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Monte Carlo simulation of a helium film on graphite
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Green's-function Monte Carlo and variational methods are used to calculate the properties of a monolayer of
helium on a smooth graphite substrate. We find that in all respects these properties are very close to those of
two-dimensional helium. There are small differences in the equations of state of the two systems. We use these
results to show how accurate chemical potentials can be constructed for particles in the second and third layers
and we compute the densities at which these layers will begin to form. These densities are in good agreement
with the experimental value§S0163-182608)08737-2

I. INTRODUCTION nation of the properties of the first layer. This layer is very
tightly bound to the graphite substrate in a potential whose
Helium four films on graphite substrates have been thenean depth is approximately 180 °K. As a result the he-
subject of many experimental investigatidn&raphite pro-  lium particles are confined within a profile determined by the
vides an especially interesting substrate because of the relground-state wave functiopy(z). Herez is the coordinate
tively large areas which exist as well-defined crystal sur-of @ helium atom normal to the plane of the substrate; we
faces, each with a hexagonal arrangement of carbon atomglow this wave function in Fig. 1. Since its width at half
The following phenomena for the film are well established.height is about 0.7 A the helium atoms are essentially con-
Helium is strongly absorbed and covers the substrate with fined to a plane making very limited motion in thedirec-
tightly bound monolayer. Upon addition of further helium, tion. These facts are of course well known and have led to
additional layers are formed in a well-defined manner; sevef€ very plausible suggestion that this first layer of helium
distinct layers have been obsenfeth this simulation study Wil behave like two-dimensional2D) helium.” This latter
we have focused in some detail on the properties of the firstyStem was studiédsome years ago and we thus have avail-
layer and have used these results to construct a simple mod@ple accurate data with which to compare our film results.
that allows us to study the formation of the second and thirgVe are able to confirm the expectation that the properties of
layers. Recently detailed studies of the superfluid propertiete first layer are very close to those of the 2D system. There
of the second and third layers have been publish8dper- ~ are small, but significant, differences in the equation of state.
fluidity has however not been seen in the first, and most
tightly bound, layer. Experimentally, it seems to be well es-
tablished that there are three distinct density regimes for the
first layer? At the very lowest coverages and at the lowest
temperatures the helium probably condenses into nearly two-
dimensional clusters and/or is preferentially absorbed onto
step irregularities on the surface. At higher densities several %8|
commensurate phases exit. Beyond these, as the density ir=
creases, there is a third region in which an incommensurate” 06
triangular crystal is formed. The commensurate phases form
because of the regular hexagonal arrangement of the carbo ¢4 |
atoms in the substrate. When the density of the crystalline
phase becomes sufficiently large, approximately 0.07 atoms
A2, the lowest energy state is that of the triangular helium
lattice. In this state, the periodicity of the substrate plays a . )
secondary role. At a density of approximately 0.11 atoms %0 7.0 120 17.0 220
A2 the system starts to form a second, well defined, layer of &
helium atoms. These second layer atoms now see the densepg_ 1. The wave functions for the first, second, and third layers
incommensurate first layer as a substrate, modulated by thg helium on a graphite substrate. The functions are the eigenfunc-
more distant carbon substrate. Again as the density of thgons for the lowest state in the effective potentials which self-
second layer is increased, a second incommensurate trianggbnsistently allow for the presence of the other layers as discussed
lar lattice is formed and at a slightly higher density the thirdin the text. The density of the first layer js=0.115 A2, while
layer begins to forns. that of the second layer js=0.08 A~2. These are the densities at
The first part of our work consisted of a detailed exami-which the third layer starts to form.
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N
H=T+V+ >, Vy(z). (1)
i=1

6

The correlation functions and lattice displacements are ewither of these methods. Detailed descriptions have been
sentially indistinguishable from those of the 2D system. Wegiven in several places:**
have used these results to make a simple model, based on theThe Hamiltonian for our system is given by

2D equation of state to study the formation of the second and

third layers. Both these layers are also similar to the 2D

system. We predict that the second layer will crystallize just

before completion.

