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Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals
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Elastic anisotropy factors are derived for each of the three modes of propagation from the special in-plane
phonon-focusing considerations arising when wave vectors are constrained to the symmetry planes of ortho-
rhombic, tetragonal, and hexagonal crystals. Elastic anisotropy factors for the pure transverse and quasi-
transverse modes depend upon the symmetry plane, whereas anisotropy factors for the quasilongitudinal mode
depend both upon a symmetry plane and a symmetry axis. These anisotropy factors provide a convenient
measure of in-plane phonon focusing.@S0163-1829~98!02134-1#
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I. INTRODUCTION

Phonon focusing in crystals depends upon the shap
the constant-energy surface ink space.1,2 In the long-
wavelength limit the constant-energy surfaces ink space are
nearly linear ink and thus can be determined entirely fro
the second-order elastic constants of the crystal2. The phase
velocity s5v/k is parallel to the wave vectork, whereas the
group velocityv5]v/]k is normal to the constant-energ
surface in k space. In elastically anisotropic crystals t
constant-energy surfaces are nonspherical in the lo
wavelength elastic limit. As a result, the phase and gro
velocities are generally no longer parallel. Energy flow
parallel to the group velocity, but momentum is parallel
the wave vector. The angular deviation between the ph
and group velocities depends upon the direction of the w
vector k, the phonon polarization, and the kind of elas
anisotropy. Phonon focusing arises whenever the directio
the group velocity varies more slowly over solid angle th
for an elastically isotropic solid so that an isotropic distrib
tion of wave vectors gives rise to an increased density
group-velocity space. Furthermore, for certain ratios betw
the elastic constants, two or more wave vectors can give
same group-velocity direction giving the group-velocity su
face striking cuspidal features.3 Phonon focusing has bee
studied in cubic,2,4–8 hexagonal,9 tetragonal,10–12

orthorhombic,10 trigonal,13,14 monoclinic,15 and triclinic
crystals.15 Scatter plots of phonon focusing11,12 provide the
most graphic display of this phenomenon. Color sca
plots16 have also been generated in which the magnitude
the group velocity is converted to a full-color spectrum. Th
paper derives anisotropy factors for all three propaga
modes when wave vectors are restricted to symmetry pla
The results when used with scatter plots of phon
focusing11 provide a better understanding of phonon focu
ing in orthorhombic, tetragonal, hexagonal, and cubic cr
tals.

II. THEORY

Wave propagation in elastic continuum theory is go
erned by the well-known Christoffel equations
PRB 580163-1829/98/58~14!/8980~5!/$15.00
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~L i j 2rs2d i j !uj50, ~1!

whereuj are the displacement components,d i j is the Kro-
necker delta,s is the phase velocity, andr is the density.
Note that the Einstein convention is used~i.e., summation
over repeated subscripts!. The Christoffel coefficients are
given by

L i j 5Cik jmnknm , ~2!

where Cik jm is a fourth-rank tensor describing the elas
constants andnk are the direction cosines of the wave vect
k. Contracted Voigt notation is usually employed to rep
sent the elastic tensor as a 636 matrix CIJ .

Solutions for the phase velocitys is obtained by equating
the secular determinant to zero:

uL i j 2rs2d i j u50. ~3!

Cartesian components of the group velocity can be de
mined by differentiating the Christoffel equations with r
spect tona and multiplying this result byuj using the nor-
malizing conditionujuj51 to obtain the useful relation

va5
1

2rs

]L i j

]na
uiuj . ~4!

In the absence of piezoelectricity,11 these components can b
expressed as

v i5
Cik jmnjukum

rs
. ~5!

In elastically anisotropic crystals the group velocity is,
general, not parallel to the phase velocity. The phase velo
s is parallel to the wave vectorkn, but the group velocityv
5]v/]k is normal to the constant-energy surface ink space.
An equidensity of wave vectors in solid angle gives a cor
sponding but nonuniform density of group-velocity vecto
for each of the three modes of propagation. The result
scatter plots of group-velocity vectors give a graphic disp
of the phonon-focusing properties of elastically anisotro
crystals.
8980 © 1998 The American Physical Society



al
ios

c
u

A
ro
t

si
rn
i-
al

o
e
al
A
p
bi
riv
m

th
rs
e

-
s

m
io
s
b

o

r
d

r-
on

tiv
in

na

.
c-
e

er-

an

and
de.
ies
ve
is.

