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Attenuation factors of de Haas–van Alphen oscillations in the vortex state
of layered superconductors
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~Received 30 May 1997; revised manuscript received 14 May 1998!

We consider analytically within the Bogoliubov–de Gennes and Gor’kov approaches the magnetic oscilla-
tions due to the Landau quantization@de Haas–van Alphen~dHvA! effect# in the vortex-lattice~VL ! state of
layered superconductors. We found that the period of the dHvA oscillations does not change when the mag-
netic field H decreases below the upper critical fieldHc2

, whereas amplitudes of the dHvA oscillations are
damped by the attenuation factors. These factors appear due to~a! smearing of the Landau levels by impurities
and disorder of the VL,~b! broadening of the Landau levels into dispersive bands by periodic VL, periodic
external magnetic field, and periodic layered structure. In case~a! the attenuation factor is a Dingle-
like exponent,R(D,t)5R0(t)Rs(D)R0s(D,t), whereR0(t) is the standard Dingle factor andRs(D) was
calculated previously by Maki and Stephen. An extra damping is due to the interference term,R0s(D,t)
5exp(2p/Vtint), whose dependence on the magnetic fieldH is determined by the cyclotron frequency,V, and
t int

21;D2/v f l 0H (v f is the Fermi velocity,l 05v ft is the mean free path!. In case~b! attenuation factors differ
from the simple Dingle exponent and corresponding damping of dHvA oscillations basically less than in case
~a!, especially for fields well belowHc2

. In particular, the attenuation factor due to the layered structure is
determined by the one-dimensional density of statesg(«), related to the electron transport across the layers.
This factor is a periodic function in 1/H with frequencies depending on locations of the van Hove singularities
in g(«) and the ones caused by the stacking faults. Competition between different attenuation mechanisms
results in nonmonotonous decrease of the dHvA amplitudes and makes it possible to give a qualitative expla-
nation of recent experiments on borocarbide YNi2B2C where the dHvA oscillations have been observed down
to surprisingly low fields about 0.2Hc2

@T. Terashima et al. Phys. Rev. B 56, 5120 ~1997!#.
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I. INTRODUCTION

Magnetic quantum oscillations, also known as the
Haas–van Alphen~dHvA! effect, have been reported in
number of different types superconductors: laye
2H-NbSe2,

1–3 the strongly coupled A-15 compounds
V3Si,4,5 Nb3Sn,6 Ba~K!BiO3,

7 the organic molecular
k-~ET!2Cu~NCS!2,

8 YNi2B2C,9,10 the high-Tc layered
YBaCuO,11–17 and CeRu2.

18 Although an observation of the
dHvA effect in superconductors was made by Graebner
Robbins19 in 1976, it took nearly two decades before und
taking systematic explorations of this phenomenon in diff
ent types of superconductors. Currently, a considerable
erature on the theory of this phenomenon exists.20–45 All
theories, in full accordance with experiments, agree that
period of dHvA oscillations below the upper critical fie
Hc2

does not change. A consent has not yet been achie
about the form and mechanisms of damping of dHvA os
lations because of the rich physics beyond this damping
decade before the experimental observation of the dHvA
fect Rajagopal and Vasudevan35 and Gunther and
Gruenberg36 found a small correction to the critical temper
ture Tc periodic in the inverse field 1/H due to the Landau
quantization. Such oscillations of the thermodynamic qu
tity Tc nearHc2

is nothing but a manifestation of the dHv
effect in superconductors. The theoretical explanation of
attenuation of dHvA oscillations by the quasiparticles sc
tering on a random vortex lattice~VL ! was given by Maki23
PRB 580163-1829/98/58~13!/8716~11!/$15.00
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and Stephen.24 In these papers as well as in the work
Wasserman and Springford25 the attenuation is due to th
Dingle factor,Rs5exp(2p/Vts), whereV is the cyclotron
frequency and 1/ts;D2/H1/2 ~D is the order parameter!.

Further development of the problem of the dHvA oscill
tions in superconductors has required an incorporation of
self-consistency of the VL into consideration. It turned o
that most conveniently this might be done in the magne
Bloch-state representation44 of the microscopic BCS theory
Such a representation for the Bogoliubov–de Gennes~BdG!
equations has been presented by Dukan, Andreev,
Tesanovic,35 and was developed further in othe
work.20,21,36,37The Gor’kov-equations approach to the BC
theory in the Landau levels basis was given by Rajagopa22

The appropriate equations for the quasiparticle energy s
trum in the vortex state turned out to be very difficult
solve exactly. It was shown in Refs. 35, 36 that nearHc2

~where the VL is thick! the energy spectrum is gapless at
discrete set of points on the Fermi surface. This leads to
algebraic behavior of various low-temperature thermo
namic quantities of the system in question. Another difficu
is the off-diagonal pairing. The off-diagonal, in Landau le
els index, matrix elements of the order parameterDnm , have
a very complicated dependence on indicesn andm, magnetic
field, and VL structure which makes analytic calculations
the dHvA oscillations possible only nearHc2

, where one can
neglect the off-diagonal pairing due to the smallness of
parameterD/\V!1. Dukan and Tesanovic29 considered the
8716 © 1998 The American Physical Society
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attenuation mechanism of the dHvA oscillations nearHc2
in

the diagonal approximation due to the gapless portion of
quasiparticle spectrum in the magnetic Brillouin zone. N
merical calculations, done by Norman, MacDonald, a
Akera21 for a two-dimensional~2D! superconductor with a
regular VL, have shown that the dHvA oscillations forH
below Hc2

are damped due to the Landau-level broaden
into bands whereas frequencies of these oscillations rem
intact in the vortex state.

As we see, the damping of the dHvA oscillations in t
mixed state is stipulated by a number of mechanisms ac
concurrently. In view of that, one cannot write down a ge
eral expression for damping, valid for every case. Rath
before comparing between theory and experiments one
to single out a major mechanism and then only use an
propriate formula. In this connection, a good quantitat
agreement between BCS-based theories and experimen
strongly coupled superconductors V3Si and Nb3Sn @with
coupling constantl.1 ~Ref. 46!# reported in some works
raise doubts since theseA-15 compounds should be de
scribed by the Eliashberg equations rather than the BdG o
valid for l!1.

