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We consider an unconventional superconductor in a low-frequency harmonic magnetic field. In the Meissner
regime at low temperatures a nonlinear magnetic response arises from quasiparticle excitations near minima in
the energy gap. As a consequence various physical quantities acquire higher harmonics of the frequency of the
applied ac field. We discuss how an examination of the field and angular dependences of these harmonics
allows the determination of the structure of the energy gap. We show how to distinguish nodes from small
finite minima(“‘quasinodes’). Gaps with nodal lines give rise to universal power-law field dependences for the
nonlinear magnetic moment and the nonlinear magnetic torque. They both have separable temporal and angular
dependences. In contrast, with gap functions which only have quasinodes, these physical quantities do not
display power laws in the applied field, and their temporal and angular dependences are no longer separable.
We illustrate this via the example of the nonlinear magnetic moment b & gap. We discuss how to
perform ac measurements so as to maximize the nonlinear signal, and how to investigate in detail the properties
of the superconducting minima, thus determining the gap function symni8B{63-182608)04137-X

I. INTRODUCTION energy gap generates in various physical quantities higher
harmonicé® of the applied field frequency. Since the re-
There are strong indications from numerous experimentatponse extends over a length scale on the order of penetra-
results and theoretical calculations that the symmetry of thé&ion depth, it constitutes a bulk probe of the superconducting
pairing staté™* in various superconducting materials is not OP. The use of the nonlinear response to a time-independent
that of an isotropics wave. Unconventional pairing states field to perform gap spectroscoat is, to locate the nodes
have been assigned to different high-temperature supercons quasinodes in the gagvas previously discusséd How-
ductors(HTSC'’s), heavy fermion® (HF’s), and some or- ever, nonlinear effects are best detected through the use of ac
ganic charge transfer sdlt€ (OS’s). The interest in deter- techniques, since then the nonlinear response takes place at
mining the pairing state for these materials arises both fronfrequencies different from the input frequency at which the
the efforts to obtain significant clues about the microscopignuch larger linear response is found. These techniques sig-
mechanisms responsible for superconductivity and to bettetificantly simplify the process of resolving the desired small
understand their physical properties. nonlinear signal, which is a signature of the symmetry of the
For HTSC's it is widely accepted that most of the experi-energy gap, from the large spurious but linear effects such as
mental results support a predominantliywave symmetry. demagnetization factorsa-b plane penetration depth anisot-
There is, however, no consensus about the presence of atbpy, and trapped flux.
mixtures of pairing states of different symmetry which In Sec. Il we solve the nonlinear Maxwell-London equa-
would modify the position and value of the minima in the tions in the low-frequency Meissner regime. We generalize
superconducting energy gap. These admixtures might caugke perturbation method of Ref. 25 to include the temporal
the angle between the nodal lines to depart fra2 or  dependence. The method is illustrated in the example of an
convert the nodes to very deep minirimuasinodes’, or  OP with mixedd+s symmetry. We investigate the time and
both. Part of the difficulty results from the surface charactemngular dependence of the nonlinear magnetic moment and
of many high quality pairing state probes. They measure inthe associated torque. The results for these quantities are
formation about the order paramet@P) within a length  easily extended to other forms of energy gaps with nodes
scale of a few coherence lengths and are very susceptible since, as we shall see, in those cases one has separable tem-
material imperfections near the surface. Furthermore it is ngporal and angular dependences. The time dependence for
clear whether the pairing states are the same in the surfagaps with lines of nodes is universad;,(t)|H,(t)| for the
region as they are throughout the biffk!* There are also nonlinear magnetic moment anH,(t)|® for the nonlinear
indications that the symmetry of the OP might be temperamagnetic torque, wher 4(t) is the applied magnetic field.
ture dependeri=!’ The pairing state controversy for other Both of these quantities have the same angular dependence.
suggested unconventional superconductors such as HFhe nonlinear effects that we discuss here can also be viewed
SrRw0O,,'81°and some OS's is even more ambiguous. as field- and angle-dependent corrections to the superfluid
In this paper we consider the low-frequency magnetic redensity (penetration depih We briefly discuss how our
sponse of a spin singlet unconventional superconductor in enethods are suitable to extend studies of intermodulation
time-dependentmagnetic field. We focus on the low- and harmonic generatiéhto low temperatures.
temperature regime in the Meissner state for OP’s having In Sec. Il we consider superconducting gaps without
lines of nodeqor quasinode$.The nonlinear respon&?®  nodes but with quasinodes, as illustrated y+ais OP with
arising from quasiparticle excitations near the minima in thea smalls component. We examine the nonlinear magnetic
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moment, which exhibits a more complicated temporal andsurements of the low-frequency nonlinear magnetic response
angular dependence and a sharp enhancement of its maxsire designed to be perform@dt frequencies under 100 Hz,
mum amplitude, compared to that occurring in the case ofvell below this limit.

gaps with nodes. We show how to use these effects to ex- For different OP’s, we study the dependence of the non-
perimentally distinguish nodes from small minima in the su-linear magnetic response on the direction of the field applied
perconducting gap. In the final section we present our conin the a-b plane. We consider a slab sample, infinite in the

clusions and discuss possible extensions of this work. a-b plane and of thicknesd, much larger than the in-plane
penetration deptf in the c direction. This allows for an
II. NONLINEAR MAGNETIC RESPONSE analytic solution and preserves the angular dependence of

the nonlinear effects found for realistic finite three dimen-

A. Maxwell-London electrodynamics sional geometry>?* For a slab, Eq(2.1) can be written as

In the low-frequency regime, i.e., in the quasistatic

case?®~% the relevant equations of the nonlinear Maxwell- dme
London electrodynamics are formally the same as in the Iz v+ o2 jv=0 (2.9
static case. Following the notation and results of the static or
dc case?® we have and the boundary conditions are