There have been several other theoretical studies of hddere T and V are the kinetic and potential energies Mf
lium films on graphite. Review of this work has been givenhelium atoms. They are assumed to interact via a pairwise
by Clementst al.® Gernoth, Clark, and Ristiand Saarela central potential. For this potential we have chosen that due
et al® Progress has been made both at absolute zero and tetAziz et al,* which was used in studies of both bulk three-
finite temperatures. At absolute zero two methods have beeimensional heliurtf and two-dimensional heliumThe po-
used. The first is an optimized variational meth@g-L  tential energyVo(z), is the potential felt by theth atom
HNC) which exploits the hypernetted chain formation due to the smooth carbon substrate. We used a form devel-
(HNC) formalism together with Euler-Lagrange equations tooped by Carlos and Colé
compute the physical properties. It has been sidhat this 6
method can give an accurate account of the ground-state , (z)= dmea E (E) 4,’( 10 ﬁ>_§<4 ﬂ” )
properties of both the three-dimensional and two- oL ad* /|5\d d d
dimensional homogeneous helium phases. Density- .
functional theory®~'2has also been applied to helium films. with €=16.24 K, 0=2.74 A’.d:3'37 A, andas%5.24 A2,
This appears to be much less successful when compared Wig(n_,z) IS the generalized Riemann zeta functiorthe co-
the optimized E/L HNC approachThe successful E/L HNC ordinatez; is normal to the substrate. We hote th) IS
work has been focused on the more weakly binding sub? much stronger potential than the Aziz pqtenual. It has a
strates; graphite covered with two solid layers of helium an epth c.)f apprquately—l&O K compared with-10 K for
the alkali metals. The focus of the work reported in this he hellum.-hellum potential. . .
paper is different; the first two layers of helium on a graphite Our vanatlonall wave functionsjr, have the following
substrate. Our methods are also different; variational an{]orms. For the fluid phase
Greens-function Monte Carlo. This approach is complimen- _
tary to the E/L HNC method and should provide useful data Yr=0,03bs, ®
with which to test that kind of theory. A point in common in while for the solid phase
both approaches is the use and testing of a 2D model as an
accurate approximation to describe a thin helium film. Ppr=0,;03Pbg. 4

Oyr first I.ayer study is bqsed on a simplifie_d helium Car-The functions appearing on the right-hand side of Egs.
bon interaction. We take this to be the_ mean interaction avanq (4) are defined by the following equations:
eraged across the substrate plane: it is thus a functian of
alone. This model eliminates the commensurate phases N
which have experimentally been studied in detail. However <I>J=H_ exgu(ri)], (5)
we believe that apart from the elimination of these phases 1<)
this model should be accurate enough to allow us to degjnpere
with the incommensurate solid phase and the properties of
the second and third layers. In this model we find a homo- u(ri;)=[—21/2(b/rj;)™]. (6)
geneous fluid at low densities, a two-phase coexistence with . _ . _
the triangular solid which increases significantly in density atVhile one will get lower energies for the film using a
the point of completion of the first layer. We have computedShadow wave functloi‘ﬁwe decided to use the same form as
the equations of state of these phases, their correlations funf€ had used in our st_ua)of 2D helium so that we could
tions and have examined the relation between our model df'@ke accurate comparisons between the two systems.Here
the helium film and 2D helium. andm are variational parameters ang is the distance be-

In Sec. Il we outline our computational methods. Sectionfween théth andjth particles. Thusb, is a Jastrow function
Il describes our data for the first layer. In Sec. IV we de-With a MacMillan pseudopotential. The functiod; de-
scribe methods by which effective potentials can be conScribes correlations between tripléfs,
structed for particles in the second and third layers. Section
V is devoted to a discussion of the formation of the second @329)([{ -
and third layers. Our conclusions are in Sec. VI.