On the other hand, the current state of the art in numer
methods is still far from granting the opportunity to rela
first-principles calculations with experiments since mo
parameters for a superconductor~usually 2D! as a rule is
unrealistic. In Ref. 30, for example,l51 is too big for the
BCS model and so is the cutoff energy,vd50.5m, while the
Fermi energy,m, is equal to only a few tens of\V. In addi-
tion the approximation of strongly oscillating matrix el
ments in the pairing blocks by the same constant may o
estimate contributions from the off-diagonal terms into
secular equation, since in fact they may simply cancel e
other due to oscillations.

We see therefore that both analytic and numerical
proaches have their weak and strong points and have t
continued to gain a better insight into the problem in qu
tion. Recent experiments6,9,10 indicate conclusively tha
dHvA oscillations in superconductors persist in the vor
state down to surprisingly low fields@equal toH'0.2Hc2

in

borocarbide YNi2B2C ~Ref. 9!#. The oscillation amplitude is
strongly suppressed in a field region immediately belowHc2

and recovers at lower field.9 Such a behavior implies com
petition between different mechanisms of damping of dH
oscillations due to VL, layer structure, spatial periodicity
the order parameter, and external magnetic field. We
consider the role of the off-diagonal pairing in the dHv
oscillations well belowHc2

. We show, in particular, tha
random VL damp dHvA oscillations more strongly than pr
dicted by theories of Maki,23 Stephan,24 and Wasserman an
Springford25 due to the Dingle-like ‘‘interference’’ exponen
The attenuation factor caused by the regular VL is not of
Dingle-exponent form and less than the ones due to the
dom VL.

The paper is organized as follows. In Sec. II we calcul
the spectral density of a layered superconductor in
Landau-level representation in the VL state and in the cas
a one-dimensional periodicity of the external magnetic fie
In Sec. III we study the free energy of a layered superc
ductor in the VL state and focus on the different random a
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periodic factors which determine amplitudes of dHvA osc
lations below theHc2

. Section IV contains a discussion o
the main results of the paper concerning the attenuation
tors damping dHvA oscillations in the VL state of a layer
superconductor and gives a qualitative comparison with
recent experiments in the field. In the Appendix we pres
in detail calculations of the quasiparticle damping due to
electron scattering on a random VL using a combination
the Green function and de Gennes correlation function m
ods.

II. THE ENERGY SPECTRUM AND THE SPECTRAL
DENSITY OF A LAYERED SUPERCONDUCTOR

IN THE VORTEX-LATTICE STATE

Recently, a good deal of progress has been achieve
the description of the VL state in 2D superconductors with
the BdG approach.20–21,30,36,37The problem of electron scat
tering on VL imperfections is easier to solve with the help
the Green functions.23–25 In the following we will resort to
both methods.

To begin with these calculations, let us consider the B
equations

Ĥu~r !1D~r !v~r !5Eu~r !,
~2.1!

2Ĥ* v~r !1D* ~r !u~r !5Ev~r !,

which in the basis of eigenfunctions of the Hamiltonian
2D electrons in an external field of the vector potentialA~r !
take the form

(
m

@~«n2E!dnmum1Dnmvm#50,

~2.2!

(
m

@Dnm* um2~«n1E!dnmvm#50.

The u2v functions in Eqs.~2.1! and ~2.2! are related by

u~r !5(
n

unwn~r !, v~r !5(
n

vnwn* ~r !, ~2.3!

and the matrix element of the order parameter is equal t

Dnm5E wn* ~r !D~r !wm* ~r !dr . ~2.4!

The basis functions satisfy the eigenvalue equationĤwn(r )
5«wn(r ) with the Hamiltonian

Ĥ5
1

2m S P2
e

c
A~r ! D 2

2m. ~2.5!

Here m is the Fermi energy,m and e stand for the electron
mass and charge,c is the speed of light.

The specific form of thewn(r ) depends on the gaug
choice, whereas the Landau spectrum,«N5\V(N11/2)
2m, is the gauge invariant (V5eH/mc is the cyclotron
frequency!. In the Landau gauge,A5(0,Hx), which proved
to be convenient in description of the VL states,21,30the basis
functions are
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wn~r ![CNX~r 8!5Ly
21/2expS 2 i

Xy

l 2 DCNS x2X

l D ,

~2.6!

where CN(x)5@2NN!(p l )1/2#21/2 exp(2x2/2)HN(x) and
HN(x) is the Hermitian polynomial of the orderN; l 2

5\c/eH is the magnetic length. In the rest of the paper
will employ a complex index (n[N,X) composed of the
two quantum numbers: the Landau-level numberN, and the
coordinate of the Landau orbit center,X52(cpy /eH).

Excludingvn from Eqs.~2.2! we arrive at the equation fo
un

~E2«!un2(
k

snk~E!uk50, ~2.7!

which has a form of the Schro¨dinger equation for some fic
titious ‘‘particle on a lattice’’ with the hopping integrals

snk~E!5(
m

DnmDmk*

E1«m
. ~2.8!

It is easy to show47 that the Green function of Eq.~2.7!,

(
m

@~E2«n!dnm2snm~E!#Gmk~E!5dnk ~2.9!

is nothing but theG function of the Gor’kov equations

GE~r ,r 8!5(
m,k

Gmn~E!wm~r !wn* ~r 8!. ~2.10!

The correspondingF function is given by

FE
1~r ,r 8!52 (

m,n,k

Dnm* Gmk~E!

E1«m
wn~r !wk* ~r 8!.

~2.11!

One can check directly that theF-G functions of Eqs.~2.10!,
~2.11! satisfy the Gor’kov equations in the coordinate rep
sentation. The energy spectrum of the system under con
eration is determined by poles of the diagonal matrix elem
of the Green function~2.9! which can be written, after som
calculations47,48 in the form

Gmn5@E2«n2Sn~E!#21, ~2.12!

where the self-energy is given by

Sn~E!5snn~E!1 (
kÞn

snkGkn

E2«k2skk
. ~2.13!