m-
bic

ect

en-

s

PRB 58 8981ELASTIC ANISOTROPY FACTORS FOR . . .
The phonon-focusing properties of orthorhombic cryst
in the long-wavelength limit are determined by the rat
between the nine second-order elastic constants. One
therefore completely describe and classify such crystals
ing a eight-dimensional space of elastic constant ratios.
other approach considers the special phonon-focusing p
erties arising when wave vectors are restricted solely
symmetry planes. In this paper such special phonon-focu
properties will be referred to as in-plane focusing. Winte
heimer and McCurdy10 used this restriction to derive cond
tions for cusp-freein-plane focusing and in-plane cuspid
onset. Although this is a severe restriction on the direction
the wave vectors, this method does have the advantag
analytically identifying the origin of some of the cuspid
features displayed in the phonon-focusing scatter plots.
though this restriction is unable to account for all the cus
dal features in the group-velocity surface in orthorhom
crystals, it, nevertheless, will be shown to be useful in de
ing convenient elastic anisotropy factors for the orthorho
bic, tetragonal, and hexagonal lattices.

If the wave vectors are confined to a symmetry plane,
solution for the phase-velocity factors into a pure transve
mode sT , polarized perpendicular to that symmetry plan
and two mixed~i.e., impure! modess6 @a faster mode (1)
and a slower mode (2)] orthogonally polarized in that sym
metry plane. Results can be expressed in general form a10

rsT
25a1sin2uk1a2cos2uk , ~6!

2rs6
2 5a3sin2uk1a4cos2uk

6@~a5sin2uk2a6cos2uk!
21~2a7sinukcosuk!

2#1/2.

~7!

Expressions for the generalized elastic constantsai are listed
in Table I for each of the symmetry planes of the orthorho
bic, tetragonal, hexagonal, and cubic lattices. No distinct
is made between the tetragonal-6 and tetragonal-7 cry
systems in Table I. When only elastic properties need to
considered~e.g., for cuspidal and focusing properties! the
tetragonal-7 elastic constants can be transformed t
tetragonal-6 set by a rotationf of the coordinate system
about the four-fold axis17. The anglef is defined by

tan 4f5
4C16

C112C1222C66
~8!

so that the transformedC16 becomes zero. Thus, fo
tetragonal-7 systems, the elastic constants to be entere
Table I are thesetransformedelastic constants, and no fu
ther distinction needs to be made between the two tetrag
systems.

Values of the generalized constants in Table I are posi
for all known materials with only several exceptions: certa
cubic manganese-rich Cu-Mn alloys and tetrago
paratellurite.18 In certain Cu-Mn alloys,C11,C44 so thata5
and a6 are negative in the$100% planes, but onlya6,0 in
the $110% planes. In paratellurite, however,C66.C11 so that
a5 anda6 are negative only in the (001) symmetry plane

The angleuk gives the angular direction of the wave ve
tor k in a symmetry plane with respect to one of the symm
try axes. This reference axis has been chosen to be the@001#
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axis for the (010), (100), and (110̄) symmetry planes in
Table I. For the (001) symmetry plane, however, the ref
ence axis was chosen as the@100# direction. The direction
uv of the group velocity in each of the symmetry planes c
be expressed as10

tan uv5v' /v i , ~9!

wherev i5]s/](cosuk) andv'5]s/](sinuk).
Using these equations one can calculate the phase-

group-velocity directions in symmetry planes for each mo
Note that in elastically anisotropic crystals these velocit
can be collinear for all three modes only when the wa
vector is parallel or perpendicular to the reference ax
There is also a collinear axisu2 for the slower mixed mode
s2 that is quasitransverse nearu2 for10

tan u25@~a61a7!/~a51a7!#1/2, ~10!

TABLE I. Values of the generalized elastic constants in sy
metry planes of orthorhombic, tetragonal, hexagonal, and cu
crystals. Angles are measured with respect to the@001# axis for the

(010), (100), and (11̄0) planes. Angles are measured with resp
to the @100# axis, however, for the (001) plane. Note thata32a4

5a52a6 so that these generalized constants are not all indep
dent. For tetragonal crystalsCL5C661(C111C12)/2, whereas for
cubic crystalsCL5C441(C111C12)/2. Note, however, thatCT

5(C112C12)/2 for both tetragonal and cubic crystals.