_ 1
2 U= 5 M2 GG (D)
i<j k

with
Il. COMPUTATIONAL METHODS TJij :U(rij)_htfz(rij)rizja

In this study of the helium film we have used both the

variational and exact Green’s-function Monte CaBFMC)
methods. The optimized trial wave functions from the varia- G(k)=§k Eriprs
tional calculations are used as importance functions in the
GFMC calculations. We will not provide a description of and
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TABLE I. The parameters, as defined in the text, for the optimized wave functions for the (igjugehd
solid (s) phases of the film. In the third column the symbalefines the width of the Gaussian factors for the

solid phase.

p(A7?) b(A) c \(A?%) si(A) wi(A) r(A)

0.0321l 3.042 —9.16 2.045 1.278 6.39
0.0421l 3.067 —8.50 2.045 1.278 6.39
0.0536I 3.144 —8.50 2.045 1.278 6.39
0.0612I 3.144 —7.19 2.045 1.278 6.39
0.0689I 3.144 —6.56 2.045 1.278 6.39
0.0689s 2.888 0.306 -5.13 2.096 12.78 7.256
0.0765s 2.863 0.383 —6.56 2.096 12.78 7.256
0.0842s 2.863 0.459 —6.56 2.096 12.78 7.256
0.0918s 2.863 0.612 —7.19 2.096 12.78 7.256
0.0995s 2.837 0.689 —6.54 2.096 12.78 7.256

£y = rij—ry 3ex;{(r”_st)2 Ill. THE FIRST LAYER
. Iy wy ' In this section we will present the results of our simula-

where\,, S;, w;, andr; are variational parameters. The tion Etudles for thf’ fws'; Ia%er. WP} {Ir:]d,zig genteral, En?t ou{
function ® g describes the localization of the atoms near the €SUILS are very close fo those of the 2L system. The only
; ) significant difference is that the helium film has a somewhat
graphite substrate; L Lo e
larger binding energy. This difference in binding energy
N grows larger at higher density. Since any phase transforma-
b= H bo(z), (8)  tions in the first layer depend critically on the energy, we
c=1

have presented our equation of state results in some detail in

and ¢,(z) is the ground-state wave function of a single subsection A. Subsfect_lon_B gives a very brief summary of
helium atom interacting with the substrate via the potentiaPU" results for the distribution functlong, the d_ensny d.IStI’IbU-
Vo(z;), Eq.(2). We have solved this one-dimensional Sehro tion normal to the s_ubst_rate .and the Q|str|but|on of displace-
dinger equation numerically. The lowest state has a sharf'€nts from the lattice sites in the solid phase.
maximum atz=2.9 A and a width at half height is approxi-
mately 0.7 A. This is about 15% of the interparticle spacing
in the film at the equilibrium density. Thus the particles are
very tightly bound to the substrate and have very limited A variational search was conducted to minimize the en-
motion in thez direction. The eigenvalug, corresponding ergy with respect to the parameters in the wave functions.
to ¢y is —140.74 K; we will refer to this as the single- For the fluid, either 64 or 81 particles were used. Simulations
particle “binding energy,” denoted b¥gz. We have per- with 100 particles showed no difference within the small
formed a Monte Carlo calculation &, using¢, as a trial ~ statistical errors. For the solid phase, 80 particles were used.
function and are able to reproduce the eigenvalue to six sighhe searches were carried out at five densities in each phase.
nificant figures. These optimized functions were then used as importance
The function®g is used only in the solid phase. It de- functions in our GFMC simulations. Table | gives the opti-
scribes the localization of the particles in the neighborhoodnum parameters for the fluid and solid; the parameteq.
of the points of a plane triangular lattice. (6), has the value 5 for both phases. The values of the pa-
rameters in these two tables are close to those found for the
) wave functions for 2D helium.
<DG=iHl exd —c/2(ri—R;)“]. ©) The equation of state for the fluid is shown in Fig. 2 and
in Table Il we give the values of both our variational and
Herec is a variational parameter and thg are the lattice GFMC energies. The film energies have been normalized by
vectors of a triangular lattice. The lattice spacing is detersubtracting the binding energy of a single helium atom to the
mined by the density of the system. Our simulations weresubstrate. In Fig. 2 we also show the equation of state for the
performed with between 64 and 100 particles. Periodi2D system and we see that at all densities they are close. The
boundary conditions were used in tlxeand y directions. small differences increase with density. We have covered a
Since the particles are highly localized in thalirection it  very wide range of densities, from zero pressure to a meta-
was unnecessary to apply periodic boundary conditions istable fluid just above the freezing density. In the last column
this direction. From our description of the strong localizationof Table Il we give the difference between the GFMC ener-
normal to the substrate, we suspect that the film will behavgies for the film and the 2D system. At all densities the film
very like 2D helium and we therefore include comparisonshas a lower binding energy; 5% lower at the lowest density;
with 2D simulations throughout our analysis. We have cho-10% lower at the highest density. The small differences that
sen to use a two-dimensional density to describe the state @fe find are in disagreement with the only other variational
the system; thus our unit of density is particles pér A Monte Carlo data that we are aware of. Using a different

