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Nonreciprocal phase behavior in reflection of electromagnetic waves from magnetic materials

T. Dumelow,* R. E. Camley,† Kamsul Abraha,‡ and D. R. Tilley§
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~Received 16 June 1997!

Most experimental and theoretical treatments of reflection of electromagnetic radiation from magnetic ma-
terials have concentrated on the intensity of the reflected and transmitted waves. We point out that the behavior
of the phase of these waves can be quite different from the intensity, and that it can have direct experimental
consequences. In particular, the reflected intensity from a magnetic material with low damping in the Voigt
geometry is reciprocal, i.e., the intensity is the same when the reflected and incident waves are interchanged.
In contrast, the phase of the reflected wave is strongly nonreciprocal. This nonreciprocity in phase produces a
nonreciprocal intensity in a structure where a dielectric film is placed on an antiferromagnet. We explore the
general properties of the phase and amplitude of reflected and transmitted waves in a variety of geometries
using the antiferromagnet FeF2 as an example. General thermodynamic arguments are used to support some of
the specific results.@S0163-1829~98!05026-7#
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I. INTRODUCTION

One of the most interesting features in the interaction
electromagnetic waves with magnetic materials is that
nonreciprocal1 reflection. In this effect a simple reversal o
the direction of the incident and reflected waves leads
different reflection and transmission coefficients. A series
experimental and theoretical studies of the reflection of
frared radiation from the antiferromagnets MnF2 ~Refs. 2 and
3! and FeF2 ~Refs. 4–7! has recently documented this effec
Nonreciprocal Brillouin light scattering from spin waves
ferromagnetic materials is also quite well known.8

To this point nearly all the studies, both experimental a
theoretical, have concentrated on the amplitude of the
flected radiation as measured through the intensity.
phase of the waves has been neglected. This is, of cou
fairly natural. The intensity is what is typically measured
experiments. In addition, through the use of thermodynam
arguments one can make general arguments connectin
intensity of the incident, reflected, and transmitted light w
the absorption of energy in the magnetic material.3,9

An important example of such a thermodynamic res
relates to uniaxial antiferromagnets in the presence of
external field. In the Voigt geometry~applied field parallel to
the surface and along the uniaxial direction; the incid
electromagnetic wave iss polarized and the plane of inci
dence is perpendicular to the applied field! one can show
quite generally that the reflected intensity is reciprocal unl
there is some absorption mechanism inside
antiferromagnet.3 If there is absorption, then the reflecte
wave intensity is nonreciprocal but the transmitted wave
tensity is always reciprocal. This asymmetry between
behavior of the intensity of the reflected and transmit
waves is surprising, and illustrates how difficult it is to ha
good intuition about this problem.

In this paper we concentrate on a new feature of the pr
lem, the nonreciprocal phase of the reflected and transm
waves. There are a number of reasons for this. First,
phase can behave quite differently from the intensity. F
example, when we consider the reflection geometry d
PRB 580163-1829/98/58~2!/897~12!/$15.00
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cussed in the previous paragraph, the reflected intensit
reciprocal in the absence of damping. In contrast, the ph
of the reflected wave can be nonreciprocal even with
damping. Second, we note that the nonreciprocal phas
reflected and transmitted waves in layered structures can
duce nonreciprocal intensities because of a nonreciproca
terference that occurs. Thus the reflected and transm
phases have several direct experimental consequences. T
the phase differences between different transmitted and
flected waves may be measured as we show in Sec. V
nally, we note that the phase of the reflected and transmi
waves can be a directly measurable quantity. For exam
dispersive Fourier-transform spectroscopy can be used
give the relative phase between the incident and reflec
beams although this is difficult, as well shall discuss later

We know of no thermodynamic arguments that one c
use to understand the general behavior of the phase. Thu
approach concentrates on understanding the phase by s
ing particular examples. In Sec. II we examine reflection a
transmission for thes-polarized Voigt geometry describe
above. This is a particularly important case because ther
no mode mixing, i.e., the reflected and transmitted waves
also s polarized. We study several different sample stru
tures. For example, in a semi-infinite antiferromagnet,
find that in the absence of damping the reflected intensit
always reciprocal while the phase is not. For the geometry
a thin dielectric film on a semi-infinite antiferromagnet w
find that a nonreciprocal reflected phase that occurs at
dielectric/antiferromagnet interface produces a nonrecipro
net reflection from the structure. In a surprising result,
degree of nonreciprocity oscillates as the thickness of
dielectric film is increased. The period of this oscillation d
pends on the wavelength of the electromagnetic radiatio
the dielectric, and this feature can also be directly connec
to the nonreciprocity of the reflected phase at the dielect
antiferromagnet interface.

In Sec. III we examine a more general geometry, wh
the plane of incidence is still normal to the surface of t
antiferromagnet, but is allowed to be at arbitrary angle w
respect to the applied field. In this geometry there is mo
897 © 1998 The American Physical Society
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mixing in that ans-polarized incident wave can lead to bo
s- and p-polarized reflected and transmitted waves. We
tablish some general rules about the phase and intensi
both the reflected and transmitted waves.

In Sec. IV we reexamine some thermodynamic argume
connecting nonreciprocal reflection and transmission inte
ties and absorption within an antiferromagnetic film. An u
polarized incident wave is considered and we derive res
connecting the various nonreciprocal transmitted and
flected intensities. These results are used to check the
merical examples in Sec. III. In Sec. V we present meth
to measure phase differences between different transm
and reflected waves.

Finally in Sec. VI we present a summary and our conc
sions. In an Appendix we present the Stokes relations c
necting various incident, reflected, and transmission coe
cients at a single interface between an antiferromagnet a
dielectric.

