W2gF 1

k0
Z

1
1

k0
X

1r11
~0!stS 1

k0
Z

2
1

k0
XD S kX

1

k0
X

2
kZ

1

k0
ZD G .

~22!

In weak MW fields, 2W!g, the line shape~18! is Lorentz-
ian with half width g. In this limit, the total line shape
I st(d);*dDP(D)r11

st(D2d) follows approximately the

shape of theX-Z transition frequency distributionP(v̄XZ)
evaluated atv̄XZ5d,

I st~d!;r11
~0!stF124pW2r11

~0!stS 1

k0
Z

2
1

k0
XD S kX

1

k0
X

2
kZ

1

k0
ZD P~d!G ,

~23!

provided thatg is much less than the frequency width of th
distribution. In the opposite limit of strong MW fields, Eq
~22! gives a half widthh that grows linearly with the MW
Rabi frequency 2W. If 2W exceeds the widthHP of the
distributionP(D) so that the MW field saturates all freque
cies in the distribution, the line shapeI st(d) is identical to
the homogeneous line shape, Eq.~18!. If k0

X@k0
Z , kX

1/k0
X

@kZ
1/k0

Z , which is the case for the Pc1PT pair,15 the power-
broadened FDMR line width is given approximately by

h'2WA g

2k0
ZS 11r11

~0!st
kX

1

k0
XD . ~24!

It should be pointed out that due to the presence of the s
rate k0

Z in the denominator of Eq.~24!, dh/dW is large for
the Pc1PT system.

As was discussed in the Introduction, the BE’s fail to gi
a correct description of power broadening in systems w
slow frequency fluctuations. Therefore Eqs.~18! and~22! are
expected to be inconsistent with experimental data on M
power-broadened FDMR line shapes for single guest m
ecules in organic host matrices such as the Pc1PT system.
For this reason we extend the above BE-based calculat
of the FDMR line shape to include non-Markovian tripl
spin dephasing. It is assumed thatn@kj

i , allowing us to use
Eq. ~10! as the starting point of our calculations, with th
kernelLt2t5FeD(t2t)F approximated by Eq.~13!. Further-
more, we factor the correlation function̂ UtUtr t&
'^UtUt&Rt, which is valid for a single, symmetric RT pro
cess. The steady-state solution of the equations obtained
these simplifications isRst52(D2L̄)21r 0 , where the ma-
trix D is determined by Eq.~2! and
e
e
s

-

all

h

-
l-

ns

fter

L̄5s2E
0

`

dxLxe2nt5S Z5,5 Z3,5

F1 0 F2

Z5,3 0 0 0

F2 0 F1*
D . ~25!

The factors

F15
s2

2nFs2

2
1S c21

s2

2
2 i

d

2n D 4n2

4n21V2G , ~26a!

F25
s2

4n

4W2

4n21V2
~26b!

are integrals over time of the product of the functionsf i
t in

Eqs. ~12a! and ~12b! with the correlation function̂ UtU0&
5s2exp(22nt) of dephasing fluctuationsUt. Recall thats
52W/V, c5d/V, andV5(d214W2)1/2.

After some algebra one can calculate for this case
steady-state population̂r11

st(d)&5R2
st(d) in explicit form

and find that it is again given by the expression~18! but with
the Einstein coefficientBxzumw replaced by

Bxzumw52W2
~k0

X1k0
Z!/21~ReF12F2!

u id1~k0
X1k0

Z!/21F1u22F2
2

. ~27!

This equation reduces to Eq.~20! in the limit of d-correlated
fluctuations@s,n→`, lim(s2/2n)5KXZ# when the functions
~26a! and ~26b! becomeF1→KXZ and F2→0. On the con-
trary, if the correlation timetc5(2n)21 is nonvanishing, the
presence in Eq.~27! of the MW-field-dependent functionsFi
leads to differences between the homogeneous FDMR
shape^r11

st(d)& evaluated using Eq.~27! with the BE line
shape evaluated using Eq.~20!. In particular, in strong MW
fields, W@n, when both functionsFi are approximately
equal tos2s2/4n, one can obtain from Eq.~27! an equation
similar to Eq.~20! but with the linewidthg determined now
as g5(k0

X1k0
Z)/2, i.e., consisting of only the triplet-state

lifetime-limited part of the previous total linewidthg5(k0
X

1k0
Z)/21KXZ . In turn, the FDMR line widthh can now be

calculated from Eq.~20! with the substitutiong→(k0
X

1k0
Z)/2. Thus, whenW@n the contributions from triplet

resonance frequency fluctuations are canceled comple
and the MW-power-broadened FDMR line becomes mu
narrower in comparison with the BE predictions. It is show
below that for the Pc1PT system this ‘‘field-narrowing
effect’’78 is very pronounced:A112KXZ /k0

Z;30.
If the fluctuationsUt are modeled by anN RT model, an

analytical expression for the homogeneous FDMR line sh
can no longer be obtained. Instead, one must turn to a
merical solution of Eqs.~16a!–~16d!. Below we calculate
^r11

st(d)& for a Pc1PT pair, using values forkj
i ,A,V,G10

given in Table 1 of Ref. 15. For the jump rate of the com
ponent RT processesUk

t , we take the valuen/2p
530 kHz, which is the typical average proton spin flip-flo
rate in Pc1PT at liquid helium temperature.17,79 We assume
also that the fluctuationsUt are slow,s2/4n2>1, and that the
processesUk

t have same variancessk5s/AN. Figures 2~a!–
2~c! show the results of calculations made using the va
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s/2p585 kHz which have been determined by a best fit
the experimental data for Pc molecules in crystalline PT
should be noted that, owing to the conditionkj

i !n which is
well satisfied for Pc1PT, all results are practically indistin
guishable from those obtained using the simplified version
Eqs. ~16b!–~16d! with the matrixD replaced byDV1DW .
Additionally, for N51 the exact calculations coincide wit
those predicted by Eqs.~18! and ~27!.

The homogeneous line shape^r11
st(d)& is shown in Fig.