A. Equation of state for the first layer

N
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FIG. 2. The equation of state in the fluid phase. The solid curve is fitted to the GFMChaetes with error bajs The dashed line is
fitted to the 2D GFMC datétriangles with error bajs The dashed-dot line is fitted to the variational film daipper boxes

two-body pseudopotential and a somewhat different heliumeer zero pressure. Table Il gives these parameters for both
carbon potential Bramet al?! find a difference in energy sets of data, variational and GFMC.

between the film and the 2D system at a density 0.04 g In Fig. 3 and in Table Il we show the numerical values of
approximately—1.0 K. Their 2D energy is fairly close to both our variational and GFMC work for the triangular solid.
ours, —0.9 K, however their film energy is much deeper The comparison between the data is very similar to that of
—1.9 K. Using their two-body pseudopotential and the samdhe fluid phase. In the figure we compare the GFMC film
helium carbon potential we have been unable to reproducéesults with the 2D GFMC solidl Again we see that the film
their results. We find a film energy 6£0.73 K, which is always has a lower energy and that the difference increases

close to the value shown in Table II. with increasing density. At the lowest density the difference
The variational and GFMC energies were fitted to poly-iS 0-12 K; rising to 1.00 K at the highest density. .
nomials in the density of the form The data for the solid was fitted to the same polynomial

form as Eq.(10). The parameters, as determined from our
3 fits, are given in Table IIl. The two equations of state were
P po) _ (100  used to locate the melting and freezing densities using the
Po Maxwell double tangent construction. In Fig. 4, we show the
two GFMC equations of state and the double tangent con-
We thus have four parameters to determifig po, B, and  struction. Table IV gives the values of the melting and freez-
C, from our five data points. We have chosen this form beding densities, for both the variational and GFMC equations
cause we expect a minimum to occur in the energy as af state. These densities are also given for the 2D system.
function of densityp; this minimum occurs ap, with a From the table we see that the melting and freezing den-
value of Ey, and corresponds to the fluid in equilibrium un- sities obtained from our variational calculations for the film

N2
PP0+C

E=E,+B
Po

TABLE Il. The film and 2D energies for the liquid) and solid(s) phasesE,,; is the variational energ\Egevc is the exact Green’s-
function energyEgry— Eg is the energy of the film minus the binding energy of a single helium atom on the carbon sulbstgatethe
GFMC energy of the 2D system, ardis the difference between the film energolumn 4 and that of the 2D system.

