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Monte Carlo simulation of a helium film on graphite
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Green’s-function Monte Carlo and variational methods are used to calculate the properties of a monolayer of
helium on a smooth graphite substrate. We find that in all respects these properties are very close to those of
two-dimensional helium. There are small differences in the equations of state of the two systems. We use these
results to show how accurate chemical potentials can be constructed for particles in the second and third layers
and we compute the densities at which these layers will begin to form. These densities are in good agreement
with the experimental values.@S0163-1829~98!08737-2#
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I. INTRODUCTION

Helium four films on graphite substrates have been
subject of many experimental investigations.1 Graphite pro-
vides an especially interesting substrate because of the
tively large areas which exist as well-defined crystal s
faces, each with a hexagonal arrangement of carbon at
The following phenomena for the film are well establishe
Helium is strongly absorbed and covers the substrate wi
tightly bound monolayer. Upon addition of further helium
additional layers are formed in a well-defined manner; se
distinct layers have been observed.2 In this simulation study
we have focused in some detail on the properties of the
layer and have used these results to construct a simple m
that allows us to study the formation of the second and th
layers. Recently detailed studies of the superfluid proper
of the second and third layers have been published.3 Super-
fluidity has however not been seen in the first, and m
tightly bound, layer. Experimentally, it seems to be well e
tablished that there are three distinct density regimes for
first layer.2 At the very lowest coverages and at the lowe
temperatures the helium probably condenses into nearly
dimensional clusters and/or is preferentially absorbed o
step irregularities on the surface. At higher densities sev
commensurate phases exit. Beyond these, as the densi
creases, there is a third region in which an incommensu
triangular crystal is formed. The commensurate phases f
because of the regular hexagonal arrangement of the ca
atoms in the substrate. When the density of the crystal
phase becomes sufficiently large, approximately 0.07 at
Å22, the lowest energy state is that of the triangular heli
lattice. In this state, the periodicity of the substrate play
secondary role. At a density of approximately 0.11 ato
Å22 the system starts to form a second, well defined, laye
helium atoms. These second layer atoms now see the d
incommensurate first layer as a substrate, modulated by
more distant carbon substrate. Again as the density of
second layer is increased, a second incommensurate tria
lar lattice is formed and at a slightly higher density the th
layer begins to form.2

The first part of our work consisted of a detailed exam
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nation of the properties of the first layer. This layer is ve
tightly bound to the graphite substrate in a potential who
mean depth is approximately2180 °K. As a result the he-
lium particles are confined within a profile determined by t
ground-state wave functionf0(z). Herez is the coordinate
of a helium atom normal to the plane of the substrate;
show this wave function in Fig. 1. Since its width at ha
height is about 0.7 Å the helium atoms are essentially c
fined to a plane making very limited motion in thez direc-
tion. These facts are of course well known and have led
the very plausible suggestion that this first layer of heliu
will behave like two-dimensional~2D! helium.4 This latter
system was studied5 some years ago and we thus have ava
able accurate data with which to compare our film resu
We are able to confirm the expectation that the propertie
the first layer are very close to those of the 2D system. Th
are small, but significant, differences in the equation of sta

FIG. 1. The wave functions for the first, second, and third lay
of helium on a graphite substrate. The functions are the eigenfu
tions for the lowest state in the effective potentials which se
consistently allow for the presence of the other layers as discu
in the text. The density of the first layer isr50.115 Å22, while
that of the second layer isr50.08 Å22. These are the densities a
which the third layer starts to form.
8704 © 1998 The American Physical Society
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The correlation functions and lattice displacements are
sentially indistinguishable from those of the 2D system. W
have used these results to make a simple model, based o
2D equation of state to study the formation of the second
third layers. Both these layers are also similar to the
system. We predict that the second layer will crystallize j
before completion.

There have been several other theoretical studies of
lium films on graphite. Review of this work has been giv
by Clementset al.,6 Gernoth, Clark, and Ristig,7 and Saarela
et al.8 Progress has been made both at absolute zero an
finite temperatures. At absolute zero two methods have b
used. The first is an optimized variational method~E-L
HNC! which exploits the hypernetted chain formatio
~HNC! formalism together with Euler-Lagrange equations
compute the physical properties. It has been shown9 that this
method can give an accurate account of the ground-s
properties of both the three-dimensional and tw
dimensional homogeneous helium phases. Dens
functional theory10–12 has also been applied to helium film
This appears to be much less successful when compared
the optimized E/L HNC approach.9 The successful E/L HNC
work has been focused on the more weakly binding s
strates; graphite covered with two solid layers of helium a
the alkali metals. The focus of the work reported in th
paper is different; the first two layers of helium on a graph
substrate. Our methods are also different; variational
Greens-function Monte Carlo. This approach is complim
tary to the E/L HNC method and should provide useful d
with which to test that kind of theory. A point in common i
both approaches is the use and testing of a 2D model a
accurate approximation to describe a thin helium film.

Our first layer study is based on a simplified helium c
bon interaction. We take this to be the mean interaction
eraged across the substrate plane: it is thus a functionz
alone. This model eliminates the commensurate pha
which have experimentally been studied in detail. Howe
we believe that apart from the elimination of these pha
this model should be accurate enough to allow us to d
with the incommensurate solid phase and the propertie
the second and third layers. In this model we find a hom
geneous fluid at low densities, a two-phase coexistence
the triangular solid which increases significantly in density
the point of completion of the first layer. We have comput
the equations of state of these phases, their correlations f
tions and have examined the relation between our mode
the helium film and 2D helium.

In Sec. II we outline our computational methods. Sect
III describes our data for the first layer. In Sec. IV we d
scribe methods by which effective potentials can be c
structed for particles in the second and third layers. Sec
V is devoted to a discussion of the formation of the seco
and third layers. Our conclusions are in Sec. VI.

