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Low-frequency nonlinear magnetic response of an unconventional superconductor
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We consider an unconventional superconductor in a low-frequency harmonic magnetic field. In the Meissner
regime at low temperatures a nonlinear magnetic response arises from quasiparticle excitations near minima in
the energy gap. As a consequence various physical quantities acquire higher harmonics of the frequency of the
applied ac field. We discuss how an examination of the field and angular dependences of these harmonics
allows the determination of the structure of the energy gap. We show how to distinguish nodes from small
finite minima~‘‘quasinodes’’!. Gaps with nodal lines give rise to universal power-law field dependences for the
nonlinear magnetic moment and the nonlinear magnetic torque. They both have separable temporal and angular
dependences. In contrast, with gap functions which only have quasinodes, these physical quantities do not
display power laws in the applied field, and their temporal and angular dependences are no longer separable.
We illustrate this via the example of the nonlinear magnetic moment for ad1 is gap. We discuss how to
perform ac measurements so as to maximize the nonlinear signal, and how to investigate in detail the properties
of the superconducting minima, thus determining the gap function symmetry.@S0163-1829~98!04137-X#
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I. INTRODUCTION

There are strong indications from numerous experime
results and theoretical calculations that the symmetry of
pairing state1–4 in various superconducting materials is n
that of an isotropics wave. Unconventional pairing state
have been assigned to different high-temperature super
ductors~HTSC’s!, heavy fermions5,6 ~HF’s!, and some or-
ganic charge transfer salts7–9 ~OS’s!. The interest in deter-
mining the pairing state for these materials arises both fr
the efforts to obtain significant clues about the microsco
mechanisms responsible for superconductivity and to be
understand their physical properties.

For HTSC’s it is widely accepted that most of the expe
mental results support a predominantlyd-wave symmetry.
There is, however, no consensus about the presence o
mixtures of pairing states of different symmetry whic
would modify the position and value of the minima in th
superconducting energy gap. These admixtures might c
the angle between the nodal lines to depart fromp/2 or
convert the nodes to very deep minima~‘‘quasinodes’’!, or
both. Part of the difficulty results from the surface charac
of many high quality pairing state probes. They measure
formation about the order parameter~OP! within a length
scale of a few coherence lengths and are very susceptib
material imperfections near the surface. Furthermore it is
clear whether the pairing states are the same in the sur
region as they are throughout the bulk.10–14 There are also
indications that the symmetry of the OP might be tempe
ture dependent.15–17 The pairing state controversy for othe
suggested unconventional superconductors such as
SrRu2O4,18,19 and some OS’s is even more ambiguous.

In this paper we consider the low-frequency magnetic
sponse of a spin singlet unconventional superconductor
time-dependentmagnetic field. We focus on the low
temperature regime in the Meissner state for OP’s hav
lines of nodes~or quasinodes.! The nonlinear response20–28

arising from quasiparticle excitations near the minima in
PRB 580163-1829/98/58~13!/8738~11!/$15.00
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energy gap generates in various physical quantities hig
harmonics29 of the applied field frequency. Since the r
sponse extends over a length scale on the order of pen
tion depth, it constitutes a bulk probe of the superconduct
OP. The use of the nonlinear response to a time-indepen
field to perform gap spectroscopy~that is, to locate the node
or quasinodes in the gap! was previously discussed.25 How-
ever, nonlinear effects are best detected through the use
techniques, since then the nonlinear response takes pla
frequencies different from the input frequency at which t
much larger linear response is found. These techniques
nificantly simplify the process of resolving the desired sm
nonlinear signal, which is a signature of the symmetry of
energy gap, from the large spurious but linear effects suc
demagnetization factors,a-b plane penetration depth aniso
ropy, and trapped flux.

In Sec. II we solve the nonlinear Maxwell-London equ
tions in the low-frequency Meissner regime. We general
the perturbation method of Ref. 25 to include the tempo
dependence. The method is illustrated in the example o
OP with mixedd1s symmetry. We investigate the time an
angular dependence of the nonlinear magnetic moment
the associated torque. The results for these quantities
easily extended to other forms of energy gaps with no
since, as we shall see, in those cases one has separable
poral and angular dependences. The time dependence
gaps with lines of nodes is universal:Ha(t)uHa(t)u for the
nonlinear magnetic moment anduHa(t)u3 for the nonlinear
magnetic torque, whereHa(t) is the applied magnetic field
Both of these quantities have the same angular depende
The nonlinear effects that we discuss here can also be vie
as field- and angle-dependent corrections to the super
density ~penetration depth!. We briefly discuss how our
methods are suitable to extend studies of intermodula
and harmonic generation29 to low temperatures.

In Sec. III we consider superconducting gaps witho
nodes but with quasinodes, as illustrated by ad1 is OP with
a small s component. We examine the nonlinear magne
8738 © 1998 The American Physical Society
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PRB 58 8739LOW-FREQUENCY NONLINEAR MAGNETIC RESPONSE . . .
moment, which exhibits a more complicated temporal a
angular dependence and a sharp enhancement of its m
mum amplitude, compared to that occurring in the case
gaps with nodes. We show how to use these effects to
perimentally distinguish nodes from small minima in the s
perconducting gap. In the final section we present our c
clusions and discuss possible extensions of this work.

II. NONLINEAR MAGNETIC RESPONSE

A. Maxwell-London electrodynamics

In the low-frequency regime, i.e., in the quasista
case,29–31 the relevant equations of the nonlinear Maxwe
London electrodynamics are formally the same as in
static case. Following the notation and results of the stati
dc case,25 we have

¹3¹3v5
4pe

c2
j „v…, ~2.1!

where the gauge invariant condensate flow field or superfl
‘‘velocity’’ v is defined as

v5
¹x

2
1

e

c
A, ~2.2!

with x the phase of the superconducting singlet OP,A the
vector potential, ande the proton charge. The relation be
tweenj andv is generally nonlinear and given by22,23,25

j „v…52eNfE
FS

d2sn~s!vf H ~vf•v!12E
0

`

dj f @E~j!