p(A7?) EvalK) Ecemc(K) Ecrvc—EB E2.0(K) A(K)Eilm-20)
0.0321l —141.44+0.02 —141.556-0.005 —0.818+0.005 —0.78£0.02 —0.04+0.02
0.04211 —141.49-0.02 —141.64-0.01 —0.90+0.01 —0.85+0.03 —0.05+0.03
0.0536l —141.04-0.04 —141.53-0.01 —-0.79+0.01 —0.67+0.03 —0.12+0.03
0.0612I —140.42+-0.02 —141.23-0.05 —0.49+0.05 —0.30:0.04 —0.19+0.06
0.0689I —139.26-0.04 —140.546-0.009 0.192-0.009

0.0689s —139.970.01 —140.42+-0.02 0.310.02 0.43:0.03 —0.12+0.03
0.0765s —139.11+0.02 —139.73:0.01 1.010.01 1.3G:0.02 —0.29+0.02
0.0842s —137.735-0.005 —138.5G+0.03 2.24c0.03 2.780.07 —0.54+0.08
0.0918s —135.64+0.02 —136.39+0.02 4.35-0.02 4.91%0.03 —0.56+0.03

0.0995s —132.61-0.03 —133.420.02 7.32£0.02 8.26-0.04 —0.94+0.04
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TABLE lIl. The equation-of-state parameters as defined in Eq.negative potential energy. Thus the change in the potential

(10) for the liquid (1) and the solids) phases of the film. energy will always tend to increase the total energy. How-
— ever, whenever we decrease the density the kinetic energy
Parameter Variational GFMC decreases and by a larger amount than the change in the
po(A2) 1 0.0389-0.0005 0.04420 0005 pote_nt|al energy. The increase in mean distance betV\_/een the
particles means that the curvature of the wave function de-
Eo(K) | —0.767+0.016 —0.906+0.009 ) . .
creases because the function has more space in which to
B(K) I 2.418+0.35 1.956:0.10 . - “ " .
C(K) | 179240 42 2904042 bend so that it vanishes on the “hard core” of the helium
210 of fit | 0'6515 ' 0‘ 374 ' atoms. In both two and three dimensions the decrease in the
X ;’3\?2 ! ' : kinetic energy, for a given decrease in density, is a good deal
Po(A7) s 0.0558-0.0003 0.0561.0.0005 larger than the increase in potential energy. Hence the total
Eo(K) s 0.3343-0.018 —0.0069-0.028 energy always decreases. These observations can provide a
B(K) s 5.927+0.36 3.6153-0.53 simple explanation for the sign df, the difference in energy
CZ(K) s 8.664+0.25 11.23:0.47 of the film and the 2D system. We only have to notice that at
x“lv offit s 5.755 5.143 the same areal density the particles in the film are at a

slightly lower total density than those in the 2D system. This
is because the small motion in ta@irection means they are
and the 2D system are very similar. The most striking featurgn the average further apart than those in the 2D system. We
being that the differencap=ps— p is about twice as large thus expect the potential energy to increase and the kinetic
in the film as the 2D system. However when we examine theinergy to decrease by a larger amount thus leading to nega-
two sets of GFMC data we see that this large difference injve values forA.
Ap is no longer present. Only one small difference remains; Cheng, Cole, and Sh&fvevaluated an approximate ex-
there is about a 3% difference in the freezing densities. It ipression forA, the difference in binding energy of the film
reasonable to place more weight on the GFMC data. Differand 2D helium. Explicitly
ences in the variational data can readily be attributed to dif-
ferences in the “goodness” of the two wave functions. We p(Z2,) V'(r)
therefore conclude that the melting and freezing of the in- A=—— f dr g(r) :
2 2r
commensurate solid for the film takes place at almost the
same densities found for the 2D system. Here p is the density of the film(zi} is the expectation
The GFMC melting density for the triangular solid film is value of (z;—2z,)? taken with respect to the product
0.0724 particles per 2. Unfortunately the value cannot be #o(2z1) $o(Z2), and g(r) is the two-dimensional pair-
directly compared with data on the incommensurate solid owistribution function at the densitp. The integral on the
graphite. This solid phase is in equilibrium with a commen-right-hand side of this equation is however difficult to evalu-
surate phase of some kind. Hence its transformation densigte. This is because the product of the distribution function
need not be close to the melting density of the triangulag(r) andV'(r)/r is a very rapidly varying function for small
solid on a smooth graphite substrate. Nevertheless it is worth If one uses tabulated values i@fr), they are not accurate
pointing out that Greywall's dafasuggests that the transition enough at smalt to get the correct sign foA. However a
to the incommensurate phase takes place in the range 0.07dorect calculation can be performed using configurations
0.08 particles per A% our transition also lies in this range. from a simulation of the 2D system. This leads to values for
We now suggest a simple explanation for why the film isA with the same sign as those in Table Il but somewhat
somewhat more bound than the 2D system. Whenever thgmaller in magnitude.
density of liquid in solid helium decreases the energy of the
system decreases. This is clearly seen for both the film and B. Distribution functions
the 2D system from Figs. 2 and 3. It is equally true for
three-dimensional helium. The underlying reason for this is
however somewhat subtle. First we observe that when th
density is decreased the potential energy becomes less ne
tive. As the density decreases the mean distance between t ! ; A
e particles onto a plare= const. This definition allows an

