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One or two transition temperatures in high-T. cuprates: Real or complex hybrid pairings
at low temperature
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We explore the number of superconducting temperatures which may be expected if, fagprates,
depending on the possible attractive parts in the pairing interaction and the presence or absence of anisotropy.
We also study the subsequent gap shape at 0 K. The possibility of a complex hybrid pditiing) ( at T
=0 K, while a real oneq+s) occurs neail ., is examined for the bulk of the material and also in connection
with recent experiments at the surfaf80163-182608)05237-0

I. INTRODUCTION considered in Refs.)7g measures the degree of anisotropy,
supposed to be small; its sign may be positive or negative.
Twelve years after the discovery of high-temperature The above interaction induces a hybdd s pairing with
superconductivity a somewhat general consensus has unique transition temperature. The existence of onlyTone
emerged, based on a variety of experiments, that the supefollows straightforwardly since only one kind of attractive
conductivity in most of these compounds is a singlet one an‘ﬁ)otential is considered in Eq2) in the d channel &2\
essentially ofd-wave type? although the very source of that <0). On the other hand, the anisotropy automatically im-
superconductivity is not yet completely clarified. A natural plies a mixed pairing, as was clear from Ref. 4. However

form for the pairing interaction thus consists in an expansiona.ent experiments seemed to detect the presence of a sec-

in terms of partial wavegd ands wave at leagt A mixture " :
; ond transition below the observdd in YBCO compounds,
of both d and s waves has been shown to be possible by d P

possibly attributable to the chains. It is not yet clear whether
group-symmetry argumentsit has been suggested that the these results prove the existence of a second superconductin
anisotropic structure of these layered compounds yields P P 9

a " i o »
anisotropy in the pairing interactidi. However, the super- Pransmorlw or whethﬁr th:jS 'S dlée FEE goss@le rl]nhor_noge?temes
conductivity is believed to reside within the Cuflanes and or samp edprepara lon depende ur al(rjn ere |sdno N h

to propagate along the direction by Josephson tunneling. PrOVe Or disprove a separate superconductivity due to the

But even within the Cu@planes, some of these compoundschains in YBCO; we have presented eaffféra discussion
are structurally anisotropic, the archetype being the orthof various scenarios concerning that matter, from which one

rhombic YBCQ123 and YBCQ124), for which a two- Ccan only conclude that the role of the chains is still not re-
dimensionald+s model has been proposeaiith a gap Solved.

shape of the form The purpose of this paper is rather, given an interaction
more general than Eq2), containing or not an anisotropy
A(k)=A[cog2¢)+r], (1) and possibly more than one attractive source, to study how

many transition temperatures can be expected and what
would be the subsequent gap shape at the transition tempera-
ture(s) and at 0 K. This is analogous to finding what is the 0
K multicomponent order parameter of a ferrimagnetic mate-

order partial wave contributes. The gap shapeis a four rial or of crystals which are altogether ferroelectric and fer-
leaf clover(when|r|<1), as in t.he pure-wave one, but the romagnetic. Note that the two superfluid transitions found in

. . 3 .
size of the leaves in one direction is different from the size ofiduid “He (Ref. 11 at elevated pressure are different from
the leaves in the perpendicular direction so that the node&hat we wish to discuss here. In contrast, our discussion
occur at angles slightly different from the diagonal direc-May be relevant for the two superconducting transitions

tions. Thed+s model proposed in Ref. 5 followed from a found in UP§ in zero magnetic fieldt: We will, in particu-
two-dimensional anisotropic pairing interaction containinglar, emphasize the fact that the presence of fwds only

where ¢ is the angle between the momentlknand the ref-
erence axist =0 leads to the purd-wave case studied, for
instance, in Ref. 65 represents a small amount sfvave
admixture in thed+s model, assuming that no other higher

an attractive part in the channel governed by the presence of two attractive potentials of dif-
ferent symmetries. In other words, the existence of a mixed
V(k,k")=(1/Ng){—2\[cog2¢)cog2¢") pairing does not necessarily implies two transition tempera-

tures. An anisotropy in the interaction potential is sufficient
T9(cod2¢)+cod2¢"))]+ u}. @ to induce a mixezypairing in the Wh2|e superconducting

