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We consider analytically within the Bogoliubov—de Gennes and Gor’kov approaches the magnetic oscilla-
tions due to the Landau quantizatifse Haas—van AlphefdHvA) effect] in the vortex-lattice(VL) state of
layered superconductors. We found that the period of the dHVA oscillations does not change when the mag-
netic fieldH decreases below the upper critical fi¢dd , whereas amplitudes of the dHVA oscillations are
damped by the attenuation factors. These factors appear daestmearing of the Landau levels by impurities
and disorder of the VL(b) broadening of the Landau levels into dispersive bands by periodic VL, periodic
external magnetic field, and periodic layered structure. In dasethe attenuation factor is a Dingle-
like exponent,R(A,7)=Ry(7)Rs(A)Rps(A,7), whereRy(7) is the standard Dingle factor arigi(A) was
calculated previously by Maki and Stephen. An extra damping is due to the interferenceRig(th, 7)
=exp(—7/Q7,), whose dependence on the magnetic fi¢lid determined by the cyclotron frequenéy, and
ri;tlvaZ/vfloH (v is the Fermi velocity],=v;7 is the mean free pathin case(b) attenuation factors differ
from the simple Dingle exponent and corresponding damping of dHVA oscillations basically less than in case
(a), especially for fields well beIovHCz. In particular, the attenuation factor due to the layered structure is
determined by the one-dimensional density of statiey, related to the electron transport across the layers.
This factor is a periodic function in B/ with frequencies depending on locations of the van Hove singularities
in g(e) and the ones caused by the stacking faults. Competition between different attenuation mechanisms
results in nonmonotonous decrease of the dHvA amplitudes and makes it possible to give a qualitative expla-
nation of recent experiments on borocarbide Y8JC where the dHVA oscillations have been observed down
to surprisingly low fields about Or2,, [T. Terashimaetal. Phys. Rev. B 56, 5120 (1997].
[S0163-182698)04034-X

. INTRODUCTION and Stephef? In these papers as well as in the work of
Wasserman and Springfdtthe attenuation is due to the
Magnetic quantum oscillations, also known as the deDingle factor, Rg=exp(—#/Q)7), where(} is the cyclotron
Haas—van Alpher(dHvA) effect, have been reported in a frequency and X,~A?/H/? (A is the order parameter
number of different types superconductors: layered Further development of the problem of the dHVA oscilla-
2H-NbSe,'™3 the strongly coupled A-15 compounds tions in superconductors has required an incorporation of the
V3Si,*® NbySn? BaK)BiO,;, ' the organic molecular self-consistency of the VL into consideration. It turned out
k-(ET),CUNCS),,® YNi,B,C,** the highT. layered that most conveniently this might be done in the magnetic-
YBaCuOM~*"and CeRy'® Although an observation of the Bloch-state representatithof the microscopic BCS theory.
dHVA effect in superconductors was made by Graebner an8uch a representation for the Bogoliubov—de GenBekS)
Robbing? in 1976, it took nearly two decades before under-equations has been presented by Dukan, Andreev, and
taking systematic explorations of this phenomenon in differ-Tesanovic® and was developed further in other
ent types of superconductors. Currently, a considerable litwork 2>2163"The Gor’kov-equations approach to the BCS
erature on the theory of this phenomenon exi%t® All theory in the Landau levels basis was given by Rajagtpal.
theories, in full accordance with experiments, agree that th&he appropriate equations for the quasiparticle energy spec-
period of dHVA oscillations below the upper critical field trum in the vortex state turned out to be very difficult to
H,, does not change. A consent has not yet been achievegblve exactly. It was shown in Refs. 35, 36 that neRr

about the form and mechanisms of damping of dHVA oscil-(where the VL is thick the energy spectrum is gapless at a
lations because of the rich physics beyond this damping. Aliscrete set of points on the Fermi surface. This leads to an
decade before the experimental observation of the dHVA efalgebraic behavior of various low-temperature thermody-
fect Rajagopal and Vasudev@n and Gunther and namic quantities of the system in question. Another difficulty
Gruenberdf found a small correction to the critical tempera- is the off-diagonal pairing. The off-diagonal, in Landau lev-
ture T, periodic in the inverse field B/ due to the Landau els index, matrix elements of the order paraméigy,, have
guantization. Such oscillations of the thermodynamic quana very complicated dependence on indinesdm, magnetic

tity T nearH, is nothing but a manifestation of the dHvA field, and VL structure which makes analytic calculations of

effect in superconductors. The theoretical explanation of théhe dHVA oscillations possible only nefl,,, where one can
attenuation of dHvA oscillations by the quasiparticles scatneglect the off-diagonal pairing due to the smallness of the
tering on a random vortex lattig®L ) was given by Malé®  parameten\/4Q <1. Dukan and Tesanovitconsidered the
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attenuation mechanism of the dHvA oscillations nelgr in  periodic factors which determine amplitudes of dHVA oscil-

the diagonal approximation due to the gapless portion of théations below theH. . Section IV contains a discussion of
quasiparticle spectrum in the magnetic Brillouin zone. Nu-the main results of the paper concerning the attenuation fac-
merical calculations, done by Norman, MacDonald, andiors damping dHvA oscillations in the VL state of a layered
Akerg? for a two-dimensional2D) superconductor with a superconductor and gives a qualitative comparison with the
regular VL, have shown that the dHVA oscillations far ~ recent experiments in the field. In the Appendix we present
below H., are damped due to the Landau-level broadening" detail calculations of the quasiparticle damping due to the

into bands whereas frequencies of these oscillations remaf?‘!ec'[ron scattering on a random VL using a combmatlon of
intact in the vortex state. the Green function and de Gennes correlation function meth-