II. COMPUTATIONAL METHODS

In this study of the helium film we have used both t
variational and exact Green’s-function Monte Carlo~GFMC!
methods. The optimized trial wave functions from the var
tional calculations are used as importance functions in
GFMC calculations. We will not provide a description
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either of these methods. Detailed descriptions have b
given in several places.13,14

The Hamiltonian for our system is given by

H5T1V1(
i 51

N

V0~zi !. ~1!

Here T and V are the kinetic and potential energies ofN
helium atoms. They are assumed to interact via a pairw
central potential. For this potential we have chosen that
to Aziz et al.,15 which was used in studies of both bulk thre
dimensional helium16 and two-dimensional helium.5 The po-
tential energy,V0(zi), is the potential felt by thei th atom
due to the smooth carbon substrate. We used a form de
oped by Carlos and Cole17

V0~zi !5S 4pes6

asd
4 D F2

5 S s

d D 6

zS 10,
zi

d D2zS 4,
zi

d D G ~2!

with e516.24 K, s52.74 Å, d53.37 Å, andas55.24 Å2.
z(n,z) is the generalized Riemann zeta function.18 The co-
ordinatezi is normal to the substrate. We note thatV0(z) is
a much stronger potential than the Aziz potential. It ha
depth of approximately2180 K compared with210 K for
the helium-helium potential.

Our variational wave functions,cT , have the following
forms. For the fluid phase

cT5FJF3FS , ~3!

while for the solid phase

cT5FJF3FSFG . ~4!

The functions appearing on the right-hand side of Eqs.~3!
and ~4! are defined by the following equations:

FJ5)
i , j

N

exp@u~r i j !#, ~5!

where

u~r i j !5@21/2~b/r i j !
m#. ~6!

While one will get lower energies for the film using
shadow wave function,19 we decided to use the same form
we had used in our study5 of 2D helium so that we could
make accurate comparisons between the two systems. Hb
and m are variational parameters andr i j is the distance be-
tween thei th andj th particles. ThusFJ is a Jastrow function
with a MacMillan pseudopotential. The functionF3 de-
scribes correlations between triplets,20

F35expF2(
i , j

ūi j 2
1

2
l t(

k
G~k!•G~k!G ~7!

with

ũi j 5u~r i j !2l tj
2~r i j !r i j

2 ,

G~k!5(
iÞk

j~r i j !r ki ,

and
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TABLE I. The parameters, as defined in the text, for the optimized wave functions for the liquid~l!, and
solid ~s! phases of the film. In the third column the symbolc defines the width of the Gaussian factors for t
solid phase.

r(Å 22) b(Å) c l t(Å
2) st(Å) v t(Å) r t(Å)

0.0321l 3.042 29.16 2.045 1.278 6.39
0.0421l 3.067 28.50 2.045 1.278 6.39
0.0536l 3.144 28.50 2.045 1.278 6.39
0.0612l 3.144 27.19 2.045 1.278 6.39
0.0689l 3.144 26.56 2.045 1.278 6.39
0.0689s 2.888 0.306 25.13 2.096 12.78 7.256
0.0765s 2.863 0.383 26.56 2.096 12.78 7.256
0.0842s 2.863 0.459 26.56 2.096 12.78 7.256
0.0918s 2.863 0.612 27.19 2.096 12.78 7.256
0.0995s 2.837 0.689 26.54 2.096 12.78 7.256
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j~r i j !5S r i j 2r t

r t
D 3

expF S r i j 2st

v t
D 2G ,

where l t , st , v t , and r t are variational parameters. Th
function FS describes the localization of the atoms near
graphite substrate;

FS5)
c51

N

f0~zi !, ~8!

and f0(zi) is the ground-state wave function of a sing
helium atom interacting with the substrate via the poten
V0(zi), Eq. ~2!. We have solved this one-dimensional Sch¨-
dinger equation numerically. The lowest state has a sh
maximum atz52.9 Å and a width at half height is approx
mately 0.7 Å. This is about 15% of the interparticle spac
in the film at the equilibrium density. Thus the particles a
very tightly bound to the substrate and have very limit
motion in thez direction. The eigenvalueE0 corresponding
to f0 is 2140.74 K; we will refer to this as the single
particle ‘‘binding energy,’’ denoted byEB . We have per-
formed a Monte Carlo calculation ofE0 , usingf0 as a trial
function and are able to reproduce the eigenvalue to six
nificant figures.

The functionFG is used only in the solid phase. It de
scribes the localization of the particles in the neighborho
of the points of a plane triangular lattice.

FG5)
i 51

N

exp@2c/2~r i2Ri !
2#. ~9!

Here c is a variational parameter and theRi are the lattice
vectors of a triangular lattice. The lattice spacing is det
mined by the density of the system. Our simulations w
performed with between 64 and 100 particles. Perio
boundary conditions were used in thex and y directions.
Since the particles are highly localized in thez direction it
was unnecessary to apply periodic boundary conditions
this direction. From our description of the strong localizati
normal to the substrate, we suspect that the film will beh
very like 2D helium and we therefore include compariso
with 2D simulations throughout our analysis. We have ch
sen to use a two-dimensional density to describe the sta
the system; thus our unit of density is particles per Å2.
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III. THE FIRST LAYER

In this section we will present the results of our simu
tion studies for the first layer. We find, in general, that o
results are very close to those of the 2D system. The o
significant difference is that the helium film has a somew
larger binding energy. This difference in binding ener
grows larger at higher density. Since any phase transfor
tions in the first layer depend critically on the energy, w
have presented our equation of state results in some deta
subsection A. Subsection B gives a very brief summary
our results for the distribution functions, the density distrib
tion normal to the substrate and the distribution of displa
ments from the lattice sites in the solid phase.