II. EXAMPLES IN THE VOIGT GEOMETRY

In this section we consider examples for particular str
tures incorporating a uniaxial antiferromagnet in the Vo
geometry. The plane of incidence is alwaysxy, with y nor-
mal to the interfaces, and the uniaxis of the antiferromag
is always alongz, as is the external fieldH0 . In this geom-
etry, only s-polarized radiation~E field along z! interacts
with the magnetic system, and there is no mixing betwe
polarizations. All examples are therefore ins polarization. In
Fig. 1 the Voigt geometry corresponds toF5p/2.

In the Voigt geometry, the magnetic permeability tens
of a uniaxial antiferromagnet at frequencyv is given by10

m5S m1

2 im2

0

im2

m1

0

0
0
1
D , ~2.1!

where

m15114pg2HaMs~Y11Y2!, ~2.2!

m254pg2HaMs~Y12Y2!, ~2.3!

FIG. 1. Reflection geometry considered in this paper. The
plied field is along thez axis. The angle of incidence isu and the
angle of the plane of incidence with respect to the field isF. The
easy axis for the antiferromagnet is also along thez axis.
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Y65@v r
22~v6gH01 iG!2#21. ~2.4!

Ha is the anisotropy field,Ms the sublattice magnetization,g
the gyromagnetic ratio, andG the damping. The antiferro
magnetic resonance frequencyv r is given by

v r5g~2HaHe1Ha
2!1/2, ~2.5!

whereHe is the exchange field.
In all the examples, we use the parameters4–6 for FeF2 at

4.2 K: Ms50.056 T, Ha519.745 T, He553.313 T, andg
51.05 cm21/T, corresponding to a bulk resonance frequen
of v r552.45 cm21. The dielectric constant of the antiferro
magnet is taken as 5.5. We consider examples both witG
50 ~zero damping and zero absorption! and with the experi-
mentally observed value ofG50.05 cm21. We note that the
low damping limit ofG near zero is quite possible physicall
Samples of MnF2 have been reported with a damping on t
order of G50.001.11 For G50 both m1 and m2 are real.
Otherwise they are complex. In this section we take the
plied field to beH0560.5 T.

A. Reflection off a semi-infinite antiferromagnet:
Phase and amplitude behavior

We considers-polarized reflection off a semi-infinite an
tiferromagnet in the Voigt geometry. The incident medium
assumed to be a dielectric~vacuum in the examples consid
ered!. For such a system the complex reflection coefficien
given by12

r̃ 5
q1ymv2q2y1 iqx~m2 /m1!

q1ymv1q2y2 iqx~m2 /m1!
, ~2.6!

wheremv is the Voigt permeability given by

mv5~m1
22m2

2!/m1 . ~2.7!

The electromagnetic wave in the reflection experiment
characterized by a wave vector in each medium. The co
ponent of the wave vector parallel to the surfaceqx is the
same in each medium and is determined by the angle
incidence:

qx5«1~v/c!sin u. ~2.8!

Here «1 is the dielectric constant of medium 1~usually
vacuum! and u is the incident angle in a reflection exper
ment. The components of the wave vector perpendicula
the surface are given byq1y in medium 1 andq2y in medium
2 ~the antiferromagnet!.

q1y5@«1~v/c!22qx
2#1/2, ~2.9!

q2y5@«2mv~v/c!22qx
2#1/2. ~2.10!

In discussing the nonreciprocal properties ofr̃ , we will find
it useful to represent it in terms of an amplituder and a
phasef:

r̃ 5r exp~ if!. ~2.11!

In order to look at nonreciprocity inr̃ , we compare the
results for the reflection coefficient when the incident wa
travels from right to left across the magnetic field, i.

-
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FIG. 2. Calculated amplitude and phase spectra fors-polarized reflection off a semi-infinite FeF2 sample in the Voigt geometry in the
presence of an external field of 0.5 T.~a! G50, amplitude spectrum;~b! G50, phase spectrum;~c! G50.05 cm21, amplitude spectrum;~d!
G50.05 cm21, phase spectrum. Solid curves,u5145°; dashed curves,u5245°. Note that in the case of~a! both curves are coincident
so only a single solid curve is seen.
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r̃ (1u), with those for the case where the incident wave
reversed,r̃ (2u). The geometry is illustrated in Fig. 1. Th
only difference between these two results arises from the
that the sign ofqx in Eq. ~2.6! is different for the two cases
We first discuss the case when the damping parameterG is
zero, i.e., when no absorption takes place. In this case al
terms in Eq.~2.6!, with the exception ofq2y , are real.q2y
may be either real or imaginary, depending on the frequen
and we consider the two cases separately.

1. q2y real

This corresponds to the bulk regions of antiferromagn
for which radiation can propagate into the sample. If we
q2y real in Eq.~2.6! and separater̃ into its real and imagi-
nary parts, we find that

Re@ r̃ ~1u!#5Re@ r̃ ~2u!#, ~2.12!

Im@ r̃ ~1u!#52Im@ r̃ ~2u!#. ~2.13!

In terms of amplituder and phasef, this gives

r~1u!5r~2u!, ~2.14!

f~1u!52f~2u!12pm, ~2.15!
s

ct

he

y,

t,
t

wherem is an arbitrary integer. The term 2pm is included
since we find it convenient to plot phases outside the ra
2p,f,p. From Eqs.~2.14! and ~2.15! we immediately
see that while the amplitude~and thus the intensity! is recip-
rocal, the phase of the reflected is dramatically nonrecip
cal.

2. q2y imaginary

In this case the electromagnetic fields simply decay i
the sample, with no propagation taking place. Calculation
the amplituder from Eq. ~2.6! now gives

r~1u!5r~2u!51, ~2.16!

i.e., all the radiation is reflected. The phase is nonrecipro
but does not follow a simple symmetry relation such as giv
by Eq. ~2.15!.