As we see, the damping of the dHvVA oscillations in theOdS'
mixed state is stipulated by a number of mechanisms acting

concurrently. In view of that, one cannot write down a gen- !l THE ENERGY SPECTRUM AND THE SPECTRAL
eral expression for damping, valid for every case. Rather, ~ DENSITY OF A LAYERED SUPERCONDUCTOR
before comparing between theory and experiments one has IN THE VORTEX-LATTICE STATE

to single out a major mechanism and then only use an ap- Recently, a good deal of progress has been achieved in
propriate formula. In this connection, a good quantitativey,e gescription of the VL state in 2D superconductors within
agreement between BCS-based theories and experiments gp, gqG approack?~21303637he problem of electron scat-

strongly coupled superconductors;Sf and NRSn [with  tering on VL imperfections is easier to solve with the help of
coupling constanh>1 (Ref. 46] reported in some Works, the Green function&25 In the following we will resort to
raise doubts since thesk-15 compounds should be de- 5 methods.

scribed by the Eliashberg equations rather than the BdG ones 1, begin with these calculations, let us consider the BdG

valid for A<1. equations
On the other hand, the current state of the art in numerical
methods is still far from granting the opportunity to relate I:Iu(r)+A(r)v(r)=Eu(r),
first-principles calculations with experiments since model 2.1)
parameters for a superconductasually 2D as a rule is —l:l*v(r)+A*(r)u(r)=Ev(r), '

unrealistic. In Ref. 30, for exampl@,=1 is too big for the

BCS model and so is the cutoff energy,=0.5u, while the  which in the basis of eigenfunctions of the Hamiltonian of

Fermi energywu, is equal to only a few tens @fQ). In addi- 2D electrons in an external field of the vector potertial)

tion the approximation of strongly oscillating matrix ele- take the form

ments in the pairing blocks by the same constant may over-

estimate contributions from the off-diagonal terms into a _ _

secular equation, since in fact they may simply cancel each % [(en=E) Snmiim T Anmom] =0,

other due to oscillations. (2.2
We see therefore that both analytic and numerical ap-

proaches have their weak and strong points and have to be 2 [AkUm— (0t E) 8y m] =0.

continued to gain a better insight into the problem in ques- "

tion. Recent experimert®! indicate conclusively that

dHVA oscillations in superconductors persist in the vortex

state down to surprisingly low fieldgqual toH~0.2H, in .

borocarbide YNiB,C (Ref. 9]. The oscillation amplitude is u(r)=; Unen(r), U(r):; Ungn(r), (2.3

strongly suppressed in a field region immediately bekbyg

and recovers at lower fieRiSuch a behavior implies com-

petition between different mechanisms of damping of dHvA

oscillations due to VL, layer structure, spatial p_eriodicity of Anm:J X () A(r)ek(r)dr. (2.4

the order parameter, and external magnetic field. We also

consider the role of the off-diagonal pairing in the dHVA 114 pasis functions satisfy the eigenvalue equal::i(m(r)
oscillations well beIowHCz. We show, in particular, that =&,(r) with the Hamiltonian

random VL damp dHvVA oscillations more strongly than pre-

dicted by theories of Mald® Stepharf® and Wasserman and - e 2

Springford® due to the Dingle-like “interference” exponent. H= m ( P— c A(r)) M (2.5
The attenuation factor caused by the regular VL is not of the

Dingle-exponent form and less than the ones due to the rardere u is the Fermi energym ande stand for the electron
dom VL. mass and charge,is the speed of light.

The paper is organized as follows. In Sec. Il we calculate The specific form of thep,(r) depends on the gauge
the spectral density of a layered superconductor in thehoice, whereas the Landau spectrugy=7%Q(N+1/2)
Landau-level representation in the VL state and in the case of ., is the gauge invariant{{=eH/mc is the cyclotron
a one-dimensional periodicity of the external magnetic fieldfrequency. In the Landau gauged=(0,Hx), which proved
In Sec. Il we study the free energy of a layered superconto be convenient in description of the VL staté$°the basis
ductor in the VL state and focus on the different random andunctions are

Theu—v functions in Eqs(2.1) and(2.2) are related by

and the matrix element of the order parameter is equal to
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(Pn(r)zq,Nx(r,):L;l/zexp( i T—?)\PN(X | X), Sn(E)=0pn(E). (.15
The spectral density is determined then by tg,(E) as

(2.6 follows:
where W (x)=[2"N!(71)¥2]~12 exp(—x?/2)H\(x) and
Hy(x) is the Hermitian polynomial of the ordeN; |2
=fic/eH is the magnetic length. In the rest of the paper we
will employ a complex index rf=N,X) composed of the
two quantum numbers: the Landau-level numNeand the  Substituting Eq(2.12) into Eq.(2.16, we have
coordinate of the Landau orbit centet= —(cp,/eH).

Excludingv, from Egs.(2.2) we arrive at the equation for 1 Im 3,(E)

E)=— .
tn pun(E) T [E—e,—Re 3 (E)]?+Im23 (E)

(2.17

The specific form of the energy spectrum, given by ¢,
—ReX,(E)=0, depends on a particular choice of a model for
the system under study. If, for a while, we neglect spatial
variations of the order parameté(r)=A, and assume also
that there is no electron scattering in the system, then
(2.8 Im3(E)=0, Re3,(E)=A%(E+¢,) and forp,,(E) we have

1
poE)=lim|— = 1Im G, (E-i8)|. (216
5—0 ™

(E—s)un—g Tl E)U =0, 2.7

which has a form of the Schdinger equation for some fic-
titious “particle on a lattice” with the hopping integrals

AnmA.rknk
E)= .
o(E)=2

2
It is easy to shoW/ that the Green function of E42.7),

pnn(E)= 5( E—e,— Ete,

;[(E—snwnm—anm<E)]Gmk<E)=5nk (2.9

Al

[UBS(E—E,)+v28(E+E,], (2.18
is nothing but theG function of the Gor’kov equations
whereE,=(g2+ A?)'2 s the BCS quasiparticle energy, and
(2.10 u2=1/2(1+¢,/E,), vi=1/2(1—&,/E,) denote the coher-
ence factors.
In reality, the presence of a VL brings two major effects
which should be taken into account in calculations of the

GE<r,r')=mEk Gmn(E)em(r) @ (r').