A. Equation of state for the first layer

A variational search was conducted to minimize the e
ergy with respect to the parameters in the wave functio
For the fluid, either 64 or 81 particles were used. Simulatio
with 100 particles showed no difference within the sm
statistical errors. For the solid phase, 80 particles were u
The searches were carried out at five densities in each ph
These optimized functions were then used as importa
functions in our GFMC simulations. Table I gives the op
mum parameters for the fluid and solid; the parameterm, Eq.
~6!, has the value 5 for both phases. The values of the
rameters in these two tables are close to those found for
wave functions for 2D helium.5

The equation of state for the fluid is shown in Fig. 2 a
in Table II we give the values of both our variational an
GFMC energies. The film energies have been normalized
subtracting the binding energy of a single helium atom to
substrate. In Fig. 2 we also show the equation of state for
2D system and we see that at all densities they are close.
small differences increase with density. We have covere
very wide range of densities, from zero pressure to a m
stable fluid just above the freezing density. In the last colu
of Table II we give the difference between the GFMC en
gies for the film and the 2D system. At all densities the fi
has a lower binding energy; 5% lower at the lowest dens
10% lower at the highest density. The small differences t
we find are in disagreement with the only other variation
Monte Carlo data that we are aware of. Using a differe
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FIG. 2. The equation of state in the fluid phase. The solid curve is fitted to the GFMC data~boxes with error bars!. The dashed line is
fitted to the 2D GFMC data~triangles with error bars!. The dashed-dot line is fitted to the variational film data~upper boxes!.
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two-body pseudopotential and a somewhat different heliu
carbon potential Bramiet al.21 find a difference in energy
between the film and the 2D system at a density 0.04 Å22 of
approximately21.0 K. Their 2D energy is fairly close to
ours, 20.9 K, however their film energy is much deep
21.9 K. Using their two-body pseudopotential and the sa
helium carbon potential we have been unable to reprod
their results. We find a film energy of20.73 K, which is
close to the value shown in Table II.

The variational and GFMC energies were fitted to po
nomials in the densityr of the form

E5E01BS r2r0

r0
D 2

1CS r2r0

r0
D 3

. ~10!

We thus have four parameters to determineE0 , r0 , B, and
C, from our five data points. We have chosen this form
cause we expect a minimum to occur in the energy a
function of densityr; this minimum occurs atr0 with a
value ofE0 , and corresponds to the fluid in equilibrium u
-

e
ce

-

-
a

der zero pressure. Table III gives these parameters for b
sets of data, variational and GFMC.

In Fig. 3 and in Table II we show the numerical values
both our variational and GFMC work for the triangular soli
The comparison between the data is very similar to tha
the fluid phase. In the figure we compare the GFMC fi
results with the 2D GFMC solid.5 Again we see that the film
always has a lower energy and that the difference increa
with increasing density. At the lowest density the differen
is 0.12 K; rising to 1.00 K at the highest density.

The data for the solid was fitted to the same polynom
form as Eq.~10!. The parameters, as determined from o
fits, are given in Table III. The two equations of state we
used to locate the melting and freezing densities using
Maxwell double tangent construction. In Fig. 4, we show t
two GFMC equations of state and the double tangent c
struction. Table IV gives the values of the melting and free
ing densities, for both the variational and GFMC equatio
of state. These densities are also given for the 2D syste

From the table we see that the melting and freezing d
sities obtained from our variational calculations for the fi
TABLE II. The film and 2D energies for the liquid~l! and solid~s! phases.Evar is the variational energy,EGFMC is the exact Green’s-
function energy,EGFM2EB is the energy of the film minus the binding energy of a single helium atom on the carbon substrate,E2D is the
GFMC energy of the 2D system, andD is the difference between the film energy~column 4! and that of the 2D system.

r(Å 22) Evar(K) EGFMC~K! EGFMC2EB E2-D(K) D~K!~Film-2D!

0.0321l 2141.4460.02 2141.55660.005 20.81860.005 20.7860.02 20.0460.02
0.0421l 2141.4960.02 2141.6460.01 20.9060.01 20.8560.03 20.0560.03
0.0536l 2141.0460.04 2141.5360.01 20.7960.01 20.6760.03 20.1260.03
0.0612l 2140.4260.02 2141.2360.05 20.4960.05 20.3060.04 20.1960.06
0.0689l 2139.2660.04 2140.54660.009 0.19260.009
0.0689s 2139.9760.01 2140.4260.02 0.3160.02 0.4360.03 20.1260.03
0.0765s 2139.1160.02 2139.7360.01 1.0160.01 1.3060.02 20.2960.02
0.0842s 2137.73560.005 2138.5060.03 2.2460.03 2.7860.07 20.5460.08
0.0918s 2135.6460.02 2136.3960.02 4.3560.02 4.9160.03 20.5660.03
0.0995s 2132.6160.03 2133.4260.02 7.3260.02 8.2660.04 20.9460.04



ur

th
i

ns
It
fe
di
e

in
th

is
e
o
n
s
la
or
n
07
.
is
t

th
a
or
i
th
e

n
ti

th

tial
w-
ergy

the
the

de-
h to
m
the
eal
otal
ide a

t at
t a
his

We
etic
ega-

-

t

lu-
ion
l

ns
for
hat

es
ity

on
of

e-
s-

n-
his
ms
s a

all
nd-
s
e
to
n-

Eq

d
ia

8708 PRB 58P. A. WHITLOCK, G. V. CHESTER, AND B. KRISHNAMACHARI
and the 2D system are very similar. The most striking feat
being that the differenceDr5rs2r l is about twice as large
in the film as the 2D system. However when we examine
two sets of GFMC data we see that this large difference
Dr is no longer present. Only one small difference remai
there is about a 3% difference in the freezing densities.
reasonable to place more weight on the GFMC data. Dif
ences in the variational data can readily be attributed to
ferences in the ‘‘goodness’’ of the two wave functions. W
therefore conclude that the melting and freezing of the
commensurate solid for the film takes place at almost
same densities found for the 2D system.