$and¢’ are the azimuthal angles of, respectivdfyandk’. ~ phase, even in the cases where only dieoccurs’® In

w is the Coulomb repulsion in th@channel,N, is the den- ~ contrast, in the absence of anisotropy in the interaction and if

sity of states in the normal phase, supposed to be constaiwo T, arise, one will get a mixed pairing only below the

(later on, a more elaborate anisotropic density of states wdswer T,. We will also examine the possibility of having a
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complex hybrid pairingd+is or s+id) at T=0K in cases A=[a+bYB]/[1-(aY/2)],
for which, nearT the pairing is real ¢+ s or s+d).
B=Db[1+(YB2)]/[1-cY]=b[1+YC]/[[1-(aY/2)],

Il. THE MODEL INTERACTION (6)
for\r/nve consider, in two dimensions, an interaction of the C=[c+(bYB2)]/[1-cY].
Y=NgV IN[1.1340,/T], whereT is the temperaturep, is
V(k,k")=—V{a cog2¢)cog2¢’) an energy cutoff, anblly is the normal phase density of states
(see the remarks belowThe system of Eqs(6) is easily
+b[cog2¢)+cog2¢")]+c}, 3 solved as
whereV is a positive constant, b, andc are constants of 1 [a+(b?>—ac)Y; a+(b’—ac)Y,
arbitrary signs{while, in Eq.(2), a was>0 andc was <0). A=5 Y-v, Y-V, ’
Then, in the simplest weak-coupling BCS-type formalism,
T. can be obtained from the normal phase, looking for the
. e . . . b 1 1
poles in the infinite ladder particle-particle correlation func- = |——], (7
tion D|Y-Y; Y=Y,
I'(k,k)=TOKk)+TO Kk k") +"-, (4)

_ 1 [c+(b*~ac)Yy/2 c+(b2—ac)Y1/2}
whereI'©(k,k')=V(k,k’) represents one line of interac- D Y=Y, Y=Y, ’

tion in the ladder]’(k,k’) contains two lines of interac- . . 92
tion, etc. The integrals over the one-electron Green'’s func\—'i’he”/azYlv2 ?(re 1S£)|(l),lt|0n§ of dthe equatiop(a/2)—bJY
tions kinetic energies and over the angles can be decoupled i1‘[(a )+c]Y+1=0 and rea
|k|=1|k’'|=kg, the Fermi momentum. Then the above series

(4) can be exactly summed by elementary algebra and one _(3/2)+CiD ®)
f|ndS 12— ac— b2
I'(k,k")=—V{A cog2¢)coqg2¢") with
+B[cog2¢)+cod2¢' )]+ C}. 5
[cog2¢)+cog2¢')]+C} ©) D={[(a/2)—c]?+2b2}12 9
A, B, and C are solutions of the following set of coupled
equations: One can then write Eq5) as
. V [(al2)—c—D , (al2)—c+D ,
P(kk') =5\ ==y [cod2¢) +r1][cod2¢’) +11]— —C———[Cod2¢) +r;][cog2¢") +T5]( (10)
D Y-Y, Y=Y,
|
with ry , given by gap which develops beloWw,; induces a modification in the
density of states. Therefore, in principle, the next transition
:—b = i _a_ temperaturel ., should be expressed in terms of this modi-
“ (a/2)—c+D 2b 2 fied density of states and nédt,. However one can check

that only minor changes would result so that we will take the
same density of statéé, in the expressions of boff;; and
T.o. Moreover the question of a common cutesf, in Y,

The polesy=Y; andY =Y, will give 2, 1, or O transition
temperatures depending whethgrandY, are both positive

or just one of them is, or none of them. It is clear from Eq'andY mav also be questioned. Indeed if two attractive po-
(8) that the corresponding.; andT., contain mixed contri- 2 may d ) P

butions of the different symmetrieén the case where both tentials of different symmetries are present, they may involve

poles contribute, the temperature where superconductivitffifferent characteristic energies, say; and wg . However,

will first appear will, of course, be given by the highest pne Since, as clear from Eq8), T¢; and T, result from a com-

The gap shapes are given by the numerators ir(H), they ~ bined effect of these two sources of attractive interactions of

are of the form(1) with, close toT., the value ofr, r,, different symmetries, one can reasonably choose a common

(corresponding to the poles, ,, respectively, given by Eq.  average cutofi,.