1vf•v#J , ~2.3!

whereNf is the total density of states at the Fermi level,n(s)
the density of states at points at the Fermi surface~FS!
normalized to unity,vf(s) thes-dependent Fermi velocity,f
the Fermi function withE(j)5(j21uD(s)u2)1/2, T the abso-
lute temperature, andD(s) the OP. The first term in Eq.~2.3!
represents the supercurrent arising from the unperturbed
densate and the second is due to quasiparticle excitation
T'0, and for lines of nodes~or quasinodes!, the second term
of Eq. ~2.3! can be written as25,32

jqp„v…5(
n

jqp,n„v…'22e(
n

Nf nE
Vn

dfn

2p
vf n@~vf n•v!2

2uD~fn!u2#1/2, n51,2, . . . , ~2.4!

wheren labels the nodes~quasinodes! of the gap,Vn denote
regions where quasiparticle excitations are allowed, defi
by uD(fn)u1vf•v,0, fn is the azimuthal angle with respe
to the closest noden, andv f'v f n is its value at that node
Nf n is the appropriate weighted density of states,33 equal to
Nf for an isotropic FS.

As stated in Ref. 29, the relation betweenj andv given by
Eq. ~2.3! can be used in the time-dependent case provi
that the frequencies are smaller than the quasiparticle re
ation rate. For YBa2Cu3O72d ~YBCO!, this rate ranges34,35

from 1011 to 1013 Hz, depending on the temperature. Me
d
xi-
f
x-
-
n-

e
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id

n-
At

d

d
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-

surements of the low-frequency nonlinear magnetic respo
are designed to be performed36 at frequencies under 100 Hz
well below this limit.

For different OP’s, we study the dependence of the n
linear magnetic response on the direction of the field app
in the a-b plane. We consider a slab sample, infinite in t
a-b plane and of thicknessd, much larger than the in-plan
penetration depth,37 in the c direction. This allows for an
analytic solution and preserves the angular dependenc
the nonlinear effects found for realistic finite three dime
sional geometry.23,24 For a slab, Eq.~2.1! can be written as

]zzv1
4pe

c2
j „v…50 ~2.5!

and the boundary conditions are

H~z,t !5Ha~ t !uz56d/2 . ~2.6!

We take a particular time dependence of the applied fiel

Ha~ t !5Hdc1Haccosvt, ~2.7!

which is suitable to experimentally study higher harmon
arising from the nonlinear response. The parity of quantit
such asj qp under a sign change ofHa(t), as it occurs in an
ac field, must be carefully taken into account. For an
satisfying uD(2k f)u5uD(k f)u, wherek f is the Fermi wave
vector, and forHa chosen such that the nodal direction
quasiparticle excitations isx̂n , the key point is that a re-
versed field2Ha produces excitations along the oppos
direction 2 x̂n . Therefore j qp is odd. This will help us to
anticipate various modifications of the results for the sta
case.

B. Gaps with nodes

We consider an energy gap which can be accurately
proximated near its nodes22,25 by

uD~fn!tu'umDefffnu, n51,2, . . . , ~2.8!

wherem is the slope of the dominant OP component andDeff
is the effective amplitude of the gap function. A particul
case of Eq.~2.8! corresponds to ad6s OP of the form
Dd6s(f)56Ds1Ddsin 2f, wheref is measured from the
X axis, depicted in Fig. 1. This form is often chosen to i
clude the effects of orthorhombic distortion in the YBC
family of cuprates, withm52 and Deff5(Dd

22Ds
2)1/2. For

DsÞ0, the nodes of Eq.~2.8! are no longer separated by a
angle ofp/2. The nodal directions are along the unit vecto
x̂n , n51,2, . . . ,which form nonorthogonal axes. The nod
are shifted by an angle6n ~see Fig. 1!,

n[
1

2
sin21S 6Ds

Dd
D , ~2.9!

from the orthogonal axes, which we denote byX andY ~the
6 sign corresponds to thed6s forms of the gap!. Through-
out this paper theX andY axes will remain along the noda
directions of a pured wave. The direction of the applied fiel
will be given by the anglec betweenHa(t50) and the1Y
axis, depicted in Fig. 1. It is convenient to introduce dime
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8740 PRB 58IGOR ŽUTIĆ AND ORIOL T. VALLS
sionless versions of the superfluid velocity and magn
field. For simplicity, we will perform our calculations below
for an isotropic FS. Our results are largely independen
this assumption, as we will occasionally emphasize. It
however, straightforward to extend these considerations
examine in detail the effects of FS anda-b plane penetration
depth anisotropy as have been addressed in Ref. 25. We
fine

ui[
v iv f

mDeff
, i 5X,Y, ~2.10a!

hdc,ac5
Hdc,ac

H0
, H05

cDeff

elabv f
, h5hdc1hac,

~2.10b!

where the in-plane penetration depthlab for a cylindrical FS
is given by 2pNfv f

2/c2. In terms of these quantities and o
the dimensionless coordinateZ[z/lab , we obtain, from
Eqs.~2.4!, ~2.5!, and~2.10!,

]ZZui2ui1sgn@h~ t !#@e1i~c!uX
21e2i~c!uXuY1e3i~c!uY

2 #

50, i 5X,Y, ~2.11!

where the factor sgn@h(t)# arises from the odd parity ofj qp
with respect to h(t)5hdc1haccosvt and the constants
e1,2,3i(c) are defined in Appendix A. The appropria
boundary conditions for Eq.~2.11! are

]ZuXuZ5Zs
5

h~ t !

m
cosc, ]ZuYuZ5Zs

5
h~ t !

m
sinc,

uX,YuZ50[0, ~2.12!

where Zs[d/2lab . The solution of Eqs.~2.11! and ~2.12!
can be sought in the form

FIG. 1. Coordinates and definitions used in the paper. The
and the energy gap are shown schematically. The crystallogra
directionsa andb are indicated. The orthogonalX andY axes are
along the nodal directions of the pured-wave gap. Thed1s nodal
directions, labeled 1,2,3,4 are shifted by an angle6n @see Eq.
~2.9!# from their Ds50 values. The applied magnetic fieldHa

forms an anglec with the 1Y direction.
ic

f
,

nd

de-

ui~Z,t !5ui0~Z!1(
j

@ui j
e ~Z!cosj vt1ui j

0 ~Z!sin j vt#

j 51,2, . . . . ~2.13!