In both cases above, the reflected amplitude is recipro
but the reflected phase is nonreciprocal. If there is no da
ing, therefore, these results should hold throughout the s
trum. The reciprocity of the reflected amplitude is illustrat
in Fig. 2~a! for the example of oblique incidence reflectio
off FeF2 with G50. The figure shows that the results fo
r(1u) andr(2u) are identical, confirming that the reflec
tion amplitude is reciprocal everywhere. The regions mark
R correspond toq2y real, and those markedI correspond to
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900 PRB 58DUMELOW, CAMLEY, ABRAHA, AND TILLEY
q2y imaginary. In the latter case the reflection amplitude c
be seen to be 1, in agreement with Eq.~2.16!.

Figure 2~b! shows the phase spectra for the same syst
Note that, in order to demonstrate the continuous chang
the phase, we have shown it as varying fromp to 3p over
the frequency range illustrated. We have marked the reg
for real and imaginaryq2y in the same way as for Fig. 2~a!.
The phase is clearly nonreciprocal in both regions. Exam
tion shows that Eq.~2.15! is obeyed whereq2y is real but not
where it is imaginary as expected.

From the result that the reflection amplituder is recipro-
cal for zero damping, it follows that the power reflectivi
R5 r̃ r̃ * is also reciprocal. This is a well-known result, an
has also been shown by thermodynamic arguments3,9 as we
shall discuss in Sec. IV. The nonreciprocity of the reflec
phase has been commented upon in a recent review artic
two of the present authors,12 but, to our knowledge, there ar
no other reports of this phenomenon. We emphasize that
nonreciprocal phase has direct experimental consequenc
will prove vital in explaining the results associated with t
other structures considered in this section.

We now turn to the results when damping is included.
this case the quantitiesm1 , m2 , mv , andq2y in Eq. ~2.6! are
all complex, so the simple relationships in Eqs.~2.12!–~2.16!
based on pure real or pure imaginary parameters no lo
apply. Thus both the amplitude and the phase spectra
nonreciprocal, as shown in Figs. 2~c! and 2~d!, respectively.

B. Reflection off a dielectric deposited on an antiferromagnet

Nonreciprocal reflectivityR from a structure consisting o
a dielectric film deposited on a semi-infinite antiferromag
has already been predicted in Ref. 13. This result can cle
be seen in Fig. 3, in which we show the overall reflectiv
for a series of structures consisting of Si films («511.6)
deposited on FeF2. We have calculated results for a series
dielectric film thicknesses, both with and without dampin
using the same transfer-matrix formalism as described
Ref. 13. Of particular significance is that, in contrast to t
case when the dielectric film is absent, the nonreciprocity
the reflectivity spectrum persists even in the absence
damping. Here we explain the underlying physics of su
behavior in terms of interference and examine the con
quent thickness dependence of the nonreciprocity. We n
that the nonreciprocal phase seen in Sec. II A above will p
a key role in this discussion.

The basic argument for nonreciprocal reflectivity in t
absence of damping can be seen from inspection of Fig
Since there are two interfaces in the structure, the ove
reflectivity will be determined by interference of the reflect
partial beams. A full analysis requires consideration of
the partial rays, but the reason for nonreciprocity can be s
by consideration of interference between the first two par
rays. The first of these partial rays is due to reflection off
dielectric surface~interface 1!, and therefore has both recip
rocal amplitude and reciprocal phase. The second pa
beam, however, results from a reflection from the dielect
antiferromagnet interface~interface 2! and has reciproca
amplitude but anonreciprocal phase, as described abov
Therefore the relative phase between these two partial
must be nonreciprocal. The resulting amplitude~and hence
the reflectivity! when they interfere is also nonreciprocal.
n
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The above argument explains why, in general, reflectiv

should be nonreciprocal. However, when the reflectivity
the antiferromagnet is equal to 1, then the overall reflectiv
obtained from summing all the partial rays must also be

FIG. 3. Calculated reflectivity spectra fors-polarized reflection
off a silicon film deposited on a semi-infinite FeF2 sample in the
Voigt geometry in the presence of an external field of 0.5 T. T
results are shown for a series of film thicknesses.~a! G50, ~b! G
50.05 cm21. Solid curves,u5145°; dashed curves,u5245°.
Note that ford50 in ~a! both curves are coincident, so only a sing
solid curve is seen.
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PRB 58 901NONRECIPROCAL PHASE BEHAVIOR IN REFLECTION . . .
due to conservation of energy. This occurs whereverq3y is
imaginary where we are now taking layer 3 to be the a
ferromagnet. This is confirmed by inspection of Fig. 3~a!,
which shows reflectivities of 1 in the same regions as th
markedI in Figs. 2~a! and 2~b!.

Figure 3~a! shows some interesting general patterns.
instance, one can see that at a dielectric thickness of 14.3mm
the nonreciprocity in reflectivity is almost lost. As the thic
ness is increased, the nonreciprocity increases only to
crease again for thicker overlayers.

We may gain additional insight into the nonreciprocity
examining the reflectivity as a function of the thickness a
single frequency. The resulting plot can be understood
terms of standard Fabry-Pe´rot fringes that result from inter
ference of all the reflected partial rays. Figure 5~a! shows the
reflectivity at 52.03 cm21 @the frequency of the low-
frequency dip in Fig. 3~a!# as a function of thickness. Fo
both R(1u) andR(2u) we see Fabry-Pe´rot fringe patterns
that repeat with a period14 of

d05l2 /~2 cosu2!, ~2.17!

wherel2 andu2 are the wavelength and angle of propag
tion, respectively, within the dielectric layer. Since, from E
~2.14!, the individual interface reflection amplitudes for th
1u and the2u experiments are the same, the fringe patte
are identical apart from a phase shift.