(1. ’ On the other hand, one can also calculate analytically the
Two remarks must take place here. Whérdecreases gap atT=0 K. Separating again the integrals over the one-

below the first encounterel}., sayT,;, the superconducting electron kinetic energy and the angular off@spne gets
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A(k)=A[cog2¢)+r]
2@ d()b/
=Novfo e [a cog2¢)cog2¢’)+b(cog2¢)

+cog2¢'))+c]A[cog2¢")

| 2w 12
N A+ cos 297) 42
which vyields the set of two coupled equations
a — _ —  a
1= §+br JO+(ar+b)Jl+§J2, (1339
b _ — _
r= §+cr J0+(br+c)J1+§J2, (13b)
with
NoVa=a, NgVb=b, NgVc=c (14)
and
2w dlﬂ 2(1)0
‘]“_Jo ﬂcos{nw)ln(A(Hcosw))'
y=2¢, n=123.... (15)

The integrals],, have been comput&@ (supposing that is
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FIG. 1. In the absence of anisotroply=0), the number of the
expectedT, in the various regions of thea(2,b) plane[see Eg.
(3)], near the transition temperature.

In this case, af =0 K, one gets, from Eq(17) and Eq.
(139 (with b=0,3;=0 and J,=—1/2), [A(T=0)/T4]
=2.139, in agreement with formul@) in Ref. 6. Since in
the swave BCS case one hfA(T=0)/T.s]gcs=1.76, one
gets here by comparison A(T=0)/T.4q=1.215A(T

a real quantity and their analytical expressions depend=0)/T.glgcs '

whether|r| is smaller or larger than 1. For convenience, we

recall these expressions here: for <{r|<1, J,
=IN(4wy/A(T=0)), J;=—r, J,=r2—1/2; for |r|>1, J,
=In{[4wo/A(T=0)][|r|— Vr?— 11}, J;=—sgnr{[r|—r—1};
J,=[1/2){|r|- Vr?—1}2. Solving the system of equations
(13) givesr and[ wy/A(T=0)], atT=0 K. We now exam-
ine specific cases.

lll. RESULTS

A. In the absence of anisotropy

This is the case of tetragonal cuprates which are isotropic

within the CuQ planes. No anisotropy meahs=0; it then

follows from Eg. (6) that B=0 and the system reduces to

two decoupled equationsA=a/[1—-(aY/2)], C=c/[1
—cY]. We then get three possible case® discard the case
wherea<0 andc<0 for which the denominators éfandC
cannot vanish so that no superconductivity is induced

(1) a<0, c>0. Only the last term in Eq(5) is negative
corresponding to the standasdvave BCS superconductivity
whereT is given by

1/c=1n(1.1340/Too) (16)

and the gap is a constaatk) =c.

(2) a>0, ¢<0. The first term in Eq(5) is the only nega-
tive one corresponding to purgwave superconductivity,
with T4 given by

2/a=In(1.1340,/Tog) (17)

and the gap has the forti(k) =a cos(2p) with r =0. This is
the case studied, for instance, in Ref. 6.

We emphasize that in both casély and (2), only one
attractive contribution, of a given symmetry, to the pairing
potential is involved either in theor thed channel resulting
into only one transition temperature.

(3) a>0, c>0. This case is new. One has two attractive
contributions, of different symmetries, in the pairing poten-
tial, one in thed channel and another one in teechannel.
Then two transition temperatures follow given by

1/c=1n(1.1340 /Ty,

s-wave gap nearT., A(k)=c, (18a
2/la=1In(1.1340¢/T¢q),
d-wave gap neaff,, A(k)=a cog2¢). (18b

Depending whethec is larger or smaller thana(2), T
or T4 is first encountered whef decreases. Between the
higher T, and the lower one, one has thus only one type of
superconductivity and thus either a purayr a purelyd
type of gap. But below the lowér,, one will have a mixture
of the two types of superconductivity, with a gap of the
general shapél), in particular atT=0 K. The above cases
are summarized in Fig. 1.

We next examine th&=0 K region, with the gap of the
form A(k)=A(T=0) [cos(2p)+r(T=0)] wherer(T=0) is
finite.