2~a! in the limit of weak MW fields, 2W!2n<s. For small
values ofN, there are peak-shaped structures resulting fr
individual MW field resonances with fluctuation-shifted fr
quencies vXZ

[lk]
5vXZ1(lksk (@lk#5l1 , . . . ,lN ;lk5

FIG. 2. Homogeneous FDMR line shapes^r11
st(v)& calculated

using N RT models withN51,2,3,4 for n/2p530 kHz, s/2p
585 kHz for different values of the MW Rabi frequency:~a!
2W/2p56 kHz ~case 2W,n,s), ~b! 2W/2p555 kHz ~casen
,s,2W), and ~c! 2W/2p5200 kHz ~casen,s,2W). Dotted
curves show the Bloch equation~BE! predictions usingKXZ/2p
5100 kHz.
f
It

f

m

61) of the X-Z transition which are well separated in th
case. For higherN, in accordance with the central limit theo
rem ~see, e.g., Ref. 65!, the line shape approaches the Gau
ian limit ;r11

(0)st@12CGexp(2d2/2s2)# with half width h
5sA2 ln 2;s. Note that with the parameter values pecul
to the Pc1PT system four-component processes (N54) in
the model provide a good approximation for the abo
Gaussian line shape. Further increasing the numberN of the
component RT processes~at fixed variance s/2p
585 kHz) does not change essentially the homogene
line shape calculated withN54. For the slow modulation
case under consideration, the line shape depends
slightly on the jump frequencyn. Figure 2~b! demonstrates
that these spectral peaks practically disappear at mode
MW field power, 2n,2W<s. Note also in Fig. 2~b! that
the linewidth is approximately twice that of the low-fiel
result at this moderate MW field intensity. A further increa
in MW field Rabi frequency (2n,s<2W) results in the
total disappearance of the structure@Fig. 2~c!#, and for
s!2W the FDMR linewidthh is given by Eq.~22! at anyN,
indicating the complete suppression of induced dephas
associated withN RT processes by the MW field. For com
parison purposes we also show in Figs. 2~a!–2~c! the line
shapes calculated in the motional narrowing limit@s,n
→`, lim(s2/2n)5KXZ] on the basis of the BE~18!, setting
KXZ/2p5100 kHz equal to the low-power Gaussian-lim
linewidth h5sA2 ln 2. One can conclude from the figure
that homogeneous power-broadened FDMR line shapes
dicted by BE’s are much broader than the correspond
slow-modulation-induced line shapes.

Now we calculate, in terms of theN RT model, the
power-broadened inhomogeneous FDMR line shapeI st(d)
;*dDP(D)^r11

st(D2d)&. For theX-Z transition of Pc in PT
the inhomogeneous FDMR line has been observed12,13at low
microwave power to be strongly asymmetric with a sha
low-frequency edge, having half width at half maximu
~HWHM! ;200 kHz, and a slowly decreasing high
frequency tail extending for;10 MHz. The full width ~at
half maximum level! of the distribution is approximately 5
MHz. In principle, the distributionP(v̄XZ) can be calculated
from first principles following the method described in Re
54 and using the hfi-tensor parameters for the Pc1PT pair
determined in Ref. 81. Such calculations, perform
previously,15 show that, owing to the large number of pro
tons (214) in Pc molecules, this distribution is dense and
reasonable agreement with the low-power experime
FDMR line shape, Eq.~23!. For these reasons and to sim
plify the calculations, we will use in our further analysis
simple analytical approximation for the distributio
P(D): P(D)50 for D,0 and P(D)5(1/D0)exp(2D/
D0) for D>0 with D0/2p54.7 MHz. Calculations of the
low-power inhomogeneous line shapeI st(d) using the above
model distribution agree well with the experimental da
Fig. 3~a!. Furthermore, from these calculations we conclu
that the half width of the sharp edge of the low-power li
shape istwice the homogeneous linewidthh, which can be
understood easily if one recalls the analogous result, w
known in nonlinear spectroscopy, that the low-power limit
the half width of the spectral hole burned due to saturation
a broad inhomogeneous distribution is also equal totwice the
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FIG. 3. Inhomogeneous FDMR line shapesr̄11
st(v) calculated using the 1 RT model atn/2p530 kHz, s/2p585 kHz for different

values of the MW field Rabi frequency:~a! 2W50.093106 s21, ~b! 2W50.273106 s21, ~c! 2W50.83106 s21, ~d! 2W51.6
3106 s21, ~e! 2W553106 s21, and ~f! 2W5153106 s21 in comparison with experimental data forX-Z transitions of a single P
molecule in a PT crystal.
of
any
g

-
ld

er-
homogeneous linewidth~see, e.g., Ref. 9!. Therefore, we
choose the values/2p585 kHz (5200/2A2 ln 2 kHz) for
the parameters of our N RT model. The above model dis
tribution P(D) has been used to calculate power-broaden
inhomogeneous line shapes for increased values of the
field Rabi frequencies 2W. Figures 3~b!–3~f! show the re-
sults of these calculations in comparison with experimen
data. The experimental values of 2W, which were rather
large so that the models with different numbersN of RT
processes~at fixedn ands) resulted practically in the sam
homogeneous line shapes, made it possible to restrict ca
lations to the simplest 1 RT model only. Thus, the analyti
expressions~18!, ~20!, and ~27! for the homogeneous line
shape are well suited for the Pc1PT system. The experimen
-
ed

MW

tal

e
lcu-

cal

-

tal data, which give the MW field frequency dependence
the average number of fluorescence photon counts plus
stray light, have been modified by proper scaling and shiftin
along they axis to provide a best fit to the calculated line
shapesI st(d). One can see from the Figs. 3~b!–3~f! that this
fitting procedure works well for all experimental power
broadened line shapes. Note that even at very high MW fie
power @Fig. 3~f!#, when the MW Rabi frequency 2W515
3106 s21 is comparable with FWHMHP of the distribution
P(D) (HP;2p353106 s21), the line shapeI st(d) has a
width that is power broadened by a factor of;4 times only.
Finally, in Fig. 4 we show a summary of Figs. 3~a!–3~f! with
respect to the MW Rabi frequency dependence of the pow
broadened linewidth~FWHM!. We also show in Fig. 4 the
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pronounced disagreements of BE-based calculations~with
KXZ/2p5100 kHz) of the FDMR linewidths with the ex
perimental~asterisks! values andN RT-model-based calcula
tions.