The corresponding function is given by

* G (E) density of states. First, the spatial periodicity caused by the
Fi(rr)=— > —hmomk (e (r') Abrikosov lattice lifts up the degeneracy on the Landau orbit
m,n.k €m center positiorX, and gives rise to dispersive Landau bands

(2.1)  E(k), with k being the intraband quasimomentum. Secondly,

One can check directly that the G functions of Eqs(2.10 a small disorder or random in the VL structure broadens the
(2.11) satisfy the Gorkov equations in the coordinate répre_Landau levels due to electrons scattering. The distinction be-
sentation. The energy spectrum of the system under considveen the above-mentioned two effects is that the first is
eration is determined by poles of the diagonal matrix elemen¢2used by the VL contribution into Re,(E), while the sec-
of the Green functiori2.9) which can be written, after some ©nd one manifests itself through changes in3pE). Using

calculationd”*8in the form the technique of positional averaging over the VL, intro-
duced by Brandt, Pesch, and Tewdtéin inverse lifetime of
Gmn=[E—&,—3,(E)] %, (2.12  quasiparticles, X, caused by the scattering of electrons on

a VL, have been calculatéti“® so that the total damping

where the self-energy is given by was obtained as a sum of the two terms

pray (2.19

o’
Sn(E)=om(E)+ Y = ——. (213 hohoo o m |\
k#n E_Sk_o'kk y~—+ —, —=~A .
T Ts Tg
The functionl’»y, satisfies the integral equation, The term#i/7 is due to the scattering on the crystal lattice,

ool km while 7/ 75 stems from the scattering on the VL.
Con=0pmt D ——— (2.19 The damping(2.19 broadenss functions in the spectral
kFam E= e o density(2.18 into two Lorentzians and thereby reduces the
which is equiva'ent to an infinite series in powerswf amplitude of dHVA oscillations in Superconductors via the

NearH., the Landau-level separation is much larger thanPingle exponential factor which decreases with the growth
the absolute value of the order parametef,>|A|, so that Of 75 1. The quantityr; * was calculated in the above papers
according to Eq(2.8) |op| is proportional(near the Fermi in a pure case (+/~0) so thatvin Eq. (2.19 is given by the
level E=0) to the small parametéa|/2Q<1. Taking this ~Sum of two independent terms. It is clear that taking into
into consideration one can approximate the self-energy bgccount the lifetime effects in calculations of * should
the first term in Eq(2.13, bring in an additional(interference term Ti;tl, vanishing
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whenA or 7~ goes to zero. The interference term is calcu- The Hamiltonian(2.5) in this gauge can be written as a

lated below in the Appendix on the basis of the de Gennesum of the Hamiltoniam , with the eigenfunction§2.6) and
correlation functior’ the perturbation

fo(r,r,0)=2 (n|&(r—rykjm) V(x)=mQ2(x—X) H—|_1|sin gx. (2.29
m q

U ~
X(m[k*8(r=ry)[n)8({—{m), (220 Finally, for the first correction to th&ES= (& + A?)Y? after

which has been introduced as a tool for studies of supercorsome standard calculations, we have

ducting alloys and systems without translational symmetry.

(k is the complex conjugation operatpfThe self-energy " mQ2H;l ey ql\2 [q??
(2.15, as one can see from the definitid@.8), can be  En (k)=H—q§ex — 5| Ln| 5 |cod2ml k),
readily expressed in terms of this function N
(2.2
A(r)A™(r) h is the L lynomial of d d
O'nn(E):f drdr'd{ ———5 fa(r.,r',9). whereL(x) is the Laguerre polynomial of degre¢ an
E+{-id I,=1%/a. Thus, the Landau ban@.25 is proportional to the

(2.2)  two factors. The first one is given by the Laguerre
polynomial which is typical for harmonic perturbations in
nonsuperconducting conductdfs’® The exponential factor,
exp(—qli2)?=exp(—H*/H), with H* = 7®y/2a?, is typical
of Landau bands in the coherent magnetic breakd®vwin.

One can show that in cases of 1D harmonic perturbations
2 4 7 of the order parameter\(x)=A+A; cosgx, or the scalar
—+ + . (2.22  potential, the structure of the Landau band is similar, and it
7 Tim(A,7)  7s(A) can be written as follows:

In the Appendix we will show that interference term,
nl rim~A2/vfrH, can be calculated after positional averag-
ing over a VL. Thus, instead of EqR.19 the total damping
is

=

Another source of damping of dHVA oscillations, which —— . N
cannot be reduced to the Dingle factor, is the Landau-level ~ En(k)=vey+tA“+e [An+Bncog 2l k) ].
broadening into bands due to the VL periodicity. Most con- (2.26

veniently this effect and the corresponding electronic struc- - .
ture of the VL state may be described in the bags) e coefficientsAy and By depend ond andH in a way

written in the Bloch representation. One can find details ofSpeCiﬁC _to the particular choice of the perturbation. For in-
calculations in Refs. 20, 21, 30, and 36. Although the 0ﬁ_stance, in the case of periodl(x) the first-order calcula-

diagonal(in Landau index pairing makes the whole spectral tions yieldAy=0, and
picture rather nontrivial, nedt , whereA <7 (), the off-

diagonal pairing is ineffective and the quasiparticle energy :AAl ﬂ (2.27)
band is N ER; Nl 5 .
En(k)= ‘/SEI+|F'<NN|2' (223 If A=0, thenA(x)=A, cosgx and a first-order correction