The GFMC melting density for the triangular solid film
0.0724 particles per Å22. Unfortunately the value cannot b
directly compared with data on the incommensurate solid
graphite. This solid phase is in equilibrium with a comme
surate phase of some kind. Hence its transformation den
need not be close to the melting density of the triangu
solid on a smooth graphite substrate. Nevertheless it is w
pointing out that Greywall’s data2 suggests that the transitio
to the incommensurate phase takes place in the range 0.
0.08 particles per Å22; our transition also lies in this range

We now suggest a simple explanation for why the film
somewhat more bound than the 2D system. Whenever
density of liquid in solid helium decreases the energy of
system decreases. This is clearly seen for both the film
the 2D system from Figs. 2 and 3. It is equally true f
three-dimensional helium. The underlying reason for this
however somewhat subtle. First we observe that when
density is decreased the potential energy becomes less n
tive. As the density decreases the mean distance betwee
particles increases and they move farther out on the attrac
tail of the potential thus decreasing the magnitude of

TABLE III. The equation-of-state parameters as defined in
~10! for the liquid ~l! and the solid~s! phases of the film.

Parameter Variational GFMC

r0(Å 22) l 0.038960.0005 0.044360.0005
E0(K) l 20.76760.016 20.90660.009
B(K) l 2.41860.35 1.95660.10
C(K) l 1.72260.42 2.90460.42
x2/v of fit l 0.6515 0.374
r0(Å 22) s 0.055860.0003 0.056160.0005
E0(K) s 0.334360.018 20.006960.028
B(K) s 5.92760.36 3.61560.53
C(K) s 8.66460.25 11.2360.47
x2/v of fit s 5.755 5.143

TABLE IV. The melting and freezing densities of the film an
2D system. All of these have been calculated from the appropr
equations of state by the Maxwell double tangent construction.

Method r l(Å
22) rs(Å

22)

Variational-Film 0.0537 0.0677
Variational-2D 0.0569 0.0642
GFMC-Film 0.0656 0.0724
GFMC-2D 0.0678 0.0721
e
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negative potential energy. Thus the change in the poten
energy will always tend to increase the total energy. Ho
ever, whenever we decrease the density the kinetic en
decreases and by a larger amount than the change in
potential energy. The increase in mean distance between
particles means that the curvature of the wave function
creases because the function has more space in whic
bend so that it vanishes on the ‘‘hard core’’ of the heliu
atoms. In both two and three dimensions the decrease in
kinetic energy, for a given decrease in density, is a good d
larger than the increase in potential energy. Hence the t
energy always decreases. These observations can prov
simple explanation for the sign ofD, the difference in energy
of the film and the 2D system. We only have to notice tha
the same areal density the particles in the film are a
slightly lower total density than those in the 2D system. T
is because the small motion in thez direction means they are
on the average further apart than those in the 2D system.
thus expect the potential energy to increase and the kin
energy to decrease by a larger amount thus leading to n
tive values forD.

Cheng, Cole, and Shaw22 evaluated an approximate ex
pression forD, the difference in binding energy of the film
and 2D helium. Explicitly

D.
r^z12

2 &
2 E d2r g~r !

V8~r !

2r
. ~11!

Here r is the density of the film,̂ z12
2 & is the expectation

value of (z12z2)2 taken with respect to the produc
f0(z1)f0(z2), and g(r ) is the two-dimensional pair-
distribution function at the densityr. The integral on the
right-hand side of this equation is however difficult to eva
ate. This is because the product of the distribution funct
g(r ) andV8(r )/r is a very rapidly varying function for smal
r. If one uses tabulated values forg(r ), they are not accurate
enough at smallr to get the correct sign forD. However a
direct calculation can be performed using configuratio
from a simulation of the 2D system. This leads to values
D with the same sign as those in Table II but somew
smaller in magnitude.

B. Distribution functions

At each of the five densities in the fluid and solid phas
we computed the pair-distribution function, and the dens
distribution normal to the substrate. The pair-distributi
function was defined in terms of the projected positions
the particles onto a planez5const. This definition allows an
immediate comparison with the same function for 2D h
lium. We found that these pair-distribution functions are e
sentially identical with those found in 2D helium, at all de
sities in the fluid and solid phases. Figure 5 shows t
comparison at the highest density in the solid. This confir
the expectation that the first layer of the film on graphite i
very two-dimensional system.

The distribution of atoms normal to the substrate is, at
densities, indistinguishable from the square of the grou
state wave functionf0 , see Fig. 1. This is not surprising a
the binding energy in the potential well provided by th
graphite is very much larger than the kinetic energy due
the lateral motion and the helium-helium interaction pote

.

te
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FIG. 3. The equation of state in the solid phase. The solid curve is fitted to the GFMC data~lower boxes!. The dashed line is fitted to the
2D GFMC data~open triangles! and the dashed-dotted line is fitted to the film variational data~upper boxes!.
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tial. We conclude that even at the highest densities, wh
the second layer starts to form, the density profile of the fi
layer remains unaltered.