VXV 4e 21 H(th):Ha(t)|z=id/2- (2.9

XVXvy=— . . . e
v c? jW, @D We take a particular time dependence of the applied field,

where the gauge invariant condensate flow field or superfluid H,(t) =Hg+HaLoswt, (2.7

velocity” v is defined as which is suitable to experimentally study higher harmonics

Vy e arising from the nonlinear response. The parity of quantities
= 7+ EA’ (220 such agy, under a sign change ¢f,(t), as it occurs in an
ac field, must be carefully taken into account. For an OP
with y the phase of the superconducting singlet @Pthe  satisfying|A(—ky)|=|A(k)|, wherek; is the Fermi wave
vector potential, ana the proton charge. The relation be- vector, and forH, chosen such that the nodal direction of

\Y

tweenj andv is generally nonlinear and given 2 quasiparticle excitations i%,, the key point is that a re-
versed field—H, produces excitations along the opposite
j(v):—efo dzsn(s)vf[(vf-v)+2f dEf[E(&) direction —>A<n._ Thereforejq, is odd. This will help us to
FS 0 anticipate various modifications of the results for the static
case.
+vf-v]], (2.3
B. Gaps with nodes

whereN; is the total density of states at the Fermi levels) We consider an energy gap which can be accurately ap-
the density of states at poirst at the Fermi surfacdFS)  proximated near its nod&s® by

normalized to unityy;(s) the s-dependent Fermi velocity,

the Fermi function wittE(&) = (£2+|A(s)|?) Y2 T the abso- |A(p)t|~|pAeiipnl, Nn=12,..., (2.8

lute temperature, anti(s) the OP. The first term in Eq2.3) wherep is the slope of the dominant OP component And

represents the supercurrent arising ffO”_‘ the_ unpertyrb_ed COL}.' the effective amplitude of the gap function. A particular
densate and the second is due to quasiparticle excitations. cﬁse of Eq.(2.8) corresponds to al+s OP of the form

T~0, and for lines of node®r quasinodes the second term Ag.o(h) =+ Aot Aysin 26, where ¢ is measured from the

; 32
of Eq. (2.3 can be written &5 X axis, depicted in Fig. 1. This form is often chosen to in-
clude the effects of orthorhombic distortion in the YBCO

d
igV)=2 iqn~—2e> anf %vm[(vfn-v)2 family of cuprates, withu=2 and A= (A5—A2)Y2 For
n n 0, &7 A #0, the nodes of Eq.2.8) are no longer separated by an
—|A(P)I21M2 n=1,2,... (2.4) angle of#/2. The nodal directions are along the unit vectors

) Xn, N=1,2,...,which form nonorthogonal axes. The nodes
wheren labels the node&juasinodesof the gap (), denote 51 shifted by an angle » (see Fig. 1,
regions where quasiparticle excitations are allowed, defined

by |A(¢n)|+V;-v<O0, ¢, is the azimuthal angle with respect 1 [*A

to the closest noda, andv;~uv;, is its value at that node. v=3sin ( A ) 2.9
N, is the appropriate weighted density of stateegual to d

N; for an isotropic FS. from the orthogonal axes, which we denoteXwandY (the

As stated in Ref. 29, the relation betwgeandv given by = sign corresponds to thé+ s forms of the gap Through-
Eg. (2.3 can be used in the time-dependent case providedut this paper th&X andY axes will remain along the nodal
that the frequencies are smaller than the quasiparticle relaxirections of a purel wave. The direction of the applied field
ation rate. For YBgCu,0O,_ 5 (YBCO), this rate rangéé>®>  will be given by the angles betweerH,(t=0) and thet+Y
from 10" to 10"® Hz, depending on the temperature. Mea-axis, depicted in Fig. 1. It is convenient to introduce dimen-
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3\ ! 28y UW(Z,D)=Uig(Z)+ D [ug (Z)cosj ot +u%(Z)sinj ot]
i
> i=1.2,.... (2.13
Using a perturbation meth6tand taking into account the
a smallness ofh,. and hy; by neglecting cubic and higher

terms in these parameters, we obtain the leading contribution
to u;(Z,t) (determined by;o, Ui}, andup,). The quantities

of interest, e.g., the magnetic moment or magnetic torque,
can be written dowf? in terms of the surface values of the
fields. By substituting Eqg(2.13 into Egs.(2.11) and(2.12

v we get
4 1 X

h(t)|h(t

FIG. 1. Coordinates and definitions used in the paper. The ESUi(Zs,t) =h(t)[cosysdix +singdiy ]+ Lz(”[elicoszl/’
and the energy gap are shown schematically. The crystallographic 3u
directionsa andb are i_ndicated. The orthogonXl andY axes are +e,cosysing+ e3isin2zp], i=XY, (2.14
along the nodal directions of the pudewave gap. Thel+ s nodal
directions, labeled 1,2,3,4 are shifted by an angle [see Eq. Whereg;; is the Kronecker symbol. The angular dependence
(2.9] from their A,=0 values. The applied magnetic field, of the second term, nonlinear and nonanalytic in the field, is
forms an angle/ with the +Y direction. identical to that found in the case of constant applied field.