(i) Let us first assume that the superconductivity is mainly
of d-wave type with a smals-wave component so théa|
<1. Then (with the help of the corresponding values of
Jo, J1, andJ, given above Eq. (13) reads
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2la=Jy,—r2—1/2, (199

1/c=Jy,—1 (19h)

with Jg=In[4wy/A(T=0)] [noting thatr =0 is excluded here,
so that Eq.(13b) simplifies to yield Eq.(19b)]. Then, from
Eqg. (19), and using Eq(18), it follows that

r2(T=0)=In(1.649 T.q/T.s),
with A(T=0)/T.s=1.298. (20)
Here [A(T=0)/T.s|=0.73TA(T=0)/Tcslgcs. On the

other hand, since we used to start with thecorresponding
to 0<|r|<1, then, this implies that 0.686(T.q/T.s)
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<1.649. More precisely, within this range, and subtracting g 2. 1n absence of anisotropp£0) and whera>0, c>0,

Eqg. (199 from Eq. (19b), one finds

0<r2(T=0)<1/2 for 0.606<T.4/Tcc<1, (218

1/2<r(T=0)<1 for 1<T.4/T.<1.649 (210

[in the particular case wher@.4=T.s, then r?(T=0)
=1/2].

When (T¢q/Tes) <0.606,r2(T=0)<0,r(T=0) is purely
imaginary and one obtains @at=0 K, ad+is pairing with a

gap which cannot vanish. We will come back to this point in

Sec. IV with the Appendix.
(i) Now let us examine the case|>1. Then, here too,
the gap(1) never vanishes. We solve the systét8), with

b=0 and the appropriate values of the expressijnswe
then find, with the help of Eq.18)

T, 1
In(_l_—d)z[|r|—\/r2—l]{ —Slrl=\rP-1)) @2

and

2r2—1
r|

[2
Ir]

A(T=0
In(0.283(_|_—)) =In[|r|—r2—=1]-1+ (23

Cs

One verifies, in these equations, tiay is indeed larger than
T.s and one get§A(T=0)/T.s]<3.533. Thesd =0K re-
sults are summarized in Fig. 2.

To conclude on this particular cas®), we get two tran-
sition temperatures, a purefyone and a purelyg one, arising
in an order which depends on the ratio/a compared to 1.

in Eq. (3), the pairing symmetries expected a=0K in the
[r’(T=0), T¢q/T.<] plane, indicating also the presence or absence
of nodes in the gap.

However, to better explore this region, one should reconsider
the integralg15) whenr is a complex quantitysee the dis-
cussion in Sec. V.

B. In the presence of anisotropy

This is the case of orthorhombic cuprates or, more gener-
ally, those compounds which exhibit an anisotropy within
the CuQ planes. In this caség#0 andB+#0; theT,.'s are
given by the polesy=Y,, in Eq. (10), i.e., one does not
have a purelyd- or purelys-wave superconductivity, the an-
isotropy always yields a mixed pairifigt may appear con-
venient to rewrite Eq(3) as

V(k,k")=—V{a[cog2¢)+bl/a][cog2¢’)+b/a]
+[ac—b?]/a}, (24)

where the last term represents an “effective” interaction in
the s channel.

Here too we examine various casédle discard the un-
physical case of an anisotropy so strong th#t>|a] and
[b|>]c]).

(1) a<0 and c<0 or, equivalently, &0 and
(ac—b?)/a<0. We have no attractive contribution to the pair-
ing interaction and thus n®,.

(2) a<0 and c>0 with (ac—b%a>0. There is one attrac-
tive contribution(in the s channel and thus one transition

But below the lower transition temperature, an hybrid pairingtemperature.

develops and, af=0 K, the gap is a hybrid + s one, of the

(3) a>0 and c<0 with (ac—b?)/a<0. Here one has one

form (1), with a value of|r| which is smaller or larger than attractive contributior(in the d channel and thus one tran-