Using a perturbation method25 and taking into account the
smallness ofhac and hdc by neglecting cubic and highe
terms in these parameters, we obtain the leading contribu
to ui(Z,t) ~determined byui0 , ui1

e , andui2
e ). The quantities

of interest, e.g., the magnetic moment or magnetic torq
can be written down25 in terms of the surface values of th
fields. By substituting Eq.~2.13! into Eqs.~2.11! and ~2.12!
we get

ui~Zs ,t !5h~ t !@coscd iX1sincd iY#1
h~ t !uh~ t !u

3m2
@e1icos2c

1e2icosc sinc1e3isin2c#, i 5X,Y, ~2.14!

whered i j is the Kronecker symbol. The angular dependen
of the second term, nonlinear and nonanalytic in the field
identical to that found in the case of constant applied fie
Thus it remains to investigate the temporal dependence
various quantities which are also nonanalytic. The nonlin
transverse magnetic moment for gaps with nodes can
written ~Appendix A! as

m'~c,t !5
Slab

6mp

Ha~ t !uHa~ t !u
H0

$e3Xsin3c2e1Ycos3c

1cosc sinc@~e1X2e2Y!cosc

1~e2X2e3Y!sinc#%

[Nm

h~ t !uh~ t !u

h2
f ~c![NmM'~c,t !, ~2.15!

whereS is the slab area and the factorlab reflects that the
nonlinear effects arise from currents present within a len
scale on the order of penetration depth. We have introdu
the normalization factor

Nm5
Slab~Hdc1Hac!

2

6mpH0

1

3A3
~2.16!

and the normalized transverse momentM' . The angular
dependence ofm'(c,t) or ofM'(c,t) is given by the func-
tion

f ~c!53A3$e3Xsin3c2e1Ycos3c

1cosc sinc@~e1X2e2Y1~e2X2e3Y!#sinc%.

~2.17!

This result is independent of time and thus it is the same
in the static case. For a pured wave f (c) has a maximum
value of unity, and so does the normalized moment a
function of angle.

Experimentally, one can best detect the nonlinear effe
by examining the dominant harmonics~time Fourier compo-
nents! of m'(c,t), which are at 2v and 3v. Analysis of the
field and angular dependence of these harmonics mak
possible to accurately determine the position of the node

S
ic
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PRB 58 8741LOW-FREQUENCY NONLINEAR MAGNETIC RESPONSE . . .
the energy gap. One could obtain the same information fr
mi(c,t), discussed in Appendix B, but with greater difficul
because of the extremely large linear signal. The ang
dependence ofmi(c,t) is different than that ofm'(c,t) but
they both have identical temporal dependence.

Since the measurements are performed in the Meis
state, one must haveHa(t)<H f 1 , whereH f 1 is the field of
first flux penetration, somewhat larger thanHc1 . Therefore,
one wishes to optimize the experimental signal~i.e., the size
of the 2v or 3v harmonics!, by an appropriate choice of th
ac and dc components of the applied field at constant t
maximum field. We can determine the optimal field mixtu
i.e., the ratioR[Hdc/Hac5hdc/hac ~at fixed total field h
5hdc1hac) which would produce the maximum signal for
normalized harmonicM j (c),

M j~c!5
2

p~11d j 0!
E

0

pm'~c,t !

Nm
cosj vtd~vt !

5
2

p~11d j 0!
E

0

ph~ t !uh~ t !u

h2
cosj vtd~vt ! f ~c!

[M̄ j f ~c!, j 50,1,2, . . . , ~2.18!

which factorizes into field- and angular-dependent partsM̄ j
and f (c). This factorization is also valid for an anisotrop
FS. The field and angular dependence ofm' for an aniso-
tropic FS with nodal lines, as obtained in Ref. 25, rema
separable in a time varying applied field. As in the sta
case, FS anisotropy modifies the specific form off (c) but
not the field dependence of the coefficientM̄ j , provided only
that the characteristic fieldH0 is properly redefined. There
fore, the determination of the optimalR discussed below
would remain the same.

Since the angular dependencef (c) is separable, deter
mining the optimal field ratioR reduces to evaluating th
coefficientM̄ j , the harmonic of the normalized angular am
plitude of the nonlinear transverse magnetic moment. T
normalizations chosen imply that in the static case,v→0,
M̄0 is unity. For j 52,3 we obtain from Eq.~2.18!

M̄25
1

ph2Fhac
2 p14hdchacS cosp2

cos 3p

3 D
2~2hdc

2 1hac
2 !sin 2p1

hac
2

4
sin 4pG , ~2.19a!

M̄35
1

ph2Fhac
2 cosp2S 4

3
hdc

2 1
2

3
hac

2 D cos 3p1
hac

2

5
cos 5p

2hdchac~2 sin 2p2sin 4p!G , ~2.19b!

where p[sin21(hdc/hac). Results forM̄2 and M̄3 at fixed
maximum field as a function of the ratioR are given in Fig.
2. We show results forHdc,Hac (R,1) only, since for
m

ar

er

al
,

s
c

e

larger values ofR these harmonics are considerably small
The results indicate that the optimal applied field should b
pure ac field if the harmonic at 3v is measured, orHac

'2Hdc for the 2v harmonic. If one measures these harmo
ics for several values ofR close to optimal, their dependenc
on R, as we shall see in Sec. III, can serve to experiment
distinguish nodes from small minima in the energy gap. T

reduction of the amplitude forM̄ j , j 52,3, compared to the
static case~a factor of'6) is more than compensated by th
advantages of ac techniques.38

We can apply a similar analysis to the magnetic torq
t5m3H. Torque magnetometry is an extremely sensit
experimental technique, which has already been used to
vestigate anisotropic magnetic properties of superconduc
at higher fields.39–41Here we are interested intz , which has
an angular dependence identical to that ofm'(c). The main
harmonics arising from the nonlinear response are at 3v and
4v. Using a convention similar to that in Eq.~2.18! we
define

Tj~c!5
2

pE0

p uh~ t !u3

h3
cosj vtd~vt ! f ~c![T̄j f ~c!, j 53,4,

~2.20!

where we make use of the separability of the angular dep
dence. To determine the optimalR we need only conside
T̄j , the harmonic of normalized angular amplitude of t
nonlinear torque. Elementary integration in Eq.~2.20! yields

T̄35
1

ph3Fhac
3

2
p13hdchac

2 cosp2S 4

3
hdc

3 12hdchac
2 D cos 3p

1
3

5
hdchac

2 cos 5p2S 3hdc
2 hac1

3

4
hac

3 D S sin 2p2
sin 4p

2 D
2

hac
3

12
sin 6pG , ~2.21a!