. . . to the energy equals zero. In this case one must calculate the
wherek is the Bloch wave vector anBly  is the diagonal second-order contribution into the ener¢®.26), which is
pairing matrix element. These bands originate from the Langiven by
dau levels as a result of lifting their degeneracy by the peri-
odic pairing potentialA(r+a)=A(r), of the VL. Note the ANZA%(CNJF D), BNZAE(CN_ Dyn),  (2.29
magnetic field is assumed to be uniform in E2123. This is
a good approximation slightly belowC2 where dHVA oscil-

lations have been observed. On the other hand, for fields well ~ Cy=
belowH02 and in some specific cases spatial variations of the

external field are essential. For example, in layered supercon-

ductors and superlattices the periodicitytdfr) may appear " 59 12
due to the intrinsic pinnir} which can forcibly modulate a Dy=3 [\2p| 2p+1 & £0 4 O 1

VL imposing it in a period of the superlattice. A periodic NT & (aD™Ly 2 [EntEnszpial ™
magnetic field may itself be a physical reason for dispersive (2.30
broadening of Landau levels.

To illustrate this, consider a first-order correction to theHereL | (x) denote the associated Laguerre polynomials.
energy spectrum of a uniform(= const) superconductor in Therefore, taking into account broadening due to the elec-
the periodic magnetic field of the formH(x)=H tron scattering on a VL and/or crystal lattice and dispersion
+H, cosgx. The corresponding vector potential in the Lan- relations within Landau bands Eqg®.23 or (2.26 caused
dau gauge isA=[0Hx+ (H,/q)singx0], wherea is the by the periodicity of a VL, one can write the spectral density
period of H(x) andgq=2w/a. in the form

* 2|2 2

(2.29

N -
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Here the Landau-level index at the Fermi energy,
= ul/hQ—1/2 is introduced, anai\z(k)—len n |2.

Substituting the variable by n’ accordlng to thei An’
=hQ(n—n,)+ ¢, and introducing a one-dimensional den-
(2.31)  sity of states associated with the electron motion along the
magnetic field

14

1
pan(@,K,{)= T uﬁ'k v+ [w+ENK, )]

v
o 2+ [w—En(K,0)]?

Apart from the broadening of thé functions and the substi-
tution Ey by the Landau bands, EQ.31 differs from Eq.
(2.18 in that we have included in Ed2.31) an additional
variable . This variable describes a kinetic energy associ-
ated with the electron motion along the magnetic field. Suchafter integration ovee andn, we have
an inclusion simply means a substitutian,— e+ ¢, in all
above 2D expressions. We will show in the next section that
in the case of a layered superconductor electron motion
across the layerén field perpendicular thejnyields a non-
trivial factor modulating 2D dHVA oscillations appropriate to
a single layer.

g<s>=2§ S(e—{), 3.7

—vl7

PZzsinhnTz

Fos=4T Rez Zf Gp(k,2)!

dz, (3.8

« cod 2p| F— T
Cco TP ﬁQ 2
I1l. de HAAS —van ALPHEN OSCILLATIONS

IN THE VORTEX-LATTICE STATE where

Once the spectral density is known, the free energy of a
nonuniform superconductor can be calculate® as

Gp(k,2)= fiodn cogzV(2QNn)?+ A?%(k))cos 2rnp,

Al . (3.9
F=Jdr| 0l —2T > dwpnn
A NZk J—o and the factor

| _J” . 2mep
B T

introduced by one of the authors in Ref. 58. Leaving aside
for a while the analysis of effects related to the fadtgr
consider now the integrdB.9). It can be calculated with the
help of the relationshity

X (w,Z,K)In 3.9

> w
Cos 2T

where\ is the BCS coupling constant. Using Eg.31) for
the pyn @nd the integral representatidn

de, (3.10

In (3.2

Z H 1
—w ZSinhwTz

w fw 1—coswz
cos >

one can complete integration overin Eq. (3.1). Then, with

the help of the normalization condition
P zad " cogbx)dx

3 _J sin(cyVx?+y?)
O ), Ty

=5 Jo(y\ST=b2) 6(c—b),

Rt oRe=1, (3.3

and the Poisson summation rule

(3.11)

where 6(x) is the Heaviside step function, adg(x) stands
for the Bessel function. In view of the fact thai(c)/Jc is

z X(n):fOC x(n)dn+2 Rez ij(n)eiZWden,
fo - p=1 Ja

(3.9

whereng—
can be presented in the form

Fos=4T Re 2 dz

=1k
o e|27rnp—V|Z\cos{En(k,§)Z]
xf dn '
a

zsinhwTz

(3.9

Further calculations demand a specific form of the Landau
band energy,E,(k,{). We first consider the case when
E,(k,?) is given by Eq.{2.23, which we rewrite in the form

En(k,)=\[AQ(n—n,+O?+A%Kk). (3.6

1<a<ng, the oscillating part of the free energy

exactly the integra(3.9), we have

Gy(k.2) = mo(2hQ—2mp) + Wp)

m(m

Jo( ) V(zh Q)= (2mp) )

(3.12
Substitution of this equation into E¢3.9) yields
47T & w
= —1)P el
Fos=7q p;( 1) co{zwp ﬁw)lp\p(y,A,zp),
(3.13
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W(v,A,z,) =9V (v,z,)+ fwdz\lf(v,z)

%p

ad A(k
X 2 Jo(ﬁ(—ﬂ) J(zh Q7= (2mp)?).
(3.19

Here z,=2mp/#i), g=®/®d, being the degeneracy factor
(@ is the flux through a sampl@ is the flux quanturn and

—vZ

V(v,2) (3.15

Tz sinh(7Tz)"

Using the relationdJy/dz=—J,(z) one can rewrite Eq.
(3.14) in the form which explicitly displays the negative sign
of the second term in the amplitudg(v,A,z). This term
depends on the order parameter and appears only below

For H>H, the amplitude(3.14 reduces to the first term,

gW¥(»,zp), describing the standard picture of dHVA oscilla-
tions in normal metals, damped by the Dingle factor

exp(—vz,). For fields beIowHCz, i.e., in the VL state, the
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V(v,A,2,) =V (v,z,)1*(z,)+ fde\I'(v,z)

p

d A
= Jo(m J(zﬁmz—(zﬁp)z)l*(z),

(3.18

=

H-k
Bz exr{ - W) COS Az exp<
(3.19

A andB equal toAy, By of Eq. (2.26 with N= u/A Q).

