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Nonreciprocal phase behavior in reflection of electromagnetic waves from magnetic materials
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Most experimental and theoretical treatments of reflection of electromagnetic radiation from magnetic ma-
terials have concentrated on the intensity of the reflected and transmitted waves. We point out that the behavior
of the phase of these waves can be quite different from the intensity, and that it can have direct experimental
consequences. In particular, the reflected intensity from a magnetic material with low damping in the Voigt
geometry is reciprocal, i.e., the intensity is the same when the reflected and incident waves are interchanged.
In contrast, the phase of the reflected wave is strongly nonreciprocal. This nonreciprocity in phase produces a
nonreciprocal intensity in a structure where a dielectric film is placed on an antiferromagnet. We explore the
general properties of the phase and amplitude of reflected and transmitted waves in a variety of geometries
using the antiferromagnet Fgks an example. General thermodynamic arguments are used to support some of
the specific result4.50163-182@8)05026-1

[. INTRODUCTION cussed in the previous paragraph, the reflected intensity is
reciprocal in the absence of damping. In contrast, the phase
One of the most interesting features in the interaction obf the reflected wave can be nonreciprocal even without
electromagnetic waves with magnetic materials is that oflamping. Second, we note that the nonreciprocal phase of
nonreciprocdi reflection. In this effect a simple reversal of reflected and transmitted waves in layered structures can in-
the direction of the incident and reflected waves leads taluce nonreciprocal intensities because of a nonreciprocal in-
different reflection and transmission coefficients. A series oterference that occurs. Thus the reflected and transmitted
experimental and theoretical studies of the reflection of inphases have several direct experimental consequences. Third,
frared radiation from the antiferromagnets Mr{Refs. 2 and the phase differences between different transmitted and re-
3) and Fek (Refs. 4—7 has recently documented this effect. flected waves may be measured as we show in Sec. V. Fi-
Nonreciprocal Brillouin light scattering from spin waves in nally, we note that the phase of the reflected and transmitted
ferromagnetic materials is also quite well knotvn. waves can be a directly measurable quantity. For example,
To this point nearly all the studies, both experimental anddispersive Fourier-transform spectroscopy can be used to
theoretical, have concentrated on the amplitude of the regive the relative phase between the incident and reflected
flected radiation as measured through the intensity. Théeams although this is difficult, as well shall discuss later on.
phase of the waves has been neglected. This is, of course, We know of no thermodynamic arguments that one can
fairly natural. The intensity is what is typically measured in use to understand the general behavior of the phase. Thus our
experiments. In addition, through the use of thermodynamicgapproach concentrates on understanding the phase by study-
arguments one can make general arguments connecting tiveg particular examples. In Sec. Il we examine reflection and
intensity of the incident, reflected, and transmitted light withtransmission for thes-polarized Voigt geometry described
the absorption of energy in the magnetic matetial. above. This is a particularly important case because there is
An important example of such a thermodynamic resultno mode mixing, i.e., the reflected and transmitted waves are
relates to uniaxial antiferromagnets in the presence of aalsos polarized. We study several different sample struc-
external field. In the Voigt geometrapplied field parallel to  tures. For example, in a semi-infinite antiferromagnet, we
the surface and along the uniaxial direction; the incidenfind that in the absence of damping the reflected intensity is
electromagnetic wave is polarized and the plane of inci- always reciprocal while the phase is not. For the geometry of
dence is perpendicular to the applied flelthe can show a thin dielectric film on a semi-infinite antiferromagnet we
quite generally that the reflected intensity is reciprocal unlesfind that a nonreciprocal reflected phase that occurs at the
there is some absorption mechanism inside thelielectric/antiferromagnet interface produces a nonreciprocal
antiferromagnet. If there is absorption, then the reflected net reflection from the structure. In a surprising result, the
wave intensity is nonreciprocal but the transmitted wave in-degree of nonreciprocity oscillates as the thickness of the
tensity is always reciprocal. This asymmetry between thalielectric film is increased. The period of this oscillation de-
behavior of the intensity of the reflected and transmittedpends on the wavelength of the electromagnetic radiation in
waves is surprising, and illustrates how difficult it is to havethe dielectric, and this feature can also be directly connected
good intuition about this problem. to the nonreciprocity of the reflected phase at the dielectric/
In this paper we concentrate on a new feature of the probantiferromagnet interface.
lem, the nonreciprocal phase of the reflected and transmitted In Sec. lll we examine a more general geometry, where
waves. There are a number of reasons for this. First, ththe plane of incidence is still normal to the surface of the
phase can behave quite differently from the intensity. Fomantiferromagnet, but is allowed to be at arbitrary angle with
example, when we consider the reflection geometry disrespect to the applied field. In this geometry there is mode
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plane of incidence

Y =[w?— (0* yHy+iT)?] 7 (2.9

reflected

incident H, is the anisotropy field\Vl ; the sublattice magnetizatios,

the gyromagnetic ratio, anl the damping. The antiferro-
magnetic resonance frequeney is given by

w;=y(2H Ho+H2)Y2, (2.5

whereH, is the exchange field.

In all the examples, we use the paraméteétfor FeF, at
4.2 K: Mg=0.056 T,H,=19.745 T,H,=53.313 T, andy
=1.05 cm YT, corresponding to a bulk resonance frequency
of w,=52.45 cm*. The dielectric constant of the antiferro-
magnet is taken as 5.5. We consider examples both With
=0 (zero damping and zero absorpti@nd with the experi-

FIG. 1. Reflection geometry considered in this paper. The ap- _ 1
plied field is along the axis. The angle of incidence #&and the mentally observed value df=0.05 cm . We note that the

angle of the plane of incidence with respect to the fieldisThe Igw da}mplr}glvlllmlthoff nbear Zero Istqglte_tphoss(ljble phySICaI'I[)r/].
easy axis for the antiferromagnet is also along zheis. amples of Mnk ?1\/6 een reported with a damping on the
order of '=0.001:" For I'=0 both w, and u, are real.