FIG. 2. Harmonics,M̄ j , j 52,3, at 2v, 3v of the normalized
transverse magnetic moment angular amplitude@Eq. ~2.18!#, plotted
as a function of the field ratioR[hdc/hac. Normalization is taken

so that in the static case,v→0, M̄0 is unity.
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T̄45
1

ph3Fhac
3 cosp

2
2S 2hdc

2 hac1
hac

3

2 D cos 3p

1S 6

5
hdc

2 hac1
3

10
hac

3 D cos 5p2
hac

3

14
cos 7p2

3

2
hdchac

2

3sin 2p1S hdc
3 1

3

2
hdchac

2 D sin 4p2
hdchac

2

2
sin 6pG .

~2.21b!

The results forT̄j as a function ofR at fixed maximum field,
seen in Fig. 3, show that for gaps with nodes it is optima
measure the 4v time Fourier component~FC! at pure ac
applied field, and the 3v component atR'0.35. As in our
discussion ofM̄ j , one can see that FS anisotropy does
alter T̄j or the optimal value ofR.

C. Microstrip resonator

The nonlinear aspects we discuss here affect many o
frequency-dependent phenomena. We refer here briefly a
example to the nonlinear magnetic response of a micros
resonator at low temperature. The particular geometry is
from Ref. 29 where the nonlinear dynamics was discus
for higher temperatures, when the relation betweenj andv is
analytic. At low temperature the effect is quite different,
the nonlinearities are nonanalytic. For a cylindrical, isotro
FS, Eq.~2.3! can be expressed as

j52erv1 jqp52eñsv, ~2.22!

where we use a notation distinguishing the electron densir

from the superfluid density tensorñs , which also includes
anisotropic, nonlinear effects due to quasiparticle excitatio
The specific form ofñs depends on the angular form of th
energy gap and can be simply obtained fromj qpi in Eq. ~A1!.
The effects that we investigate can be viewed as arising
ther from a time-dependent applied magnetic field or
driven time varying current. Following Ref. 29, we consid

FIG. 3. Harmonics,T̄j , j 53,4, at 3v, 4v of the normalized
magnetic torque amplitude@Eq. ~2.20!#, as a function of R
[hdc/hac. Results are shown for gaps with lines of nodes. Norm
ization is as in Fig. 2.
o

t

er
an
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at
d

s
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a pured-wave gap with an applied field~or driven current!
along nodal and antinodal directions. In both casesj iv. We
have

l2~T50, j50!

l2~0, j !
5

ns~0, j !

ns~0,0!
512bc

u j u
u j cu

, ~2.23!

wherec50 corresponds~Fig. 1! to j along the nodal and
c5p/4 to j along the antinodal direction. From Appendix
we obtainbc5051/2 andbc5p/451/2A2. The critical cur-
rent is j c5ns(0,0)eDd /v f and in the absence of quasipartic
excitations atT50, j 50, the superfluid densityns(0,0)
equalsr.

We next examine the inductance per unit lengthL and
show how the low-temperature form ofj „v… affects its non-
linear corrections. These considerations are then readily
plied to other quantities of interest such as the resistance
unit length or the quality factorQ. We use the expression fo
the inductance29

L5

E
S
@H21l2~0,j !~4p j /c!2#dS

4pS E
S
jdSD 2 ~2.24!

with the integration being over a cross section of the micr
trip having widthw and thicknessd. This expression can be
rewritten as

L5L01DL
uI u
uI cu

, ~2.25!

where L0 is the inductance in the linear response,I
5*SjdS, and I c*Sj cdS5wd jc . We make the
approximation29 that the total correctionDL due to the non-
linear response can be replaced by the kinetic part o
DLKI . Then, by using Eqs.~2.23!–~2.25! we obtainL'L0
1DLKI uI u/uI cu with

DLKI5

4pbcl2~0,0!wdE
S
u j 3udS

c2U E
S
jdSU3 . ~2.26!

One can consider also the frequency-dependentQ or the re-
sistance, which can be decomposed into linear and nonlin
parts as in Eq.~2.25!. The power-law behavior of the non
linear corrections in these quantities, i.e., linear inI /I c @in-
stead of (I /I c)

2 at higher temperatures# will affect generation
of higher harmonics. By using the transmission li
equations29 for a microstrip, one easily sees that these t
types of nonlinearity give rise to second harmonic genera
at low T eventually crossing over to third harmonic at high
temperatures.

III. DETECTION OF NODELESS GAP FUNCTIONS

In this section we investigate the quasistatic nonlin
magnetic response of anisotropic energy gaps with ‘‘qua
odes’’ rather than with nodes. The nonlinear electromag
tism samples the pairing state in the bulk. If the nodes

l-
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absent only in a layer of thickness much smaller thanl near
the surface,12,13 our results from Sec. II apply unmodified
We consider here a typical candidate,d1 is,42–44energy gap
with thed component being dominant. The results presen
are quite similar to those that can be obtained for other no
less gaps such asdx22y21 idxy ~Refs. 45–47! or an aniso-
tropic s wave. Generally, in the absence of nodes, the an
sis of the low-frequency nonlinear magnetic response
more complicated. There are threshold effects that decisi
affect the field dependence.