The functionGnm satisfies the integral equation,

Gnm5snm1 (
kÞn,m

snkGkm

E2«k2skk
, ~2.14!

which is equivalent to an infinite series in powers ofs.
NearHc2 the Landau-level separation is much larger th

the absolute value of the order parameter,\V@uDu, so that
according to Eq.~2.8! usnmu is proportional~near the Fermi
level E50) to the small parameteruDu/\V!1. Taking this
into consideration one can approximate the self-energy
the first term in Eq.~2.13!,
e

-
id-
nt

n

y

Sn~E!'snn~E!. ~2.15!

The spectral density is determined then by theGnn(E) as
follows:

rnn~E!5 lim
d→0

F2
1

p
Im Gnn~E2 id!G . ~2.16!

Substituting Eq.~2.12! into Eq. ~2.16!, we have

rnn~E!5
1

p

Im Sn~E!

@E2«n2Re Sn~E!#21Im2Sn~E!
.

~2.17!

The specific form of the energy spectrum, given byE2«n
2ReSn(E)50, depends on a particular choice of a model
the system under study. If, for a while, we neglect spa
variations of the order parameter,D(r )[D, and assume also
that there is no electron scattering in the system, th
Im Sn(E)50, ReSn(E)5D2/(E1«n) and forrnn(E) we have

rnn~E!5dS E2«n2
D2

E1«n
D

[
1

p
@un

2d~E2En!1vn
2d~E1En!#, ~2.18!

whereEn5(«n
21D2)1/2 is the BCS quasiparticle energy, an

un
251/2(11«n /En), vn

251/2(12«n /En) denote the coher-
ence factors.

In reality, the presence of a VL brings two major effec
which should be taken into account in calculations of t
density of states. First, the spatial periodicity caused by
Abrikosov lattice lifts up the degeneracy on the Landau or
center positionX, and gives rise to dispersive Landau ban
E(k), with k being the intraband quasimomentum. Second
a small disorder or random in the VL structure broadens
Landau levels due to electrons scattering. The distinction
tween the above-mentioned two effects is that the firs
caused by the VL contribution into ReSn(E), while the sec-
ond one manifests itself through changes in ImSn(E). Using
the technique of positional averaging over the VL, intr
duced by Brandt, Pesch, and Tewordt49 an inverse lifetime of
quasiparticles, 1/ts , caused by the scattering of electrons
a VL, have been calculated23–25 so that the total dampingn
was obtained as a sum of the two terms

n'
\

t
1

\

ts
,

\

ts
'D2S p

m\V D 1/2

. ~2.19!

The term\/t is due to the scattering on the crystal lattic
while \/ts stems from the scattering on the VL.

The damping~2.19! broadensd functions in the spectra
density~2.18! into two Lorentzians and thereby reduces t
amplitude of dHvA oscillations in superconductors via t
Dingle exponential factor which decreases with the grow
of ts

21. The quantityts
21 was calculated in the above pape

in a pure case (1/t50) so thatn in Eq. ~2.19! is given by the
sum of two independent terms. It is clear that taking in
account the lifetime effects in calculations ofts

21 should
bring in an additional~interference! term t int

21, vanishing
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whenD or t21 goes to zero. The interference term is calc
lated below in the Appendix on the basis of the de Gen
correlation function50

f n~r ,r 8,z!5(
m

^nud~r2r1!k̂um&

3^muk̂1d~r2r2!un&d~z2zm!, ~2.20!

which has been introduced as a tool for studies of superc
ducting alloys and systems without translational symme
( k̂ is the complex conjugation operator.! The self-energy
~2.15!, as one can see from the definition~2.8!, can be
readily expressed in terms of this function

snn~E!5E drdr 8dz
D~r 8!D* ~r !

E1z2 id
f n~r ,r 8,z!.

~2.21!

In the Appendix we will show that interference term
\/t int;D2/v f

2tH, can be calculated after positional avera
ing over a VL. Thus, instead of Eq.~2.19! the total damping
is

n5
\

t
1

\

t int~D,t!
1

\

ts~D!
. ~2.22!

Another source of damping of dHvA oscillations, whic
cannot be reduced to the Dingle factor, is the Landau-le
broadening into bands due to the VL periodicity. Most co
veniently this effect and the corresponding electronic str
ture of the VL state may be described in the basis~2.6!
written in the Bloch representation. One can find details
calculations in Refs. 20, 21, 30, and 36. Although the o
diagonal~in Landau index! pairing makes the whole spectr
picture rather nontrivial, nearHc2

, whereD!\V, the off-
diagonal pairing is ineffective and the quasiparticle ene
band is

EN~k!5A«N
2 1uFkNN

u2, ~2.23!

wherek is the Bloch wave vector andFkNN
is the diagonal

pairing matrix element. These bands originate from the L
dau levels as a result of lifting their degeneracy by the p
odic pairing potential,D(r1a)5D(r ), of the VL. Note the
magnetic field is assumed to be uniform in Eq.~2.23!. This is
a good approximation slightly belowHc2

where dHvA oscil-
lations have been observed. On the other hand, for fields
belowHc2

and in some specific cases spatial variations of
external field are essential. For example, in layered super
ductors and superlattices the periodicity ofH(r ) may appear
due to the intrinsic pinning51 which can forcibly modulate a
VL imposing it in a period of the superlattice. A period
magnetic field may itself be a physical reason for dispers
broadening of Landau levels.

To illustrate this, consider a first-order correction to t
energy spectrum of a uniform (D5const) superconductor in
the periodic magnetic field of the formH(x)5H
1H1 cosqx. The corresponding vector potential in the La
dau gauge isA5@0,Hx1(H1 /q)sinqx,0#, where a is the
period ofH(x) andq52p/a.
-
s

n-
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The Hamiltonian~2.5! in this gauge can be written as
sum of the HamiltonianĤ0 with the eigenfunctions~2.6! and
the perturbation

V̂~x!5mV2~x2X!
H1

qH
sin qx. ~2.24!