L . I Otherwise they are complex. In this section we take the ap-
mixing in that ans-polarized incident wave can lead to both plied field to beHy=+0.5T.

s- and p-polarized reflected and transmitted waves. We es*
tablish some general rules about the phase and intensity of
both the reflected and transmitted waves.

In Sec. IV we reexamine some thermodynamic arguments
connecting nonreciprocal reflection and transmission intensi- We considers-polarized reflection off a semi-infinite an-
ties and absorption within an antiferromagnetic film. An un-tiferromagnet in the Voigt geometry. The incident medium is
polarized incident wave is considered and we derive resultassumed to be a dielectrigacuum in the examples consid-
connecting the various nonreciprocal transmitted and reered. For such a system the complex reflection coefficient is
flected intensities. These results are used to check the ngiven by*?

A. Reflection off a semi-infinite antiferromagnet:
Phase and amplitude behavior

merical examples in Sec. Ill. In Sec. V we present methods .

to measure phase differences between different transmitted ~ QuyMy— oy Ti0x(pa/ p1) 2.6

and reflected waves. = Cayity + Oy = i0x( 2/ p1)’ '

Finally in Sec. VI we present a summary and our conclu- _ . R,

sions. In an Appendix we present the Stokes relations conVNeréx, is the Voigt permeability given by

necting various incident, reflected, and transmission coeffi- Y 2.7

cients at a single interface between an antiferromagnet and a o= (1 o) pa '

dielectric. The electromagnetic wave in the reflection experiment is

characterized by a wave vector in each medium. The com-

Il. EXAMPLES IN THE VOIGT GEOMETRY ponent of the wave vector parallel to the surfageis the

same in each medium and is determined by the angle of
In this section we consider examples for particular strucincidence:

tures incorporating a uniaxial antiferromagnet in the Voigt
geometry. The plane of incidence is alwayg with y nor- gyx=¢e1(w/c)sin 6. (2.9
mal to the interfaces, and the uniaxis of the antiferromagn
is always along, as is the external fielt,. In this geom-
etry, only s-polarized radiation(E field alongz) interacts
with the magnetic system, and there is no mixing betwee
polarizations. All examples are thereforesipolarization. In
Fig. 1 the Voigt geometry correspondsdo= /2.

In the Voigt geometry, the magnetic permeability (t)ensor qu=[81(w/C)2—q>2<]1/2, (2.9
of a uniaxial antiferromagnet at frequenayis given by

Here g4 is the dielectric constant of medium (usually
vacuum and 6 is the incident angle in a reflection experi-
ment. The components of the wave vector perpendicular to
The surfac'e are given ly,, in medium 1 andj,, in medium

2 (the antiferromagnet

. Gay=[821,(w/C)?—qF]"> (2.10
pm1 dpp O , . . o o
p=| —ips p 0], (2.1) !n discussing the nonrgc[procal propertlesroﬁ/\{e will find
0 0o 1 it useful to represent it in terms of an amplitugeand a
phased:
where T=p expid). (2.10)
p1=1+4my?H MY +Y7), (2.2 In order to look at nonreciprocity if, we compare the

results for the reflection coefficient when the incident wave
=47 y’H M (YT —Y"), (2.3  travels from right to left across the magnetic field, i.e.,
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FIG. 2. Calculated amplitude and phase spectresfpolarized reflection off a semi-infinite FeBample in the Voigt geometry in the
presence of an external field of 0.5 (&) I'=0, amplitude spectrun(p) I'=0, phase spectrunf¢) I'=0.05 cm !, amplitude spectrun(d)
'=0.05cn}, phase spectrum. Solid curvess +45°; dashed curves)= —45°. Note that in the case ¢& both curves are coincident,
so only a single solid curve is seen.

T(+ 6), with those for the case where the incident wave iswherem is an arbitrary integer. The termzzn is included

reversedy (— ). The geometry is illustrated in Fig. 1. The since we find it convenient to plot phases outside the range

only difference between these two results arises from the fact < <. From EQs.(2.14 and (2.15 we immediately

that the sign ofy, in Eq. (2.6) is different for the two cases. see that while the amplitud@nd thus the intensijyis recip-

We first discuss the case when the damping paraniéter rocal, the phase of the reflected is dramatically nonrecipro-

zero, i.e., when no absorption takes place. In this case all theal.

terms in Eq.(2.6), with the exception ofy,,, are real.q,,

may be either real or imaginary, depending on the frequency, 2. Oy imaginary

and we consider the two cases separately. In this case the electromagnetic fields simply decay into
the sample, with no propagation taking place. Calculation of

1. Gy real the amplitudep from Eg. (2.6) now gives
This corresponds to the bulk regions of antiferromagnet,
for which radiation can propagate into the sample. If we put p(+0)=p(—0)=1, (2.16
0oy real in Eq.(2.6) and separate into its real and imagi-

nary parts, we find that i.e., all the radiation is reflected. The phase is nonreciprocal,

but does not follow a simple symmetry relation such as given

by Eqg.(2.15.
ReT(+0)]=ReT(-0)], 212 In both cases above, the reflected amplitude is reciprocal
but the reflected phase is nonreciprocal. If there is no damp-
Im[T(+6)]=—Im[F(—6)]. (213 ing, therefore, these results should hold throughout the spec-
) o trum. The reciprocity of the reflected amplitude is illustrated
In terms of amplitude and phasep, this gives in Fig. 2@ for the example of oblique incidence reflection
off FeF, with I'=0. The figure shows that the results for
p(+8)=p(—0), (2149 5(+6) andp(— ) are identical, confirming that the reflec-

tion amplitude is reciprocal everywhere. The regions marked
¢(+0)=—¢(—0)+2mm, (2.15 R correspond tay,, real, and those markedcorrespond to
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d,, imaginary. In the latter case the reflection amplitude can 10 F

be seen to be 1, in agreement with £2.16). 05 L0 bm a
Figure 2Zb) shows the phase spectra for the same system. '