particles increases and they move farther out on the attracti Fimediate comparison with the same function for 2D he-

tail of the potential thus decreasing the magnitude of th(%ium. We found that these pair-distribution functions are es-

sentially identical with those found in 2D helium, at all den-
sities in the fluid and solid phases. Figure 5 shows this
?:omparison at the highest density in the solid. This confirms
the expectation that the first layer of the film on graphite is a
very two-dimensional system.

(11)

At each of the five densities in the fluid and solid phases
e computed the pair-distribution function, and the density
Iistribution normal to the substrate. The pair-distribution
@ction was defined in terms of the projected positions of

TABLE IV. The melting and freezing densities of the film and
2D system. All of these have been calculated from the appropriat
equations of state by the Maxwell double tangent construction.

-2 -2
Method AT pelA ") The distribution of atoms normal to the substrate is, at all
Variational-Film 0.0537 0.0677 densities, indistinguishable from the square of the ground-
Variational-2D 0.0569 0.0642 state wave functiorby, see Fig. 1. This is not surprising as
GFMC-Film 0.0656 0.0724 the binding energy in the potential well provided by the
GEMC-2D 0.0678 0.0721 graphite is very much larger than the kinetic energy due to

the lateral motion and the helium-helium interaction poten-
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FIG. 3. The equation of state in the solid phase. The solid curve is fitted to the GFMQaleta boxe$. The dashed line is fitted to the
2D GFMC data(open trianglesand the dashed-dotted line is fitted to the film variational dapgper boxes

tial. We conclude that even at the highest densities, wherthe first layer both the 2D and film systems are becoming

the second layer starts to form, the density profile of the firstlose to harmonic. The mean-square displacements in the

layer remains unaltered. plane, from the lattice sites, are about 6% of the square of the
We have also computed the distribution of displacementsear-neighbor distance. At the melting point of the triangular

of the helium atoms from their sites in the triangular lattice.lattice the corresponding value is about 25%.

The displacements in the direction normal to the substrate

are much smaller than those in the_: plane of the fllm. These IV. CHEMICAL POTENTIALS AND EEFECTIVE

normal displacements are determined by the width of the POTENTIALS

ground-state wave functioiy. The distribution of displace-

ments in the plane of the film is very accurately a gaussian. It is well known that helium binds to graphite in succes-

The values of the moments of this Gaussian are the samsive layers. In this section we will suggest a simple model

within our statistical uncertainties, as those we found in thevhich allows one to compute the chemical potential of each

2D solid. Thus the triangular solid in the first layer is very layer accurately. The equilibrium between the layers is then

like the 2D triangular solid except for small displacementsdetermined by equating their chemical potentials. We use

out of the plane of the lattice. At the completion density ofthis to study the formation of the second and third layers.