The amplitudeg3.18 is very similar to that of Eq(3.14).
Apart from the adopted spatial uniformity &f a new factor
I*(z), caused by the spatial periodicity of the magnetic field
appears in Eq3.18. This factor, depending oA andH, is
less than unity and diminishes amplitudes of dHvA oscilla-
tions when field decreases beld\i\ez. As in the case of a

VL, the mechanism of damping of dHVA oscillations in Eq.
(3.18 is determined by the formation of Landau bands.
Qualitatively, the 1D periodic external magnetic field and the
2D periodic VL damp the dHVA oscillations in the same

where

|*(Z):J0

amplitudes of the oscillations decreases, while the period ofashion, The difference is in the specific form B (k) and

dHvA oscillations, in full accordance with the
experiments;° remains intact. The additional damping in

damping factors.
The dependence of dHVA oscillation amplitudes on the

the superconducting state arises owing to the two major COMmagnetic field in Eq(3.13 is also related to the factar,,
tributions from the VL. The first one is due to the additional given by Eq.(3.10. This factor is a Fourier transform of a

scattering of electrons on a VL given by E@Q.22. It acts

1D density of stategy(e), associated with the electron mo-

via the Dingle factor which decreases with the enhancemenjy, along the magnetic field. It follows from E€B.10 that
of A. We will consider this mechanism of damping in detail any singularity or narrows peak ing(s) located at some

and calculater(A,7) in superconductors with impurities in

the Appendix. Another mechanism of damping is determine

by the last term in Eq(3.14, which near theH, [for
A(K)<AQ] can be written in the form

1 o
V(v,A,2)=g¥(r,25)~ 5 (A?) JZ dz¥(v,2)z,
" (3.16

where

<A2>:2k A2(K). (3.17

We see that even in the absence of scatterin@ (when the
Dingle factor equals unily the dHvA oscillations are
damped by the term proportionéﬂearch) to the quantity

(42).

In the above considerations, as well as in every previous

nergys, makes the factor, to be an oscillatory function of

he reciprocal field H. Experimental detection of these os-
cillations provides a basis for measurements of ¢heand
thereby to the restoration of the density of stajés). In the
case of a uniform and bulk superconduagge) has no sin-
gularities, but they do exist in layered superconductors
among which are the highz cuprates, the dichalcogenides
of transitional metals and various artificial superlattices.

The prospective of restoration of the functigrie) in
these materials by the dHVA measurements is a very intrigu-
ing problem.

Consider first a regular layered crystal in which

2—82)1/2

1
g(e)=— (o (3.20

o
with o standing for the overlap integral between adjacent
layers. The square-root van Hove singularities in 8520
manifests itself in oscillations periodic inH/of the factor
(3.10 which in this case is equal to
lo=1J0(22,0).

(3.21

theoretical study of dHVA oscillations in superconductors,
the external magnetic field was assumed to be spatially uniAny irregularity in the layer stackingwhich inevitably ap-
form. Since the energy spectrum of a 2D superconductor ipears in the process of intercalation, for exampésults in
periodic magnetic field is found, then calculationsFaf,,  the appearance of the local or quasilocal peakg(#) and

with the help of Eq(2.26) is absolutely similar to that done
before. They yield again Eq3.13 but this time with the
amplitude of oscillations different from that given by Eq.
(3.14). The renormalized amplitude in this case is

thereby gives rise to additional oscillations lgf. The fre-
quency of these oscillations depends on the local value of the
overlap integral near the stacking fawtt. For small con-
centrations of stacking faults the factor , can be written as
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Ip=(1-0¢)Jo(22,0) +Cdl , (3.22 the case of small overlapping between adjacent layer wave
functions, o/AQ)<1, the factorl,=1 according to Eqg.
where dl, has an exponential Dingle-like forffior o>07)  (3.21). If, in addition, we set in Eq(3.13 A,»,T equal to
zero, the oscillating part of magnetizationM
Slp=exd —zy(o?—0f)"?|cod20z,). (823  =—dF,/dH, has the shape of amperiodic in a 14 saw-

_— . _ ) tooth function:
Oscillations of the factot, in the reciprocal field modulate

dHVA oscillations in layered crystals. They are independent

of the order parameter and hence survive abdyen the * o (—1)P*L ¢ o 1
normal state. Such modulations have been observed in some M~ 2 ————sinpe=~—7|—+=|, (4.1
intercalated layered crystaf€® and all the more should be p=1 2 2w 2

observable in metallic superlattices where thicknesses of

constituting layers can be varied smoothly. where ¢=27u/f{) and[x] stands for the integer of. A

sawtooth magnetization in an ideal 2D metalTat 0 was
IV. SUMMARY AND CONCLUSION considered by Peiefis in 1933 and then reexamined by
Theoretical problems and issues related to the dHVA Osyagner, Maniv, and Ehrenfreurfd,and Shoenbef§ in the

cillations in quasi-2D superconductors are extremely com—19805 when 2D conductors _becgme a popular experimental
stem. Temperature, quasiparticle scatteribg VL and

plex and versatile. On the other hand, the experimental factyStem o
Impurities, and electron migrations across the layers smear

of preservation of dHVA frequencies during the supercon-h h profile of ization b fadtomnd
ducting phase transition is crucial and tells that Landau-leve e sawtooth profile o magr_letlzatlon ecause fadipran
(»,A,z,) depend on the indep and the corresponding

systematics survive deep beyoHd. . It was experimentall i . . .
y p beyord, P y Fourier series foM ... is more complicated than E¢4.1).