Thus it remains to investigate the temporal dependence of

sionless versions of the superfluid velocity and magneticvarious quantities which are also nonanalytic. The nonlinear
field. For simplicity, we will perform our calculations below transverse magnetic moment for gaps with nodes can be
for an isotropic FS. Our results are largely independent ofvritten (Appendix A as
this assumption, as we will occasionally emphasize. It is,
however, straightforward to extend these considerations and ()= Shap Ha(t)[Ha(b)]
examine in detail the effects of FS aaeb plane penetration LA 6um Ho

depth anisotropy as have been addressed in Ref. 25. We de- .
fine +cosysiny (e1x— e,y)COSY

+ (ex—€3y)siny]}

{esxsiry—eycos Y

ViUt .
U= , i=X)Y, (2.10a
A h(t)[h(t)
FSel ENm%f(w)ENli(lﬂ,t), (2.19
he - Hacac _ ClAgg h=h.+h whereS is the slab area and the factoyy, reflects that the
deac™ eyt T ldeT Ve nonlinear effects arise from currents present within a length

(2.10p  scale on the order of penetration depth. We have introduced
the normalization factor

where the in-plane penetration depth, for a cylindrical FS
is given by 27Nv?/c?. In terms of these quantities and of
the dimensionless coordinaé=z/\,,, we obtain, from
Egs.(2.4), (2.5, and(2.10,

_S)\ab(Hdc+Haa2 1

and the normalized transverse momewt, . The angular
dependence ah, (i,t) or of M, (#,1) is given by the func-
tion

f(4)=3V3{esxsiry—e;ycosy
where the factor sdgi(t)] arises from the odd parity gf;, . _ _ .
with respect to h(t)=hy+h,coswt and the constants *cosysinyf (€1x—€zyF (€2x—€av)Isiny}.
e;,3i(y) are defined in Appendix A. The appropriate (2.17
boundary conditions for Eq2.11) are

(2.16

m

9720 — Ui+ sgrih(t) 1 g () ui+ ex( ) uxuy + eg () ud]

=0, i=X,Y, (2.12)

This result is independent of time and thus it is the same as

in the static case. For a putewave f(¢) has a maximum

h(t) h() . lue of unity, and so does th lized t
Iglylyey = ——COSY,  dpUy|z—y = ——sini, value of unity, and so does the normalized moment as a
s S M function of angle.

Experimentally, one can best detect the nonlinear effects

Ux v|z=0=0, (2.12 by examining the dominant harmoni@tgme Fourier compo-

nentg of m, (¢,t), which are at 2 and 3w. Analysis of the
where Z;=d/2\ ,,. The solution of Eqs(2.11) and (2.12  field and angular dependence of these harmonics makes it
can be sought in the form possible to accurately determine the position of the nodes in
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the energy gap. One could obtain the same information from A L I

my(#,t), discussed in Appendix B, but with greater difficulty 0.16 r
because of the extremely large linear signal. The angular -
dependence ah(,t) is different than that ofn, (¢,t) but 012 [
they both have identical temporal dependence. I
Since the measurements are performed in the Meissner |=~ 0.08 |
state, one must havd (t)<H;,, whereH;, is the field of Rt
first flux penetration, somewhat larger thelp,. Therefore, i
one wishes to optimize the experimental sigha., the size 0.04
of the 2w or 3w harmonic$, by an appropriate choice of the I
ac and dc components of the applied field at constant total 0

maximum field. We can determine the optimal field mixture,
i.e., the ratioR=H4./H,~=hy/h, (at fixed total field h
=hgyt h,) which would produce the maximum signal for a
normalized harmoni®;(),

FIG. 2. HarmonicsM;, j=2,3, at 20, 3w of the normalized
transverse magnetic moment angular amplitugtp (2.18)], plotted
as a function of the field rati®&@=hgy./h,.. Normalization is taken

so that in the static case,— 0, Mg is unity.

2 '"'mi(lﬂ,t) .
M;(y)= 77(1+5j0)j0 N cosj wtd( wt)

larger values oR these harmonics are considerably smaller.
2 =h(t)|h(t)] . The results indicate that the optimal applied field should be a
o) jo n2 o wtd(wt)f(4) pure ac field if the harmonic ata3 is measured, oH .
~2H 4 for the 20w harmonic. If one measures these harmon-
Mjf(,p), i=01.2..., (2.18 ics for several values dR close to optimal, their dependence
onR, as we shall see in Sec. lll, can serve to experimentally
distinguish nodes from small minima in the energy gap. The

reduction of the amplitude fdﬁj , ]=2,3, compared to the

and f(¢). This factorization is also valid for an anisotropic static caséa factor of~6) is more than compensated by the
FS. The field and angular dependencemof for an aniso- advantages of ac techniqui¥s.

tropic FS With nqdal Iineg, as Obt?“”e‘.‘ in Ref.'25, remains We can apply a similar analysis to the magnetic torque,
separable in a time varying applied field. As in the statlcszxH. Torque magnetometry is an extremely sensitive

case, F,S anisotropy modifies the spgt:_nﬂc formf 6f) but experimental technique, which has already been used to in-
not the field dependence of the coefficiéhf, provided only  \etigate anisotropic magnetic properties of superconductors
that the characte.rlsu.c fielbly is properly rgdeflned. There- at higher fieldS2-*L Here we are interested in,, which has
fore, the de_termlnatlon of the optim& discussed below angular dependence identical to thatrof{ ). The main
would remain the same. _ harmonics arising from the nonlinear response arexagfd
_S_lnce the al_wgular_ dependentab) IS separable,_deter— 4w. Using a convention similar to that in Eq2.18 we
mining the_optlmal field ratioR reduces to evaluating the yafine
coefficientM;, the harmonic of the normalized angular am-
plitude of the nonlinear transverse magnetic moment. The
normalizations chosen imply that in the static case; 0,

— 2 (=
Mg is unity. Forj=2,3 we obtain from Eq(2.189 Ti(y)= ;JO

(145

which factorizes into field- and angular-dependent p@}s

Ih(t)[?
h3

cosj wtd(wt) f(P)=T;f(¥), =34,
(2.20

where we make use of the separability of the angular depen-
dence. To determine the optimRl we need only consider