We can approximate ad1 is ~Refs. 43,44! gap near its
minima by

uD~fn!u'~m2Dd
2fn

21Ds
2!1/2, n51,2, . . . , ~3.1!

with Ds!Dd andm52 for the usual form of ad-wave OP.
The small minima (Ds) are located at the positions of th
nodal points in ad-wave gap. The current due to the qua
particle excitations is obtained from Eq.~2.4!

jqp„v…'2
e

2(n
Nfv f x̂n

v f
2~v• x̂n!22Ds

2

m2Dd
2

Q@v f
2~v• x̂n!22Ds

2#,

n51,2, . . . , ~3.2!

where the step function arises from the phase space fo
lowed quasiparticle excitations (uD(fn)u1vf•v,0) given
by

fn
2<

v f
2~v• x̂n!22Ds

2

m2Dd
2

, ~3.3!

which is reduced compared to thed-wave gap. The step
functions result in a threshold effect: it now takes a mi
mum field to create quasiparticles. However, as we shall l
see, a small admixture ofs waves in ad1 is gap can en-
hancethe maximum valueof the nonlinear effects at field
above threshold. From Eq.~3.3! it follows that the nonlinear
effects are absent wheneverHa(t) is small enough so tha
uvu,vT[Ds /v f . In dimensionless form the threshold fie
hT and the threshold velocityuT are

hT[d, uT[
d

m
, d[

Ds

Dd
. ~3.4!

The substitution of Eq.~3.2! into ~2.5! yields

]ZZui2ui1sgn@h~ t !#~ui
22uT

2!Q~ uui u2uT!50, i 5X,Y,
~3.5!

whereui is given by Eq.~2.10! with Deff5Dd . By modify-
ing the methods used in this case for a static field25 to include
the time dependence we obtain
d
e-

y-
is
ly

-

al-

-
er

ui~Zs ,t !5h~ t !@coscd iX1sincd iY#

1F 1

3m2
h~ t !uh~ t !u~cos2cd iX1sin2cd iY!

2uT
2sgn@h~ t !#1

4uT
3

3h~ t !~coscd iX1sincd iY!G
3QS uh~ t !u2

hT

~coscd iX1sincd iY! D ,

i 5X,Y ~3.6!

for the solution at the surface of a slab,Z5Zs (Zs@1),
which suffices to express the quantitiesm' andtz . Nonlin-
ear effects are present only forh(t)>hTi(c,d)>hT , where
hTX[d/cosc and hTY[d/ sinc are the angle-dependen
threshold fields required to excite jets of quasiparticles c
tered along theX and Y axes, respectively. The transver
magnetic moment is

m'~c,t !5
Slab

6mpFHa~ t !uHa~ t !u
H0

cosc sinc

3$coscQ@ uh~ t !u2hTX#2sincQ@ uh~ t !u2hTY#%

13d2H0sgn@Ha~ t !#$coscQ@ uh~ t !u2hTY#

2sincQ@ uh~ t !u2hTX#%

22d3
H0

2

Ha~ t !
$cotcQ@ uh~ t !u2hTY#

2tancQ@ uh~ t !u2hTX#%G , ~3.7!

where we see that, as stated above, the temporal and an
dependences ofm'(t,c) are no longer separable. To inve
tigate the behavior of this expression at different fields a
admixtures ofs wave OPs it is useful to employ the scalin
relation

m'@kh~ t !,kd#5k2m'@h~ t !,d# ~3.8!

valid for any anglec, at fixed field ratioR. The quantityk
is an arbitrary scaling factor.

Again, we investigate the dominant harmonics
m'(c,t). Because of the nonseparability of temporal a
angular dependences, one cannot introduceM̄ j as in Eq.
~2.18!. One must now carefully consider both the harmon

M j~c!5
2

pE0

pm'~c,t !

Nm
cosj vtd~vt !, j 52,3, ~3.9!

and the relevant angular Fourier components~FC’s! in terms
of which the angular dependence can be analyzed. The m
important angular FC is that which reflects the main angu
periodicity p/2 of the energy gap:

M j
45

8

pE0

p/4

M j~c!sin 4cdc, j 52,3. ~3.10!

We will focus in the rest of this section on the domina
response of the nonlinear magnetic moment at 2v and 3v.
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In Fig. 4 we show our results for the angular depende
of the 3v harmonicM3(c). The details of its calculation ar
given in Appendix C. We display the rangecP@0,p/4#. We
have takenR50 ~guided by Fig. 2! and a dimensionless fiel
amplitudeh5hac50.05. This value, using typical materia
parameters for YBCO, corresponds toHac'H f 1 . The solid
line represents thed-wave result, normalized such that th
maximum ofM'(c) for the static case is unity. This nor
malization is employed throughout this section. The brok
lines are labeled by the corresponding ratiosd.

An obvious feature seen in Fig. 4 is the enhancemen
the maximum value of the signal that may arise from sm
admixtures of ans-wave OP. At fixed field, the maximum
enhancement ofM3(c) is much more pronounced than th
moderate one form'(c) found in the static case~Fig. 7 in
Ref. 25!. A similar enhancement is also present inM2(c).
This result is rather unexpected since such an admix
would reduce the available phase space@recall Eq.~3.3!# for
quasiparticle excitations. This enhanced signal is of n
negligible significance in planning experiments. We the
fore pause here to explain its physical origin.

The nonlinear transverse magnetic moment arises f
contributions due to components of the quasiparticle cur
jqp,n„v… at different nodes~quasinodes!. These contributions
partly cancel each other as each node, in effect, tries to t
the magnetic moment away from itself. Thus, if a magne
field is applied along an antinode, the cancellation of su
components is complete andm'50. To explain the peculiar
enhancement inM3(c), we need to investigate how the in
troduction ofDs increases theasymmetryof such contribu-
tions from different jets. The asymmetry, which is reflect
in the angular asymmetry of the curves in Fig. 4 ford.0, is
brought about by one of the nodes being above its angu
dependent threshold field@see below Eq.~3.6!# while the
other is still below. It was seen in Ref. 25 that this w
responsible for the small enhancement seen in the dc c
Now we will see quantitatively how the larger enhancem
in the ac case arises from the same source.