EIStab_”STetE that tt;ethwe(;lhkrk)wrf} Li{fsdhitz-rose(zjvi;:h quasi- rpe factor¥(v,A,z,), according to Eq(3.14), consists of
classical theory of the drvA elect developed Tor ConVen-~y,, yarms The first one¥(v,z,), is proportional to the total

t|qnal metals is inappropriate to dHvA OSC'"f"It.'OnS in the Dingle factor due to the quasiparticle scattering on crystal-
mixed state. In the most pronounced and striking form the

typical features of the dHVA effect in the vortex state haveand vortex-lattice imperfection(A, r) =exp(~1z,) where

. . total dampingv equals Eq(2.22. The second term in Eq.
been observed by Goiit al'® and especially by Terashima . . , o
etal® on borocarbide YNB,C. The latter authors found (3.19) vanishes abové&., it describes condensate oscillation

that in a field immediately beloWIcz the oscillation ampli- amplitudes and depends on the broadening of Landau levels

wd h . W d 4 th dicted binto Landau bands by the VL. Neé&f, it can be presented
udes are much more strongly damped than predicte ; ; 2 C e
theories of Mak?® Stephe?’ and Norman and ¥s a power serie8.16) in (A), which is an averaged over

' . the Brillouin zone, squared pairing matrix elemekt(k)
MacDonald® but they recover at lower field and persist up . .
to the fieldH~0.2H,_with amplitudes larger than theoreti- (o~ FunctionA(k), as is known, has a number of zeros

- 394 38 which diminish integrals ok in Egs.(3.14) and(3.16), but

cal predictiong>?430 Thus, one of the challenges of the this effect is not so big, as that reported by Dukan and
problem discussed is to understand why damping of dHvATesanovid® because of the term¥ (v,z,). We see also that
amplitudes is larger than that given by the Dingle exponengiienuation of dHVA oscillations caused by Landau bands is
of Refs. 23, 24, 30 in the pinne@lisorderedl vortex state  not of the exponential Dingle form. In this connection, the
and why this damping is less than the Dingle exponent foppnroximation of the Landau-band-induced damping in Ref.
lower field where the VL is regularPhysically, the disorder, 21 by the Dingle factor,R=exp(-m/Qz), with 1/rg

the periodicity, and the temperature damp dHvA oscillationsw)\ﬁQAon—lm simply means that the quantityz/is some
s

in a differ'eny fashion: disorder smears the Lapdau IeVels@effective measure of the Landau bandwidth and differs from
while periodicity broadens them into dispersive Landau

LSS the scattering lifetime calculated in Refs. 23—-25. The total
bands, and temperature smears the Fermi distribution. Th@ingle factor in our work depending both ah and 7 is

most high dHVA amplitudes appear &at=0 in the clean R(A,7)=Ro(7)R(A)R, (A7), where the “interference
normal state of a 2D metal when sharp Landau levels cross s

sharp Fermi surface. Smearing of the Landau levels by th ingle factor” is Ry (A,7) =exp(-m/{l7y). The field de-
disorderedrandom VL and impurities of the crystal lattice Ppendence ofr,'~A?/v¢loH is different from that found in

as well as broadening of Landau levels into bands by periRefs. 23—-25 folRg(A) in the clean Iimit:rs’1~A2/fo1’2.

odic layers, the external magnetic field, the order parameter We have considered dHVA oscillations in superconduct-
and the VL, damp amplitudes of dHVA oscillations. The ap-ors in a nonuniform magnetic field. The periodic magnetic
propriate attenuation factors have been calculated in Sec. llfield lifts up the degeneracy of the Landau levels in the same
Our main result is given by Ed3.13 describing harmonic fashion as the VL does and gives rise to the Landau bands.
oscillations of the free energy modulated by attenuation facThe dispersion relatiork\(k), in this case differs from that
torsl, and¥(»,A,z,). The factorl, (3.10 appears due to for the VL, Eq. (2.23, and is given by Eq(2.26 corre-

the electron transport across the layers. It is a Fourier transponding to the one-dimensional periodicity of the external
form of the 1D density of state@.7) and very sensitive to magnetic field and/or order parameter. Physically, this may
the quality of layer stacking. Even a small concentration ofbe realized in layered crystals and superlattices due to the
the stacking faults yields additional modes and results in théntrinsic pinning of vortices by periodic set of layers. The
extra damping of dHVA oscillations compared to the case obmplitude of dHVA oscillations in this case is given by Eg.
a perfect layering as one can see from E§22), (3.23. In (3.18 and contains a specific factor of damping(z) [see
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Eq. (3.19], which depends on the field by dint of the typical when the field goes down, SO that
exponent, exp{H*/H), which determines the width of the H*~®d,/a? is proportional toH, and the ratioH*/H is
Landau bands. independent of.