Orthorhombic symmetry planes
ai (010) (100) (001)

a1 C66 C66 C44

a2 C44 C55 C55

a3 C111C55 C221C44 C221C66

a4 C331C55 C331C44 C111C66

a5 C112C55 C222C44 C222C66

a6 C332C55 C332C44 C112C66

a7 C131C55 C231C44 C121C66

Tetragonal symmetry planes
ai (010) or (100) (110) (001)

a1 C66 CT C44

a2 C44 C44 C44

a3 C111C44 CL1C44 C111C66

a4 C331C44 C331C44 C111C66

a5 C112C44 CL2C44 C112C66

a6 C332C44 C332C44 C112C66

a7 C131C44 C131C44 C121C66

Hexagonal symmetry planes Cubic symmetry plane
ai Containing the@001# axis $100% $110%

a1 C66 C44 CT

a2 C44 C44 C44

a3 C111C44 C111C44 CL1C44

a4 C331C44 C111C44 C111C44

a5 C112C44 C112C44 CL2C44

a6 C332C44 C112C44 C112C44

a7 C131C44 C121C44 C121C44
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8982 PRB 58KEI LAU AND A. K. McCURDY
and a collinear axisu1 for the faster mixed modes1 that is
pure longitudinal atu1 for10

tan u15@~a62a7!/~a52a7!#1/2. ~11!

Note that Eq.~11! also gives the axis along that which a pu
longitudinal and two pure transverse waves propagate.

For certain ratios between the elastic constants there
values ofuv about a collinear axis that permit more than o
corresponding value ofuk . In these regions the values ofuk
can be double or triple valued and the group velocity exhib
cuspidal features. Conditions for elastic stability10 restrict
such cuspidal features in nonpiezoelectric materials to
slower mixed mode~provided the wave vectors are co
strained to symmetry planes!. Winternheimer and
McCurdy10 have shown that when wave vectors are
stricted to symmetry planes the corresponding gro
velocity locus for each of the three modes is cusp free if

duk

duv
.0 ~12!

and the locus exhibits special cusp-free in-plane focusin
that same plane whenever:

duk

duv
.1. ~13!

Conditions forcusp-freein-plane focusing about collinea
axes have been derived by Winternheimer and McCurd10

and from these results phonon amplification factors were
rived. Special cusp-free in-plane focusing occurs along
reference axis in thes2 mode whena6.0 if

a7
2.a5a6 ~14!

but, if a6,0, it occurs when
re

s

e

-
-

in

e-
e

a7
2.a6

2 . ~15!

Cusp-free in-plane focusing occurs perpendicular to the
erence axis in thes2 mode whena5.0 if

a7
2.a5a6 , ~16!

but, if a5,0, it occurs when

a7
2.a5

2 . ~17!

Cusp-free in-plane focusing occurs along theu2 axis in the
s2 mode if10

a7
2,a5a6 . ~18!

Consider, for example, the (010) plane of orthorhom
crystals where@001# is the reference axis. Fora6.0 and
from Table I the in-plane focusing condition becomes

~C131C55!
2.~C112C55!~C332C55!. ~19!

Since C11C332C13
2 .0 is one of the conditions for elasti

stability,10 the inequality@Eq. ~19!# can be rewritten as

C55@~C111C13!1~C331C13!#.C11C332C13
2 . ~20!

An elastic anisotropy factor can be defined for this symme
plane and reference axis as16,19

A2~010!5
C55@~C111C13!1~C331C13!#

C11C332C13
2

, ~21!

so that cusp-free in-plane focusing occurs in thes2 mode
along the@001# and @100# axes whenA2(010).1. This is,
however, accompanied by in-plane defocusing in this sa
mode10 along u2 . When A2(010),1, however, cusp-free
in-plane focusing occurs in thes2 mode10 along u2 with
ode
ragonal
-
ing
r

,

TABLE II. Anisotropy factorsA2 derived from the phonon-focusing properties of the slower mixed m
s2 for each of the symmetry planes of orthorhombic, tetragonal, hexagonal, and cubic crystals. For tet
crystalsCL5C661(C111C12)/2, whereas for cubic crystalsCL5C441(C111C12)/2. Because of the trans
verse isotropy conditionC125C1122C66, results for hexagonal crystals are valid for any plane contain
the @001# axis. Note that for cubic symmetry only the entriesA2 for the (010), (100), and (001) planes fo
the orthorhombic and tetragonal lattices reduce toA52C44/(C112C12). The value ofA2 for the $110%
planes of the cubic lattice is not independent ofA, but does reduce toA for conditions of elastic isotropy, i.e.
2C445C112C12. See Discussion for special cases.