At d50, the reflectivity is reciprocal~the two Fabry-Pe´rot
curves cross!, in agreement with Eq.~2.14! for reflection off
a semi-infinite antiferromagnet. The curves also cross w
the same reflectivity whend is a multiple ofd0 , so there is
also reciprocity at these thicknesses. Since the variation id0
over the frequency range of interest is very small, this re
applies to the overall spectra. For the numerical examp
used in Figs. 3 and 5,d0 is about 28.6mm, and we see from
Fig. 3~a! that the spectra for this thickness of dielectric a
indeed reciprocal.

Figure 5~a! also shows that, due to the symmetry of t
Fabry-Pe´rot fringe pattern, the reflectivity is reciprocal a
odd multiples ofd0/2, but it is different from that atd50.
The d514.3mm ~corresponding tod0/2! result in Fig. 3~a!
demonstrates this clearly.

The above results, showing reciprocity at both even a
odd multiples ofd0/2, are special cases of a more gene
rule which follows from the symmetry of the Fabry-Pe´rot
fringe patterns. Consider the reflectivitiesR(1u) and
R(2u) at an arbitrary thicknessd5d, less thand0 . Then

FIG. 4. Interference argument for nonreciprocal reflection in
absence of damping off a dielectric film deposited on a semi-infi
antiferromagnet.
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Fig. 5~a! shows that at a thickness ofd5d02d these two
reflectivities will be interchanged. This can be seen over
full spectral range by comparing the spectra in Fig. 3~a! for
d52.0mm with those ford526.6mm ~i.e., d022.0mm!
and those ford510mm with those ford518.6mm ~i.e.,
d0210mm!. The rule can be trivially extended to includ
thicknesses greater thand0 . Thus we see that, in principle
there is no reflectivity spectrum that is unique to eithe
positive or negative angle of incidence.

All the above symmetry relations can be derived forma
by performing a multiple-beam analysis. Such an analy
requires the use of Stokes relations14 at the vacuum/dielectric
interface and the use of Eqs.~2.14!–~2.16! at the dielectric/
antiferromagnet interface.

We now briefly examine the case for which damping
present, corresponding to Figs. 3~b! and 5~b!. From Fig. 5~b!
we see that the Fabry-Pe´rot fringe pattern still has a period o
d0 , but damping has imposed a phase shift on both cur
so that they no longer cross at multiples ofd0/2. Thus Fig.
3~b! shows that the spectra atd5d0 ~28.6mm! are the same
as those atd50, but they are nonreciprocal in both case
Despite this, the two curves in Fig. 5~b! do coincide at cer-
tain values ofd, suggesting that, when the dielectric has su
a thickness, reciprocal reflection should occur. However,
reciprocity is unique to a particular frequency, and the ov
all spectrum is nevertheless nonreciprocal. This is beca
the phase shift imposed by the damping is highly freque

e
e

FIG. 5. Film thickness dependence of the reflectivity at a f
quency of 52.03 cm21 off an Si film deposited on a semi-infinite
FeF2 sample in a 0.5-T field. All conditions are the same as for F
3. ~a! G50, ~b! G50.05 cm21. Solid curves,u5145°; dashed
curves,u5245°.
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FIG. 6. Reflection and transmission coefficients, and associated partial rays, used in analyzings-polarized reflection off and transmissio
through a free-standing antiferromagnet film in the Voigt geometry in the presence of an external field. The parameters are defin
incident angle of1u. For an incident angle of2u one would reverse the signs on the subscripts. We use the convention that a
indicates a reflection or transmission coefficient when the incident partial wave is in the antiferromagnet.
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dependent—in fact it changes sign twice over the freque
range considered. The overall spectrum is therefore ne
reciprocal, as observed in Fig. 3~b!.

C. Transmission through and reflection off a free-standing
antiferromagnetic film

Thermodynamic arguments have previously been use
show that both the reflectivity from and transmissiv
through a free-standing antiferromagnetic film are recipro
in the absence of damping.3,9 Here we use an interferenc
argument to confirm and extend these results by conside
both the amplitude and phase spectra for such a struc
both with and without damping.

The various reflection and transmission coefficients,
fined for an angle of incidence of1u, are shown in Fig. 6.
For an angle of incidence of2u, we would have to reverse
the signs on all the subscripts. Note that, due to the sym
try of the structure, we can use the same coefficients, with
appropriate change of sign on the subscript, for internal
flection and transmission at interface 1 as we do at in
face 2.

We first consider the case of transmission through
structure. The overall transmission coefficient can be ca
lated by summing partial rays. From Fig. 6 we see that,
an angle of incidence1u, the transmission coefficient i
given by

t̃~1u!5 t̃1 t̃18 (
m50

`

~ r̃ 18 r̃ 28 !mexp@~2m11!iq2yd#.

~2.18!

In order to calculatet̃(2u), one would merely have to in
terchange the signs on the subscripts. It is therefore obv
from inspection that the terms within the summation are
reciprocal, since the term (r̃ 18 r̃ 28 ) is reciprocal~i.e., any non-
reciprocity due to an internal reflection off the bottom inte
face is canceled by the effect of a subsequent internal re
tion off the top interface!.
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In order to deal with the term (t̃1 , t̃18 ) outside the sum-
mation, one can make use of Stokes relations. In the App
dix, we derive an appropriate form of these relations t
takes account of any nonreciprocities at the interfaces.
can combine Eqs.~A1! and ~A3! to give

t̃1 t̃18 5 t̃2 t̃28 . ~2.19!