Consider now briefly the connection between the results Well below H, the diagonal approximation breaks down
of this paper and current experiments on the dHvA effect irand off-diagonal pairing should be taken into account. Gen-
the mixed state. The experimehis®show that immediately erally, it is a yet unresolved problem, but it can be solved

after crossing—lCZ there is a region, down to a some field within the model approximation implying an exponential de-

N crease of the pairing matrix element
H.,, where dHVA oscillations are damped, but then recover P g

at lower fieldsH<H,,. In borocarbide YNiB,C, at very Apm=Acexp—aln—m|), 4.2
low temperatureT=0.05 K, damping within the interval
H02<H<Hm is much larger than predicted by any of exist-

ing theories’ We can explain this by noting that according to
modern view on théi-T phase diagraftin layered systems
the VL is melted in the field regiom-lcz(T)<H<Hme|[(T) En(k)= «/A§+ gﬁ(k), 4.3
immediately below the upper critical field. In this field inter-

val a “vortex matter” is in the liquid or glassy state so that £(K=h0| n+ E
the most adequate approach to the dHvVA effect in this region °" 2
is the one given by Maki-Steph&f°>which treats the VL as (4.9
a random qu_anUty._We can rel_ate the extra ‘?'amp'”g Bivhich yields a corresponding attenuation factor in 8413,
served in this region to the interference Dingle factorlﬂ (p) as a polynomial in
ROS(A,T) calculated above. Further decreas¢inecoversa  P*¥

wherea is some positive constant. Substituting E42) into
Eqg. (2.2 we find in the quasiclassical approximation#2&
>h(}1) the energy spectrum

rQ
—u+(=1)" — arcsin(p coska),

regularity of the VL and switched off the Maki-Stephen B 27A tanha

mechanism of damping whet<<H,,. The periodic VL lifts p=exp — e ' (4.5
up the degeneracy of the Landau levels and broadens them _ ) i

into the Landau bands. As far as the damping of dHvA amfr the first three harmonics with=1,2,3, we have
plitudes caused by the Landau bands H8sl4), (3.18 is - a2 4 a2 4

less than the Dingle exponelR(A,7), the corresponding li(p)=1=p%  lalp)=1=4p"+3p",
attenuation of oscillations is less than that given by theories f3(p)= 1-9p2+18p%— 10p°. 4.6

of Refs. 23, 25, 30, in accordance with the experiments of

Terashimaet al® Such a crossover from a relatively strong These factors appear in the dHVA oscillation of the peri-
damping just belowH,, to a weaker attenuation of dHVA odic coherent magnetic breakdown systémwhere p
amplitudes has been observed in a number of WbfKE. =exp(—Hy/H) is the magnetic breakdown probability. In
From all these works, only the most low-temperature meaour case the “breakdown field” equaldy=2wA tanha.
surements made in Ref. 9 5= 0.05 K show that this cross- We consider in detail the above off-diagonal pairing model
over is closely related to the vortex pinning. Strong dampinggnd the analogy with the coherent magnetic breakdown else-
below theH,. takes place in the peak-effect regiowith where. Now we would like to note a remarkable property of

. - . L . the factors(4.6): they enhance with the decrease of the field
maximal damping at about 6.2),Twhile within the interval

from 2 to aboti4 T both pinning and attenuation of dHVA H. Physically this is bepause Landau band; become narrower
—_ ) S o . when the VL grows thinner, as we have discussed before in
oscillations are relatively smallThis picture is in a qualita-

. ith h the case of periodic magnetic field.
tive agreement with our approach. , . Summing up, we explain the strong attenuation of dHvA
In layered superconductors when the field is parallel t

Co R . > 0amplitudes observed by Terashine al® in the vortex-
the layers intrinsic pinnind might create modulation of the inned region by strong quasiparticle scattering on the ran-
magnetic field and the order parameter in a direction perpenjom v, resulting in an exponential decrease of amplitudes
dicular to layers. Considering this modulation as a small Perhy the Dingle factorR(A,r). Well below this region the
turbation, we obtained the energy spectr@®6 and the  eqylarity of the VL recovers and attenuation becomes much
amplitude of dHVA oscillation3.18 where the effect of the |o5s than given bR(A,7), so that dHVA oscillations persist
modulation enters through the attenuation fadtofz) Eq.  \yell down to the low fields.

(3.19. The Landau band$2.26 grow narrower with the We conclude by expressing our hope that methods and
field decrease because of the decrease of the-@kblH)  results obtained in this paper will be useful in the studies of

crease and disappearshty;, but calculating it analytically

is extremely difficult because even in the diagonal approxi- ACKNOWLEDGMENTS
mation, dependence of the quasiparticle ené2g®3 on the
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(A2) it is assumed that,(r,r’,t), is independent of the sub-
APPENDIX script n within the energy range relevant to
superconductivity®

The main effect which a perfect VL exerts on the energy Tnhe solution of Eq(A2) can be written in terms of the

spectrum of electrons is the Landau levels broadening i”t‘éigenfunctions,g (r), and eigenvalue€), of the Schie
bands owing to the lift of their degeneracy on the orbit PO-dinger equation A "

sition. In reality, because of the vortex pinning, the VL is
imperfect. Electrons scattering on VL imperfections contrib-
utes into the suppression of dHvA oscillations belld\(y2 by D

dint of the Dingle factor, expfvz,), entering the amplitude

W(v,A,zp) in Egs. (3.14 and (3.18. The corresponding -

contributions intov of Eq. (2.19 was calculated in Refs. f(r,r',)=L"22 ga(N)gk(r)exp(—Qu(t). (Ad)
23-25 within an approach based on the positional averaging "

over the VL. Following this technique, we start with Eq. Equation(A3) is exactly the Landau problem, provided that
(2.21) for the self-energy of the Green function,(E). Av-  #2/2m is replaced by the diffusion constabt Taking this
eraging Eq.(2.21) and using the standard relation, B¥{ into account, the eigenfunctioms,(r)=gnx(r) can be writ-
—i8) t=m&E+{), we have fory(E) = Im(o,(E)): ten in the symmetric gaugé=1/2(Hy,Hx), in the form