We have also computed the distribution of displaceme
of the helium atoms from their sites in the triangular lattic
The displacements in the direction normal to the subst
are much smaller than those in the plane of the film. Th
normal displacements are determined by the width of
ground-state wave functionf0 . The distribution of displace-
ments in the plane of the film is very accurately a gauss
The values of the moments of this Gaussian are the sa
within our statistical uncertainties, as those we found in
2D solid. Thus the triangular solid in the first layer is ve
like the 2D triangular solid except for small displaceme
out of the plane of the lattice. At the completion density
re
t

ts
.
te
e
e

n.
e,

e

s
f

the first layer both the 2D and film systems are becom
close to harmonic. The mean-square displacements in
plane, from the lattice sites, are about 6% of the square of
near-neighbor distance. At the melting point of the triangu
lattice the corresponding value is about 25%.

IV. CHEMICAL POTENTIALS AND EFFECTIVE
POTENTIALS

It is well known that helium binds to graphite in succe
sive layers. In this section we will suggest a simple mo
which allows one to compute the chemical potential of ea
layer accurately. The equilibrium between the layers is th
determined by equating their chemical potentials. We
this to study the formation of the second and third layers
ble
FIG. 4. The film GFMC energies for both the fluid and the solid versus 1/r. The boxes represent the points of contact in the dou
tangent construction and locate the melting and freezing densities.
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FIG. 5. The radial distribution function in the plane of the film and that of the 2D system. The solid curve is for the 2D system, the
curve is for the film. Both are at a densityr50.0995 Å22.
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The chemical potential in any layer is given by

m~r!5E~r!1r
dE~r!

dr
. ~12!

Here E(r) is the energy per particle at densityr and the
second term in Eq.~12! is the pressure term in the Gibbs fre
energy for particle. For the first layer we have accur
GFMC calculations that give usE1(r), hence we can imme
diately calculatem1 from Eq. ~12!. However we also have
available an accurate approximation toE1(r); namely

E1~r1!.E10~H,C!1E2D~r1!, ~13!

whereE10 is the binding energy of a single helium atom
the carbon substrate andE2D(r1) is the energy of the 2D
helium system. We shall see that we do not need very a
rate approximations form to determine the densities at whic
the second and third layers form. The two terms in Eq.~13!
are quite different in character. The second term refers o
to the particle interactions in the plane of the film, while t
first term refers only to the interaction of a helium atom w
the external potential; for the first layer this is the carb
potential. We now turn to the second layer and for the m
ment consider the situation when it has just formed and
thus very dilute. The appropriate form of our basic appro
mation is now

E2~r2 ;r1!.E20~C,r1!1E2D~r2!. ~14!

E2 and E20 will depend parametrically onr1 because the
binding energy of a helium atom in the second layer depe
on both the carbon potential, now at some distance aw
and the potential provided by the first layer at a densityr1 .

The second, and final, step in our approximate metho
to show that a very simple approximation allows us to c
culateE20(C,r1) with sufficient accuracy. We computeE20
by constructing an effective external potential for the p
ticles in the second layer. We should however make it cl
that a precise calculation ofE20 cannot be performed in
te

cu-

ly
e
h
n
o-
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i-

ds
ay,

is
l-

r-
ar

terms of an external static potential. This is because the p
ence of atoms in the second layer influences those in the
layer. The effective potential approximation does not t
this effect into account. However, as long as the first laye
a dense solid it is very plausible that the influence of
atoms in a dilute second layer will be small. We will retu
to this point later. Our effective potential for a helium ato
in the second layer consists of two parts, that provided by
carbon substrate and that due to the interaction with the
oms in the first layer. The carbon substrate potential is
course known, at the position of the second layer it is ra
slowly varying with a value of;223 K. The effective po-
tential provided by the first layer can be calculated exac
At any point ~x,y,z! in the second layer there is a potent
VE(x,y,z;R), whereR refers to a particular configuration o
atoms in the first layer. Explicitly

VE~x,y,z;R!5VE~rI ;R!5(
j 51

N

V~rI2rI j !. ~15!

HereV is the Aziz potential between two helium atoms a
r j is the position of thej th atom in the first layer. We now
average over the configurations of the first layer by tak
the expectation value ofVE with respect to the ground-sta
wave functionC0(R) for the first layer; the effective poten
tial V̄E is thus given by the equation,

V̄E~r !5^VE~r ;R!&5E C0
2~R!VE~r ;R!dR. ~16!

We can perform this average by using our GFMC confi
rations; and we can therefore computeV̄E as a function of
density of the first layer. We will refer toV̄E as the exac
effective potential. We expect the first layer to be a triangu
solid when the second forms, and thereforeV̄E(x,y,z) will
exhibit, in x andy, the periodicity of this lattice. We will use
this effective potential to provide bounds on the chem
potential of the dilute second layer.
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This effective potential is, as we have pointed out, a
riodic function ofx andy. We will find it useful to make a
further approximation so that our effective potential is ind
pendent ofx andy and thus depends only onz. This kind of
approximation leads to rather small errors in our estimate
the densities at which the second and third helium lay
form. We chose the simplest approximation toV̄E . For the
layers which are relatively tightly bound we assume that
atoms are confined to a plane. The effective potential see
an atom in any other layer is then computed by integrat
V̄E(r ), Eq. ~16!, across the plane. This removes thex,y de-
pendence and we have a potentialṼE(z) which depends
parametrically on the density of the atoms in the plane. T
is a very simple approximation and is in the same spirit
our approximation in which we replace the film energy w
the energy of the 2D system. These two approximations fo
the basis of our calculations.