1/2 depending whethér.q is smaller or larger thai.s. In
other words, it is important to note that, B=0 K, a small

sition temperature. This is the case studied in Refs. 5.
(4) a0 and c0 or, equivalently, &0 and

swave component or a larger one is governed by the naturgac—b?/a>0. We have two attractive parts in the pairing

of the T, which is the closest to 0 K: €r?<1/2, i.e., a
hybrid d+ s pairing with a dominantl-wave component oc-
curs atT=0K if T.q4 is closer b 0 K thanT.; insteadr?
>1 is accompanied by s+ d-wave pairing aflf =0 K, with
a dominants-wave component, when, ¢ arises closer to 0 K
thanT.q and is far from it. Moreover, whenca>1, i.e.,
T.s IS much higher thai .4, r(T=0) is imaginary and one
could expect, atT=0K, a complex d+is pairing.

interaction, one in thel channel and one in the channel.
We therefore get two possible transition temperatures.

The above four cases are illustrated in Fig. 3 which sepa-
rates, in the &/2,c) plane, the various regions with their
pairing symmetries and the number of correspondiiRg
Note that the first bissectrix corresponds to the separatrix
wherea/2=c andr?=1/2, which separates the regions
where thed wave is dominant from the regiost-d where
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c for instance, af =0 K, although, as seen above, the hybrid
pairing is always real and of theet s type neafT ., whatever
1Te 2T 7 .
v the sign of the parameters.

s+d s+d 7
, 2 T IV. DISCUSSION

y d+s To conclude, with a pairing interaction expanded in terms
of sandd components, containing or not an anisotropy, we
0 a/2 have analyzed a number of situations depending on the signs
of the involved parameters. We have recovered some known
1Te results and studied new ones. The number of transition tem-
peratures is intimately linked to the number of fermion-
fermion attractive parts of different symmetries involved in
the pairing potential. In the presence of anisotropy, one al-
ways get a mixed pairing in the whole temperature range of
the superconducting phase, independently of the number of
attractions. In the absence of anisotropy and if more than one
attractive interaction is involved, one also has a mixed pair-
FIG. 3. In the presence of anisotroply£0) and in the &/2c)  ing but only starting below the lower.; between this one
plane[see Eq.(3)], the expected various pairing symmetries nearand the highest one, one gets either a prer a pured-
the transition temperature and the corresponding numbeFg .of wave gap shape. In other words, the presence of anisotropy is
a sufficient condition to get a hybrid pairing in the whole
the s wave is dominant. One can indeed easily verify that,superconducting phase, but it is not a necessary one. The
when the anisotropy decreases toward @ decreases in existence of two transition temperatures, in the absence of
the first region with a tendency to pudkwave behavior, any anisotropy, also imposes a hybrid pairing, although only
while it increases in the latter one toward a pangave one. at very low temperature, below the lowé&st. Note that the
However let us repeat here that, in all these various regionsialue of r varies betweenT=0K and T, and may even
we have hybrid pairings and that the corresponding transitiopossibly change nature as will be discussed now.

d+s

AN

temperatures reflect this mixture. We have found, in this paper, that the calculated param-
Now, atT=0 K, one gets a mixed pairing of the forfh);  eterr nearT, is always real, resulting in a hybrid pairirt
solving Eq.(13), we find +s or s+d which is a real quantity, and the corresponding