Note that, in order to demonstrate the continuous change in 10F

the phase, we have shown it as varying framo 37 over 05 20 um

the frequency range illustrated. We have marked the regions ‘ = 5N

for real and imaginaryy,, in the same way as for Fig(a. 10 F r

The phase is clearly nonreciprocal in both regions. Examina- _10'0 iV —

tion shows that Eq(2.19 is obeyed where,, is real but not 05 ;r’

where it is imaginary as expected.
From the result that the reflection amplitudés recipro-
cal for zero damping, it follows that the power reflectivity

=
<

Reflectivity
e
(&)}

R=Tr* is also reciprocal. This is a well-known result, and 10 F

has also been shown by thermodynamic arguniéras we 186 pm y
shall discuss in Sec. IV. The nonreciprocity of the reflected 0.5 'v/’—— ==
phase has been commented upon in a recent review article by 10 L

two of the present authofé but, to our knowledge, there are 0‘5 266 pm

no other reports of this phenomenon. We emphasize that this
nonreciprocal phase has direct experimental consequences; it
will prove vital in explaining the results associated with the
other structures considered in this section.

We now turn to the results when damping is included. In
this case the quantitigs;, u,, u,, andds, in Eq.(2.6) are 51 52 53 54
all complex, so the simple relationships in E(&12—-(2.16
based on pure real or pure imaginary parameters no longer
apply. Thus both the amplitude and the phase spectra are

i
o ©
S
©
o
=
3
77
=

. L : 10 F
nonreciprocal, as shown in Figs(c2 and 2d), respectively. 05 L0 Bm / A D
' J
B. Reflection off a dielectric deposited on an antiferromagnet 10 4

Nonreciprocal reflectivityR from a structure consisting of 05 20 pm 7
a dielectric film deposited on a semi-infinite antiferromagnet ' ‘_\M
has already been predicted in Ref. 13. This result can clearly 10 F
be seen in Fig. 3, in which we show the overall reflectivity _10~° FOA \
for a series of structures consisting of Si films=11.6) 0.5 e

deposited on Fef- We have calculated results for a series of
dielectric film thicknesses, both with and without damping,
using the same transfer-matrix formalism as described in
Ref. 13. Of particular significance is that, in contrast to the

Reflectivity
S o
o O
—

>
w
=t
3
r/
r’)
~

=
o

case when the dielectric film is absent, the nonreciprocity in 186 pm o
the reflectivity spectrum persists even in the absence of 0.5 Sz
damping. Here we explain the underlying physics of such 10 v

behavior in terms of interference and examine the conse- 266 pm
guent thickness dependence of the nonreciprocity. We note
that the nonreciprocal phase seen in Sec. Il A above will play
a key role in this discussion.

The basic argument for nonreciprocal reflectivity in the
absence of damping can be seen from inspection of Fig. 4.
Since there are two interfaces in the structure, the overall 51 52 53 54
reflectivity will be determined by interference of the reflected
partial beams. A full analysis requires consideration of all
the partial rays, but the reason for nonreciprocity can be seefl
by conside_ration of interfer_ence be_tween the first t_WO partiat)/oigt geometry in the presence of an external field of 0.5 T. The
rays. The first of these partial rays is due to reflection off the..q its are shown for a series of film thicknes¢esT' =0, (b) T
dielectric surfacdinterface 1, and therefore has both recip- _q g5 cnl Solid curves, = +45°: dashed Curvese:’_ﬂrso.
rocal amplitude and reciprocal phase. The second partigiote that ford=0 in (a) both curves are coincident, so only a single
beam, however, results from a reflection from the dielectrickgjig curve is seen.
antiferromagnet interfacéinterface 2 and has reciprocal
amplitude but anonreciprocal phase, as described above. The above argument explains why, in general, reflectivity
Therefore the relative phase between these two partial rayshould be nonreciprocal. However, when the reflectivity off
must be nonreciprocal. The resulting amplitudad hence the antiferromagnet is equal to 1, then the overall reflectivity
the reflectivity when they interfere is also nonreciprocal.  obtained from summing all the partial rays must also be 1,
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FIG. 3. Calculated reflectivity spectra ferpolarized reflection
a silicon film deposited on a semi-infinite FeBample in the
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Reciprocal Reciprocal 10
amplitude, amplitude, !
reciprocal nonreciprocal

phase from phase from

interface 1 interface 2

Vacum \/ / /

1 + Y
Dielectric \/\/\ d

2 + x
Antiferromagnet \ \

FIG. 4. Interference argument for nonreciprocal reflection in the
absence of damping off a dielectric film deposited on a semi-infinite
antiferromagnet. 10

Reflectivity
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(&)}

due to conservation of energy. This occurs whereygris
imaginary where we are now taking layer 3 to be the anti-
ferromagnet. This is confirmed by inspection of Figa)3

which shows reflectivities of 1 in the same regions as those £
markedl in Figs. 2a) and 2b). k

Figure 3a) shows some interesting general patterns. For
instance, one can see that at a dielectric thickness ofd.3
the nonreciprocity in reflectivity is almost lost. As the thick-
ness is increased, the nonreciprocity increases only to de-
crease again for thicker overlayers.