Finally, for the first correction to theEN
0 5(«N1D2)1/2 after

some standard calculations, we have

EN
~1!~k!5

mV2H1l

Hq

«N

EN
0

expS 2
ql

2 D 2

LNS q2l 2

2 D cos~2p l ak!,

~2.25!

where LN(x) is the Laguerre polynomial of degreeN and
l a5 l 2/a. Thus, the Landau band~2.25! is proportional to the
two factors. The first one is given by the Laguer
polynomial which is typical for harmonic perturbations
nonsuperconducting conductors.52,53 The exponential factor,
exp(2ql/2)2[exp(2H* /H), with H* 5pF0/2a2, is typical
of Landau bands in the coherent magnetic breakdown.54,55

One can show that in cases of 1D harmonic perturbati
of the order parameter,D(x)5D1D1 cosqx, or the scalar
potential, the structure of the Landau band is similar, an
can be written as follows:

EN~k!5A«N
2 1D21e2H* /H@AN1BNcos~2p l ak!#.

~2.26!

The coefficientsAN and BN depend onD and H in a way
specific to the particular choice of the perturbation. For
stance, in the case of periodicD(x) the first-order calcula-
tions yieldAN50, and

BN5
DD1

EN
0

LNS q2l 2

2 D . ~2.27!

If D50, thenD(x)5D1 cosqx, and a first-order correction
to the energy equals zero. In this case one must calculate
second-order contribution into the energy~2.26!, which is
given by

AN5D1
2~CN1DN!, BN5D1

2~CN2DN!, ~2.28!

CN5
1

2 (
p51

` F ~ql !2pLN
2pS q2l 2

2 D G2

@EN
0 1EN12p

0 #21,

~2.29!

DN5 (
p51

` F ~ql !2pLN
2p11S q2l 2

2 D G2

@EN
0 1EN12p11

0 #21.

~2.30!

HereLm
n (x) denote the associated Laguerre polynomials.

Therefore, taking into account broadening due to the e
tron scattering on a VL and/or crystal lattice and dispers
relations within Landau bands Eqs.~2.23! or ~2.26! caused
by the periodicity of a VL, one can write the spectral dens
in the form
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rNN~v,k,z!5
1

p FuNk
2 n

n21@v1EN~k,z!#2

1vNk
2 n

n21@v2EN~k,z!#2G . ~2.31!

Apart from the broadening of thed functions and the substi
tution EN by the Landau bands, Eq.~2.31! differs from Eq.
~2.18! in that we have included in Eq.~2.31! an additional
variablez. This variable describes a kinetic energy asso
ated with the electron motion along the magnetic field. Su
an inclusion simply means a substitution,«N→«N1z, in all
above 2D expressions. We will show in the next section t
in the case of a layered superconductor electron mo
across the layers~in field perpendicular them! yields a non-
trivial factor modulating 2D dHvA oscillations appropriate
a single layer.

III. de HAAS –van ALPHEN OSCILLATIONS
IN THE VORTEX-LATTICE STATE

Once the spectral density is known, the free energy o
nonuniform superconductor can be calculated as56

F5E dr
uD~r !u2

l
22T (

N,z,k
E

2`

`

dvrNN

3~v,z,k!lnF2 coshS v

2TD G , ~3.1!

wherel is the BCS coupling constant. Using Eq.~2.31! for
the rNN and the integral representation57

lnFcoshS v

2TD G5E
2`

`

dz
12cosvz

z sinh pTz
, ~3.2!

one can complete integration overv in Eq. ~3.1!. Then, with
the help of the normalization condition

uNk
2 1vNk

2 51, ~3.3!

and the Poisson summation rule

(
n0

`

x~n!5E
2`

`

x~n!dn12 Re (
p51

` E
a

`

x~n!ei2pnpdn,

~3.4!

wheren021,a,n0 , the oscillating part of the free energ
can be presented in the form

Fosc54T Re (
p51

`

(
z,k

E
2`

`

dz

3E
a

`

dn
ei2pnp2nuzucos@En~k,z!z#

z sinh pTz
. ~3.5!

Further calculations demand a specific form of the Land
band energy,En(k,z). We first consider the case whe
En(k,z) is given by Eq.~2.23!, which we rewrite in the form

En~k,z!5A@\V~n2nm1z!#21D2~k!. ~3.6!
i-
h

t
n

a

u

Here the Landau-level index at the Fermi energy,nm
5m/\V21/2 is introduced, andD2(k)5uFknmnm

u2.

Substituting the variablen by n8 according to the\Vn8
5\V(n2nm)1z, and introducing a one-dimensional de
sity of states associated with the electron motion along
magnetic field

g~«!5(
z

d~«2z!, ~3.7!

after integration over« andn, we have

Fosc54T Re (
p51

`

(
k
E

2`

`

Gp~k,z!I p

e2nuzu

z sinh pTz

3cosF2ppS m

\V
2

1

2D Gdz, ~3.8!

where

Gp~k,z!5E
2`

`

dn cos„zA~\Vn!21D2~k!…cos 2pnp,

~3.9!

and the factor

I p5E
2`

`

g~«!expS 2 i
2p«p

\V Dd«, ~3.10!

introduced by one of the authors in Ref. 58. Leaving as
for a while the analysis of effects related to the factorI p ,
consider now the integral~3.9!. It can be calculated with the
help of the relationship57

J~c!5E
0

` sin~cAx21y2!

Ax21y2
cos~bx!dx

5
p

2
J0~yAc22b2!u~c2b!, ~3.11!

whereu(x) is the Heaviside step function, andJ0(x) stands
for the Bessel function. In view of the fact that]J(c)/]c is
exactly the integral~3.9!, we have

Gp~k,z!5pd~z\V22pp!1
p

\V
uS z2

pp

\V D
3

]

]z
J0S D~k!

\V
A~z\V!22~2pp!2D .

~3.12!

Substitution of this equation into Eq.~3.8! yields

Fosc5
4pT

\V (
p51

`

~21!pcosS 2pp
m

\v D I pC~n,D,zp!,

~3.13!
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C~n,D,zp!5gC~n,zp!1E
zp

`

dzC~n,z!

3
]

]z (
k

J0S D~k!

\V
A~z\Q!22~2pp!2D .

~3.14!