B. FDMR transients

In the previous subsection we have considered
frequency-domain manifestations of slow fluctuations o
triplet spin frequency, resulting from host molecule prot
spin dynamics, in the homogeneous FDMR line shape. It
shown that direct observation of the homogeneously bro
ened FDMR line shape of asinglechromophore molecule is
difficult to achieve, owing to inhomogeneous broadening i
posed by different configurations of Pc molecule prot
spins, all of which are sampled during the long duration
FDMR experiment. For this reason frequency-dom
FDMR experiments can provide only an estimate of the v
ances of frequency fluctuationsUt, obtained by measuring
the width of the sharp edge of the experimental asymme
FDMR line. Attempts to determine the homogeneous lin
width by increasing the MW field power and to extract fro
the linewidth information concerning mechanisms under
ing triplet spin pure dephasing fail, as a result of the supp
sion of these mechanisms by a strong MW field.

To overcome the above difficulties of measuring the h
mogeneous linewidth of triplet-state chromophore molecu
in organic host crystals it has been proposed in Ref. 17 to
time-domain FDMR techniques which have been develo
in conventional ODMR spectroscopy to study the cohere
decay processes of ensembles of triplet spins~see, e.g., Refs
36–39, 80, and 82! in single-molecule spectroscopy. The o
servations of the FDMR Hahn echo17,83 ~FDMR HE! for
single Pc molecules in PT crystal have demonstrated
FDMR spectroscopy can provide information concerning
rates of triplet spin pure dephasing in mixed molecular cr
tals and their variations among different chromophore m
ecules. Below we extend the BE-based analysis of
FDMR HE ~Ref. 17! to describe the triplet spin coherenc
decay due to slow fluctuationsUt and to study their mani-
festations in different transient FDMR phenomena.

During transient FDMR experiments on single molecu
the molecule is repeatedly subjected to a specific sequen

FIG. 4. The MW field Rabi frequency dependence of inhom
geneous FDMR linewidth~FWHM! of the line shapes shown in
Figs. 3~a!–3~f! in comparison with experimental data~asterisks! for
a single Pc molecule in PT crystal and with BE predictions w
KXZ/2p5100 kHz ~dotted line!.
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MW field pulses with the total time of the experimentTexpt

much larger than the durationTseq of a single MW pulse
sequence. Each pulse sequence acting on the molecule c
thought of as a single transient experiment. Some MW fi
pulses in the sequence are designed to build up the coher
of resonant triplet spin substatesX andZ or to modify it in a
predetermined way. The fluctuations of the transitionX-Z
frequency due to host proton spin dynamics introduce sh
Df5*dxUx into the relative phase of these states. Coh
ence between the substates can be probed, within the FD
technique, by applying an additionalp/2 MW pulse as the
final pulse in the sequence. The function of this final pro
MW pulse is to convert coherence into a population diffe
ence of substatesX andZ which is detected using the FDMR
technique.

As was discussed previously, a single molecule underg
quantum jumps between its five states which are accom
nied by absorption or emission of optical photons in t
singlet-singlet channel or by emission of phonons in IS
transitions to and from triplet substates. Due to the long-ti
scale character of the FDMR technique, the observable
transient FDMR experiments represent averages over
sembles of single transient experiments. Therefore, from
theoretical viewpoint, one can calculate first the transient
sponse of a molecule during a single FDMR experiment a
then average the results as necessary. First, it is necessa
average over the initial states of the molecule just before
arrival of the leading MW pulse in a sequence. In fact, t
MW pulse can strike a molecule when it is in any one of
five states~singlet statesS0 ,S1 or triplet substatesX,Y,Z),
with the relative probability to be in these states given
diagonal elements of the molecule’s density matrix. E
dently, MW field pulses influence the molecule only if it is
one of the MW-field-coupled substatesX or Z. Experimen-
tally, the repetitive sequences of MW field pulses are se
rated by a delay timeTdel which is chosen to be sufficiently
large to ensure that, by the end of this time, the den
matrix for a molecule is equal to the steady-state den
matrix. This implies that different single transient expe
ments can be thought of as independent. The molecular s
just before each specific single transient experiment is
scribed by the steady-state density matrixr i j

(o)st of a mol-
ecule subjected to a cw optical field and to the ISC tran
tions with no MW field. Second, one must average over
phase shiftsDf introduced by fluctuationsUt in single tran-
sient experiments. These shifts are different due to differ
histories of fluctuationsUt during single experiments. Whe
averaged over ensembles of many single experiments
formed during total transient experiment timeTexpt, these
phase shifts manifest themselves as a pure dephasing o
triplet spin transitionX-Z. Furthermore, duringTexpt the
molecule is subjected to many cyclesS0→S1→•••→T
→S0 , changing many times its proton spin configuration
that all possible triplet spin transition frequencies a
sampled according to the probability distributionP(v̄XZ).
Thus, a final average over the inhomogeneous distribu
P(v̄XZ) must be performed. Note, however, that the abo
mentioned averaging over initial molecular states is ap
cable to describe only the simplest version of transi
FDMR experiments when there is no synchronization

-
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MW pulses with the molecular state. More elaborate versi
of experiments can involve so-called ‘‘triggering’’ of MW
pulses15 by fluorescence photons, that is, synchronization
the MW field switching with the appearance~or disappear-
ance! of fluorescence photon bunches in the singlet chan
which are correlated with molecular jumps out of or into t
triplet substatesT. Calculations of average molecular tra
sient responses for such ‘‘triggered’’ transient FDMR expe
ments require one to use an initial density matrixr̃ i j

(0)tr igg

that correlates with the timing of the trigger pulse. Additio
ally, as was pointed out previously in the case of transi
FDMR experiments on samples with deuterated~or substi-
tuted! molecules, a modified inhomogeneous distributi
P(v̄XZ) must be used. In particular, the deuterated Pc
crystal is not expected to exhibit a normal echo signal si
there is no inhomogeneous distribution of frequenc
v̄XZ .17