— 1., cos 3
My=—7 had+4hyh,d cosp— 3
7h

h2 T . . .
on? 2. . Nac_. j» the harmonic of normalized angular amplitude of the
(Zhgethagsin 2p-+ 4 sin4p|, (2.193 nonlinear torque. Elementary integration in E2.20 yields

'V 1 2 4 2 2 2 gc 3
M3=—- hzcosp— §th+ §hac cos P+ ?cosfp — 1 [h3, ) 4 )

wh Ty=——r — p+3hghicosp—| 5hd.+ 2hgh2 | cos P

wh3l 2 3
—hgdhad 2 sin2p—sindp) |, (2.19h

3 5 5 3.5 . sindp
+§hdchaccos5p— 3hghact Zhac sin2p— 5
where p=sin }(hy./h,). Results f0r|\72 and |\73 at fixed 3
maximum field as a function of the rati® are given in Fig. _ h_ac

. in6p|, 221
2. We show results foHy.<H,. (R<1) only, since for 125" ( 3
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008 ——+ 171 a pured-wave gap with an applied fieltbr driven current
0.07 } ] along nodal and antinodal directions. In both cades We
- have
0.06
0.05 | N2(T=0,j=0) ny(0,j '
~ i ( J ) _ N J)zl_bwu_|, 223
| 0.04 i A2(0,j) ns(0,0 licl
0.03 T where =0 correspondgFig. 1) to j along the nodal and
0.02 = l4 to] along the antinodal direction. From Appendix A
001 I we obtainb,,_=1/2 andb,,_ ,;;=1/2y2. The critical cur-
ol rentisj.=n¢(0,0)eA,/v¢ and in the absence of quasiparticle
excitations atT=0, j=0, the superfluid densityng(0,0)
equalsp.
o We next examine the inductance per unit lengttand
FIG. 3. HarmonicsT;, j=3,4, at 3, 4w of the normalized show how the low-temperature form pfv) affects its non-
magnetic torque amplitud¢Eq. (2.20], as a function ofR linear corrections. These considerations are then readily ap-
=hgc/hac. Results are shown for gaps with lines of nodes. Normal-plied to other quantities of interest such as the resistance per
ization is as in Fig. 2. unit length or the quality facta®. We use the expression for
the inductanc®
_ hgccosp h3.
Ta=—3 2 2hGchact -~ | cos P L[H2+)\2(O,j)(4wj/c)2]d8
= (2.29
6 3 e an| [ jas|
+ gh Nt 10hac cosfp— 7 cos?p hdC )
3 hach? with the integration being over a cross section of the micros-
X sin2p+| h3 .+ Ehdchgc) sindp— — Esinép)|. trip having widthw and thicknessl. This expression can be
rewritten as
(2.21bh I
_ L=Lo+AL— (2.2
The results fofT; as a function oR at fixed maximum field, el

seen in Fig. 3, show that for gaps with nodes it is optimal toyhere L, is the inductance in the linear response,
measure the 4 time Fourier componentFC) at pure ac  =[dS, and I.sj.dS=wdj.. We make the
applied field, and the @ component aR~0.35. As in our  approximatiof® that the total correctio L due to the non-
discussion oﬂ\/l , one can see that FS anisotropy does nofinear response can be replaced by the kinetic part only,

alter T; or the optlmal value oR. AL, . Then, by using Eqs(2.23—(2.25 we obtainL~L,
AL 171 with

C. Microstrip resonator 2 .3
47b,\%(0,0wd | |j°[dS
s

The nonlinear aspects we discuss here affect many other (2.26
3 . .

frequency-dependent phenomena. We refer here briefly as an Alg=
example to the nonlinear magnetic response of a microstrip

resonator at low temperature. The particular geometry is that

from Ref. 29 where the nonlinear dynamics was discusse®ne can consider also the frequency-depen@ent the re-

for higher temperatures, when the relation betweandv is  sistance, which can be decomposed into linear and nonlinear
analytic. At low temperature the effect is quite different, asparts as in Eq(2.25. The power-law behavior of the non-
the nonlinearities are nonanalytic. For a cylindrical, isotropiclinear corrections in these quantities, i.e., lineai fih, [in-

FS, Eq.(2.3) can be expressed as stead of (/I.)? at higher temperaturgwill affect generation

of higher harmonics. By using the transmission line
equation®’ for a microstrip, one easily sees that these two
types of nonlinearity give rise to second harmonic generation

at low T eventually crossing over to third harmonic at higher
where we use a notation d|st|ngwsh|ng the electron depsity temperatures.

from the superfluid density tensmrs, which also includes

jds
S

j=—epVtjg=—eny, (2.22

anisotropic, nonlinear effects due to quasiparticle excitations. |1l DETECTION OF NODELESS GAP FUNCTIONS
The specific form of depends on the angular form of the
energy gap and can be simply obtained frigpp in Eq. (A1). In this section we investigate the quasistatic nonlinear

The effects that we investigate can be viewed as arising emagnetic response of anisotropic energy gaps with “quasin-
ther from a time-dependent applied magnetic field or aodes” rather than with nodes. The nonlinear electromagne-
driven time varying current. Following Ref. 29, we considertism samples the pairing state in the bulk. If the nodes are
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absent only in a layer of thickness much smaller thamear  y;(Z,,t)=h(t)[cosydix+ sinysy]
the surfacé?*® our results from Sec. Il apply unmodified.