We may gain additional insight into the nonreciprocity by
examining the reflectivity as a function of the thickness at a
single frequency. The resulting plot can be understood in Thickness (jum)
terms of standard Fabry-Re fringes that result from inter-
ference of all the reflected partial rays. Figufe@)Shows the FIG. 5. Film thickness dependence of the reflectivity at a fre-
reﬂectivity at 52.03 le [the frequency of the low- duency of 5203 le Of'.f an Si film depOSIted on a semi-infinite_
frequency dip in Fig. @] as a function of thickness. For FeF, sample ina 0.5-T fleld.j\ll con_dltlons are the same as for Fig.
both R(+ 6) andR(— §) we see Fabry-Ret fringe patterns 3 @ I'=0, (b)o I'=0.05cm™. Solid curves,6=+45°; dashed
that repeat with a peridfl of curves,§=—45°.

%
o
o

Reflect

_ Fig. 5@ shows that at a thickness df=d,— & these two
do=12/(2 c0S6,), 219 reflectivities will be interchanged. This ca% be seen over the
where\, and 6, are the wavelength and angle of propaga-full spectral range by comparing the spectra in Fig) 3or
tion, respectively, within the dielectric layer. Since, from Eq.d=2.0 um with those ford=26.6um (i.e., dy—2.0 um)
(2.14), the individual interface reflection amplitudes for the and those ford=10um with those ford=18.6um (i.e.,
+ 6 and the— 6 experiments are the same, the fringe patternsl,— 10 xm). The rule can be trivially extended to include
are identical apart from a phase shift. thicknesses greater thaly. Thus we see that, in principle,
At d=0, the reflectivity is reciprocdthe two Fabry-Pe®t  there is no reflectivity spectrum that is unique to either a
curves cross in agreement with Eq2.14) for reflection off  positive or negative angle of incidence.
a semi-infinite antiferromagnet. The curves also cross with All the above symmetry relations can be derived formally
the same reflectivity whed is a multiple ofdy, so there is by performing a multiple-beam analysis. Such an analysis
also reciprocity at these thicknesses. Since the variatidg in requires the use of Stokes relatibhat the vacuum/dielectric
over the frequency range of interest is very small, this resulinterface and the use of Eq.14—(2.16 at the dielectric/
applies to the overall spectra. For the numerical exampleantiferromagnet interface.
used in Figs. 3 and H, is about 28.6um, and we see from We now briefly examine the case for which damping is
Fig. 3@ that the spectra for this thickness of dielectric arepresent, corresponding to Figgbgand 5b). From Fig. gb)
indeed reciprocal. we see that the Fabry-Rx fringe pattern still has a period of
Figure 8a) also shows that, due to the symmetry of thed,, but damping has imposed a phase shift on both curves,
Fabry-Peot fringe pattern, the reflectivity is reciprocal at so that they no longer cross at multiplesdyf2. Thus Fig.
odd multiples ofdy/2, but it is different from that al=0.  3(b) shows that the spectra dt=d, (28.6 um) are the same
The d=14.3um (corresponding taly/2) result in Fig. 3a) as those atl=0, but they are nonreciprocal in both cases.
demonstrates this clearly. Despite this, the two curves in Fig(l do coincide at cer-
The above results, showing reciprocity at both even andain values ofl, suggesting that, when the dielectric has such
odd multiples ofdy/2, are special cases of a more generala thickness, reciprocal reflection should occur. However, this
rule which follows from the symmetry of the Fabry#®e reciprocity is unique to a particular frequency, and the over-
fringe patterns. Consider the reflectivitieR(+6) and  all spectrum is nevertheless nonreciprocal. This is because
R(— 6) at an arbitrary thicknesd= 4, less thandy,. Then the phase shift imposed by the damping is highly frequency
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FIG. 6. Reflection and transmission coefficients, and associated partial rays, used in armapyadmgzed reflection off and transmission

through a free-standing antiferromagnet film in the Voigt geometry in the presence of an external field. The parameters are defined for an

incident angle of+ 6. For an incident angle of- # one would reverse the signs on the subscripts. We use the convention that a prime
indicates a reflection or transmission coefficient when the incident partial wave is in the antiferromagnet.

dependent—in fact it changes sign twice over the frequency In order to deal with the termt( ,"f;) outside the sum-
range considered. The overall spectrum is therefore nevenation, one can make use of Stokes relations. In the Appen-

reciprocal, as observed in Fig(i3. dix, we derive an appropriate form of these relations that
takes account of any nonreciprocities at the interfaces. We
C. Transmission through and reflection off a free-standing can combine EqgAl) and(A3) to give

antiferromagnetic film ~~ o~ ~
_ ) t =t t . (2.19
Thermodynamic arguments have previously been used to
show that both the reflectivity from and transmissivity Substitution into Eq(2.18 shows that the complex transmis-
through a free-standing antiferromagnetic film are reciprocasion coefficient is reciprocal, i.ef(+6)=t(—#6). This
in the absence of dampirtg. Here we use an interference shows that both amplitude and phase for transmission
argument to confirm and extend these results by consideringpirough a free-standing film are reciprocal, regardless of
both the amplitude and phase spectra for such a structurdamping. We have verified this result numerically, using
both with and without damping. transfer-matrix methods as shown in Fig. 7.
The various reflection and transmission coefficients, de- A similar analysis can be performed for reflection off the
fined for an angle of incidence of #, are shown in Fig. 6. free-standing film. We then find that
For an angle of incidence of 9, we would have to reverse
the signs on all the subscripts. Note that, due to the symme- T(+r(—6)=T1,/r_. (2.20

try of the structure, we can use the same coefficients, with an . i i

appropriate change of sign on the subscript, for internal re] Nus reflection off a free-standing film follows the same
flection and transmission at interface 1 as we do at interfonreciprocity relationships as for a semi-infinite antiferro-
face 2. magnet. In the case of zero damping, we therefore have re-

We first consider the case of transmission through th&iprocal reflected .amplitu.de .but nonreciprocal r_eflected
structure. The overall transmission coefficient can be calcuPh@se. In contrast, if damping is present, both amplitude and
lated by summing partial rays. From Fig. 6 we see that, foPhase are nonreciprocal.