Now we are in a position to proceed to a formulation o
stochastic theory of coherent transient FDMR phenomena
single molecules. Hereafter we restrict ourselves with d
cussing ~i! the fluorescence-detected free induction de
~FDMR FID! after ap/2 MW pulse, corresponding to th
sequencep/2-td-p/2, and~ii ! the fluorescence-detected tw
pulse Hahn echo~FDMR HE!, corresponding to the se
quencep/2-td1-p-td2-p/2. Both of these transient phenom
ena are sensitive to pure dephasing mechanisms
therefore they can be used to study them. The terms ‘‘p/2
andp MW pulses’’ mean, as usual, that the MW pulses ha
the Rabi frequencies 2Wp/2,2Wp and durationstp/2 , tp sat-
isfying the relations 2Wp/2tp/25p/2, 2Wptp5p. Since
the typical duration of a single transient experiment (; trip-
let spin coherence decay time! is short in comparison with
the lifetimes (k0

X(Z))21 of triplet sublevelsX and Z, it is
possible first to simplify matters by supposing that the M
pulse sequence influences only theX-Z transition with other
states of the five-level molecule retaining their steady-s
values, described by the density matrixr i j

(0)st . With this sim-
plification the effect of the MW pulse sequence on theX-Z
transition can be calculated using the reduced two-level
tem description. As was discussed previously the two-le
system consisting of triplet sublevelsX andZ is described on
short-time scalet!(kj

i )21 by the three-dimensional vectorr̃ t

which obeys Eq.~8!. The initial condition for this equation is
r̃ t5 r̃ (0)st, where the steady-state solutionr̃ (0)st has compo-
nents (0,D (0)st,0). The population differenceD (0)st5(rXX

(0)st

2rZZ
(0)st)/2 is approximately equal to 0.2129 in the case

Pc1PT. The transient stochastic responser̃ Tseq of a single
triplet spin to a single MW pulse sequence of total durat
Tseq, calculated using Eq.~8!, must be averaged over fluc
tuation historiesUt to obtainR̃Tseq5^ r̃ Tseq&. It is the depen-
dence of the component^DTseq& of the vectorR̃Tseq on Tseq
that contains information about the triplet spin dephas
process that can be extracted using the FDMR technique
proceed to calculatêDTseq& for the above two FDMR tran-
sients.

Supposing thep/2 andp MW pulses to be very short an
strong so that their Rabi frequencies 2Wp/2 and 2Wp are
much larger than all detuningsd in the distributionP(d) and
the variances of fluctuationsUt, one can neglectd andUt
s
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in Eq. ~8!. In this limit, the effects ofp/2 andp MW pulses
on the triplet subspace is described by the matrices

Gp/25exp$2 ipSx/2%,Gp5exp$2 ipSx%. ~28!

Between MW pulses the triplet spin is influenced by fluctu
tionsUt only and its free evolution fromt8 to t9 is described,
in the Schro¨dinger representation, by the matrix

GU5exp$2 iSz@vXZ~ t82t9!1Df t8,t9#%, ~29!

whereDf t8,t95* t8
t9dxUx is the change in relative phase o

statesX and Z during the time intervalt82t9. Using Eqs.
~28! and ~29! one finds that̂ DTseq& at the endTseq of MW
pulse sequences~i! and ~ii ! is given by

~i! FDMR FID (Tseq52tp/21td'td):

^DFID
Tseq&.2D~0!stRe$exp~2 idtd!CFID

td %; ~30a!

~ii ! FDMR two-pulse Hahn echo (Tseq52tp/21tp1td1
1td2'td11td2):

^DHE
Tseq&'D~0!stRe$exp@2 id~td12td2!#CHE

td1 ,td2%,
~30b!

where

CFID
t 5K expH 2 i E

0

t

dxUxJ L ,

CHE
t1 ,t25K expH 2 i E

0

t1
dxUx1 i E

t1

t11t2
dxUxJ L ~31!

are the well-known characteristic functionals describing
FI and HE decays when one uses a stochastic descriptio
dephasing.70 In the BE limit both of them are simple expo
nentials: CFID

t 5exp(2KXZt), CHE
t,t 5exp(22KXZt). In the

general case their decays are nonexponential. Therefore
dependence of these functionals on delay time provide
measure of pure dephasing processes which can be m
tored using the FDMR technique as changes in fluoresce
intensity after termination of the MW pulse sequence.

To calculate these changes one needs to construct firs
eight-dimensional vectorRTseq describing the complete five
level system just after the MW pulse sequence. This vecto
obtained fromR̃Tseq by adding the five steady-state comp
nentsr i j

(0)st which have been supposed to be unchanged d
ing the time Tseq to arrive at the complete
vector RTseq: Ri

Tseq5(r10
(0)st , r11

(0)st , r00
(0)st , r01

(0)st ,

rYY
(0)st , ^rXZ

Tseq&, ^DTseq&, ^rZX
Tseq&). The vectorRTseq serves

as the initial condition to calculate subsequent changes in
average fluorescence intensity, obtained from a solution
Eq. ~1! with no MW field. At a timeu following the MW
field sequence, the molecular density matrix is equal to

RTseq1u5exp$~DV1DK!u%@RTseq2R~0!st#1R~0!st,
~32!

and, for the component of interestR2
Tseq1u

5^r11
Tseq1u

&, one
finds

^r11
Tseq1u

&5Q~u!~^DTseq&2D~0!st!1r11
~0!st , ~33!
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whereQ(u) is the 2-7 element of the matrix exponential:

Q~u!5$exp@~DV1DK!u#%27. ~34!

The function Q(u) calculated for the Pc1PT system is
shown in Fig. 5 as curve 1. Relative changesDI u in the
time-dependent average fluorescence intensity^I u& now can
be defined as

DI u5~ I ~0!st2^I u&!/I ~0!st

512^r11
Tseq1u

&/r11
~0!st

5Q~u!~D~0!st2^DTseq&!/r11
~0!st , ~35!

which, taking account Eqs.~30a! and ~30b!, result in the
following expressions:

DI FID
u ~td!5Q~u!~D~0!st/r11

~0!st!

3$11Re@exp~2 idtd!CFID
td #%, ~36a!

DI HE
u ~td1,td2!5Q~u!~D~0!st/r11

~0!st!