Symmetry plane Anisotropy factorA2

Orthorhombic
(010) C55(C1112C131C33)/(C11C332C13

2 )
(100) C44(C2212C231C33)/(C22C332C23

2 )
(001) C66(C1112C121C22)/(C11C222C12

2 )
Tetragonal

(010) or (100) C44(C1112C131C33)/(C11C332C13
2 )

(11̄0) C44(CL12C131C33)/(CLC332C13
2 )

(001) 2C66/(C112C12)
Hexagonal

Planes containing the@001# axis C44(C1112C131C33)/(C11C332C13
2 )

Cubic
$100% 2C44/(C112C12)
$110% C44(CL12C121C11)/(CLC112C12

2 )
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defocusing along@001# and@100#. The value of this anisot-
ropy factor thus gives one useful information about the
plane focusing conditions about collinear axes. Anisotro
factors for thes2 mode are given for each of the symmet
planes of orthorhombic, tetragonal, and hexagonal crysta
Table II for the usual case wherea5 anda6 are positive.

Certain crystals exhibit unusual in-plane focusing con
tions in one or both of the cusp-freesT or s1 modes so
corresponding anisotropy factors are useful for these case
a6.0 then in-plane focusing occurs in thes1 mode about
the reference axis when

a6
2.a7

2, ~22!

but, if a6,0, it occurs when

a5a6.a7
2 . ~23!

In-plane focusing occurs in thes1 mode perpendicular to th
reference axis whena5.0 providing

a5
2.a7

2, ~24!

but, if a5,0, it occurs when

a5a6.a7
2 . ~25!

In-plane focusing occurs in thes1 mode alongu1 ~when this
exists! if 10

a7
2.a5a6 . ~26!

Consider again the (010) plane of orthorhombic cryst
where@001# is the reference axis. Fora6.0 and from Table
I the in-plane focusing condition becomes

~C332C55!
2.~C131C55!

2. ~27!

This inequality can be rewritten as

C332C13.2C55. ~28!

In analogy with the anisotropy factor of a cubic crystal, i.
A52C44/(C112C12), an elastic anisotropy factor can be d
fined for this symmetry plane and reference axis as16,19

A1@001#,~010!5
2C55

~C332C13!
. ~29!

Thus, in-plane defocusing occurs in thes1 mode along@001#
in the ~010! plane fora6.0 whenA1@001#,(010).1 pro-
videdC33.C13. In a similar manner the anisotropy factor
the s1 mode along the@100# axis in the (010) plane is

A1@100#,~010!5
2C55

~C112C13!
. ~30!

Thus, in-plane defocusing occurs whenA1@100#,(010).1
provided C11.C13. For the rare case whereC33,C13 or
C11,C13, but C11C332C13

2 .0, A1 becomes negative an
only defocusing is possible along the@001# or @100# axes,
respectively, in the (010) plane. Note that in-plane focus
~or defocusing! must occur along both of these axes if
additional collinear axisu1 is to exist in this symmetry
plane.10 Finally, note that in-plane focusing information fo
the s1 mode requires a total of six different anisotropy fa
-
y

in

-

. If

s

,

g

tors: one for each of the two mutually orthogonal symme
planes defining each of the three mutually perpendicu
principal axes. Values of the anisotropy factors for each
the principal axes and related symmetry planes are liste
Table III for the usual case wherea5 anda6 are positive.

In-plane focusing occurs for the pure transverse modesT
along the reference axis if

a2.a1 ~31!

and occurs perpendicular to the reference axis when

a1.a2 . ~32!

Such phonon-focusing predictions, however, are most
evant for hexagonal crystals that exhibit transverse isotr
perpendicular to thec axis. In orthorhombic crystals this
anisotropy factor has little relevance to phonon-focus
scatter plots because of much stronger focusing effects w
arise when this constant-energy surface ink space no longer
has wave vectors constrained to the symmetry plane. A
result, entries for orthorhombic crystals are omitted fro
Table IV.

Consider, therefore, the hexagonal lattice and any pl
containing thec axis @e.g., (010)#. One can define a single
anisotropy factor for the pure transverse mode16,19

AT~010!5a2 /a15C44/C66. ~33!

Thus, whenAT(010).1, the pure transverse mode exhib
in-plane focusing along the@001# axis, but in-plane defocus

TABLE III. Anisotropy factorsA1 derived from the phonon-
focusing properties of the faster mixed modes1 for each of the
symmetry axes and symmetry planes of orthorhombic, tetrago
and hexagonal crystals. For tetragonal crystalsCL5C661(C11

1C12)/2. Because of the transverse isotropy condition:C125C11

22C66 results for hexagonal crystals are valid for any plane c
taining the@001# axis. Note that for cubic symmetry entryA1 for

the @110#,(11̄0) reduces to 2C44/(CL2C12) and thus is not inde-
pendent ofA. All other entries for cubic symmetry reduce to th
elastic anisotropy factorA52C44/(C112C12) for cubic crystals.
See Discussion for special cases.