Substitution into Eq.~2.18! shows that the complex transmis
sion coefficient is reciprocal, i.e.,t̃(1u)5 t̃(2u). This
shows that both amplitude and phase for transmiss
through a free-standing film are reciprocal, regardless
damping. We have verified this result numerically, usi
transfer-matrix methods,13 as shown in Fig. 7.

A similar analysis can be performed for reflection off th
free-standing film. We then find that

r̃ ~1u!/ r̃ ~2u!5 r̃ 1 / r̃ 2 . ~2.20!

Thus reflection off a free-standing film follows the sam
nonreciprocity relationships as for a semi-infinite antiferr
magnet. In the case of zero damping, we therefore have
ciprocal reflected amplitude but nonreciprocal reflec
phase. In contrast, if damping is present, both amplitude
phase are nonreciprocal.

It also follows that any nonreciprocity in reflection, ex
pressed as a relative amplituder(1u)/r(2u) or a phase
differencef(1u)2f(2u), is independent of layer thick
ness and is, in fact, the same as for a semi-infinite antife
magnet. This result, which applies regardless of damp
has been verified numerically.

III. RECIPROCITY RELATIONS FOR A PLANE
OF INCIDENCE AT AN ANGLE WITH RESPECT

TO THE APPLIED FIELD

We now consider a geometry where the plane of in
dence is not perpendicular to the applied field, i.e., the pl
of incidence is still perpendicular to the surface, but is at
arbitrary angle with respect to the easy axis and the app
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field. In Fig. 1 this corresponds to the case whereFÞp/2. In
this configuration there is mode mixing, i.e., an incide
wave that iss polarized gives rise to transmitted and r
flected waves that are boths andp polarized. The calculation
for the reflectivity and transmissivity is lengthy but is
straightforward extension of the calculation given in Ref
for the semi-infinite structure, and thus we omit the deta

As an example of the general kinds of results that can
expected in this case, we present results for reflection
transmission from a 10-mm-thick antiferromagnetic film in
Figs. 8 and 9. In all cases the incident wave iss polarized.

Figures 8 and 9 are for the case where the dampin
G50.05 cm21. Figure 8 shows the transmitted and reflect
intensities, while Fig. 9 concentrates on the transmitted
reflected phases. In Fig. 8 we see that there is signific
nonreciprocity for boths- andp-polarized reflections and fo
p-polarized transmission. In contrast, thes-polarized trans-
mission shows no nonreciprocity. This is, in a sense, an
tension of the results found in Sec. II, i.e., with no mo
mixing we found that the transmitted wave was recipro
and that the reflected wave was not.

We examine the phase of the transmitted and reflec
waves in Fig. 9. Again the nonreciprocity exists for all wav
except for the transmitteds-polarized wave. It is interesting
to note that the magnitude of the phase change as a fun
of frequency is much larger for thep-polarized waves. Fi-

FIG. 7. Calculated amplitude and phase spectra fors-polarized
transmission through a freestanding FeF2 film in the Voigt geom-
etry in the presence of an external field of 0.5 T.~a! Amplitude
spectra,~b! phase spectra. Solid curves,G50; dashed curves,G
50.05 cm21. Both the transmitted amplitude and the transmitt
phase are reciprocal in all cases, and each curve represents bu
5145° andu5245° spectra.
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nally, we point out that we have again used the conventi
that the phase is not restricted to lie within the range 0
2p.

If the damping is zero, the symmetry properties rema
the same, i.e., only thes-polarized transmission is reciprocal
The reflected and transmitted intensities and phases have
same general features seen in Figs. 8 and 9. One interes
difference is that as the damping is reduced thes to p trans-
mission and reflection intensities get significantly larger. F
example, with the damping close to zero the maximum tran
mitted p intensity is about 0.55.

We summarize the results of our numerical exploratio
as follows.

~1! The existence of nonreciprocity is independent o
damping.

~2! If the incident wave iss polarized then the transmitted
s-polarized wave is reciprocal in magnitude and phase. A
other waves~s and p reflected waves andp transmitted

h

FIG. 8. Intensity for reflected and transmitted waves as a fun
tion of frequency for an antiferromagnetic film. The parameters a
H051 kG, d510mm, F535°, G50.05 cm21. The light lines are
for u5130 and the dark lines for the reversed wave are foru5
230. Only thes-to-s transmission~c! is reciprocal.

FIG. 9. Phases for the reflected and transmitted waves as a fu
tion of frequency. The parameters areH051 kG, d510mm, F
535°, G50.05 cm21. The light lines are foru5130 and the dark
lines for the reversed wave are foru5230. Only thes-to-s trans-
mission~c! is reciprocal.
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waves! are nonreciprocal both in magnitude and phase.
~3! If the incident wave isp polarized then the transmitte

p-polarized wave is reciprocal in magnitude and phase.
other waves~s and p reflected waves ands transmitted
waves! are nonreciprocal both in magnitude and phase.

~4! If the incident wave is a combination ofs and p po-
larization then nothing is reciprocal.

The relationships outlined above seem, perhaps, a bit
prising in their complexity. It is therefore of interest to see
there are any general statements that one can make a
reflected and transmitted waves. In Sec. IV we do this
thermodynamic arguments.

IV. THERMODYNAMIC DISCUSSION

Apart from calculations for specific geometries, a numb
of arguments based on general principles have appea
Scott and Mills15 applied symmetry methods to show that t
dispersion relation for a bulk excitation must be reciproc
but, because of the reduction of symmetry in the presenc
a surface and an applied magnetic field, the dispersion r
tion for a surface excitation need not be.