3„12Re$exp@2 id~td12td2!#CHE
td1 ,td2%…

~36b!

for the FDMR FID and FDMR HE, respectively.
To be able to compare the calculated relative change

fluorescence intensity after FID and HE sequences with
perimental observations one needs additionally to integ
Eqs.~36a! and ~36b! over d with the inhomogeneous distri
bution P(d). Assuming as previously the distributionP(d)
5(1/D0)exp(2d/D0) (d>0) with the widthD0 one can show
easily that the integration results in the replacement of
oscillating exponentials exp(2idtd) and exp@2id(td12td2)#
by the Lorentzians 1/(11td

2D0
2) and 1/@11(td1

2td2)2D0
2], respectively. In the case of Eq.~36a! the decay

behavior of the FDMR FID signal is determined by both t
inhomogeneous distribution width 2pD0 and the ‘‘effec-
tive’’ homogeneous pure dephasing rate, i.e., the charac
istic decay rate of the functionalCFID

td . Typically the decay
due to the inhomogeneous distribution dominates that
pure dephasing. As a consequence, the FDMR FID phen
ena are practically insensitive to homogeneous pure dep

FIG. 5. FunctionsQ(t)5$exp@DV1DK#t%27, Eq. ~34!, curve 1,
andQ tobs5*0

tobsdtQ(t)/tobs, curve 2, calculated for parameter va
ues typical of the Pc1PT system.
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ing ~it should be noted, however, that FDMR FID expe
ments on deuterated samples could, in principle, provid
method to study homogeneous dephasing alone due to
duction of inhomogeneous broadening in this case!. In con-
trast, it follows from Eq.~36b! that the FDMR HE provides
the possibility to measure the true homogeneous p
dephasing decay rate by choosing the HE MW pulse
quence with equal delay timestd15td25td to cancel the
influence of inhomogeneous broadening. The decay is
scribed by thetd dependence of the functionalCHE

td ,td .
Within the N RT model for fluctuationsUt this functional
can be calculated exactly in explicit form:65

CHE
td ,td5exp~22Nntd!)

k51

N H sk
2

mk
2

1
n

mk
Fsin~2mktd!

2
n

mk
cos~2mktd!G J , ~37a!

wheremk5Ask
22n2. For FID, the corresponding expressio

is

CFID
td 5exp~2Nntd!)

k51

N H cos~mktd!1
n

mk
sin~mktd!J .

~37b!

From Eq.~36b! with td15td25td it follows that the depen-
dence of the functionalCHE

td ,td on delay timetd can be de-
duced from the dependence of the experimentally monito
FDMR responseDI HE

u (td) on td at some fixed value of time
u, e.g., at the maximum of the functionQ(u),83 which for
the Pc1PT system occurs atumax' 60 ms with Q(umax)
.0.1244. This information can be obtained also from t
number of fluorescence counts during some observation
tobs after a MW pulse sequence, i.e., from the integral of
response over u: D Ī HE

tobs(td)5*0
tobsduDI HE

u (td)/tobs.17

The expression forD Ī HE
tobs(td) is the same as Eq.~36b! but

with the function Q(u) replaced by Q tobs

5*0
tobsduQ(u)/tobs. Curve 2 in Fig. 5 shows the functio

Q tobs for the Pc1PT system. At a typical experimental valu
tobs51 ms for the Pc1PT system14 one getsQ tobs51 ms

50.0765 andQ tobs51 ms(D (0)st/r11
(0)st)50.1175. At small de-

lay time td→0 when the HE MW pulse sequenc
p/2-td-p-td-p/2 approximates a 2p pulse, the HE signal
~36b! takes its minimal valueD Ī HE

tobs(td→0)→0. Figure 6

shows the relative HE signal2D Ī HE
tobs(td) ~curve 1! calcu-

lated with the exact equations~16a!–~16d! for a wide range
of delay timestd up to 104 ms using the 1 RT model with
n/2p530 kHz, s/2p585 kHz, andtobs51 ms and for
p/2 MW pulses having pulse durationtp/2530 ps, such
thattp/2

21 is much greater than the widthD0 of the distribution
P(D). For comparison we also show in the figure curve
which is the result of an analogous exact calculation with
jumps (n50) and curve 3 obtained from analytical calcul
tions of the FDMR HE signal using Eqs.~36b! and ~37a!
with appropriate parameter values for Pc1PT. A much
slower decay of curve 2 at times of the order of a few m
croseconds demonstrates unambiguously the role of p
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dephasing for the system Pc1PT. Note also the very clos
behavior of curves 1 and 3 in this region. At timestd
>10 ms the exact curve 1 shows a dip below analyti
predictions which physically can be understood as origin
ing from the depletion of fluorescing state 1 due to the I
transitions 1→X. Recall that theX substate population by
this time is reduced~compared with its steady-state valu
with no MW field! as a result of the transfer of half its valu
to the long-lived substateZ. The subsequent growth of th
HE signal at larger times (td>200 ms) is due to the ISC
processesZ→0. Finally the limiting large-time value of the
signal (.20.1175) corresponds to a reduction of the flu
rescence intensity after the lastp/2 pulse only; all effects
due to the first and second MW pulses have ceased at
times.

The analogous FDMR FID signal D Ī FID
t0bs(td)

5*0
tobsduDI FID

u (td)/tobs calculated for the Pc1PT system
using the exact equations~16a!–~16d! with very strong MW
pulses (2Wp/2@D0) is shown in Fig. 7 as curve 1. Dotte
curve 3 in the figure was obtained from analytical calcu
tions of the FDMR FID signalD Ī FID

t0bs(td) using Eqs.~36a!
and ~37b! with exp(2idtd) replaced by 1/(11td

2D0
2). One

can see that both signals drop rapidly on a time scaletd
;1022–1021 ms determined by the inverse widthD0
54.7 MHz of the distributionP(d) (1/2pD0;0.03 ms).
The small-delay-time value of the signalsD Ī FID

t0bs(td→0)
→2Q tobs(D (0)st/r11

(0)st).0.235 corresponds to the~1-ms-
integrated! fluorescence reduction after ap pulse, which is
the limit of FID MW pulse sequencep/2-td-p/2 astd→0.
The long-delay-time value of the signals (.0.1175) is 2
times smaller and corresponds again to the situation w
the molecule responds to the lastp/2 pulse only. The growth
and subsequent decrease of the exactly calculated sign
neartd;200 ms results from intersystem crossings as in
case of the FDMR HE.