Here zp52pp/\V, g5F/F0 being the degeneracy facto
~F is the flux through a sample,F0 is the flux quantum!, and

C~n,z!5
e2nz

z sinh~pTz!
. ~3.15!

Using the relationdJ0 /dz52J1(z) one can rewrite Eq.
~3.14! in the form which explicitly displays the negative sig
of the second term in the amplitudeC(n,D,zp). This term
depends on the order parameter and appears only belowHc2

.

For H.Hc2
the amplitude~3.14! reduces to the first term

gC(n,zp), describing the standard picture of dHvA oscill
tions in normal metals, damped by the Dingle fac
exp(2nzp). For fields belowHc2

, i.e., in the VL state, the
amplitudes of the oscillations decreases, while the period
dHvA oscillations, in full accordance with th
experiments,1–19 remains intact. The additional damping
the superconducting state arises owing to the two major c
tributions from the VL. The first one is due to the addition
scattering of electrons on a VL given by Eq.~2.22!. It acts
via the Dingle factor which decreases with the enhancem
of D. We will consider this mechanism of damping in det
and calculaten~D,t! in superconductors with impurities i
the Appendix. Another mechanism of damping is determin
by the last term in Eq.~3.14!, which near theHc2

@for

D(k)!\V] can be written in the form

C~n,D,zp!5gC~n,zp!2
1

2
^D2&E

zp

`

dzC~n,z!z,

~3.16!

where

^D2&5(
k

D2~k!. ~3.17!

We see that even in the absence of scatteringn50 ~when the
Dingle factor equals unity!, the dHvA oscillations are
damped by the term proportional~nearHc2

) to the quantity

^D2&.
In the above considerations, as well as in every previ

theoretical study of dHvA oscillations in superconducto
the external magnetic field was assumed to be spatially
form. Since the energy spectrum of a 2D superconducto
periodic magnetic field is found, then calculations ofFosc
with the help of Eq.~2.26! is absolutely similar to that don
before. They yield again Eq.~3.13! but this time with the
amplitude of oscillations different from that given by E
~3.14!. The renormalized amplitude in this case is
r

of

n-
l

nt
l

d

s
,
i-

in

C~n,D,zp!5C~n,zp!I * ~zp!1E
zp

`

dzC~n,z!

3
]

]z
J0S D

\V
A~z\V!22~2pp!2D I * ~z!,

~3.18!

where

I * ~z!5J0FBz expS 2
H*

H D GcosFAz expS 2
H*

H D G .
~3.19!

A andB equal toAN , BN of Eq. ~2.26! with N5m/\V.
The amplitude~3.18! is very similar to that of Eq.~3.14!.

Apart from the adopted spatial uniformity ofD, a new factor
I * (z), caused by the spatial periodicity of the magnetic fie
appears in Eq.~3.18!. This factor, depending onD andH, is
less than unity and diminishes amplitudes of dHvA oscil
tions when field decreases belowHc2

. As in the case of a
VL, the mechanism of damping of dHvA oscillations in E
~3.18! is determined by the formation of Landau band
Qualitatively, the 1D periodic external magnetic field and t
2D periodic VL damp the dHvA oscillations in the sam
fashion. The difference is in the specific form forEN(k) and
damping factors.

The dependence of dHvA oscillation amplitudes on t
magnetic field in Eq.~3.13! is also related to the factorI p ,
given by Eq.~3.10!. This factor is a Fourier transform of
1D density of states,g(«), associated with the electron mo
tion along the magnetic field. It follows from Eq.~3.10! that
any singularity or narrowd peak in g(«) located at some
energy«0 makes the factorI p to be an oscillatory function of
the reciprocal field 1/H. Experimental detection of these o
cillations provides a basis for measurements of the«0 and
thereby to the restoration of the density of statesg(«). In the
case of a uniform and bulk superconductorg(«) has no sin-
gularities, but they do exist in layered superconduct
among which are the high-Tc cuprates, the dichalcogenide
of transitional metals and various artificial superlattices.

The prospective of restoration of the functiong(«) in
these materials by the dHvA measurements is a very intr
ing problem.

Consider first a regular layered crystal in which

g~«!5
1

p
~s22«2!1/2 ~3.20!

with s standing for the overlap integral between adjac
layers. The square-root van Hove singularities in Eq.~3.20!
manifests itself in oscillations periodic in 1/H of the factor
~3.10! which in this case is equal to

I p5J0~2zps!. ~3.21!

Any irregularity in the layer stacking~which inevitably ap-
pears in the process of intercalation, for example! results in
the appearance of the local or quasilocal peaks ing(«) and
thereby gives rise to additional oscillations ofI p . The fre-
quency of these oscillations depends on the local value of
overlap integral near the stacking faults f . For small con-
centrations of stacking faultsc, the factorI p can be written as
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I p5~12c!J0~2zps!1cdI p , ~3.22!

wheredI p has an exponential Dingle-like form~for s.s f)

dI p5exp@2zp~s22s f
2!1/2#cos~2s fzp!. ~3.23!

Oscillations of the factorI p in the reciprocal field modulate
dHvA oscillations in layered crystals. They are independ
of the order parameter and hence survive aboveTc in the
normal state. Such modulations have been observed in s
intercalated layered crystals59,60 and all the more should b
observable in metallic superlattices where thicknesses
constituting layers can be varied smoothly.