In Fig. 6 we show three potential curves as a function
z. The curve with the highest energy isV̄E(x,y,z) whenx,y
are held fixed above an atom in the triangular lattice. T
lowest energy curve isV̄E(x,y,z) whenx,y are held fixed at
the center of one of the triangles of the lattice. The curve t
lies between these is our simplified effective potentialV̄E(z).
In the Appendix we show that the lowest eigenvalue of
exact effective potential,V̄E(r ), lies between the lowest ei
genvalues of the upper and lower potentials as we have
fined them. Since the minimum ofṼE(z) is bounded by the
minimum ofVmax andVmin its lowest eigenvalue will also lie
between these bounds. We are thus confident that the lo
eigenvalue ofṼE(z) is an accurate approximation to the low

FIG. 6. Potential energy curves for an atom in the dilute sec
layer. Vmax(z) ~ ! is the potential which boundsVE(x,y,z)
above for all~x,y!: Vmin(z) ~ ! is the potential which bounds
V̄E(x,y,z) below for all x,y. ṼE(z) ~• • • •! is the mean Aziz po-
tential defined in the text.
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est eigenvalue ofV̄E(x,y,z). We will therefore use this ap
proximate effective potential to discuss the formation of t
second and third layers.

V. LAYER COMPLETION AND FORMATION

We first present the results of our calculations for t
density of formation of the second layer. We use the bou
discussed above to bound the chemical potential of the
ond layer and we use our GFMC results to compute
chemical potential of the first layer. We then compare t
result with those obtained from our 2D approximation.

The density at which the second layer will form is give
by the solution to the equation

m2~r2 ;r1!5m1~r1!5E1~r1!1r1

dE1

dr1
. ~17!

When the second layer first forms it will be dilute and t
dependence ofm2 on r2 can be neglected, andm2(r1)
5E2(r1), the binding energy of a single particle in the pre
ence of the crystalline first layer and the carbon substr
The effective potential provided by the first layer depends
the density of that layer. The energyE1(r1) is the energy of
the film obtained from our GFMC calculations. In Fig. 7 w
plot these two eigenvalues as a function ofr1 . They de-
crease slowly as a function ofr1 . We also plot the chemica
potential of the first layer obtained from our GFM
calculation;23 it intersects the eigenvalues at densities
0.115 and 0.118 Å22. We can thus rigorously state tha
within the effective potential approximation the second lay
will begin to form at a density lying between these boun
On the same figure we have also plotted the eigenvalue
responding to the mean potentialṼ(z). This predicts a for-
mation density of 0.115 Å22. The density at which the firs
layer completes and promotion to the second begins has
determined by heat capacity, third sound and neutr
scattering measurements. These experiments do not ap
to be in precise agreement, the values for the comple
density range from 0.11 to 0.12 Å22.24 Our values lie in this
range. We note that the difference in our two bounds is l
than 3%, which is smaller than the differences in the exp
mental results. However, we do not wish to place too mu
emphasis on the accuracy of our present work. It is based
four assumptions, each of which requires careful exami
tion before one can claim great accuracy.

The first is the use of the earliest Aziz two-bod
potential.15 This has now been superseded by more accu
potentials.25 We chose to work with the older Aziz potentia
because our earlier 2D work had been done with that po
tial and were thus able to make interesting comparisons
tween the film and the 2D system. We have carried
GFMC calculations at the two highest densities, 0.11 a
0.12 Å22 with one of the most recent Aziz potentials.25 We
find only a very small change in the energy of the film a
hence no significant change in our estimates of the com
tion density. Second, we have ignored any contributio
from three-body terms in the interaction potential. T
Axilrod-Teller potential is known to give significant contr
butions to energy of a dense three-dimensional heli
crystal.16,26 We have made a simple estimate of the con

d
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FIG. 7. The chemical potentials of the second layer and first layers. The three chemical potentials of the second layer h
calculated using the potentialsVmax ~• • • •!, Vmin ~ !, andṼE ~— . — . — . —!. The chemical potential of the first layer~ ! was
calculated from the GFMC equation of state.
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bution of this potential in the high density range of the so
first layer. This is based on a static lattice model,27 and we
find contributions to the chemical potential of the film
approximately13.0 K. This change inm leads to an increas
of about 1% in our estimates of the density at which the fi
layer will complete. Third we have replaced the period
potential of the carbon substrate with an averaged mean
tential. Estimates28 of the binding energy of the film on a
corrugated carbon substrate suggest that it differs by a
0.01 K from that on a plane substrate.29 This small charge
will have no appreciable effect on the completion dens
The corrugations of the carbon potential have become v
small at the distance of the second layer and again will h
no appreciable effect on the chemical potential of the sec
layer. Finally, as we have already pointed out, we have u
an effective potential approximation to calculate the che
cal potential of the second layer. We are able to check
assumption. We have available the results of computing
chemical potential of the dilute second layer by path-integ
methods. Using this method we simulated the dense
layer in the presence of a single second layer atom with
using any effective potential approximation. By the meth
we found a value of229.8 K for the chemical potential o
the dilute second layer. Our bounds for the chemical pot
tial based on the effective potentialV̄E are230.1 and219.6
K. The path-integral value lies in this range and we theref
conclude that for the second layer the effective potential
proximation provides an accurate description. The basic
son for this is that at completion the first layer is an e
tremely dense solid and cannot be readily perturbed by at
in the second layer. This argument does not apply so c
vincingly to an effective potential for atoms in the thir
layer. At completion the second layer has only just solidifi
and is therefore more likely to be perturbed by atoms in
third layer.

It is worth noting that these completion densities, rang
from 0.11 to 0.118, imply that the first layer is an extreme
dense system when the second layer begins to form. As
t
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eral authors have noted the melting density of the incomm
surate solid first layer~0.07 Å22! is almost the same as tha
of the basal plane of the 3D hcp4He crystal at its melting
density. Thus at this density we are in a familiar dens
range. However the completion densities are 60 to 70
higher than the melting density. In 3D this is much high
than any density at which simulations have been done. As
have already noted the film has become close to a harm
solid at these densities.