We denote the contributions toM'[m' /Nm of the indi-
vidual jets along theX and Y axes at a fixed anglec0 by
M'(c0 ,t)X , M'(c0 ,t)Y :

FIG. 4. Angular dependence ofM3(c) @see Eq.~3.9!# the 3v
harmonic of the normalized transverse magnetic momentM' for
various admixtures ofs waves in ad1 is energy gap. Results ar
shown ath5hac50.05 and normalized~as in Fig. 2! so that the
maximum ofM' for a pured-wave gap is unity. Lines are labele
by the ratio ofs- andd-wave amplitudes,d[Ds /Dd .
e
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M'~c0 ,t !5M'~c0 ,t !X1M'~c0 ,t !Y . ~3.11!

In Fig. 5, computed for the same fields as in Fig. 4, we sh
M'(c,t)X , M'(c,t)Y , and their sumM'(c,t) as a func-
tion of time vt at a fixed anglec[c0[25° in the region
where the maximum ofM3(c;d50.02) occurs. We see in
Fig. 4 that the enhancement in this case is large, a facto
about 2 over thed-wave signal. The quantities in the figur
are shown for bothd50 and 0.02. The curves are labeled
two indices, the first a letter denoting the jet, or sum of je
plotted and the second being the value ofd. The rangevt
P@0,90°# shown in the figure could be extended over t
whole period by symmetry. For the chosen value ofc0 , the
threshold fields satisfyhTX(c0),hTY(c0) and consequently
the magnitude of the jet along theX axis is greater than tha
of the one along theY axis. With the admixture of ans-wave
OP, there is a regionvt&20°, where the magnitude o
M'(c0 ,t)X is reduced toless than that ofM'(c0 ,t)Y .
Therefore the cancellation of the contributions from the t
different jets takes place to a lesser extent, resulting in
overall increase ofM'(c0 ,t). However, this accounts fo
only part of the enhancement seen in Fig. 4, basically
part found in the dc case, which corresponds to that atvt
50 in the figure. The remaining part of the increase
M3(c) is explained by the convolution of the time depe
dence ofM'(c,t) and cos 3vt in the definition ofM j (c),
Eq. ~3.9!. When the curves representingm'(c,t) for d
50,0.02 and cos 3vt ~which is also shown in Fig. 5! are
multiplied the results obtained, which are the integrands
Eq. ~3.9!, are as shown in Fig. 6. The solid curve represe
the pure d-wave result and the broken curve that ford
50.02. The ratio of the two net areas between the cur
shown and the horizontal axis is about a factor of 2, i.e.,
factor betweenM3(c0) for d50 and ford50.02 in Fig. 4.
Thus, the enhancement is explained.

It is straightforward to perform a very similar analysis f
M2(c) using its explicit expression from Appendix C. Fro
parity considerations, similar to those made for gaps w

FIG. 5. Time dependence in ad1 is state ofM'(c,t) @Eq.
~3.11!# and its contributions from jets along theX @M'(c,t)X#
andY @M'(c,t)Y# axes. Normalization and field are as in Fig.
Results shown are at fixed anglec0525° for which ~Fig. 4! the
signal for d50.02 is substantially enhanced as compared to
pure d-wave case. Curves are labeled by the axes describing
contribution from a particular jet, and the value ofd. Also shown is
cos 3vt, which enters the definition ofM3(c) in Eq. ~3.9! and ac-
counts for part of the enhancement.
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nodes,M2(c) vanishes identically as a function ofd andc
for hdc50. In this case, one choosesR'0.5 ~see Fig. 2! and
again finds an enhanced signal, as in Fig. 4. The size of
enhancement is largely due to the convolution with cos 2vt.

The nonseparable temporal and angular dependence
m'(c,t) require additional care in trying to determine th
optimal mixture of dc and ac fields inHa(t) which maxi-
mizes the harmonics and angle FC’s of the signal. From
expressions forM2(c) in Eq. ~C1! we have obtained result
for its p/2 angular FC. We denote this quantity byM2

4 , as
defined in Eq.~3.10!. We show typical results in Fig. 7
There we plotM2

4 as a function ofR at h50.05, for several
values ofd. The solid line represents the pured wave and
the broken lines are labeled by their value ofd. We see that
the optimal field ratio depends on the particulars-wave ad-
mixture. Through the scaling relation in Eq.~3.8! these re-
sults can be simply extended to other values ofh andd. In
Fig. 8, we plotM3

4 ~i.e., thep/2 angular FC of the signal a

FIG. 6. Origin of the enhancement ofM3(c) ~the 3v harmonic
of M') at h5hac50.05, andc[c0525° ~recall Fig. 4! with the
admixture of s-wave component in thed1 is gap. The curves,
which represent the product of the normalized magnetic mom
M' and cos(3vt) ~see Fig. 5! are labeled by the correspondin
value ofd.

FIG. 7. Field ratioR[hdc/hac dependence ofM2
4 @the angular

p/2 Fourier component of the 2v signal of the normalized trans
verse magnetic momentM' , Eq.~3.10!#, for various admixtures of
s waves in ad1 is energy gap. Results are given ath50.05. The
normalization is as in Fig. 4. The curves are labeled by the r
d5Ds /Dd with the same values as in Fig. 4.
he

of

e

3v) as a function ofR at maximum dimensionless fieldh
50.05 for the same values ofd. In this caseR50 produces
the maximal signal, for alld.