an angle of incidencet 6, the transmission coefficient is |t @lso follows that any nonreciprocity in reflection, ex-
given by pressed as a relative amplitugé¢+ 6)/p(—6) or a phase

difference ¢(+ 0) — ¢(— 6), is independent of layer thick-
x ness and is, in fact, the same as for a semi-infinite antiferro-
T+ 0)=1.7 P YMexd (2m=+ 1)id-.d 1. magnet. This result, which applies regardless of damping,
(+6)=t, +mzo (FAT2)Pexil( J162,d] has been verified numerically.
(2.18

In order to calculaté(— 6), one would merely have to in-
terchange the signs on the subscripts. It is therefore obvious
from inspection that the terms within the summation are all
reciprocal, since the ternt {t") is reciprocali.e., any non- We now consider a geometry where the plane of inci-
reciprocity due to an internal reflection off the bottom inter- dence is not perpendicular to the applied field, i.e., the plane
face is canceled by the effect of a subsequent internal refleef incidence is still perpendicular to the surface, but is at an
tion off the top interfacg arbitrary angle with respect to the easy axis and the applied

Ill. RECIPROCITY RELATIONS FOR A PLANE
OF INCIDENCE AT AN ANGLE WITH RESPECT
TO THE APPLIED FIELD
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§ 3n FIG. 8. Intensity for reflected and transmitted waves as a func-
= tion of frequency for an antiferromagnetic film. The parameters are
g Ho=1kG, d=10um, ®=35°,T'=0.05 cmi 1. The light lines are
£ en ¢ for 6=+30 and the dark lines for the reversed wave areéer
% —30. Only thes-to-s transmissior(c) is reciprocal.
=
Tt . . .
nally, we point out that we have again used the convention
that the phase is not restricted to lie within the range 0 to
0 51 21r.

If the damping is zero, the symmetry properties remain
the same, i.e., only th&polarized transmission is reciprocal.
The reflected and transmitted intensities and phases have the

FIG. 7. Calculated amplitude and phase spectrasfpolarized ~ same general features seen in Figs. 8 and 9. One interesting
transmission through a freestanding Ekdifn in the Voigt geom-  difference is that as the damping is reducedghe p trans-
etry in the presence of an external field of 0.5(@ Amplitude  mission and reflection intensities get significantly larger. For
spectra,(b) phase spectra. Solid curveS=0; dashed curved,  example, with the damping close to zero the maximum trans-
=0.05 cnml. Both the transmitted amplitude and the transmittedmitted p intensity is about 0.55.
phase are reciprocal in all cases, and each curve represents both \\e summarize the results of our numerical explorations
=+45° andf= —45° spectra. as follows.

(1) The existence of nonreciprocity is independent of
damping.

(2) If the incident wave is polarized then the transmitted
s-polarized wave is reciprocal in magnitude and phase. All
other waves(s and p reflected waves ang transmitted

Wavenumber (om™)

field. In Fig. 1 this corresponds to the case whére /2. In
this configuration there is mode mixing, i.e., an incident
wave that iss polarized gives rise to transmitted and re-
flected waves that are bostandp polarized. The calculation
for the reflectivity and transmissivity is lengthy but is a
straightforward extension of the calculation given in Ref. 9
for the semi-infinite structure, and thus we omit the details. 3°[—

As an example of the general kinds of results that can bi , zs} *** 1 0P s
expected in this case, we present results for reflection an 40 7z
transmission from a 1@n-thick antiferromagnetic film in
Figs. 8 and 9. In all cases the incident waves igolarized.

Figures 8 and 9 are for the case where the damping i
I'=0.05 cnmi L. Figure 8 shows the transmitted and reflected 2% 525 53.0
intensities, while Fig. 9 concentrates on the transmitted an
reflected phases. In Fig. 8 we see that there is significarg
nonreciprocity for botts- andp-polarized reflections and for
p-polarized transmission. In contrast, thgolarized trans-
mission shows no nonreciprocity. This is, in a sense, an ex
tension of the results found in Sec. Il, i.e., with nho mode | :
mixing we found that the transmitted wave was reciprocal **%20 25 w0 %20 25 0
and that the reflected wave was not. Wavenumber em ) Wavenumoer fem )

We examine the phase of the transmitted and reflected FiG. 9. Phases for the reflected and transmitted waves as a func-
waves in Fig. 9. Again the nonreciprocity exists for all wavestion of frequency. The parameters afg=1kG, d=10um, ®
except for the transmittesipolarized wave. It is interesting =35°, T'=0.05 cm%. The light lines are fow= + 30 and the dark
to note that the magnitude of the phase change as a functidines for the reversed wave are f6= —30. Only thes-to-s trans-
of frequency is much larger for the-polarized waves. Fi- mission(c) is reciprocal.
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waves are nonreciprocal both in magnitude and phase. incident ;
(3) If the incident wave ig polarized then the transmitted wave R(+6) E(-6)
p-polarized wave is reciprocal in magnitude and phase. All
other waves(s and p reflected waves and transmitted vacuum
waveg are nonreciprocal both in magnitude and phase. antiferromagnet . &
(4) If the incident wave is a combination efandp po- T Ho

larization then nothing is reciprocal. N
The relationships outlined above seem, perhaps, a bit sur-

prising in their complexity. It is therefore of interest to see if £ 10. Reflection geometry for thermodynamic argument on a

there are any general statements that one can make abQii.infinite sample. Reflectan&¥ 6) is reflected power as a frac-
reflected and transmitted waves. In Sec. IV we do this byjon of incident power with similar definitions for absorptarfe)

thermodynamic arguments. and emittanceE(6).