We consider here a typical candidater; is,**~**energy gap 1 ) 2
with thed component being dominant. The results presented + 3—M2h(t)|h(t)|(cos Yoix+Sinydiy)
are quite similar to those that can be obtained for other node-
less gaps such ad,2_,2+id,, (Refs. 45—-4Y or an aniso- , 4u$-
tropic s wave. Generally, in the _absence of no_des, the analy- —uzsgnih(t)]+ 30(0)(COSPo F SiNdy)
sis of the low-frequency nonlinear magnetic response is
more complicated. There are threshold effects that decisively hy
affect the field dependence. X 0| |h(t)| - . )
We can approximate d-+is (Refs. 43,44 gap near its (Cosidix +sinysiy)
minima by i=X,Y (3.6
for the solution at the surface of a slab=Z¢ (Zs>1),
which suffices to express the quantitiss and 7,. Nonlin-
|A(pn)|=(n2A3p2+A2Y2 n=1.2,..., (3.0 P y o8 ani T

ear effects are present only fb(t)=ht(¢,6)=ht, where
hyx=é/cosy and hyy=4/sinyg are the angle-dependent
threshold fields required to excite jets of quasiparticles cen-

with A;<A4 andu=2 for the usual form of al-wave OP.  tered along theX and Y axes, respectively. The transverse
The small minima Q) are located at the positions of the magnetic moment is

nodal points in ad-wave gap. The current due to the quasi-

particle excitations is obtained from E(.4) B S)\ab[Ha(t)|Ha(t)|h _
m, (¢,t)= 6,mr[ Ho cosy sinys

2, Ao a2 x{cosy®[|h(t)|—hrx]—siny@®[|h(t)| —hry]}
) e ~ UF(V-Xp) = Ag 2, Ao 2
jpW) == 52 vafan[vf(v'xn) —AZ], +38%Hosgri Ha(t) 1{cosy®[ |n(t)] — hry]

n d
—singO[|h(t)[—hrx]}
n=12,..., (3.2 2

H
~25% g {cotyOLI ()] ~hry]
where the step function arises from the phase space for al- é

lowed quasiparticle excitations(¢,)|+v;-v<0) given
by " —tanyO[|h(t)|—hry]} |, (3.7

where we see that, as stated above, the temporal and angular
dependences oh, (t,¢) are no longer separable. To inves-
tigate the behavior of this expression at different fields and
admixtures ofs wave OPs it is useful to employ the scaling
relation

2/, 5 \2_ A2
vi(V-Xp)“—Ag
¢2<—, (3.3
" TRy

which is reduced compared to thilewave gap. The step
functio_ns result in a thrgsho!d effect: it now takes a mini- m, [ kh(t),x8]= x2m,[h(t), 5] (3.9
mum field to create quasiparticles. However, as we shall later

see, a small admixture of waves in ad+is gap can en- Valid for any angley, at fixed field ratioR. The quantityx
hancethe maximum valuef the nonlinear effects at fields is an arbitrary scaling factor.

above threshold. From E¢g.3) it follows that the nonlinear Again, we investigate the dominant harmonics of
effects are absent whenevidr,(t) is small enough so that M. (¢.t). Because of the nonseparability of temporal and
lv|<vt=A¢/v¢. In dimensionless form the threshold field angular dependences, one cannot introditeas in Eq.

h; and the threshold velocity; are (2.18. One must now carefully consider both the harmonics

Mj(zp):%J:ml'ilﬁ’t)cosj otd(ot), j=2.3, (3.9

hi=6 ——5 = (3.9
= s u __, = —, .
T T

and the relevant angular Fourier compondR&’s) in terms
The substitution of Eq(3.2) into (2.5) yields of which the angular dependence can be analyzed. The most
important angular FC is that which reflects the main angular

. eriodicity 7/2 of the ener ap:
D220~ Ui +sgh(D (WP —u2)O(|u|—up=0, i=Xy, " YT 9 gap

(35) 8 (w4

Mf=;J M;(¢)sindydy, j=2,3. (3.10
whereu; is given by Eq.(2.10 with A 4=A4. By modify- 0

ing the methods used in this case for a static fido include ~ We will focus in the rest of this section on the dominant
the time dependence we obtain response of the nonlinear magnetic moment atghd 3w.
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FIG. 4. Angular dependence &f;(«) [see Eq.3.9)] the 3w FIG. 5. Time dependence in @+is state of M, (¢,t) [Eq.
harmonic of the normalized transverse magnetic mordent for ~ (3.11)] and its contributions from jets along thé¢ [ M, (#,t)x]
various admixtures o waves in ad+is energy gap. Results are andY [M, (#,t)y] axes. Normalization and field are as in Fig. 4.
shown ath=h,,=0.05 and normalizedas in Fig. 2 so that the Results shown are at fixed anglg=25° for which (Fig. 4) the
maximum of M, for a pured-wave gap is unity. Lines are labeled signal for =0.02 is substantially enhanced as compared to the
by the ratio ofs- andd-wave amplitudesg=A¢/A4. pure d-wave case. Curves are labeled by the axes describing the

contribution from a particular jet, and the value®fAlso shown is

In Fig. 4 we show our results for the angular dependences 3,t, which enters the definition dfl5(#) in Eq. (3.9 and ac-
of the 3w harmonicM 3(¢). The details of its calculation are counts for part of the enhancement.

given in Appendix C. We display the range=[0,7/4]. We
have_takerRzO (guided by Fig. 2and a Qimengionless fie'ld M, (fo,)=M, (o, Dx+ M, (o,)y.  (3.1D
amplitudeh=h,=0.05. This value, using typical material

parameters for YBCO, correspondshige~H;;. The solid In Fig. 5, computed for the same fields as in Fig. 4, we show
line represents thd-wave result, normalized such that the M (#,t)x, M, (#,t)y, and their sumM, (#,t) as a func-
maximum of M, () for the static case is unity. This nor- tion of time wt at a fixed angley=,=25° in the region
malization is employed throughout this section. The brokerwhere the maximum oM 3(; 6=0.02) occurs. We see in
lines are labeled by the corresponding ratis Fig. 4 that the enhancement in this case is large, a factor of