IV. SUMMARY AND CONCLUSION

Theoretical problems and issues related to the dHvA
cillations in quasi-2D superconductors are extremely co
plex and versatile. On the other hand, the experimental
of preservation of dHvA frequencies during the superc
ducting phase transition is crucial and tells that Landau-le
systematics survive deep beyondHc2

. It was experimentally
established6 that the well-known Lifshitz-Kosevich quas
classical theory of the dHvA effect developed for conve
tional metals is inappropriate to dHvA oscillations in th
mixed state. In the most pronounced and striking form
typical features of the dHvA effect in the vortex state ha
been observed by Gollet al.10 and especially by Terashim
et al.9 on borocarbide YNi2B2C. The latter authors found
that in a field immediately belowHc2

the oscillation ampli-
tudes are much more strongly damped than predicted
theories of Maki,23 Stephen,24 and Norman and
MacDonald,30 but they recover at lower field and persist u
to the fieldH'0.2Hc2

with amplitudes larger than theoret
cal predictions.23,24,30 Thus, one of the challenges of th
problem discussed is to understand why damping of dH
amplitudes is larger than that given by the Dingle expon
of Refs. 23, 24, 30 in the pinned~disordered! vortex state
and why this damping is less than the Dingle exponent
lower field where the VL is regular.9 Physically, the disorder
the periodicity, and the temperature damp dHvA oscillatio
in a different fashion: disorder smears the Landau lev
while periodicity broadens them into dispersive Land
bands, and temperature smears the Fermi distribution.
most high dHvA amplitudes appear atT50 in the clean
normal state of a 2D metal when sharp Landau levels cro
sharp Fermi surface. Smearing of the Landau levels by
disordered~random! VL and impurities of the crystal lattice
as well as broadening of Landau levels into bands by p
odic layers, the external magnetic field, the order param
and the VL, damp amplitudes of dHvA oscillations. The a
propriate attenuation factors have been calculated in Sec
Our main result is given by Eq.~3.13! describing harmonic
oscillations of the free energy modulated by attenuation f
tors I p andC(n,D,zp). The factorI p ~3.10! appears due to
the electron transport across the layers. It is a Fourier tra
form of the 1D density of states~3.7! and very sensitive to
the quality of layer stacking. Even a small concentration
the stacking faults yields additional modes and results in
extra damping of dHvA oscillations compared to the case
a perfect layering as one can see from Eqs.~3.22!, ~3.23!. In
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the case of small overlapping between adjacent layer w
functions, s/\V!1, the factor I p51 according to Eq.
~3.21!. If, in addition, we set in Eq.~3.13! D,n,T equal to
zero, the oscillating part of magnetization,Mosc
52dFosc/dH, has the shape of a 2p periodic in a 1/H saw-
tooth function:

Mosc' (
p51

`
~21!p11

p
sin pw5

w

2
2pF w

2p
1

1

2G , ~4.1!

wherew52pm/\V and @x# stands for the integer ofx. A
sawtooth magnetization in an ideal 2D metal atT50 was
considered by Peierls62 in 1933 and then reexamined b
Vagner, Maniv, and Ehrenfreund,63 and Shoenberg64 in the
1980s when 2D conductors became a popular experime
system. Temperature, quasiparticle scattering~by VL and
impurities!, and electron migrations across the layers sm
the sawtooth profile of magnetization because factorsI p and
C(n,D,zp) depend on the indexp and the corresponding
Fourier series forMosc is more complicated than Eq.~4.1!.
The factorC(n,D,zp), according to Eq.~3.14!, consists of
two terms. The first one,C(n,zp), is proportional to the total
Dingle factor due to the quasiparticle scattering on crys
and vortex-lattice imperfections:R(D,t)5exp(2nzp) where
total dampingn equals Eq.~2.22!. The second term in Eq
~3.14! vanishes aboveTc , it describes condensate oscillatio
amplitudes and depends on the broadening of Landau le
into Landau bands by the VL. NearHc2

it can be presented

as a power series~3.16! in ^D2&, which is an averaged ove
the Brillouin zone, squared pairing matrix elementD2(k)
~3.17!. FunctionD(k), as is known, has a number of zero
which diminish integrals onk in Eqs.~3.14! and ~3.16!, but
this effect is not so big, as that reported by Dukan a
Tesanovic,29 because of the termC(n,zp). We see also tha
attenuation of dHvA oscillations caused by Landau band
not of the exponential Dingle form. In this connection, t
approximation of the Landau-band-induced damping in R
21 by the Dingle factor,R5exp(2p/Vts), with 1/ts

;l\VD0nm
21/4, simply means that the quantity 1/ts is some

effective measure of the Landau bandwidth and differs fr
the scattering lifetime calculated in Refs. 23–25. The to
Dingle factor in our work depending both onD and t is
R(D,t)5R0(t)Rs(D)R0s

(Dt), where the ‘‘interference

Dingle factor’’ is R0s
(D,t)5exp(2p/Vtint). The field de-

pendence oft int
21;D2/v f l 0H is different from that found in

Refs. 23–25 forRs(D) in the clean limit:ts
21;D2/v fH

1/2.
We have considered dHvA oscillations in supercondu

ors in a nonuniform magnetic field. The periodic magne
field lifts up the degeneracy of the Landau levels in the sa
fashion as the VL does and gives rise to the Landau ba
The dispersion relation,EN(k), in this case differs from tha
for the VL, Eq. ~2.23!, and is given by Eq.~2.26! corre-
sponding to the one-dimensional periodicity of the exter
magnetic field and/or order parameter. Physically, this m
be realized in layered crystals and superlattices due to
intrinsic pinning of vortices by periodic set of layers. Th
amplitude of dHvA oscillations in this case is given by E
~3.18! and contains a specific factor of damping,I * (z) @see
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Eq. ~3.19!#, which depends on the field by dint of the typic
exponent, exp(2H* /H), which determines the width of th
Landau bands.

Consider now briefly the connection between the res
of this paper and current experiments on the dHvA effec
the mixed state. The experiments6,9,10show that immediately
after crossingHc2

there is a region, down to a some fie

Hm , where dHvA oscillations are damped, but then reco
at lower fieldsH!Hm . In borocarbide YNi2B2C, at very
low temperatureT50.05 K, damping within the interva
Hc2

,H,Hm is much larger than predicted by any of exis

ing theories.9 We can explain this by noting that according
modern view on theH-T phase diagram51 in layered systems
the VL is melted in the field regionHc2

(T),H,Hmelt(T)

immediately below the upper critical field. In this field inte
val a ‘‘vortex matter’’ is in the liquid or glassy state so th
the most adequate approach to the dHvA effect in this reg
is the one given by Maki-Stephen23,25which treats the VL as
a random quantity. We can relate the extra damping
served in this region to the interference Dingle fac
R0s