IV. THERMODYNAMIC DISCUSSION some useful results. First there is the generalized Kirch-

. . , off relation A(#)=E(— #) since both of these are equal to
Apart from calculations for specific geometries, a number. —R(6). Second, subtraction of Eq4.2) from Eq. (4.1)
of arguments based on general principles have appeare ves ’
Scott and Mill$® applied symmetry methods to show that the
dispersion relation for a bulk excitation must be reciprocal, A(0)+E(0)=A(—0)+E(—6). 4.3
but, because of the reduction of symmetry in the presence of

a surface and an applied magnetic field, the dispersion relgthis states that there is no momentum transfer parallel to the

tion for a surface excitation need not be. surface _since absorptaneéd ) and emittanceéE( ) are ac-

Remeret al® used a thermodynamic analysis to discusscompanied by momentum recoitsA(6) and —E(6).
reflected and transmitted intensities in the Voigt geometry FOF @ thin film Eqs(4.1) and(4.2) are replaced by
where the plane of incidence is perpendicular to the magnetic I n “R(— O+ A(— 0+ T(—0)=
field. Their results will be discussed in detail below, but in R(O)+A(6) +T(O)=R(= )+ A(= 6)+T(~6) 1(’4 4
brief they showed that in the Voigt geometry the reflected '
intensity frpm a sem_i-infinite magnetic mgdium iS nonrecip- R(O)+E(—60)+T(6)=R(—60)+E(6)+T(6)=1.
rocal only if absorption is present. In addition, they showed (4.5
that in this geometry transmission through an unsupporte . . .
film is always reciprocal even when absorption is present%_omp"’mSon of Eqsi4.4) and (4.5 gives the Kirchoff rela-
Stamps, Johnson, and Canfleyere the first to consider po- ion
larization effects, but it was not relevant to their discussion

' A(O)+T(O)=E(—-60)+T(—0), 4.6

to include damping. Thus one purpose of this section is to (O)+T(O=E(~O)+T(~6) 9
discuss nonreciprocal reflection and transmission with thavhile Eq.(4.3) is replaced by
inclusion of both damping and polarization. There is a need

for this in light of recent work™” showing polarization mix- A(0)+E(0)+2T(0)=A(—0)+E(—0)+2T(-0).
ing effects in addition to nonreciprocity for infrared reflec- (4
tion experiments on FegF Remeret al. argue that in addition Eq4.3) itself continues

To begin with, we emphasize that in its nature blackbodyto hold for a film as a result of a distinct physics principle.
radiation is unpolarized. Part of the standard discus&®n Their point is that because of the variation of absorption with
of radiation thermodynamics involves a proof that b|aC|(b0dydepth the momentum transfer is applied unevenly across the
radiation density is isotropic and independent of the nature ofiepth of the film so that the difference between the two sides
the cavity walls. This proof involves consideration of equi- of Eq. (4.3) is the momentum transfer related to the top sur-
librium between two cavities connected by a narrow-bandace and is applied to a point in the upper half of the film.
filter F. By incorporating inF a polarization switch, e.g., @ This transfer, together with that from the lower surface,
half-wave plate for circular polarizations, one can extend th&vould exert a torque on the film and Renetral. therefore
proof to show that the radiation density is the same for bothassert that each transfer must vanish separately, so that Eq.
polarization states. (4.3 as it stands does apply for a film. Their argument is

We first summarize the thermodynamics results estaberucial since it follows immediately from Eqét.3) and(4.7)
lished by Remeret al. The notation, essentially that of that

Stamps, Johnson, and Camfeig defined in Fig. 10. For a
semi-infinite mediumno transmissioy conservation of en- T(O)=T(—06). (4.8

ergy and detailed balance give That is, the transmittance is reciprocal even if the absorp-

R(O)+A(6)=R(—6)+A(— ) =1, (4.1 tance and reflectance are nonreciprocal. This striking result
has not yet been tested experimentally, but our specific cal-
R(6)+E(—6)=R(— 0)+E(0)=1. (4.2 culations in the previous sections support this conclusion. In

fact, this conclusion requires a bit of discussi®fg) above
HereR(6) is the reflected power at an angleas a fraction refers to unpolarized light. In our calculations we have cal-
of incident power. Similar definitions hold for the absorp- culated the transmitted intensity for polarized light. In the
tanceA(#) and emittancé& (). Manipulation of these gives Voigt geometry, where there is no polarization mixing, $he
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and p-polarization states are independent. Thus each state

must satisfy Eq(4.8) independently. Indeed, this is what our 'V'JQS';’“‘

numerical results show. When the plane of incidence is at an

arbitrary angle with respect to the magnetic field, the situa- vacuum

tion discussed in Sec. lll, we must first define exactly what antiferromagnet

we mean by unpolarized light before we can check on the _ o ) _

validity of Eq. (4.8). We will do this shortly. FIG. 11. Schematic of polarization experimeRt.is the polar-

Our computed spectra for a film on a substrate and for &' R the retardation plate, andl is the analyzer.

film with a dielectric overlayer show nonreciprocal transmis- L 2 2 12 12
sion. We note that the above thermodynamic arguments can- (RY=3([Tsd*+ T pd 2+ [Fspl“+ [T ppl?). (4.12

not be aépplied for these cases or for attenuated tota\ow for s-polarized incident lightp=0, and the reflected
reflectiort® since the thermodynamic arguments are based Ofhtensity isRy=Fsd2+[F,d? and a similar result holds for

E\ gﬁorgetry of an unsupported film exposed to vacuum o, p intensityR, . Comparison with Eq(4.11) gives
oth sides.