An obvious feature seen in Fig. 4 is the enhancement ofbout 2 over thel-wave signal. The quantities in the figure
the maximum value of the signal that may arise from smallare shown for bot=0 and 0.02. The curves are labeled by
admixtures of ars-wave OP. At fixed field, the maximum two indices, the first a letter denoting the jet, or sum of jets,
enhancement of5(¢) is much more pronounced than the plotted and the second being the valuesfThe rangewt
moderate one fom, (¢) found in the static caséFig. 7 in €[0,90°] shown in the figure could be extended over the
Ref. 25. A similar enhancement is also presentNiy(i).  whole period by symmetry. For the chosen value/gf the
This result is rather unexpected since such an admixturthreshold fields satisfitry(1/o) <hry(o) and consequently
would reduce the available phase spheeall Eq.(3.3)] for  the magnitude of the jet along theaxis is greater than that
quasiparticle excitations. This enhanced signal is of nonof the one along th¥ axis. With the admixture of as-wave
negligible significance in planning experiments. We there-OP, there is a regiorwt<20°, where the magnitude of
fore pause here to explain its physical origin. M (,t)x is reduced toless than that of M, (¢g,t)y.

The nonlinear transverse magnetic moment arises frontherefore the cancellation of the contributions from the two
contributions due to components of the quasiparticle currendifferent jets takes place to a lesser extent, resulting in an
jqpn(V) at different nodegquasinodes These contributions overall increase ofM, (¢,,t). However, this accounts for
partly cancel each other as each node, in effect, tries to twisinly part of the enhancement seen in Fig. 4, basically the
the magnetic moment away from itself. Thus, if a magneticpart found in the dc case, which corresponds to thabtat
field is applied along an antinode, the cancellation of such=0 in the figure. The remaining part of the increase in
components is complete amal, =0. To explain the peculiar M3(¥) is explained by the convolution of the time depen-
enhancement iM (), we need to investigate how the in- dence ofM, (#,t) and cosat in the definition ofM;(#),
troduction of Ag increases thesymmetryof such contribu- Eq. (3.9. When the curves representing, (¢,t) for &
tions from different jets. The asymmetry, which is reflected=0,0.02 and cos@ (which is also shown in Fig. )5are
in the angular asymmetry of the curves in Fig. 4 80, is  multiplied the results obtained, which are the integrands in
brought about by one of the nodes being above its angulaEg. (3.9), are as shown in Fig. 6. The solid curve represents
dependent threshold fieltkee below Eq(3.6)] while the the pured-wave result and the broken curve that fér
other is still below. It was seen in Ref. 25 that this was=0.02. The ratio of the two net areas between the curves
responsible for the small enhancement seen in the dc casghown and the horizontal axis is about a factor of 2, i.e., the
Now we will see quantitatively how the larger enhancementactor betweerM ;(¢,) for §=0 and for5=0.02 in Fig. 4.
in the ac case arises from the same source. Thus, the enhancement is explained.

We denote the contributions td1, =m, /N, of the indi- It is straightforward to perform a very similar analysis for
vidual jets along theX andY axes at a fixed angléy by  M,(¢) using its explicit expression from Appendix C. From
M (o, D)x, M, (¥g,t)y: parity considerations, similar to those made for gaps with
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FIG. 6. Origin of the enhancement b3(¢) (the 3w harmonic FIG. 8. Field ratioR dependence of the angulat/2 Fourier

of M,) ath=h,=0.05, andy= o= 25° (recall Fig. 4 with the componenM?$ of the 3w signal of the normalized transverse mag-
admixture ofs-wave component in thel+is gap. The curves, Netic momentM, . Results shown are for various admixturessof
which represent the product of the normalized magnetic momen#aves in ad+is state ath=0.05. Normalization and labeling are
M, and cos(3t) (see Fig. 5 are labeled by the corresponding the same as in Fig. 7.

value of 8.
3w) as a function ofR at maximum dimensionless field

nodes,M,(¢) vanishes identically as a function éfand ;2'2%2?&21%?2? f\:)a:ll:;ﬁss @t In this caseRr=0 produces

for hdc:. 0. In this case, one choosEsO.Q(see Fig. 2_and It is instructive, in order to learn how to distinguish nodes
again finds an enhanced signal, as in Fig. 4. The size of thﬁom quasinodes, to contrast Fig. 2, which displz@ j
enhancement is largely due to the convolution with agis 2 ' - P

:f2’3’ the angular amplitude of thew2and 3w harmonics
The nonseparable temporal and angular dependences & a gap with nodes, with Figs. 7 and 8. Because of the
m, (¢,t) require additional care in trying to determine the '

) . i ’ ; _ separable temporal and angular dependences dfi,t)
optimal mixture of dc and ac fields iHla(t) which maxi-  \yhen nodes are present, the solid lifesred-wave éas)ain
mizes the harmonics gnd angle FC’s of the S|gnal. From th‘fﬁigs. 7 and 8 are simply proportionaith a normalization
expressions foM(¢) in Eq. (CD we h_ave obtglnedAresults factor® ~1) to the curveS\Wz or I\W3 respectively. Experi-
for its 77/.2 angular FC. We denote Fh's quantlty'Mlz , 83 mentally, a sensitive test would be, to measitg, M3 for
$ﬁ2¢§?,v(lan E)(J\I/S’.;s@.a\;\lljic?igﬁvig gltcﬁ I_ Beglgltsfolrnsg\llge.ra? several values dR, and compare thR dependence with the

| fép Th 2 lid i ¢ t?] ’ ud d corresponding solid lines in Figs. 7 and 8. The deviation
values ofo. The solid ine represents the puréwave an from these lines would indicate the absence of nodes in the
the broken lines are labeled by their valued®fWe see that gap. A further way of analyzing such data is suggested by
thg optimal field ratio dep(_ends on .the.particud;arvave ad- Figs. 9 and 10 where we shdw‘z" andM?, respectively, as
Qjﬁ;ugznT;éoslji?nh Ith(zxstgﬁgg% ;ilfiggrlcafgﬁ)ézsze Irr?_ functions of §, for several values dR [additional results are
Fig. 8 | thY them/2 lar EC of the si ' | at easily obtained using Eq3.10 and the expressions in Ap-

ig. 8, we plotM3 (i.e., thear/2 angular ot the signal & pendix d. The curves plotted are labeled by their values of
R and are given at a fixed maximum fighd=0.05. To com-