In experiments17 on Pc1PT mixed crystals the MW field

FIG. 6. Time dependence of the FDMR Hahn echo sig

D Ī HE
tobs(td) on delay timetd between excitingp/2 and p pulses,

calculated for the Pc1PT pair for short MW pulses (tp/2530 ps)
using the exact equations~16a!–~16d! for the 1 RT model with
s/2p585 kHz, n/2p530 kHz, curve 1, the exact equation
~16a!–~16d! for the 1 RT model withs/2p585 kHz, n50, no
jump case, curve 2, and analytical equations~36b! and ~37a! with
s/2p585 kHz, n/2p530 kHz, curve 3. Fluorescence photo
counting timetobs51 ms.
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Rabi frequencies 2Wp/2 and 2Wp were comparable with the
width D0 of the distribution P(d)5(1/D0)exp
(2d/D0) (2Wp/2/2p.8.3 MHz for an experimentalp/2
pulse duration oftp/2530 ns). As a consequence, one ca
not neglect the detuningd in calculating the molecular re
sponse to thep/2 andp pulses. In this case Eq.~28! must be
replaced by

Gp/2.exp$2 ip@Sx1~c/s!Sz#/2%5exp$2 ipVSz8/4W%,
~38a!

Gp.exp$2 ip@Sx1~c/s!Sz#%5exp$2 ipVSz8/2W%
~38b!

~recall thatSz85cSz1sSx , s52W/V, c5d/V), which can
be calculated explicitly and used to obtain the respon
~30a! and~30b! analytically. These expressions, however, a
rather awkward and we do not quote them here. Note o
that after numerical integration overd with distributionP(d)
they predict the signalsD Ī HE

tobs(td) andD Ī FID
t0bs(td) to be simi-

lar in shapes to those shown in Figs. 6 and 7 as curves 3
having slightly different values at small times. The exa
calculations with Eqs.~16a!–~16d! confirm these conclu-
sions. Figure 8 shows the dependence of the FDMR HE
nal 2D Ī HE

tobs(td) on delay timetd calculated for the Pc1PT
system using the experimental value17 for the MW p/2 pulse
duration, tp/2530 ns, (2Wp/2<D0) and a 1 RTmodel
with the same variances but different jump ratesn. Note
the limiting value2D Ī HE

tobs(td→0).20.032 of the HE sig-
nal at 2Wp/2>D0 instead of zero in the case of 2Wp/2
@D0 , Fig. 6. The analogous dependence for fixed jump r
n but different variancess is shown in Fig. 9. Note that the
oscillating behavior of the signal for larges/2n is an artifact
of the simplest 1 RT model. The effect of the numberN of
component RT processes in the model at fixed total varia
s5skAN is demonstrated in Fig. 10 where two cases
shown corresponding to the ratioss/2n;1 @Fig. 10~a!# and
s/2n@1 @Fig. 10~b!#. It follows from Fig. 10 that, when

l FIG. 7. Dependence of the FDMR FID signalD Ī FID
tobs(td) on

delay timetd between excitingp/2 and probep/2 pulses, calcu-
lated for the Pc1PT pair using the exact equations~16a!–~16d! for
the 1 RT model, curves 1 and 2, and analytical equations~36a! and
~37b! with s/2p585 kHz, n/2p530 kHz, curve 3. Curve 1
shows the signal for short MW pulses,tp/2530 ps, while curve 2
corresponds to the experimentalp/2-pulse duration,tp/2530 ns
~Ref. 17!. Fluorescence photon counting timetobs51 ms.
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s/2n;1, a model with only very few RT processes is suf
cient, while fors/2n@1, a larger numberN of component
processes is needed to provide convergent results. Fin
curve 2 in Fig. 7 shows the FDMR FID signal calculated f
Pc1PT and a MW pulse Rabi frequency 2Wp/2<D0 corre-
sponding to the pulse durationtp/2530 ns used in the HE
experiment.17

IV. CONCLUSIONS

Single-molecule spectroscopy combined w
fluorescence-detected magnetic resonance~FDMR! tech-
niques provides a sensitive method to study dynamical p
cesses in a low-temperature host matrix which result in p
dephasing of the single triplet electron spin of a guest ch
mophore molecule in its triplet state. Typically this dynam
is slow and the conventional Bloch equations fail to descr
experimental observations of various FDMR phenomena

The stochastic theory of coherent FDMR phenomena
veloped in this article provides the basis for an appropr
description of both frequency- and time-domain FDMR ph

FIG. 8. FDMR Hahn echo signal2D Ī HE
tobs(td) calculated for the

Pc1PT system using the experimental~Ref. 17! p/2 pulse width,
tp/2530 ns, and using a 1 RT model with fixed variances/2p
585 kHz andn/2p530 kHz, curve 1;n/2p515 kHz, curve 2;
n/2p550 kHz, curve 3; n50, curve 4. Fluorescence photo
counting timetobs51 ms.

FIG. 9. FDMR Hahn echo signal2D Ī HE
tobs(td) calculated for the

Pc1PT system using the experimental~Ref. 17! p/2 pulse width,
tp/2530 ns, and using a 1 RTmodel with fixed jump raten/2p
530 kHz ands/2p585 kHz, curve 1;s/2p530 kHz, curve 2;
s/2p5150 kHz, curve 3;s/2p5250 kHz, curve 4. Fluorescenc
photon counting timetobs51 ms.
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nomena. Owing to the long-time scales of the experiment
density matrix approach can be used since the time avera
for a single molecule is equivalent to an ensemble aver
over the stochastic parameters in the problem. A physic
adequate model ofN independent random telegraph pr
cesses for dephasing fluctuationsUt of the triplet spin fre-
quency allows one to construct an exact set of equations
the density matrix averaged over fluctuation historiesUt.
The equations incorporate the non-Markovian effects
MW-field-dependent dephasing. Using them one can ca
late cw-transient FDMR responses of a molecule to a M
field in cases of both fast and slow fluctuationsUt.

The general theory has been applied to calculate~i! the
FDMR line shape,~ii ! the FDMR free induction decay, an
~iii ! the FDMR Hahn echo for single pentacene molecules
crystalline p-terphenyl. Three causes of broadening in t
FDMR line shape and decay in the FDMR FID and FDMR
HE signals are~i! the spin resonance frequency distributio
owing to different pentacene proton spin configurations,~ii !
the pure dephasing of triplet spin substates due to the
frequency fluctuationsUt p-terphenyl proton spin flip-flops
and~iii ! the triplet sublevel lifetimes. The FDMR line shap
is determined by the first mechanism at low MW intensi
by the second mechanism at moderate MW field power
to additional saturation broadening, and by the third mec
nism at high MW intensity owing to the suppression of pu

FIG. 10. Dependences of calculated FDMR Hahn echo sign

2D Ī HE
tobs(td) on numberN of component processes in the model:~a!