gap exhibits four nodeéf |r|<1). However, at lower tem-
— ) _ peratures and, in particular @=0 K, r may either remain
r+(ac—b9)[(1-2r9)J;—rd2]=0, real or become complex; in such a case, one ends up with a
(25) complex gap of the type+is or s+id with no nodes. At
first sight this does not apply to the hole-doped cuprates
whereJ; andJ, are functions of. Equation(25) will give r ~ where the gap has been shown, experimentally, to exhibit
as a function of the three parametarsb, andc. In any case nodes;>'® however, this has been shown to be so only at
r will be finite, in general, and thus the gap shape will be offinite T and in the bulk of the material. We now elaborate
the form(1); we will always have a mixed pairing both at the more on these two restrictions.
transition temperature and at 0 K. However, in this case, with Indeed it has very recently been demonstréftétat a gap
the superconductivity first appearing &t,, there may be With nodes(inducing a lineaT dependence in the magnetic
some sign of the existence af,, at a temperature lower penetration depth of the clean cuprates as experimentally
than T.;, with some accident in th& dependence of the observedf) contradicts the third law of thermodynamics; it
physical properties. This may be the case, for instance, if th&/as then suggested in Ref. 17 that a @k8fpe of pairing, at
problem contains one main source of attraction indiehan- ~ finite temperature, may switch to a complex one n&ar
nel, possibly due to antiferromagnetic spin fluctuatidmmd =0 K. This suggestion would be in agreement with the pos-
another one in the channel, possibly coming from the stan- Sibility that we have encountered above. Such a change
dard electron-phonon origin, but weaker, so that the correcould then be checked through experiments like those in
sponding transition temperature occurs below the latter ondrefs. 15 and 16, performed both nélar where four nodes
We do not pretend that this is the case in the cuprates; odtave already been revealed, but also rieai0 K where the
purpose is just to show what are the consequences of suchsame experiments should not detect any node.
possibility, which remains to be checked by the experiments. On the other hand, one could ask whether our finding
One last remark: Equatiof25) becomes an equation of could be related to the+is pairing observed, at low tem-
the third degree im if J; andJ, are computed fofr|<1.  perature, at the surface of a higQ-compound having an
Such an equation is known to possibly exhibit complex rootstherwised or d+s pairing in the bulk, like YBCO® We
depending on the values of the parameters. However, in suduote here a sentence of Ref. 19: “Andreev scattering near
a casgas in the last sectionone should recompute tllg’s,  the surface of ad,2_,2 superconductor causes strong pair
assuming, to start with, thatis a complex quantitysee the breaking. The quasiparticles may then be paired by a sub-
Appendi¥. This would allow us to better explore the possi- dominant pairing interaction that is less sensitive to surface
bility of getting a hybrid complex pairing of the+is type, pair breaking than the dominadtwave one.” We also quote

b(1-2r2)+2

. a
€73
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a sentence of Ref. 20: “The surface state of @y 2 su-  evidence that, for instance, two different sources of attractive
perconductor will exhibit a spontaneously broken time-potential play a role, then according to our results, one
reversal symmetry phase at sufficiently low temperature.”’should expect, below the higheBt, some signs of the ex-
Given these claims based on earlier theoretical works reistence of a lower one in the temperature dependence of the
ferred to in Refs. 19 and 20 and based also on the experphysical properties. Whether this is the case in the experi-
mental work of Ref. 19, we have shown here that, startingnents of Refs. 8 and 9 is still an open question.

with ad+ s pairing neafT ., we may end up af =0 K, with
possibly, ad+is pairing depending on the values of the
parameters. Modifications in these values could thus occur at
the surface of the compound, compared to the bulk, because . . .
of the pair-breaking reason invoked in Ref. 19 and quoted One can easily show that these integrals are given by
above.

APPENDIX: THE INTEGRALS J; AND J,
WHEN THE PARAMETER r IS COMPLEX

Ji=—r+(r’=1)K, J,=—1/2+r2—r(r>= 1)K,

One can also wonder whether the cuprates which, so far, (A1)
do not exhibit nodes in the gap at finite like the electron-
doped Nd compound?, might correspond to some of the Where
cases studied here, where, in addition to a possibave 1 (20 dy
component, as-wave one is dominaritr|>1 in Eq.(1) so K=— j — with r=r'+ir". (A2)
that A(k) never vanishds This could occur, for instance, if 2m Jo r—cosy
the following picture could be valid for this compound which k can pe computéd and reads
is known to be highly disorderéd® It has been shown in
Ref. Ha), within thed+ s model corresponding to the pairing 1 1
(2), that a sufficient amount of nonmagnetic impurities, K= = - (A3)
which are pair breaking fod and d+ s-wave superconduc- V=1 X tiXp

tivity, yields the opening of a gap and a strong increase ofyjth

the effective value of at T=0K; in that case the balance

between thed and s components changes drastically. This 1

occurs for an impurity concentration close to, but smaller Xyo=— {\[r"2+r"2= 112+ 4r"2%(r"2—r'2+1)}12

than, the one wher€_ vanishes and one must remember that

the T, in the Nd compound is about four times loW&? (Ad)

(~21-22 K than those of the hole-doped cuprates, so thaWith the above ingredients, one can solve E2p) which

the above scenario may possibly apply. gives two coupled equations yieldimg andr” as functions
Finally also, if in the future, one gets experimental strongof the parameters, b, andc.
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