0.3
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FIG. 7. Field ratioR=hy/h,. dependence of13 [the angular
/2 Fourier component of thea2 signal of the normalized trans- FIG. 9. Dependence of the angular2 Fourier componen‘t/l‘z1
verse magnetic momemt, , Eq.(3.10], for various admixtures of  of the 2w nonlinear magnetic moment sign&, (recall Fig. 3 on
s waves in ad+is energy gap. Results are giventat 0.05. The the admixtures ob-wave components in d+is gap. Results are
normalization is as in Fig. 4. The curves are labeled by the ratichown ath=0.05 and normalized as in Fig. 7. Curves plotted are
6=A4 /A4 with the same values as in Fig. 4. labeled by the corresponding value Rf
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035 ———1r———r 77— time) and angular dependences. These quantities are respec-
03l | _tively q_uadratic and cubi(up toa sign determin_ed by parjty _
i in the instantaneous applied field. The nonlinear magnetic
0.25 response for nodeless gaps is more complicated: the(tme
0.2 field) and angular dependences are not separable and the
by L field dependence is not a simple power law. We have dis-
0.15 I cussed how these features can be studied by measuring
0.1 higher harmonicgreferred to as the frequency of the applied
0.05 | ac field of various physical quantities. For an applied field

H,(t)=Hy+H,Loswt, at a fixed maximunH 4.+ H,. we
have computed the optimal ratR=H 4./H . at which the
signal (for a certain higher harmonids largest. For gaps
with lines of nodes it is most favorable to measure the 2
FIG. 10. Dependence of the angulaf2 Fourier component of harmonic ofm, at R~0.5 or the 3» harmonic atR=0,
the 3w signalM3 of M, (compare with Fig. Bon the admixture of ~ while for 7, the best alternatives are thesharmonic atR

s-wave components in a@-+is state. Results are shown &t ~0.35 and the & harmonic component &=0. These re-
=0.05 and normalized as in Fig. 7. Curves plotted are labeled byyits are independent of the specific angular dependence of
their value ofR. the gaps with nodal lines and are also valid for an anisotropic

FS. In the absence of nodes, as we illustrate through the
pare experimental data with an assuntedis gap, and to  example of ad+is gap, selecting the optimal value Bfto
determine thes-wave admixture, one would look for a value maximize higher harmonics is less simple but more reward-
of & which agrees with a particular dependence of the meaing. The result depends on the particular admixture of
suredM3 or M3 at differentR. In these figures we notice s-wave component to the OP and hence provides for the
again the implications of the nonmonotonic behaviomgf  quantitative determination of this admixture. The results we
(or M) with 8. Just as we found above for the harmonics,have shown are sensitive to the angular position of nodal
there is also a substantial enhancement for the angular FC @uasinoddl lines, allowing for detailed characterization of
given R as compared to thé=0 value. It has the same the minima in the energy gap.
origin, as shown in Figs. 5 and 6, predominantly due to the The analysis presented here can be generalized to include
convolution ofM;(¢#,t) and cosjwt), j=2,3. In Figs. 9 and point nodes, and to triplet pairing. The field dependence for
10 we see that maximum such enhancentandifferent val-  gaps with point nodes is different than that found for gaps
ues ofR) is located typically in the range 0.0555<0.025 with lines of nodes. For example), is cubic rather than
at h=0.05. More generally, using the scaling relation Eq.quadratic in the instantaneous value of the applied field. Us-
(3.8), for an arbitrary maximum fielth (within the Meissner ing these considerations and the temperature range attainable
regime the maximum signal fon\/lf, j=2,3 is approxi- by a dilution refrigerator it should be feasible to experimen-
mately in the rangd/3< §<h/2. tally study other candidates for unconventional superconduc-

Thus, there are several distinct features for which the retivity, such as heavy fermions, organic superconductors, and
sults for a nodeless gap with small minima differ consider-SfRbO,. Analysis of the material parametef® estimate
ably from those for gaps with true nodes. These results sugdo andHy;) shows that in many cases the expected signal
gest how to perform measurements and analyze the nonlineahould be at least as large as for HTSC’s. Experiments in-
quantities in the low-frequency, low-temperature regimevestigating magnetic response in these materials, at sub-
They can be supplemented with the results from the statielvin temperatures, are currently under consideratfdns.
case. It would also be useful to study the field dependence of
m, and its Fourier components at fix@dwhile changing the ACKNOWLEDGMENTS
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IV. CONCLUSIONS

. . ) ) APPENDIX A: CURRENTS
We have examined properties of the nonlinear magnetic

response of an unconventional superconductor at low fre- Integration of Eq«(2.4) without a-b plane FS anisotropy

quencies. There are two key points to our conclusions. First/ield

these frequency-dependent nonlinear phenomena provide a U?

articularly powerful tool to distinguish nodes from quasin- ;| —~—aN.— e, 2 . . 2

gdes. Sec)(/)r?d, the experimental sgensitivity that aIIov?s one to Japi 2eNf MAeﬁ[el'(¢)UX+ezl(w)vxvY-l-esl(w)UY]y

perform “node spectroscopy” can be considerably enhanced .