N RT model calculations for Pc1PT system withp/2 pulse width
tp/2530 ns, n/2p530 kHz, s/2p585 kHz, sk5s/AN with
N51 ~curve 1!, N52 ~curve 2!, and~b! N RT model calculations
for Pc1PT system at p/2 pulse width tp/2530 ns, n/2p
530 kHz, s/2p5250 kHz, sk5s/AN with N51 ~curve 1!,
N52 ~curve 2!, andN53 ~curve 3!.
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9014 PRB 58S. Ya. KILIN et al.
dephasing by the MW field. The best fit calculations
FDMR line shapes with n/2p530 kHz and s/2p
585 kHz are in excellent agreement with experimental
servations at low, medium, and high MW powers as disti
from the Bloch equations which predict much wider FDM
line shapes. The FDMR FID rate is determined mainly by
spin resonance frequency distribution while the FDMR H
signal by the pure dephasing. In the case of slow fluct
tions,s>n, the FDMR HE decay is nonexponential.

It should be noted that our calculations as applied to
1PT are approximate since no complete experimental st
of different FDMR phenomena has ever been carried ou
the samemolecule. On the contrary, different phenome
have been studied for different single molecules with va
tions of relevant parameters from molecule to molecule.
principle, our theory makes it possible to calculate the m
lecular response for a variety of FDMR phenomena for
same single molecule, allowing one to extract complem
tary information on the molecule, the host, and the molecu
host interaction.
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APPENDIX

In this appendix we present the details of a procedure
enables us to average the linear stochastic matrix equa
~1! over histories of the multiplicative fluctuationsUt mod-
eled by anN RT Markov jump process. We deduce here E
~16a!–~16d! and, as well, discuss the derivation of more co
ventional equations for so-called ‘‘marginal’’ averag
which are completely equivalent to Eqs.~16a!–~16d!. First,
we recall some known results concerning the application
the differentiation formulas approach~see, e.g., Refs. 65 an
73! to average a stochastic equation of the formẋt5Axt

1Bj txt1x0 , whereA andB are time-independent matrice
x0 is a nonstochastic vector, andj t is a stochastic Markov-
type process. Averaging of this equation over the procesj t

realizations leads to the equation

d^xt&/dt5A^xt&1B^j txt&1x0 , ~A1!

where the new averagêj txt& now appears. Differentiation
formulas provide a way to calculate this last average. In g
eral, these are the equations

d^F~ t,j t!C@j t#&/dt5]^F~ t,j t!C@j t#&/]t

1^$Lj
1F~ t,j t!%C@j t#& ~A2!

for the product averageŝF(t,j t)C@j t#&, whereF(t,j t) is
an arbitrary function of timet and of the processj t, C@j t#
is a functional of the processj t, and]/]t means differentia-
tion over t at constantj t. The ~linear! operatorLj

1 acts on
the functionF(t,j t) only and is the Hermitian conjugate o
the generating operatorLj of the processj t, i.e., of the op-
erator which governs the time evolution of the condition
f
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probability densityp(j,tuj8,t8) for the processj t to take the
valuej at timet provided that at previous timet8 it took the
value j8 according to the ‘‘forward’’ equation
]p(j,tuj8,t8)/]t5Ljp(j,tuj8,t8). Note that the operatorLj

1

enters the ‘‘backward’’ equation ]p(j,tuj8,t8)/]t85
2Lj

1p(j,tuj8,t8). Below we deal with cases whenF(t,j t)
does not depend explicitly on timet @F(t,j t)5F(j t)# and
]^F(t,j t)C@j t#&/]t5^F(t,j t)Ċ@j t#& with Ċ@j t# equal to
the right-hand side of the corresponding stochastic differ
tial equation satisfied byC@j t# @i.e., of Eq. ~A1! with
C@j t#5xt#. When j t is a symmetric RT process, havin
jump raten between two possible values6s, the condi-
tional probability densityp(j,tuj8,t8) depends on the differ-
encet5t2t8 only, the operatorsLj , Lj

1 coincide and act
according toLjF(j)52n@F(j)2F(2j)#, and the differ-
entiation formula for̂ j txt& reads

d^j txt&/dt5^j tẋt&22n^j txt&5~A22nI !^j txt&1s2B^xt&,
~A3!

where I is the unit matrix and we use the obvious relati
(j t)25s2. Equations~A3! and ~A1! provide a closed set o
equations for exact calculation of the average^xt& in the case
of a symmetric RT processj t. The generalization to the cas
of a nonsymmetric RT process which performs jumps
tween valuesj1 and j2 with probabilities w1→25n and
w2→15m is straightforward and involves the use of mo
complicated differentiation formulas@Ref. 65, p. 134, Eq.
(3.539)#

d^j txt&/dt5$A1~j11j2!B2~n1m!I %^j txt&

1$~nj21mj1!I 2j1j2B%^xt& ~A4!

instead of Eq.~A3!.
Now we construct the analogous closed set of equati

for Eq. ~1! with N symmetric RT fluctuationsUt

5(k51
N Uk

t . Equation~A1! coincides with Eq.~16a!. To de-
duce the equations for averagesR$k%t5^Uk

t r t& we note that
this average can be written asR$k%t5^Uk

t R$2k%t& (k) , where
^•••& (k) implies an average over the processUk

t only and
R$2k%t5^r t& (1, . . . ,k21,k11, . . . ,N) is still a stochastic vector
~with respect to thekth process! resulting from partial aver-
aging of the vectorr t over histories of all component pro
cesses excluding thekth process. Therefore, one can app
the differentiation formula~A3! to Eq. ~1! and get

dR$k%t/dt522nR$k%t2^Uk
t Ṙ$2k%t&~k! ~A5!

522nR$k%t1K Uk
t FDR$2k%t

2 iF(
l

N

^Ul
tr t&~1, . . . ,k21,k11, . . . ,N!1r 0G L

~k!