Remeret al.3 used a thermodynamic analysis to discu
reflected and transmitted intensities in the Voigt geome
where the plane of incidence is perpendicular to the magn
field. Their results will be discussed in detail below, but
brief they showed that in the Voigt geometry the reflec
intensity from a semi-infinite magnetic medium is nonrec
rocal only if absorption is present. In addition, they show
that in this geometry transmission through an unsuppo
film is always reciprocal even when absorption is prese
Stamps, Johnson, and Camley9 were the first to consider po
larization effects, but it was not relevant to their discuss
to include damping. Thus one purpose of this section is
discuss nonreciprocal reflection and transmission with
inclusion of both damping and polarization. There is a ne
for this in light of recent work4–7 showing polarization mix-
ing effects in addition to nonreciprocity for infrared refle
tion experiments on FeF2.

To begin with, we emphasize that in its nature blackbo
radiation is unpolarized. Part of the standard discussion17,18

of radiation thermodynamics involves a proof that blackbo
radiation density is isotropic and independent of the natur
the cavity walls. This proof involves consideration of equ
librium between two cavities connected by a narrow-ba
filter F. By incorporating inF a polarization switch, e.g., a
half-wave plate for circular polarizations, one can extend
proof to show that the radiation density is the same for b
polarization states.

We first summarize the thermodynamics results es
lished by Remeret al. The notation, essentially that o
Stamps, Johnson, and Camley,9 is defined in Fig. 10. For a
semi-infinite medium~no transmission!, conservation of en-
ergy and detailed balance give

R~u!1A~u!5R~2u!1A~2u!51, ~4.1!

R~u!1E~2u!5R~2u!1E~u!51. ~4.2!

HereR(u) is the reflected power at an angleu as a fraction
of incident power. Similar definitions hold for the absor
tanceA(u) and emittanceE(u). Manipulation of these gives
ll
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some useful results. First there is the generalized Kir
off relation A(u)5E(2u) since both of these are equal
12R~u!. Second, subtraction of Eq.~4.2! from Eq. ~4.1!
gives

A~u!1E~u!5A~2u!1E~2u!. ~4.3!

This states that there is no momentum transfer parallel to
surface since absorptanceA(u) and emittanceE(u) are ac-
companied by momentum recoils2A(u) and2E(u).

For a thin film Eqs.~4.1! and ~4.2! are replaced by

R~u!1A~u!1T~u!5R~2u!1A~2u!1T~2u!51,
~4.4!

R~u!1E~2u!1T~u!5R~2u!1E~u!1T~u!51.
~4.5!

Comparison of Eqs.~4.4! and ~4.5! gives the Kirchoff rela-
tion

A~u!1T~u!5E~2u!1T~2u!, ~4.6!

while Eq. ~4.3! is replaced by

A~u!1E~u!12T~u!5A~2u!1E~2u!12T~2u!.
~4.7!

Remeret al. argue that in addition Eq.~4.3! itself continues
to hold for a film as a result of a distinct physics principl
Their point is that because of the variation of absorption w
depth the momentum transfer is applied unevenly across
depth of the film so that the difference between the two si
of Eq. ~4.3! is the momentum transfer related to the top s
face and is applied to a point in the upper half of the fil
This transfer, together with that from the lower surfac
would exert a torque on the film and Remeret al. therefore
assert that each transfer must vanish separately, so tha
~4.3! as it stands does apply for a film. Their argument
crucial since it follows immediately from Eqs.~4.3! and~4.7!
that

T~u!5T~2u!. ~4.8!

That is, the transmittance is reciprocal even if the abso
tance and reflectance are nonreciprocal. This striking re
has not yet been tested experimentally, but our specific
culations in the previous sections support this conclusion
fact, this conclusion requires a bit of discussion.T(u) above
refers to unpolarized light. In our calculations we have c
culated the transmitted intensity for polarized light. In t
Voigt geometry, where there is no polarization mixing, thes-

FIG. 10. Reflection geometry for thermodynamic argument o
semi-infinite sample. ReflectanceR(u) is reflected power as a frac
tion of incident power with similar definitions for absorptanceA(u)
and emittanceE(u).
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and p-polarization states are independent. Thus each s
must satisfy Eq.~4.8! independently. Indeed, this is what o
numerical results show. When the plane of incidence is a
arbitrary angle with respect to the magnetic field, the sit
tion discussed in Sec. III, we must first define exactly w
we mean by unpolarized light before we can check on
validity of Eq. ~4.8!. We will do this shortly.

Our computed spectra for a film on a substrate and fo
film with a dielectric overlayer show nonreciprocal transm
sion. We note that the above thermodynamic arguments
not be applied for these cases or for attenuated t
reflection16 since the thermodynamic arguments are based
a geometry of an unsupported film exposed to vacuum
both sides.

As pointed out above, blackbody radiation is unpolariz
and thermodynamic arguments apply directly only to un
larized radiation. However, calculations and published sp
tra are often for polarized input and output beams and
must therefore establish the connection between polar
spectra and the underlying thermodynamic results. Thi
particularly important for cases where the sample is biref
gent and polarization mixing occurs in reflection and tra
mission. We use ideas from the elegant and general dis
sion of polarization given by Born and Wolf.19

It is convenient to work in terms of the usual plane pol
ization statess andp, partly because these have been use
experiments. We consider radiation incident at an angleu on
a film with complexs andp amplitudes given byãs andãp ;
the corresponding intensities areuãsu2 and uãpu2. Complex
coefficientsr̃ i j are defined so that the reflected amplitud
for s polarization are given byr̃ ssãs1 r̃ spãp . Similarly, the
reflected amplitudes forp polarization are given byr̃ psãs
1 r̃ ppãp . Transmission coefficientst i j are defined similarly.
Where it is helpful we writer̃ i j 5r i j exp(ifij).