over the corresponding dc result. =X, (A1)
For gap functions with nodal lines the nonlinear momentwhere the coefficientse; ,3(¢) are defined for various

(m,, my) and torque ¢,) have separable fielthnd hence, ranges ofy. Depending on the particular orientation
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as given by the anglé, these coefficients describe contri- APPENDIX C: FOURIER COMPONENTS
butions from different jets. The results are quadratic in the FOR A NODELESS GAP

superfiuid velocity. For al=s OP we obtain We give here the analytic expression for the harmonics
Erv=Ea=c3—g3 M;(#), valid for ad+is gap andhy.<h,.. Integration of
X =3y ’ Eq. (3.10 and substitution o, from Eq. (3.7) yields

ezx=2€3x=Zely=ezy=—ZCS(C—S), 2 3\/§
M;(¢) = p ?{COSlﬂSi” Yl cosp(p1jO 1+ ps3iO3)

Ye V,g—l/ , (A2a) _
—SiNy (P20 2+ p4jO4) ]
e1x=—€3y=—(c3+5%), +38% —siny (4101 +03,03)
ezx: —2€3x=2€1y= _ezy:2C5(0+ S), +C051//(q2j®2+q4j®4)]
T
ye E—v,w-i—v , (A2b) Toot(ry0,+1,40,) ]}, j=23, (C1

. . where we have introduced the abbreviations
wherec=cosv and s=sinv. The pured-wave limit corre-

sponds tac=1 ands=0. 0, ,=0[a+b—hryy(#,8)],

APPENDIX B: MAGNETIC MOMENT FOR A GAP 03,=0[b—a—hxv(#,9)], (C2

WITH LINES OF NODES anda, b are replacinghy. and h,., respectively. Since we

The magnetic moment can be calculated using only th&vork at a fixed maximum field Hgc+ hae=const), andR
surface values of the field&2>°°For the geometry consid- =hac/hac, Re[0,1), we seta=(hg+hdR/(1+R), b

ered here, the magnetic moment :(hdc+ ha(\)/(l‘{‘ R) The coefficients in Eq(C].) for the
2w component are
1 :
mz—f drr Xj(v), (B1) b? , , . b%
2c pi2=?wi+2absmwi+ a®+ = |sin 2w,
can be expressed as ) b2
) SdHa, S ” - + §S|n 3w; + Esm dw;,, 1i=1.2, (C39
my y=— 4 "‘ﬁvy,x( ), ( ) , o2
wherex andy are orthogonal axes fixed in spacgjs the Pra=7 (Wi )+ 2absinw, + a’+ - | sin2wy
slab area, and we have used thais odd inz. For a slab )
(d>\,p), Which is the case of experimental inter&sthe 2 b* _
nonlinear magnetic moment can be obtained fraz,t), +gsindwt gsindwy, k=34, (C3b
given in Eg. (2.14. For a gap with node lines it is
oh(t)|h(t)|. The transverse componentn, =mMmyCosy gio=sin2w;, i=1,...,4, (C30
+mysing, perpendicular to the applied field, is obtained
from Eq.(2.15 and the longitudinal component of the non- 4 da
linear magnetic momeninj= —mysiny+mycosy is given Fig= g SINW; — Fwi
by

2(2a%/0%~1) |(b—a)tanwi/2)+(b?—a?)"?

Skab Ha(t)l Ha(t)l

. n ,
M= G H,  (CnSIN YT egycosty (b2—a%)*2 | (b—a)tan(w;/2) — (b?—a?)¥?
+ cosysing [ (e,x+ €1y)COSY i=1,....4, (C3d
+(e3x+ €y)siny]}. (B3)  Those for the & component are
For a pured-wave OP andye[0,7/2], the angular depen- _b? . 2a’+b?
dence ofm, [its normalization as given in Eq2.17] is pi3—7smwi+absm2wi+ 3 sin 3w;
f() =3+/3cosysin y{cosy—sinyg] and that form it is b b2
fi(4) =.3\/§[cos3¢+sin3¢]. While the angular modulation +a—sin4wi+—sin5wi, i—1,... 4 (Cda
for my is somewhat smaller than that of, , the maximum 2 10
of m; is enhanced by a factor of \8. This enhancement
combined with ac measuring technigtfesould facilitate ex- ' zzsin W i=1 4 (cab
amining the higher harmonics due to the nonlinear response. 9is=3 v ey
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2 . .
ri3:E[(4aZ— b?)w; — 4absinw; + b2sin 2w;]

2a(—4a’+3b?)

b3( b2_ a2)1/2

n (b—a)tan(w;/2) + (b?>— a2)1/2‘
(b—a)tanwi/2)— (b?—a2)2’

i=1,2, (C40

2
rk3:E[(4az_ b2) (7 —w,) +4absinw,— b?sin 2w, |

2a(—4a’+3b?)
- b3(b2— a2)12

(b—a)tan(w,/2) + (b*— aZ)l/Z‘
n
(b—a)tan(w,/2) — (b%— a2)1/2‘ ,

k=34, (C40
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wherew, , 5 sdenote possible values aft for which |h(t)|
=htyy. The integral in Eq(3.9 can be replaced by inte-
grals over intervalsote[Ow;], i=1,2 andwte[w;,7], j
=3,4. For exampley; andwg are the limits for contribution
of quasiparticle jets alon axis andw, andw, those for
jets along theY axis. They can be expressed as

h —a
W ,=cos ! (%—l)@lfrl ,
—h —a
W3‘4:COS_1 %_1 @3’4_ 1}, (C5)

for a pured-wave gap,w;=cos (—a/b), i=1,2,3,4. The
previously given expressions ft;(¢), j=2,3, can then be
used[see Eq.(3.10] to obtain M3, M%, the /2 angular
Fourier components of the«2 and 3w signals of the trans-
verse magnetic moment.
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