It is instructive, in order to learn how to distinguish nod
from quasinodes, to contrast Fig. 2, which displaysM̄ j , j
52,3, the angular amplitude of the 2v and 3v harmonics
for a gap with nodes, with Figs. 7 and 8. Because of
separable temporal and angular dependences ofm'(c,t)
when nodes are present, the solid lines~pured-wave case! in
Figs. 7 and 8 are simply proportional~with a normalization
factor48 '1) to the curvesM̄2 or M̄3 , respectively. Experi-
mentally, a sensitive test would be to measureM2

4 , M3
4 for

several values ofR, and compare theR dependence with the
corresponding solid lines in Figs. 7 and 8. The deviat
from these lines would indicate the absence of nodes in
gap. A further way of analyzing such data is suggested
Figs. 9 and 10 where we showM2

4 andM3
4 , respectively, as

functions ofd, for several values ofR @additional results are
easily obtained using Eq.~3.10! and the expressions in Ap
pendix C#. The curves plotted are labeled by their values
R and are given at a fixed maximum fieldh50.05. To com-

nt

io

FIG. 8. Field ratioR dependence of the angularp/2 Fourier
componentM3

4 of the 3v signal of the normalized transverse ma
netic momentM' . Results shown are for various admixtures ofs
waves in ad1 is state ath50.05. Normalization and labeling ar
the same as in Fig. 7.

FIG. 9. Dependence of the angularp/2 Fourier componentM2
4

of the 2v nonlinear magnetic moment signalM' ~recall Fig. 7! on
the admixtures ofs-wave components in ad1 is gap. Results are
shown ath50.05 and normalized as in Fig. 7. Curves plotted a
labeled by the corresponding value ofR.
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pare experimental data with an assumedd1 is gap, and to
determine thes-wave admixture, one would look for a valu
of d which agrees with a particular dependence of the m
suredM2

4 or M3
4 at differentR. In these figures we notice

again the implications of the nonmonotonic behavior ofm'

~orM') with d. Just as we found above for the harmoni
there is also a substantial enhancement for the angular F
given R as compared to thed50 value. It has the sam
origin, as shown in Figs. 5 and 6, predominantly due to
convolution ofM j (c,t) and cos (jvt), j 52,3. In Figs. 9 and
10 we see that maximum such enhancement~at different val-
ues ofR) is located typically in the range 0.015&d&0.025
at h50.05. More generally, using the scaling relation E
~3.8!, for an arbitrary maximum fieldh ~within the Meissner
regime! the maximum signal forM j

4 , j 52,3 is approxi-
mately in the rangeh/3&d&h/2.

Thus, there are several distinct features for which the
sults for a nodeless gap with small minima differ consid
ably from those for gaps with true nodes. These results s
gest how to perform measurements and analyze the nonli
quantities in the low-frequency, low-temperature regim
They can be supplemented with the results from the st
case. It would also be useful to study the field dependenc
m' and its Fourier components at fixedR while changing the
maximum field (Hdc1Hac).

Using the methods that we have presented, similar res
for the behavior of the nonlinear magnetic torque can
obtained. Analogously, results for other gapped states s
asdx22y21 idxy can be derived without difficulty.

IV. CONCLUSIONS

We have examined properties of the nonlinear magn
response of an unconventional superconductor at low
quencies. There are two key points to our conclusions. F
these frequency-dependent nonlinear phenomena provi
particularly powerful tool to distinguish nodes from quas
odes. Second, the experimental sensitivity that allows on
perform ‘‘node spectroscopy’’ can be considerably enhan
over the corresponding dc result.

For gap functions with nodal lines the nonlinear mome
(m' , mi) and torque (tz) have separable field~and hence,

FIG. 10. Dependence of the angularp/2 Fourier component of
the 3v signalM3

4 ofM' ~compare with Fig. 8! on the admixture of
s-wave components in ad1 is state. Results are shown ath
50.05 and normalized as in Fig. 7. Curves plotted are labeled
their value ofR.
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time! and angular dependences. These quantities are res
tively quadratic and cubic~up to a sign determined by parity!
in the instantaneous applied field. The nonlinear magn
response for nodeless gaps is more complicated: the time~or
field! and angular dependences are not separable and
field dependence is not a simple power law. We have d
cussed how these features can be studied by measu
higher harmonics~referred to as the frequency of the applie
ac field! of various physical quantities. For an applied fie
Ha(t)5Hdc1Haccosvt, at a fixed maximumHdc1Hac we
have computed the optimal ratioR[Hdc/Hac at which the
signal ~for a certain higher harmonic! is largest. For gaps
with lines of nodes it is most favorable to measure thev
harmonic of m' at R'0.5 or the 3v harmonic atR50,
while for tz the best alternatives are the 3v harmonic atR
'0.35 and the 4v harmonic component atR50. These re-
sults are independent of the specific angular dependenc
the gaps with nodal lines and are also valid for an anisotro
FS. In the absence of nodes, as we illustrate through
example of ad1 is gap, selecting the optimal value ofR to
maximize higher harmonics is less simple but more rewa
ing. The result depends on the particular admixture
s-wave component to the OP and hence provides for
quantitative determination of this admixture. The results
have shown are sensitive to the angular position of no
~quasinodal! lines, allowing for detailed characterization o
the minima in the energy gap.

The analysis presented here can be generalized to inc
point nodes, and to triplet pairing. The field dependence
gaps with point nodes is different than that found for ga
with lines of nodes. For example,m' is cubic rather than
quadratic in the instantaneous value of the applied field.
ing these considerations and the temperature range attain
by a dilution refrigerator it should be feasible to experime
tally study other candidates for unconventional supercond
tivity, such as heavy fermions, organic superconductors,
SrRu2O4. Analysis of the material parameters~to estimate
H0 and H f 1) shows that in many cases the expected sig
should be at least as large as for HTSC’s. Experiments
vestigating magnetic response in these materials, at
Kelvin temperatures, are currently under considerations.49
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APPENDIX A: CURRENTS

Integration of Eq.~2.4! without a-b plane FS anisotropy
yields25

j qpi5
1

2
eNf

v f
3

mDeff
@e1i~c!vX

21e2i~c!vXvY1e3i~c!vY
2 #,

i 5X,Y, ~A1!

where the coefficientse1,2,3i(c) are defined for various
ranges ofc. Depending on the particular orientation ofHa ,

y
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as given by the anglec, these coefficients describe contr
butions from different jets. The results are quadratic in
superfluid velocity. For ad6s OP we obtain

e1X5e3Y5c32s3,

e2X52e3X52e1Y5e2Y522cs~c2s!,

cPFn,
p

2
2nG , ~A2a!

e1X52e3Y52~c31s3!,

e2X522e3X52e1Y52e2Y52cs~c1s!,

cPFp2 2n,p1nG , ~A2b!

wherec[cosn and s[sinn. The pured-wave limit corre-
sponds toc51 ands50.