5~D22nI !R$k%t2 iFsk
2Rt2 iF(

lÞk

N

R$k,l %t, ~A6!

i.e., Eq. ~16b!. The procedure to deduce the next equat
~16c! is more time consuming but straightforward. One c
represent the averages in Eq.~A5! in the form R$k,l %t
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5^Uk
t ^Ul

tR$2k,2l%t&(l)&(k) and then, considering the averag
^Ul

tR$2k,2 l %t& ( l ) as functionalsF l@Uk
t # of the processUk

t sat-
isfying the differentiation formulas

Ḟ l@Uk
t #522nF l@Uk

t #1^Ul
tṘ$2k,2 l %t&~ l !

5~D22nI !F l@Uk
t #2 iF (

mÞk

N

^Um
t F l@Uk

t #&~m!

2 iF ^Uk
t Ul

tR$2 l %t&~ l !2 iFs l
2R$2k%t,

one can substitute this equation into the differentiation f
mulas for the averagêUk

t F@Uk
t #& (k):

dR$k,l %t/dt5d^Uk
t F l@Uk

t #&~k! /dt

522n^Uk
t F l@Uk

t #&~k!1^Uk
t Ḟ l@Uk

t #&~k!

5~D24nI !R$k,l %t2 iF (
mÞk,l

N

R$k,l ,m%t

2 iFs l
2R$k%t2 iFsk

2R$ l %t, ~A7!

whereR$k,l ,m%t5^Uk
t Um

t F l@Uk
t #& (k,m)5^Uk

t Ul
tUm

t r t&. Analo-
gously, using the differentiation formula~A3! repeatedly,
one can construct the other equations~16c!–~16d!. The ex-
plicit form of Eqs. ~16a!–~16d! for the model of 2 RT pro-
cesses, written in block-matrix form, is

dRt/dt5S D 2 iF 2 iF 0

2 iFs1
2 D22nI 0 2 iF

2 iFs2
2 0 D22nI 2 iF

0 2 iFs2
2 2 iFs1

2 D24nI

D Rt

1R0 , ~A8!

where Ri
t5Rt, R$1%t, R$2%t, R$1,2%t, and R0i

5r 0 ,Z1,8,Z1,8,Z1,8.
For Markov jump fluctuations, there exists another, m

conventional and completely equivalent, method~see, e.g.,
Refs. 24,32,34,74,75,85,65,76,77, and 84 for reviews! to
construct anexactclosed set of equations for partially ave
aged quantitiesR[l1 , . . . ,lN] t, so-called ‘‘end marginal’’ av-
erages, which are the partial averages of the vectorr t over
only those histories of all component processesUk

t which
end at timet with some specific valueUk5lksk , where
lk5sgn(Uk). In fact, one can consider theN RT process
Ut5(k51

N Uk
t as a Markov jump process with possible valu

U [l1 , . . . ,lN]5(klksk corresponding to different configura
tions of N-component RT processes, taking at the momet
the valuesUk5lksk with lk56 depending on whether th
kth RT process is in the stateUk51sk or in the stateUk
52sk . The total processUt jumps between these value
with rate n. For example, stateU [l1 , . . . ,lN] can jump to

another possible stateU [l
18 , . . . ,l

N8 ] in which only onelk

from the combinationl1 , . . . ,lN is changed in sign~we
neglect the possibility for simultaneous jumps of fe
-

e

component processes!. Since the component RT process
are assumed to be independent, the conditional probab
densityp(l1 , . . . ,lN ,tul18 , . . . ,lN8 ,t8) to find the process
Ut in the stateU [l1 , . . . ,lN] at time t provided that at time

t8<t it was in the stateU [l
18 , . . . ,l

N8 ] can be factorized,

p(l1 , . . . ,lN ,tul18 , . . . ,lN8 ,t8)5)kpk(lk ,tulk8 ,t8), as a
product of component RT conditional probability densiti
pk(lk ,tulk8 ,t8). Thus, the ‘‘forward’’ equation for
p(l1 , . . . ,lN ,tul18 , . . . ,lN8 ,t8) is of the form

dp~l1 , . . . ,lN ,tul18 , . . . ,lN8 ,t8!/dt

5L [l1 , . . . ,lN]p~l1 , . . . ,lN ,tul18 , . . . ,lN8 ,t8!

52Nnp~l1 , . . . ,lN ,tul18 , . . . ,lN8 ,t8!

1n(
k

pk~2lk ,tulk8 ,t8!)
lÞk

pl~l l ,tul l8 ,t8!,

~A9!

whereL [l1 , . . . ,lN] is the generating operator defined by t
second row of Eq.~A9!. Now we can write the equations fo
‘‘end marginal’’ averagesR[l1 , . . . ,lN] t as

dR[l1 , . . . ,lN] t/dt

5~D2 iFU [l1 , . . . ,lN]1L [lk] !R
[l1 , . . . ,lN] t1r 0/2N

5~D2 iFU [l1 , . . . ,lN]2Nn!R[l1 , . . . ,lN] t

1n(
k

R[l1 , . . . ,lk21 ,lk11 , . . . ,lN] t1r 0/2N. ~A10!

The completely averaged vectorRt is obtained by summa
tion of all ‘‘end marginally’’ averaged vectorsRt

5(R[l1 , . . . ,lN] t. To compare with Eq.~A4!, let us write
explicitly Eq. ~A10! for the case of a 2 RTprocess. In block
matrix form for the vector R̄t with components R̄i

t

5R[ 2,2] t,R[ 1,2] t,R[ 2,1] tR[ 1,1] t the latter are

dR̄t/dt5S D22 nI nI 0

nI D 12 0 nI

nI 0 D21 nI

0 nI nI D 11

D R̄t1R̄0 ,

~A11!

where Dl1l2
5D2 iF (l1s11l2s2)22nI and R̄0i

5r 0/4,r 0/4,r 0/4, r 0/4. It follows from the definitions~2!–~5!
and ~6! of matricesD andF that the matrices in Eqs.~A11!
are just the matrixD with MW detuning d replaced byd
1U [l1 , . . . ,lN] . Zeros on the secondary diagonals of the m
trix in Eq. ~A11! result from the absence of simultaneo
jumps of both component processesU1

t and U2
t . One can

show straightforwardly that Eqs.~A8! and Eqs.~A11! result
in the same solutions both in steady-state and transient ca
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