(D,t) calculated above. Further decrease inH recovers a

regularity of the VL and switched off the Maki-Stephe
mechanism of damping whenH!Hm . The periodic VL lifts
up the degeneracy of the Landau levels and broadens t
into the Landau bands. As far as the damping of dHvA a
plitudes caused by the Landau bands Eqs.~3.14!, ~3.18! is
less than the Dingle exponentR(D,t), the corresponding
attenuation of oscillations is less than that given by theo
of Refs. 23, 25, 30, in accordance with the experiments
Terashimaet al.9 Such a crossover from a relatively stron
damping just belowHc2

to a weaker attenuation of dHvA

amplitudes has been observed in a number of works.6,9,10

From all these works, only the most low-temperature m
surements made in Ref. 9 atT50.05 K show that this cross
over is closely related to the vortex pinning. Strong damp
below theHc2

takes place in the peak-effect region~with

maximal damping at about 6.2 T!, while within the interval
from 2 to about 4 T both pinning and attenuation of dHvA
oscillations are relatively small.9 This picture is in a qualita-
tive agreement with our approach.

In layered superconductors when the field is parallel
the layers intrinsic pinning51 might create modulation of the
magnetic field and the order parameter in a direction perp
dicular to layers. Considering this modulation as a small p
turbation, we obtained the energy spectrum~2.26! and the
amplitude of dHvA oscillations~3.18! where the effect of the
modulation enters through the attenuation factorI * (z) Eq.
~3.19!. The Landau bands~2.26! grow narrower with the
field decrease because of the decrease of the exp(2H* /H)
and the factorI * (z) increases. A similar effect should be
the case of the VL which grows thinner with the field d
crease and disappears atHc1 , but calculating it analytically
is extremely difficult because even in the diagonal appro
mation, dependence of the quasiparticle energy~2.23! on the
magnetic Brillouin zone wave vectork is unknown analyti-
cally. One can expect, nonetheless, that the above effe
narrowing of the Landau bands is not so big if one takes i
account that a period of the real VLa'AF0 /H increases
ts
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when the field goes down, so tha
H* 'F0 /a2 is proportional toH, and the ratioH* /H is
independent ofH.

Well below Hm the diagonal approximation breaks dow
and off-diagonal pairing should be taken into account. G
erally, it is a yet unresolved problem, but it can be solv
within the model approximation implying an exponential d
crease of the pairing matrix element

Dnm5D0exp~2aun2mu!, ~4.2!

wherea is some positive constant. Substituting Eq.~4.2! into
Eq. ~2.2! we find in the quasiclassical approximation (2pD
@\V) the energy spectrum

En~k!5AD0
21zn

2~k!, ~4.3!

zn~k!5\VS n1
1

2D2m1~21!n
\V

p
arcsin~r coska!,

~4.4!

which yields a corresponding attenuation factor in Eq.~3.13!,
Î p(r) as a polynomial in

r5expS 2
2pD tanha

\V D . ~4.5!

For the first three harmonics withp51,2,3, we have

Î 1~r!512r2, Î 2~r!5124r213r4,

Î 3~r!5129r2118r4210r6. ~4.6!

These factors appear in the dHvA oscillation of the pe
odic coherent magnetic breakdown system,54 where r
5exp(2H0 /H) is the magnetic breakdown probability. I
our case the ‘‘breakdown field’’ equalsH052pD0 tanha.
We consider in detail the above off-diagonal pairing mod
and the analogy with the coherent magnetic breakdown e
where. Now we would like to note a remarkable property
the factors~4.6!: they enhance with the decrease of the fie
H. Physically this is because Landau bands become narro
when the VL grows thinner, as we have discussed befor
the case of periodic magnetic field.

Summing up, we explain the strong attenuation of dH
amplitudes observed by Terashimaet al.9 in the vortex-
pinned region by strong quasiparticle scattering on the r
dom VL, resulting in an exponential decrease of amplitud
by the Dingle factorR(D,t). Well below this region the
regularity of the VL recovers and attenuation becomes m
less than given byR(D,t), so that dHvA oscillations persis
well down to the low fields.

We conclude by expressing our hope that methods
results obtained in this paper will be useful in the studies
the VL state in layered superconductors, in a more bro
context than the problems of the dHvA oscillations.
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APPENDIX

The main effect which a perfect VL exerts on the ener
spectrum of electrons is the Landau levels broadening
bands owing to the lift of their degeneracy on the orbit p
sition. In reality, because of the vortex pinning, the VL
imperfect. Electrons scattering on VL imperfections contr
utes into the suppression of dHvA oscillations belowHc2

by

dint of the Dingle factor, exp(2nzp), entering the amplitude
C(n,D,zp) in Eqs. ~3.14! and ~3.18!. The corresponding
contributions inton of Eq. ~2.19! was calculated in Refs
23–25 within an approach based on the positional avera
over the VL. Following this technique, we start with E
~2.21! for the self-energy of the Green functionsnn(E). Av-
eraging Eq.~2.21! and using the standard relation, Im(E1z
2id)215pd(E1z), we have forn(E)5Im^snn(E)&:

n~E!5E drdr 8^D* ~r !D~r 8!& f n~r ,r 8,2E!. ~A1!

The dampingn at the Fermi energy determines the Ding
factor,R5exp(2nzp), and enters Eqs.~3.14! and~3.18!. The
real part of the self-energy, Re^snn(E)&, can be discarded
since it yields a small correction to the Fermi energym. To
calculaten, we need a specific form for the correlation fun
tion in the right-hand side of Eq.~A1!. The positional aver-
aging over a VL for calculations of the correlato
^D* (r )D(r 8)& was considered in detail from different poin
of view by Stephen24 and we will use the results of thi
consideration in what follows.