As pointed out above, blackbody radiation is unpolarized (Ry=3(Rs*+Ry) (4.13
and thermodynamic arguments apply directly only to unpo-

larized radiation. However, calculations and published spec"zls statgd. - . . .
Obviously a similar result applies for transmission, i.e.,

tra are often for polarized input and output beams and w . . X oD
must therefore establish the connection between polarize eunpolarlze.dtran.smltteld intensity Is given bY the average
f the transmitted intensity frora-polarized incident radia-

spectra and the underlying thermodynamic results. This i§ ; . o
particularly important for cases where the sample is birefrin-:'r?n a?d ffromtﬁ-polarlzed _tlncufjetﬂt r??j'?t.'c(j)n' | Eveln _th(i_ugh
gent and polarization mixing occurs in reflection and trans- € rules for the reciprocity of the individual polarizations

mission. We use ideas from the elegant and general discuére quite complicated, as we saw in . l!l’ our numgrlcal
sion of polarization given by Born and Wd. calculations show that thenpolarizedtransmitted intensity

It is convenient to work in terms of the usual plane polar-IS reciprocal as required by E¢4.8). This condition thus

ization states andp, partly because these have been used irprcl)vtl_des a powerful check on the accuracy of numerical cal-
experiments. We consider radiation incident at an afdgia cufations.

a film with complexs andp amplitudes given b anda,;
the corresponding intensities afa|? and[a,|?. Complex V. AMETHOD TO DETERMINE RELATIVE PHASE

coefficientsr;; are defined so that the reflected amplitudes |t is of interest to ask to what extent phase measurements
for s polarization are given bysas+rspa,. Similarly, the  are possible. The direct measurement of an absolute phase,
reflected amplitudes fop polarization are given by,s  for example gss, is a difficult task, though not impossible in
+1,p2p . Transmission coefficients; are defined similarly. principle. On the other hand, phase differences likg,

Where it is heIpfuL we Wiitd'; = pijexpidy). , — ¢ss should be measurable with fairly simple modifications
Born and Wolt® argue that the blackbody intensity, de- of existing instruments.

fined as an average over all polarization states, is equal to the ag far as measurement @b, say, is concerned, it is
average over two orthogonal states, sagndp. This is @  gyfficient to consider a case with no polarization mixing, and

key result for us since it provides the connection between thgyerefore an incidens beam produces only a reflected
calculated reflected and transmitted intensities—which inpeam. To find the phase. of the latter relative to the

volve the individual polarizations—and the unpolarized ra-foymer involves a technique like dispersive Fourier-

diation required in the thermodynamic arguments. Since W ansform spectroscopdFTS) in which the reflection takes
shall use this result in discussing the computed spectra, Weiace within the interferometer itself. DFTS has been estab-
now give an elementary proof for the reflection amplitude|ished for normal-incidence reflection in zero magnetic
Fij - _ o field?® but the development for oblique incidence in a non-
We consider a general polarized incident beam zero field would be a formidable task.

E=(cos 7,sin 7€'%.0) 4.9 The phase d_iffert_ances,_on_ the other hand, can be fognd by

’ b ' adding a polarizer in the incident beam and analyzer in the

where thex andy axes for the incident beam are in the output beam and making a number of measurements with

directions ofs andp polarizations. The reflected beam is  different settings of the polarizer and analyzer. We discuss
_ _ the arrangement shown in Fig. 11. A retardation plate as-
E= (50 ) +T 8N 7)€'°,F , 0K 7) +T ,,sin( 1) €', 0). sumed to retard thg amplitude bye relative to thex am-
(4.10 plitude is included; it is not strictly necessary but might
prove useful in practice. When the polarizer is set an aggle
and the analyzer at an angle the incident beam is

R(’l'5):(|?ss|2+|7ps|2)0032( 7])+(|7sp|2+|7pp|2)8in2( 7) (cos(?y),sin(n),O) qnd the .reflgcted. beam has the following
~ o . amplitude along its polarization direction:
+2 ReTJ 587 2+ T I ppe” %) cog 7)sin( 7).

(4.11

The reflected intensity for incident unpolarized light is found
by averaging this over; and & The intensityl =|E|? is therefore

The reflected intensity is therefore

E(%,0,6)=(TsL£0S 7+Tsin 7)cos 6

+ (¥ psCOS +T,psin p)e'sin 6. (5.1)
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1(7,0,8)=[ p2LOF N+ p2 SIP 7+ 2ps s COL pss— hsp)COS 7 SN 7]COS Y
+[ 3OS n+ p5 SiN? 7+ 2ppspppCOL Bpp— dps)COS 77 SiN 77]sir? g
+2pssppsCOS Pss— Pps— g)cos 7 sin 6 cos 6+ 2psspppCOS Pss— Ppp—€)COS 77 SiN 7 sin 6 cos ¢
+2p5pPpsCOS Psp— ps— £)COS 7 SiN 77 SIN 6 COS 0+ 2pg 0, ,COS s ¢pp—s)sin277 sin 6 cos6. (5.2

The quantities to be measured are the four amplitydes  tude and phasesven when the reflected is completely non-
etc., and three phase differencéss— ¢, etc. It is clear reciprocal.
that these can be measured with no retardation plat® We point out that the previous symmetry arguments only
and that there are many possible combinations;@fnd &  suggest that the dispersion relatioan benonreciprocal in
that can be used to obtain the amplitudes and the phase difertain geometries. This applies equally well to oblique inci-
ferences. As an illustration, we display a simple set: dence reflection and therefore these symmetry arguments in-
dicate that the phase can also be nonreciprocal. In contrast,
the thermodynamic arguments require reciprocity of the in-
tensity in some situationévhen absorption is not present,
for example, but this says nothing about the phase. Thus
. phase nonreciprocity may be expected in situations where
|(§,0,0) =p5y (5.4  the reflected intensity is reciprocal. In this paper we give
examples of such a situation.
We have concentrated in this paper on discussing experi-
T 5 ments that could be performed in a Fourier-transform infra-
|(0,§,0)=Ppg (5.9  red (FTIR) system since this gives complete information
about the behavior of the reflectivity as a function of fre-
quency. In addition, the FTIR method has been used recently
T ) to obtain results on FeFHowever, one could envision other
' PR 5'0 = Ppp (5.6 possible techniques. For example, an infrared laser at a
single frequency could be used. This might allow a simpler
determination of relative phase. For example, the initial laser
™ e 2. 2 beam could be split, with one beam hitting the sample and
11 2:0.:0) =2lpsst pspl+ psspspCOL ss= bsp)s (5:7)  the other hitting a mirror with well-known reflection charac-