Reference axis and symmetry plane Anisotropy factorA1

Orthorhombic
@100#,(010) 2C55/(C112C13)
@001#,(010) 2C55/(C332C13)
@010#,(100) 2C44/(C222C23)
@001#,(100) 2C44/(C332C23)
@100#,(001) 2C66/(C112C12)
@010#,(001) 2C66/(C222C12)

Tetragonal
@100#,(010) or@010#,(100) 2C44/(C112C13)
@001#,(010) or@001#,(100) 2C44/(C332C13)

@110#,(11̄0) 2C44/(CL2C13)

@001#,(11̄0) 2C44/(C332C13)

@100#,(001) or@010#,(001) 2C66/(C112C12)
Hexagonal

@100#,(010) 2C44/(C112C13)
@001#,(010) 2C44/(C332C13)
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8984 PRB 58KEI LAU AND A. K. McCURDY
ing along@100# and all other directions perpendicular to th
c axis. Note that the corresponding anisotropy factor for
(11̄0) plane of tetragonal crystals~see Table I! is

AT~11̄0!5a2 /a152C44/~C112C12!, ~34!

and thus is identical to the anisotropy factorA for cubic
crystals. Selected anisotropy factors for thesT mode are
listed for tetragonal, hexagonal, and cubic lattices in Ta
IV.

III. DISCUSSION

Tables II and III give useful anisotropy factors for th
usual conditions wherea5.0 and a6.0. Note, however,
that inequalities@Eqs. ~15!–~17!# are equivalent wheneve

TABLE IV. Anisotropy factorsAT derived from the phonon-
focusing properties of the pure transverse modesT for each of the
symmetry planes of tetragonal, hexagonal, and cubic crystals. N
that in tetragonal crystals the pure transverse mode is isotrop
the (001) plane~i.e., AT51). Similarly, thesT mode is isotropic in
cubic crystals in$100% planes. Because of the transverse isotro
condition C125C1122C66results for hexagonal crystals are val
for any plane containing the@001# axis.

Symmetry plane Anisotropy factorAT

Tetragonal
(010) or (100) C44/C66

(11̄0) 2C44/(C112C12)

Hexagonal
Planes containing the@001# axis C44/C66

Cubic
$110% 2C44/(C112C12)
rs
e

e

a55a6. As a result, there is no change in the entries
Tables II and III whena55a6,0, and, thus, no change fo
the $100% planes of certain Cu-Mn alloys or for the (001
plane of tetragonal paratellurite. The$110% plane of certain
cubic Cu-Mn alloys wherea5.0, but a6,0, requires spe-

cial treatment. Here, the value ofA2 for the @001#,(11̄0)

becomes 2C44/(C112C12), A2 for the @110#,(11̄0) be-
comes C44(CL12C121C11)/(CLC112C12

2 ), A1 for the

@001#,(11̄0) becomesC44(CL12C121C11)/(CLC112C12
2 ),

andA1 for the @110#,(11̄0) becomes 2C44/(CL2C12).
In-plane cuspidal features can be inferred from the val

of A2 . Cuspidal features about a principal axis requireA2

to be somewhat greater than unity, whereas cuspidal feat
aboutu2 require values ofA2 to be significantly less than
unity. The onset and precise shape of these in-plane cusp
features are, however, also determined by two other ela
constant ratios.

In-plane focusing for thes1 mode can be determined d
rectly from the two anisotropy factorsA1 defined for each
principal axis. Positive values ofA1 less than unity indicate
in-plane focusing, whereas values greater than unity indic
in-plane defocusing about that principal axis. For the r
case whereA1 is negative, however, only in-plane defocu
ing is possible about that principal axis. Note that au1 exists
only if in-plane focusing~or defocusing! occurs about both
principal axes in the symmetry plane. In-plane focusing~or
defocusing! about either principal axis gives in-plane def
cusing~or focusing!, respectively, aboutu1 .

Anisotropy factors are easy to calculate and provide
portant in-plane phonon-focusing information. The three
isotropy factors for thes2 mode and the six anisotropy fac
tors for the s1 mode, however, provide the most usef
information for orthorhombic crystals.
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