2ie 2 B
V—h—CA(f) gn(r)=—0Q,gn(r), (A3)

v(E)=fdrdr’(A*(r)A(r’))fn(r,r’,—E). (A1) W (x—X), (A5)

we have

1 Xy Xy
gnx(r) \/Eex [ o2 i 2
The dampingv at the Fermi energy determines the Dingle ) i .
factor,R=exp(~ 1z,), and enters Eq$3.14 and(3.18. The where N is the number of the L_and_au leveX, is the orbit
real part of the self-energy, Re,(E)), can be discarded Center coordinate, anty(x—X) is given by Eq.(2.6). -
since it yields a small correction to the Fermi enefgyTo Making the Fourier transform of E¢A4) and taking into
calculater, we need a specific form for the correlation func- @ccount the relatid
tion in the right-hand side of EqA1). The positional aver- , ,
aging over a VL for calculations of the correlator S G GEA(F) = 1 3 (|r—r |)ex i rxr
(A*(r)A(r")) was considered in detail from different points NXATTENX o712 NN 2|2
of view by Stepheff and we will use the results of this (A6)
consideration in what follows.
The correlation functiori2.20 has been introduced by de
Gennes as an alternative to the Green-function method in the , ,
theory of nonuniform superconductivity of metals and alloys. (rr' E)= —— 2 ] (|f—f l)exp(i rxr Qy
In our approach, which goes back to Ref. 47, the correlation* " ’ o2l N TNNL 212 | E2+ 02’
function f(r,r’,—E) is used for calculations of the Green- (A7)
function self-energy. Unfortunately,(r,r’,—E) cannot be
calculated in a general case of arbitrary field and impurithere
concentrations. The calculations for the self-energy which ,
take into account electrons scattering on the VL and ignore  JInnr()=(—1)N "N Jyin(x)
the finite lifetime effects caused by electrons scattering on N—N'
crystal lattice imperfections, have been carried out in Refs. . N1\ Y2 N—N’ X X
23, 24. In Ref. 23, in particular, the inclusion of the electron AN s Ly "l /exm -5
scattering on the crystal-lattice impurities was done by the
addition of ther term into the total damping, given by Eq. (A8)
(2.19. This equation is lacking the interference term whiChre orger parameter in the VL is a periodic function of the
should depend omandA and vanish both in the clean limit  gpa4ia| variable, so that(r) can be written in the basis of the
and |n_the normal state. The mterf_er_encg term can be C"’_“CLé'igenfunctionsng(r) as a series of the form
lated if we take into account finite lifetime effects in
fo(r,r’,—E) for calculations of Eq(A1l). It can be done in
the limit when the mean free path is less tharihe coher- A(r)=2, Crx@nx(r). (A9)
ence length. The correlation function in this limit satisfies, in NX
the time representation, the diffusion equatfon

Following the work of Stepheff, we will consider coef-
2 ficients Cyx as random variables with the correlation func-

2i .
f(r,r',t) tion

af(r,r',t) v e A
—ax ic A

=L"25(t)S8(r—r"). (A2) (CnxCryxr) =A%2m12py S Sxx (A10)

D
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wherepy, is some dimensionless function Bf decreasing as 3A2c 3cA2
N grows. Then, employing EqA10), for the positional av- v(0)= — % = 2—0. (Al15)
eraging of the order parameter, we have evloH evirH
rxr’| Ir—r’]| Thus, »(0)=#/ iy i i
* I\ — A2 . v Tint IS €xactly what we have called in Sec. Il
(AF(NA(T))=A"exg —i 2 % PnINN| - the “interference term.” In difference to the VL scattering in
2l g

A11 pure crystals which yield32° 7_ 1~ A%/vHY?, the interfer-
(A1) s

—1__ A2 : TV
Substituting Eqs(A11), (A7) into Eq. (A1) and making in- S"C€ termiy ~A%/veHlo, vanishes when eithek—0, or

tegrations over the spatial variable with the help of the© ' : I .
re?ationshiﬁ7 P P Therefore, putting together all contributions into the total

dampingv, we have instead of E¢2.19,
© 5 (N+N’)| 1 N+N’'+1
= — <X ’ S —
(INTNY; fo dxe “Ly(X)Ly(Xx) NIN| ( )

2 , _h + f + h Al16
(A12) Y (A ) (A (A16)
we arrive at
The first term in Eq(AL16) is field independent whereas the
£ A? » N+1/2 remaining ones are inversely proportional kband H?,
v(E)= nQe & Innr PN (E/QC)2+(N+1/2)2' respectively, and both vanish abolvkg2 in the normal state.

(A13) In the clean limit,| ;— o, the dampingy is equal to the last
term in Eq.(A16) calculated in Refs. 23-25.

To conclude this section, a remark is in order. The inter-
ference term has been calculated abovelfgr{. On the
other hand], must be not too small, sinc@ rj,;>1 is the
necessary condition for the dHvA effect in superconductors.
(A14)  Thus, the superconductors with largé and high He,

are those materials in which the Dingle factBg(A, )
plays the role of a phenomenological parameter, renormaliz= exp(— #/Q7,,;) is yet not too small to overdamp the dHVA
ing the amplitude of the order parametéxy=AI'. This oscillations. In the absence of a complete analysis, which
renormalization is akin to the spatially averaged over thepresently is very difficult to do, we hope that EGA15)
Fermi surface order parameték), introduced in Ref. 25. yields a qualitatively true dependence esandH beyond its
Thus, one can estimate the electron damping at the Fernfiormal applicability conditions. The latter, of course, can be
level due to the scattering on a random Vfrovided that verified only experimentally. Nonetheless, we note that the
due to the scattering on the crystal-lattice imperfections elecmain results of Sec. Ill are generally independent of the par-
trons have a finite free pathy) as follows: ticular choice of the function/(A, 7).

Q. here denotes the cyclotron frequen€y,=eDH/%c.
Near the Fermi level E=0) the sum in Eq(A13) is, in
essence, field independent, so that the positive constant,

2= 2 Inn

PN 15
o N+ 1/2
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