3.0 T T T

2.0 b

EN-E, (K)
5

1.0 L L .
8.0 12.0 16.0 20.0 24.0

1/p (A%

FIG. 4. The film GFMC energies for both the fluid and the solid versps Te boxes represent the points of contact in the double
tangent construction and locate the melting and freezing densities.
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FIG. 5. The radial distribution function in the plane of the film and that of the 2D system. The solid curve is for the 2D system, the dashed
curve is for the film. Both are at a densjpy=0.0995 A2,

The chemical potential in any layer is given by terms of an external static potential. This is because the pres-
ence of atoms in the second layer influences those in the first

w(p)=E(p)+p (P) (12) Iayer. Thel effective potential approximation doe; not tak_e

dp this effect into account. However, as long as the first layer is

a dense solid it is very plausible that the influence of the
atoms in a dilute second layer will be small. We will return
to this point later. Our effective potential for a helium atom
8n the second layer consists of two parts, that provided by the
carbon substrate and that due to the interaction with the at-
oms in the first layer. The carbon substrate potential is of
course known, at the position of the second layer it is rather
_ slowly varying with a value of~—23 K. The effective po-
1lpy)=EwH,C)+Ezn(p1) 19 ential provided by the first layer can be calculated exactly.
whereEq is the binding energy of a single helium atom to At any point (x,y,2 in the second layer there is a potential
the carbon substrate ariehy(p,) is the energy of the 2D Vg(x,y,z;R), whereR refers to a particular configuration of
helium system. We shall see that we do not need very accwatoms in the first layer. Explicitly
rate approximations fou to determine the densities at which
the second and third layers form. The two terms in @¢)
are quite different in character. The second term refers only VE(XY,ZR)=Ve(1;R)= 2, V(1 —1)). (15
to the particle interactions in the plane of the film, while the =
first term refers only to the interaction of a helium atom with HereV is the Aziz potential between two helium atoms and
the external potential; for the first layer this is the carbonr is the position of thgth atom in the first layer. We now
potential. We now turn to the second layer and for the mOaverage over the configurations of the first layer by taking
ment consider the situation when it has just formed and ishe expectation value dfg with respect to the ground-state
thus very dilute. The appropriate form of our basic approxi-wave function¥ 4(R) for the first layer; the effective poten-

mation is now tial Vg is thus given by the equation,

E2(p2;p1)=E2C,p1)+Ep(p2). (14

E, and E,y will depend parametrically omp, because the

binding energy of a helium atom in the second layer depends

on both the carbon potential, now at some distance away '€ can perform this average by using our GFMC configu-

and the potential provided by the first layer at a dengity rations; and we can therefore compig as a function of
The second, and final, step in our approximate method igensity of the first layer. We will refer t¥/g as the exact

to show that a very simple approximation allows us to cal-effective potential. We expect the first layer to be a triangular

culateE,¢(C,p4) with sufficient accuracy. We computs,;  solid when the second forms, and therefotg(x,y,z) will

by constructing an effective external potential for the par-exhibit, inx andy, the periodicity of this lattice. We will use

ticles in the second layer. We should however make it cleathis effective potential to provide bounds on the chemical

that a precise calculation dE,; cannot be performed in potential of the dilute second layer.

Here E(p) is the energy per particle at densijtyand the
second term in Eq12) is the pressure term in the Gibbs free
energy for particle. For the first layer we have accurate
GFMC calculations that give Us;(p), hence we can imme-
diately calculatew; from Eq. (12). However we also have
available an accurate approximationEe(p); namely

N

VE(r)=<Ve(r;R)>:J‘I’g(R)VE(r;R)dR (16)
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est eigenvalue OVE(x,y,z). We will therefore use this ap-
proximate effective potential to discuss the formation of the
second and third layers.