The correlation function~2.20! has been introduced by d
Gennes as an alternative to the Green-function method in
theory of nonuniform superconductivity of metals and allo
In our approach, which goes back to Ref. 47, the correla
function f n(r ,r 8,2E) is used for calculations of the Green
function self-energy. Unfortunately,f n(r ,r 8,2E) cannot be
calculated in a general case of arbitrary field and impu
concentrations. The calculations for the self-energy wh
take into account electrons scattering on the VL and ign
the finite lifetime effects caused by electrons scattering
crystal lattice imperfections, have been carried out in R
23, 24. In Ref. 23, in particular, the inclusion of the electr
scattering on the crystal-lattice impurities was done by
addition of thet term into the total damping, given by Eq
~2.19!. This equation is lacking the interference term whi
should depend ont andD and vanish both in the clean lim
and in the normal state. The interference term can be ca
lated if we take into account finite lifetime effects
f n(r ,r 8,2E) for calculations of Eq.~A1!. It can be done in
the limit when the mean free path is less thanz, the coher-
ence length. The correlation function in this limit satisfies,
the time representation, the diffusion equation50

] f ~r ,r 8,t !

]t
2DF“2

2ie

\c
A~r !G2

f ~r ,r 8,t !

5L22d~ t !d~r2r 8!. ~A2!
.
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Here D5v f l 0/3 is the diffusion constant,v f stands for the
Fermi velocity, andl 05v ft is the electron free path. Th
right-hand side of Eq.~A2! is normalized over the square o
a sampleL22, as we consider a 2D superconductor. In E
~A2! it is assumed thatf n(r ,r 8,t), is independent of the sub
script n within the energy range relevant t
superconductivity.50

The solution of Eq.~A2! can be written in terms of the
eigenfunctions,gn(r ), and eigenvaluesVn of the Schro¨-
dinger equation

DF“2
2ie

\c
A~r !G2

gn~r !52Vngn~r !, ~A3!

f ~r ,r 8,t !5L22(
n

gn~r !gn* ~r 8!exp„2Vn~ t !…. ~A4!

Equation~A3! is exactly the Landau problem, provided th
\2/2m is replaced by the diffusion constantD. Taking this
into account, the eigenfunctionsgn(r )[gNX(r ) can be writ-
ten in the symmetric gauge,A51/2(Hy,Hx), in the form

gNX~r !5
1

AL
expF i

xy

2l 2
2 i

Xy

l 2 GCN~x2X!, ~A5!

whereN is the number of the Landau level,X is the orbit
center coordinate, andCN(x2X) is given by Eq.~2.6!.

Making the Fourier transform of Eq.~A4! and taking into
account the relation61

(
X

gNX~r !gNX* ~r 8!5
1

2p l 2
JNNS ur2r 8u

l DexpS i
r3r 8

2l 2 D ,

~A6!

we have

f ~r ,r 8,E!5
1

2p2l
(
N

JNNS ur2r 8u
l DexpS i

r3r 8

2l 2 D VN

E21VN
2

,

~A7!

where

JNN8~x!5~21!N2N8JN8N~x!

5S N8!

N! D 1/2S x

&
D N2N8

LN
N2N8S x2

2 DexpS 2
x2

2 D .

~A8!

The order parameter in the VL is a periodic function of t
spatial variable, so thatD~r ! can be written in the basis of th
eigenfunctionsgNX(r ) as a series of the form

D~r !5(
NX

CNXgNX~r !. ~A9!

Following the work of Stephen,24 we will consider coef-
ficients CNX as random variables with the correlation fun
tion

^CNXCN8X8
* &5D22p l 2rNdNN8dXX8 , ~A10!
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whererN is some dimensionless function ofN, decreasing as
N grows. Then, employing Eq.~A10!, for the positional av-
eraging of the order parameter, we have

^D* ~r !D~r 8!&5D2expS 2 i
ur3r 8u

2l 2 D(
N

rNJNNS ur2r 8u
l D .

~A11!

Substituting Eqs.~A11!, ~A7! into Eq. ~A1! and making in-
tegrations over the spatial variable with the help of t
relationship57

I NN85E
0

`

dxe22xLN~x!LN8~x!5
~N1N8!!

N!N8! S 1

2D N1N811

,

~A12!

we arrive at

n~E!5
D2

\Vc
(

N,N8
I NN8rN

N11/2

~E/Vc!
21~N11/2!2

.

~A13!

Vc here denotes the cyclotron frequencyVc5eDH/\c.
Near the Fermi level (E50) the sum in Eq.~A13! is, in
essence, field independent, so that the positive constant

G25 (
N,N8

I NN8rN

1

N11/2
, ~A14!

plays the role of a phenomenological parameter, renorma
ing the amplitude of the order parameter:D05DG. This
renormalization is akin to the spatially averaged over
Fermi surface order parameter^D&, introduced in Ref. 25.
Thus, one can estimate the electron damping at the Fe
level due to the scattering on a random VL~provided that
due to the scattering on the crystal-lattice imperfections e
trons have a finite free path,l 0) as follows:
,

B

z-

e

mi

c-

n~0!5
3D0

2c

ev f l 0H
5

3cD0
2

ev f
2tH

. ~A15!

Thus,n(0)5\/t int is exactly what we have called in Sec.
the ‘‘interference term.’’ In difference to the VL scattering i
pure crystals which yields23–25ts

21;D2/v fH
1/2, the interfer-

ence term,t int
21;D2/v fHl 0 , vanishes when eitherD→0, or

l 0→`.
Therefore, putting together all contributions into the to

dampingn, we have instead of Eq.~2.19!,

n5
\

t
1

\

t int~D,t!
1

\

ts~D!
. ~A16!

The first term in Eq.~A16! is field independent whereas th
remaining ones are inversely proportional toH and H1/2,
respectively, and both vanish aboveHc2

in the normal state.

In the clean limit,l 0→`, the dampingn is equal to the last
term in Eq.~A16! calculated in Refs. 23–25.

To conclude this section, a remark is in order. The int
ference term has been calculated above forl 0,z. On the
other hand,l 0 must be not too small, sinceVt int@1 is the
necessary condition for the dHvA effect in superconducto
Thus, the superconductors with largez and high Hc2

are those materials in which the Dingle factorR0s(D,t)
5exp(2p/Vtint) is yet not too small to overdamp the dHvA
oscillations. In the absence of a complete analysis, wh
presently is very difficult to do, we hope that Eq.~A15!
yields a qualitatively true dependence ont andH beyond its
formal applicability conditions. The latter, of course, can
verified only experimentally. Nonetheless, we note that
main results of Sec. III are generally independent of the p
ticular choice of the functionn~D,t!.
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