We can now use these results to test the two-dimensio
approximation in which the equation of state of the first lay
is replaced by the equation of state of 2D helium in t
presence of the carbon substrate and the chemical pote
of the dilute second layer is computed from an effective p
tential provided by a 2D crystalline first layer. From o
previous work on the 2D helium system we have an accu
equation of state and can thus compute the chemical po
tial. For the effective potential for the second layer we ha
chosen to use the mean potential provided by the 2D c
talline layer. This corresponds to integrating the Aziz pote
tial across the plane of the second layer, and is the 2D an
of the mean potential we used for our previous calculati
Figure 6 shows that this 2D mean potential is close to
film mean potential, suggesting that this approximation
accurate. These approximate chemical potentials interse
a density of 0.111 Å22, which is outside the bounding den
sities of the previous calculation but which is within th
range of experimental values. This type of 2D approximat
was introduced by Campbell and Schick29 and their results
are close to ours, although they used several simplifying
sumptions and in addition used the Lennard-Jones pote
for helium. At that time the modern Aziz potentials were n
available.

Since this rather simple approximation leads to satisf
tory results it is natural to ask whether we can use it
determine the densities at which subsequent layers will fo
We believe that the effective potential approximation will
accurate as long as the layers are well separated. That
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long as the density profiles, or wave functions do not over
appreciably. However, as we move farther and farther aw
from the carbon substrate the layers will be less tigh
bound and will inevitably begin to overlap appreciab
Again as long as we are dealing with tightly bound layers
should be able to approximate them accurately with 2D s
tems. However, we need to go beyond this simplified pictu
It is easy to see, and it is well established experimenta
that as the density of the second layer increases tow
completion the density of the first layer also increases. I
therefore incorrect to treat the first layer as an entirely p
sive source of an effective potential for the second layer.
the second layer becomes more dense the pressure sta
rise rapidly and consequently its chemical potential a
starts to rise. However, if the second layer is to be in eq
librium with the first layer its chemical potential must als
rise. The only way this can come about is for its density
increase. Thus as we increase the total coverage suffic
atoms go into the first layer so that its chemical poten
increases to maintain equality with the chemical potentia
the second layer. To determine this increase in a fully s
consistent fashion would require a difficult simulation
which atoms are inserted and removed from the dense
layer. However, this can be avoided if we simply assume
the density of the first layer is unknown and determine
from the equation for the equality of the chemical potentia
For example, given the densityr2 of the second layer we ca
write

m1~r1 ;r2!5m2~r2 ;r1!. ~18!

It is important to note thatm2 depends parametrically o
r1 , and thatm1 depends parametrically onr2 . This comes
about because the effective potential for particles in e
layer depends on the density of the other. Hence for a gi
r2 , Eq. ~18! can be solved forr1 .

With these preliminary remarks in mind we now use o
2D model to determine the density of the first and seco
layers at which the third layer starts to form. We have to fi
r1 andr2 which satisfy the two equations

m1~r1 ;r2!5m2~r2 ;r1!, ~19!

m2~r2 ;r1!5m3~r3 ;r1 ,r2!5m3~0;r1 ,r2!. ~20!

Sincer3 is the density of a dilute systemm3 can be evalu-
ated at zero density. It is the binding energy of an atom in
effective potentials provided by the carbon substrate, fi
and second layers. We thus have two equations to be so
self consistently forr1 andr2 . In the 2D approximation the
chemical potentials are easily calculated and the two eq
tions can be readily solved interactively. We find that t
density at which the second layer completes isr2
50.08 Å22, and at this density the first layer density h
increased by 4% to 0.115 Å22. The density of total coverag
is thus 0.195 Å22. The experimental range is 0.204 to 0.2
Å22.30 Our result is approximately 5% below the lowest e
perimental values. Thus for both the first and second lay
the 2D approximation yields completion densities which
somewhat low. The density of the first layer has increased
about 4% which is in the range of experimental values.
can compare the density profiles of the first layer in the pr
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ence of a dilute second layer and in the presence of
completed second layer. We find that the position of
maximum is unchanged, but that the height has increase
6% and the width has decreased by 8%. Clearly the first la
has been compressed by the completed second layer.

There has been some discussion in the literature a
whether the second layer crystallizes into an incommensu
solid just before completion or whether it requires the co
pression provided by a partly full third layer. Within th
framework of our 2D model the second layer completes a
density of 0.08 Å22. This is well above the freezing densit
of 2D helium, which is 0.0678 Å22. We can however make a
somewhat stronger statement. We notice from Table IV t
the melting and freezing densities of 2D helium and the fi
layer film are very close. We expect on this basis that
melting and freezing densities of the second layer will
extremely close to these of the first layer. While the dens
profile of the second layer is 50% wider than that of the fi
however it is still so narrow that the configurations of t
second layer must be very close to those of the 2D syst
We thus have very good reason to believe that the sec
layer will crystallize before completion. This qualitative a
gument has been confirmed by explicit calculations. We fi
at a density of 0.08 Å22 that the crystal phase has a low
energy than the fluid phase. These are GFMC results,
energy difference being approximately 0.4 K. This is
agreement with the neutron-scattering data.31

On the basis of our work we cannot make any firm p
diction as to whether the third layers will crystallize at
before completion. Experimentally the third layer2 completes
at a lower density~0.07 Å22! than the second. This density
now very close to the melting density of both the 2D and
first layer. We should also point out that the density profi
of the third layer is approximately twice as wide as that
the first layer. This will lead to a significant lowering of th
energies of both the fluid and solid phases~if one exits! thus
making it difficult to predict the freezing density of the laye
While it is plausible that the third layer remains fluid
completion we have no strong argument to support that c
clusion.