1(0,0,00=p2, (5.3

a 7
I (Z1 Evo) = %[Pgs+ P;zyp] +Ppspppcoi d’pp_ ¢ps)1 E, Ef. Ef éo
(5.9
Vacuum Vacuum
T AF AF
I ( 0, Zao) = %[Pgs"_ Pf)s] +Psspp3003 bss— ¢ps)- (5.9 ]
a L
It is clear that seven measurements are required to measuf & .
the complete set of seven unknowns. We note that although
the retardation plate is not necessary in principle, its inclu-
sion might increase accuracy of some phase determinationg ¢ Ejt' Ef d
VI. SUMMARY AND CONCLUSIONS Vacuum Vacuum
AF AF

In this paper we have explored the properties of the trans-
mitted and reflected waves when an electromagnetic wave i
incident on a variety of structures containing an antiferro- E ES Er E
magnet. In particular, we have pointed out that the the phasq
of the reflected wave off a semi-infinite antiferromagnet may
be nonreciprocal even when the intensity of the reflected pig. 12. Reflection and transmission coefficients used in deriv-
wave is reciprocal. This nonreciprocal phase has direct angg Stokes relations in the presence of nonreciprocal reflection. We
measurable consequences when a dielectric overlayer ifse the convention that a prime indicates a reflection or transmis-
added above the antiferromagnet in that the intensity andion coefficient when the incident partial wave is in the antiferro-
phase both become nonreciprocal. The behavior of the transagnet. The plus and minus subscripts indicate the direction of the
mitted wave, in contrast, is often reciprodabth in ampli- incident wave.
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g, By Ef EST Ef APPENDIX: STOKES RELATIONS IN THE PRESENCE
FIG. 13. Analysis used in deriving Eg#\1) and(A2), based on OF NONRECIPROCAL REFLECTION
applying the principle of reversibility of light to Fig. 1. Here we extend the standard form of Stokes relatfbtos

an interface at which nonreciprocal reflection occurs, e.g., a
teristics. The two beams could then be combined, and th@acuum/antiferromagnetic interface. We consider the case
interference of the two beams measured. The disadvantage when there is no mixing of polarizatiorngs in the Voigt
this technique, of course, is that it is restricted to a singlegeometry and no damping.
frequency. We consider all quantities in terms Bffields, and define

We note that the behavior explored in this paper should béne complex reflection and transmission coefficients shown
a general feature in many magnetic systems, not just in ann Fig. 12. We now apply time reversal, which causes a
tiferromagnets. The gyrotropic form of the permeability ten-change of sign in bothw and H,. Inspection of Eq.(4)
sor in Eq.(2.1) is common to ferromagnets, antiferromag- shows that, fol” =0, this leaves the permeability unchanged.
nets, and weak ferromagnets. The frequency region whergpplication of the time reversal to any of the diagrams in
this nonreciprocity can be explored, however, will vary con-Fig. 12 therefore simply amounts to reversing the signs of all
siderably depending on the material. It is interesting to notghe arrows.
that doped semiconductors in a magnetic field can also show Figure 13 shows what happens when we reverse the ar-
nonreciprocal reflection of intensities. In this case it is be—rows of Fig. 12c), i.e., the result of a ray with complex field
cause the dielectric tensor acquires a gyrotropic fomith £ ¥’ entering from the top right simultaneously with a ray
imaginary off-diagonal elements. It would be reasonable tqyih complex fieldEgF’ from the bottom right. We can use
expect that these systems also would display nonreciprocgiigs 17b) and 12d) to work out the reflected and transmit-
reflection in phase under similar circumstances, and thigyq fields associated with each of these two incident rays, as
should be investigated in the future. shown explicitly in Fig. 13. According to the figure, there-

_The fact that both the intensity and the phase of the transg e the field associated with the overall emergent ray may
mitted wave in the Voigt geometry are reciprocal is quite},q regarded as the sum of two fields, each due to an indi-

interesting. One might try to explain this using a symmetry,iqya| incident ray. The total field emerging from the bottom

argument. For example, in the absence of a magnetic fielgs g Eo, SO we getafter canceling out th&,'s)
the reflection of the system through tkie plane is a sym- '

metry operation. This operation effectively reverses the di- 1=T'T 477 AL
rection of propagation parallel to the surfaces. However, sttwrr,. (A1)
since it is a symmetry operation, it requires that the transmisSince there is no ray emerging from the top left, we also

sion be reciprocal both in phase and in intensity. have(making the same cancellatipn
The situation is quite different when a magnetic field is
applied in the plane of the surface. The reflection through the 0=1'F +7'T (A2)
Tro+rltl .

yz plane is no longer a symmetry operation since it reverses
the external magnetic field at the same time as the directiodf we perform the same procedure based on reversing the
of propagation. One can consider a variety of operations inarrows in Fig. 12d) we get the equations

volving time reversal. For example, time reversal followed

by a reflection in theyz plane is a symmetry operation for 1=11,+7' 7, (A3)

the system, as is time reversal followed by a reflection about

the midplane of the film. Unfortunately, we could not find ~ o~y
any combination of symmetry operations that related the O=tir +try. (A4)

field configuration for propagation with ¢ to the appropri- The above equations may be combined to produce the re-
ate field configuration with- 6. Thus a symmetry discussion quired relationships. A further four equations may be ob-

does not seem to be able to amplify this result. tained by reversing the arrows in Figs.(d2and 1Zb), but
they are not required for the analysis presented in this paper.
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