Born and Wolf19 argue that the blackbody intensity, d
fined as an average over all polarization states, is equal to
average over two orthogonal states, says and p. This is a
key result for us since it provides the connection between
calculated reflected and transmitted intensities—which
volve the individual polarizations—and the unpolarized
diation required in the thermodynamic arguments. Since
shall use this result in discussing the computed spectra
now give an elementary proof for the reflection amplitu
r i j .

We consider a general polarized incident beam

E5~cosh,sin heid,0!, ~4.9!

where thex and y axes for the incident beam are in th
directions ofs andp polarizations. The reflected beam is

E5„r̃ sscos~h!1 r̃ spsin~h!eid, r̃ pscos~h!1 r̃ ppsin~h!eid,0….
~4.10!

The reflected intensity is therefore

R~h,d!5~ u r̃ ssu21u r̃ psu2!cos2~h!1~ u r̃ spu21u r̃ ppu2!sin2~h!

12 Re~ r̃ ssr̃ sp* e2 id1 r̃ psr̃ pp* e2 id!cos~h!sin~h!.

~4.11!

The reflected intensity for incident unpolarized light is fou
by averaging this overh andd:
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^R&5 1
2 ~ u r̃ ssu21u r̃ psu21u r̃ spu21u r̃ ppu2!. ~4.12!

Now for s-polarized incident lighth50, and the reflected
intensity isRs5u r̃ ssu21u r̃ psu2 and a similar result holds fo
the p intensityRp . Comparison with Eq.~4.11! gives

^R&5 1
2 ~Rs1Rp! ~4.13!

as stated.
Obviously a similar result applies for transmission, i.

theunpolarizedtransmitted intensity is given by the averag
of the transmitted intensity froms-polarized incident radia-
tion and fromp-polarized incident radiation. Even thoug
the rules for the reciprocity of the individual polarization
are quite complicated, as we saw in Sec. III, our numeri
calculations show that theunpolarizedtransmitted intensity
is reciprocal as required by Eq.~4.8!. This condition thus
provides a powerful check on the accuracy of numerical c
culations.

V. A METHOD TO DETERMINE RELATIVE PHASE

It is of interest to ask to what extent phase measurem
are possible. The direct measurement of an absolute ph
for example,fss, is a difficult task, though not impossible i
principle. On the other hand, phase differences likefps
2fss should be measurable with fairly simple modificatio
of existing instruments.

As far as measurement offss, say, is concerned, it is
sufficient to consider a case with no polarization mixing, a
therefore an incidents beam produces only a reflecteds
beam. To find the phasefss of the latter relative to the
former involves a technique like dispersive Fourie
transform spectroscopy~DFTS! in which the reflection takes
place within the interferometer itself. DFTS has been est
lished for normal-incidence reflection in zero magne
field20 but the development for oblique incidence in a no
zero field would be a formidable task.

The phase differences, on the other hand, can be foun
adding a polarizer in the incident beam and analyzer in
output beam and making a number of measurements
different settings of the polarizer and analyzer. We disc
the arrangement shown in Fig. 11. A retardation plate
sumed to retard they amplitude by« relative to thex am-
plitude is included; it is not strictly necessary but mig
prove useful in practice. When the polarizer is set an anglh
and the analyzer at an angleu, the incident beam is
„cos(h),sin(h),0… and the reflected beam has the followin
amplitude along its polarization direction:

E~h,u,«!5~ r̃ sscosh1 r̃ spsin h!cosu

1~ r̃ pscosh1 r̃ ppsin h!ei«sin u. ~5.1!

The intensityI 5uEu2 is therefore

FIG. 11. Schematic of polarization experiment.P is the polar-
izer, R the retardation plate, andA is the analyzer.
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I ~h,u,«!5@rss
2 cos2h1rsp

2 sin2h12rssrspcos~fss2fsp!cosh sin h#cos2u

1@rps
2 cos2h1rpp

2 sin2h12rpsrppcos~fpp2fps!cosh sin h#sin2u

12rssrpscos~fss2fps2«!cos2h sin u cosu12rssrppcos~fss2fpp2«!cosh sin h sin u cosu

12rsprpscos~fsp2fps2«!cosh sin h sin u cosu12rsprppcos~fsp2fpp2«!sin2h sin u cosu. ~5.2!
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The quantities to be measured are the four amplitudesrss,
etc., and three phase differencesfss2fsp , etc. It is clear
that these can be measured with no retardation plate«50
and that there are many possible combinations ofh and u
that can be used to obtain the amplitudes and the phase
ferences. As an illustration, we display a simple set:

I ~0,0,0!5rss
2 , ~5.3!

I S p

2
,0,0D5rsp

2 , ~5.4!

I S 0,
p

2
,0D5rps

2 , ~5.5!

I S p

2
,

p

2
,0D5rpp

2 , ~5.6!

I S p

4
,0,0D5 1

2 @rss
2 1rsp

2 #1rssrspcos~fss2fsp!, ~5.7!

I S p

4
,

p

2
,0D5 1

2 @rps
2 1rpp

2 #1rpsrppcos~fpp2fps!,

~5.8!

I S 0,
p

4
,0D5 1

2 @rss
2 1rps

2 #1rssrpscos~fss2fps!. ~5.9!

It is clear that seven measurements are required to mea
the complete set of seven unknowns. We note that altho
the retardation plate is not necessary in principle, its inc
sion might increase accuracy of some phase determinat

VI. SUMMARY AND CONCLUSIONS

In this paper we have explored the properties of the tra
mitted and reflected waves when an electromagnetic wav
incident on a variety of structures containing an antifer
magnet. In particular, we have pointed out that the the ph
of the reflected wave off a semi-infinite antiferromagnet m
be nonreciprocal even when the intensity of the reflec
wave is reciprocal. This nonreciprocal phase has direct
measurable consequences when a dielectric overlaye
added above the antiferromagnet in that the intensity
phase both become nonreciprocal. The behavior of the tr
mitted wave, in contrast, is often reciprocal~both in ampli-
if-
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tude and phase! even when the reflected is completely no
reciprocal.