It is interesting to note that under our assumptions
chemical potential of the dilute third layer is28.5 K. This
can be compared with the chemical potential of bulk 3
liquid helium which, with our two-body potential and n
three-body potential, is27.2 K. These values can be con
trasted with the values of the chemical potential of the dil
first and second layers which are approximately2140 and
225 K, respectively. The chemical potential of the thi
layer will slowly rise as the layer fills and reaches comp
tion. Its value at that density must be close to, but below t
of the bulk fluid. We can thus conclude that since four mo
layers can be observed at low temperatures each of t
layers must lead to a very small increments in the chem
potential of the system. This appears to be a very su
effect and would be very difficult to treat with precision b
our methods; indeed the variational methods developed
Clementset al.6 may well be more suitable.

These values of the chemical potentials of each dil
layer merely reflect the strength of the attractive potent
seen by the atoms in the dilute layer. For the first layer
atoms merely see the potential of the carbon substrate:
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has a value of approximately2180 K. The atoms in the
dilute second layer see a much weaker potential of appr
mately250 K. It is interesting to note that this has approx
mately equal contributions of about225 K from the distant
carbon substrate and from the dense first layer. The atom
the third layer see only a very weak carbon potential,25 K,
a smaller contribution from the dense first layer,22 K, and
the largest contribution from the second layer,215 K. These
values are at the minimum of the total potential; the to
depth at the minimum being222 K. This value is close to
the minimum of the two-layer model potential used by Cle
entset al.9

In Fig. 1 we show the single-particle wave functions f
the three layers. The wave function for the first layer is c
culated taking into account both the carbon substrate and
completed second layer. As we have noted the second l
compresses the wave function and density profile of the
layer. They indeed show little overlap and the first and s
ond layers are tightly bound. Thus for these two layers
expect our approximations to work well. However the th
layer is a good deal wider which tells us that it is unlike
that our 2D approximations will be as accurate if applied
this layer. However to determine the densitiesr1 andr2 at
which this layer begins to form does not require us to ma
any approximations about how tightly it is bound.

VI. DISCUSSION

We have shown, within the framework of a smooth su
strate model, that one can accurately calculate the prope
of the first two layers of helium on graphite. In the mod
these layers are well separated and very tightly bound to
substrate. As the density in each layer increases, conde
tion into a uniform self-bound liquid will take place at abo
0.04 Å22, and crystallization into a triangular lattice wi
occur at 0.07 Å22. We are able to compute the completio
densities of both the first and second layers and find ag
ment, to within a few percent, with the experimental valu
Beyond the second layer our methods may be less usef

The major defect in our model is the absence of a reali
substrate. Not only have we removed the basic periodicity
the graphite lattice we have also eliminated any irregul
ties, such as steps and islands on the surface. In our mod
low densities nearly two-dimensional clusters will for
which will increase in size and eventually percolate to form
connected fluid film. On a realistic substrate condensa
may well take place preferentially on step edges and o
irregularities. Moreover the condensation into clusters ha
compete with the formation of a commensurate phase. Th
considerations are of course most important for the first la
where the helium atoms experience only the bare grap
potential. In the second layer the periodicity of the graph
potential is quite small and the irregularities of the graph
surface may well be smoothed out by the dense first la
Nevertheless the second layer atoms experience the per
potential provided by the dense triangular lattice of the fi
layer. For this layer too, condensation has to compete w
the formation of a commensurate phase.

Superfluidity has been seen in the second layer.3 The
highest density, 0.07 Å22, at which it has been detected
approximately the density at which the layer will start
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freeze into a triangular lattice. The lowest density, 0.05 Å22,
is definitely above the density at which a homogeneous fi
will form in our smooth substrate model. This discrepan
may be due to the irregularities on the surface leading
preferential condensation on steps and thus delaying the
mation of a homogeneous, or at least extended fluid fi
Alternatively it may be due to the presence of a commen
rate phase. The surface structure is clearly important to
derstanding the behavior of the first and second layer fi
on graphite. For this reason we plan to explore the topic w
both variational and GFMC calculations.
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APPENDIX

We can readily find a potentialVmax(z) which is larger
than V̄E for all x,y. Similarly we can findVmin(z) which is a
lower bound toV̄E for all ~x,y!. It is then straightforward to
prove that the lowest eigenvalue ofV̄E must be between the
lowest eigenvalues ofVmax(z) andVmin(z). The upper bound
Vmax(z) occurs when the coordinatesx,y are held fixed above
a helium atom in the crystalline layer. The lower bou
Vmin(z) occurs whenx,y are held fixed at the center of one o
the triangles of the lattice.

First we show that ifV(r )<Vmax(r), for all r, then E
<Emax. Let Cmax(r) denote the normalized ground-sta
wave function for the potentialVmax(r), then

Emax5E d3r Cmax
† ~r !@T1Vmax~r !#Cmax, ~A1!

whereT is the three-dimensional kinetic energy operator, a
the symbol † indicates complex conjugation. If we choo
Cmax(r) as a variational wave function for the Hamiltonia
@T1V(r )#, then from the variational theorem we know th

E<E d3r Cmax
† ~r !@T1V~r !#Cmax~r !. ~A2!

Subtracting Eq.~A1! from Eq. ~A2! we find that

E2Emax<E d3rI Cmax
† @V~r !2Vmax~r !#Cmax, ~A3!

and sinceV(r )<Vmax(r) for all r,

E d3r Cmax
† ~rI !@V~r !2Vmax~r !#Cmax~r !

[E d3r @V~r !2Vmax~r !#uCmax~r !u2<0. ~A4!
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From Eqs. ~A3! and ~A4! we conclude thatE<Emax.
By a similar argument we can show that ifVmin(r)<V(r)
the Emin<E. This proves our assertion. Now sinceVmax(r)
and Vmin(r) depend only on z it follows that Emax
and Emin are the ground-state energies of the correspo
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