APPENDIX B: MAGNETIC MOMENT FOR A GAP
WITH LINES OF NODES

The magnetic moment can be calculated using only
surface values of the fields.24,25,50For the geometry consid
ered here, the magnetic moment

m5
1

2cE drr 3 j „v…, ~B1!

can be expressed as

mx,y52
SdHax,y

4p
7
Sc

2pe
vy,x~d/2!, ~B2!

wherex and y are orthogonal axes fixed in space,S is the
slab area, and we have used thatv is odd in z. For a slab
(d@lab), which is the case of experimental interest,21 the
nonlinear magnetic moment can be obtained fromui(Z,t),
given in Eq. ~2.14!. For a gap with node lines it is
}h(t)uh(t)u. The transverse componentm'5mXcosc
1mYsinc, perpendicular to the applied field, is obtain
from Eq. ~2.15! and the longitudinal component of the no
linear magnetic momentmi52mXsinc1mYcosc is given
by

mi~c!5
Slab

6mp

Ha~ t !uHa~ t !u
H0

$e1Xsin3c1e3Ycos3c

1cosc sinc @~e2X1e1Y!cosc

1~e3X1e2Y!sinc#%. ~B3!

For a pured-wave OP andcP@0,p/2#, the angular depen
dence ofm' @its normalization as given in Eq.~2.17!# is
f (c)53A3cosc sin c@cosc2sinc# and that for mi it is
f i(c)53A3@cos3c1sin3c#. While the angular modulation
for mi is somewhat smaller than that ofm' , the maximum
of mi is enhanced by a factor of 3A3. This enhancemen
combined with ac measuring techniques38 could facilitate ex-
amining the higher harmonics due to the nonlinear respo
e

e

e.

APPENDIX C: FOURIER COMPONENTS
FOR A NODELESS GAP

We give here the analytic expression for the harmon
M j (c), valid for a d1 is gap andhdc,hac. Integration of
Eq. ~3.10! and substitution ofm' from Eq. ~3.7! yields

M j~c!5
2

p

3A3

h2
$cosc sinc@cosc~p1 jQ11p3 jQ3!

2sinc ~p2 jQ21p4 jQ4!#

13d2@2sinc ~q1 jQ11q3 jQ3!

1cosc~q2 jQ21q4 jQ4!#

22d3@2tanc~r 1 jQ11r 3 jQ3!

1cotc~r 2 jQ21r 4 jQ4!#%, j 52,3, ~C1!

where we have introduced the abbreviations

Q1,2[Q@a1b2hTX,Y~c,d!#,

Q3,4[Q@b2a2hTX,Y~c,d!#, ~C2!

and a, b are replacinghdc and hac, respectively. Since we
work at a fixed maximum field (hdc1hac5const), andR
5hdc/hac, RP@0,1), we set a5(hdc1hac)R/(11R), b
5(hdc1hac)/(11R). The coefficients in Eq.~C1! for the
2v component are

pi25
b2

2
wi12absinwi1S a21

b2

2 D sin 2wi

1
2

3
sin 3wi1

b2

8
sin 4wi , i 51,2, ~C3a!

pk25
b2

2
~wk2p!12absinwk1S a21

b2

2 D sin 2wk

1
2

3
sin 3wk1

b2

8
sin 4wk , k53,4, ~C3b!

qi25sin 2wi , i 51, . . . ,4, ~C3c!

r i25
4

b
sinwi2

4a

b2
wi

1
2~2a2/b221!

~b22a2!1/2
lnU~b2a!tan~wi /2!1~b22a2!1/2

~b2a!tan~wi /2!2~b22a2!1/2U ,
i 51, . . . ,4, ~C3d!

Those for the 3v component are

pi35
b2

2
sinwi1absin 2wi1

2a21b2

3
sin 3wi

1
ab

2
sin 4wi1

b2

10
sin 5wi , i 51, . . . ,4, ~C4a!

qi35
2

3
sin 3wi , i 51, . . . ,4, ~C4b!
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8748 PRB 58IGOR ŽUTIĆ AND ORIOL T. VALLS
r i35
2

b3
@~4a22b2!wi24absinwi1b2sin 2wi #

1
2a~24a213b2!

b3~b22a2!1/2
lnU~b2a!tan~wi /2!1~b22a2!1/2

~b2a!tan~wi /2!2~b22a2!1/2U ,
i 51,2, ~C4c!

r k35
2

b3
@~4a22b2!~p2wk!14absinwk2b2sin 2wk#

2
2a~24a213b2!

b3~b22a2!1/2
lnU~b2a!tan~wk/2!1~b22a2!1/2

~b2a!tan~wk/2!2~b22a2!1/2U ,
k53,4, ~C4d!
.

wherew1,2,3,4 denote possible values ofvt for which uh(t)u
5hTX,Y . The integral in Eq.~3.9! can be replaced by inte
grals over intervalsvtP@0,wi #, i 51,2 andvtP@wj ,p#, j
53,4. For example,w1 andw3 are the limits for contribution
of quasiparticle jets alongX axis andw2 and w4 those for
jets along theY axis. They can be expressed as

w1,25cos21F S hTX,Y2a

b
21DQ1,211G ,

w3,45cos21F S 2hTX,Y2a

b
21DQ3,421G , ~C5!

for a pured-wave gap,wi5cos21(2a/b), i 51,2,3,4. The
previously given expressions forM j (c), j 52,3, can then be
used @see Eq.~3.10!# to obtain M2

4 , M3
4 , the p/2 angular

Fourier components of the 2v and 3v signals of the trans-
verse magnetic moment.
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23I. Žutić and O. T. Valls, Phys. Rev. B54, 15 500~1996!.
24I. Žutić and O. T. Valls, J. Comput. Phys.136, 337 ~1997!.
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