We point out that the previous symmetry arguments o
suggest that the dispersion relationcan benonreciprocal in
certain geometries. This applies equally well to oblique in
dence reflection and therefore these symmetry argument
dicate that the phase can also be nonreciprocal. In cont
the thermodynamic arguments require reciprocity of the
tensity in some situations~when absorption is not presen
for example!, but this says nothing about the phase. Th
phase nonreciprocity may be expected in situations wh
the reflected intensity is reciprocal. In this paper we g
examples of such a situation.

We have concentrated in this paper on discussing exp
ments that could be performed in a Fourier-transform inf
red ~FTIR! system since this gives complete informatio
about the behavior of the reflectivity as a function of fr
quency. In addition, the FTIR method has been used rece
to obtain results on FeF2. However, one could envision othe
possible techniques. For example, an infrared laser a
single frequency could be used. This might allow a simp
determination of relative phase. For example, the initial la
beam could be split, with one beam hitting the sample a
the other hitting a mirror with well-known reflection chara

FIG. 12. Reflection and transmission coefficients used in de
ing Stokes relations in the presence of nonreciprocal reflection.
use the convention that a prime indicates a reflection or trans
sion coefficient when the incident partial wave is in the antifer
magnet. The plus and minus subscripts indicate the direction of
incident wave.
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teristics. The two beams could then be combined, and
interference of the two beams measured. The disadvantag
this technique, of course, is that it is restricted to a sin
frequency.

We note that the behavior explored in this paper should
a general feature in many magnetic systems, not just in
tiferromagnets. The gyrotropic form of the permeability te
sor in Eq. ~2.1! is common to ferromagnets, antiferroma
nets, and weak ferromagnets. The frequency region wh
this nonreciprocity can be explored, however, will vary co
siderably depending on the material. It is interesting to n
that doped semiconductors in a magnetic field can also s
nonreciprocal reflection of intensities. In this case it is b
cause the dielectric tensor acquires a gyrotropic form,1 with
imaginary off-diagonal elements. It would be reasonable
expect that these systems also would display nonrecipr
reflection in phase under similar circumstances, and
should be investigated in the future.

The fact that both the intensity and the phase of the tra
mitted wave in the Voigt geometry are reciprocal is qu
interesting. One might try to explain this using a symme
argument. For example, in the absence of a magnetic fi
the reflection of the system through theyz plane is a sym-
metry operation. This operation effectively reverses the
rection of propagation parallel to the surfaces. Howev
since it is a symmetry operation, it requires that the transm
sion be reciprocal both in phase and in intensity.

The situation is quite different when a magnetic field
applied in the plane of the surface. The reflection through
yz plane is no longer a symmetry operation since it rever
the external magnetic field at the same time as the direc
of propagation. One can consider a variety of operations
volving time reversal. For example, time reversal follow
by a reflection in theyz plane is a symmetry operation fo
the system, as is time reversal followed by a reflection ab
the midplane of the film. Unfortunately, we could not fin
any combination of symmetry operations that related
field configuration for propagation with1u to the appropri-
ate field configuration with2u. Thus a symmetry discussio
does not seem to be able to amplify this result.
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APPENDIX: STOKES RELATIONS IN THE PRESENCE
OF NONRECIPROCAL REFLECTION

Here we extend the standard form of Stokes relations14 to
an interface at which nonreciprocal reflection occurs, e.g
vacuum/antiferromagnetic interface. We consider the c
when there is no mixing of polarizations~as in the Voigt
geometry! and no damping.

We consider all quantities in terms ofE fields, and define
the complex reflection and transmission coefficients sho
in Fig. 12. We now apply time reversal, which cause
change of sign in bothv and H0 . Inspection of Eq.~4!
shows that, forG50, this leaves the permeability unchange
Application of the time reversal to any of the diagrams
Fig. 12 therefore simply amounts to reversing the signs o
the arrows.

Figure 13 shows what happens when we reverse the
rows of Fig. 12~c!, i.e., the result of a ray with complex fiel
E0t̃28 entering from the top right simultaneously with a r
with complex fieldE0r̃ 28 from the bottom right. We can us
Figs. 12~b! and 12~d! to work out the reflected and transm
ted fields associated with each of these two incident rays
shown explicitly in Fig. 13. According to the figure, ther
fore, the field associated with the overall emergent ray m
be regarded as the sum of two fields, each due to an
vidual incident ray. The total field emerging from the botto
left is E0 , so we get~after canceling out theE0’s!

15 t̃28 t̃21 r̃ 28 r̃ 18 . ~A1!

Since there is no ray emerging from the top left, we a
have~making the same cancellation!

05 t̃28 r̃ 21 r̃ 28 t̃18 . ~A2!

If we perform the same procedure based on reversing
arrows in Fig. 12~d! we get the equations

15 t̃18 t̃11 r̃ 28 r̃ 18 , ~A3!

05 t̃18 r̃ 11 t̃28 r̃ 18 . ~A4!

The above equations may be combined to produce the
quired relationships. A further four equations may be
tained by reversing the arrows in Figs. 12~a! and 12~b!, but
they are not required for the analysis presented in this pa

The above analysis applies for zero damping. Howe
the expressions for reflection and transmission coefficien
the Voigt geometry satisfy Eqs.~A1!–~A4! regardless of
damping.
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