85.0 -

V. LAYER COMPLETION AND FORMATION

We first present the results of our calculations for the
density of formation of the second layer. We use the bounds
discussed above to bound the chemical potential of the sec-
ond layer and we use our GFMC results to compute the
chemical potential of the first layer. We then compare this
result with those obtained from our 2D approximation.

The density at which the second layer will form is given
by the solution to the equation

45.0

V(z) (K)

dE
350 r2(p2:p1)=pi(p1) =Ei(p1) +p1 d_pi 17
When the second layer first forms it will be dilute and the
dependence ofu, on p, can be neglected, ang,(p;)
=E,(p;1), the binding energy of a single particle in the pres-
~75.0 . ‘ ‘ : ence of the crystalline first layer and the carbon substrate.
4.5 50 > " 60 65 70 The effective potential provided by the first layer depends on
the density of that layer. The ener§y(p;) is the energy of
FIG. 6. Potential energy curves for an atom in the dilute secondhe film obtained from our GFMC calculations. In Fig. 7 we

layer. Vma{2) (— — —) is the potential which bound¥g(x,y,z) plot these two eigenvalues as a functionmgf. They de-
above for all(x,y): Vmin(2) (—) is the potential which bounds crease slowly as a function pf . We also plot the chemical
Ve(x,y,2) below for allx,y. Vg(2) (- - - -) is the mean Aziz po- potential of the first layer obtained from our GFMC
tential defined in the text. calculation?® it intersects the eigenvalues at densities of

0.115 and 0.118 A% We can thus rigorously state that

This effective potential is, as we have pointed out, a pewithin the effective potential approximation the second layer
riodic function ofx andy. We will find it useful to make a will begin to form at a density lying between these bounds.
further approximation so that our effective potential is inde-On the same figure we have also plotted the eigenvalue cor-
pendent ok andy and thus depends only anThis kind of  responding to the mean potenthd(z). This predicts a for-
approximation leads to rather small errors in our estimates ofation density of 0.115 A2. The density at which the first
the densities at which the second and third helium layersayer completes and promotion to the second begins has been
form. We chose the simplest approximationMg. For the  determined by heat capacity, third sound and neutron-
layers which are relatively tightly bound we assume that thescattering measurements. These experiments do not appear
atoms are confined to a plane. The effective potential seen iy be in precise agreement, the values for the completion
an atom in any other layer is then computed by integratinglensity range from 0.11 to 0.12°A2* Our values lie in this
Ve(r), Eq.(16), across the plane. This removes thgde-  range. We note that the difference in our two bounds is less
pendence and we have a potentisl(z) which depends than 3%, which is smaller than the differences in the experi-
parametrically on the density of the atoms in the plane. Thignental results. However, we do not wish to place too much
is a very simple approximation and is in the same spirit agmphasis on the accuracy of our present work. Itis based on
our approximation in which we replace the film energy with four assumptions, each of which requires careful examina-
the energy of the 2D system. These two approximations forn§on before one can claim great accuracy.
the basis of our calculations. The first is the use of the earliest Aziz two-body

In Fig. 6 we show three potential curves as a function ofpotent@al.l55This has now been superseded by more accurate
z The curve with the highest energyV&(x,y,z) whenx.,y potentials?® We c_hose to work with the older Aziz potential
are held fixed above an atom in the triangular lattice. The?ecause our earlier 2D work had been done with that poten-
lowest energy curve i¥c(x,y,z) whenx.y are held fixed at tial and were thus able to make interesting comparisons be-
the center of one of the triangles of the lattice. The curve thaycen the film and the 2D system. We have carried out

. . LS . FMC calculations at the two highest densities, 0.11 and
lies between these is our simplified effective potentig(z). 0.12 A2 with one of the most recent Aziz potentidfsWe

In the Appendix we show that the lowest eigenvalue of thg;ng oniy 4 very small change in the energy of the film and
exact effective potentiaVe(r), lies between the lowest ei- hence no significant change in our estimates of the comple-
genvalues of the upper and lower potentials as we have dgpn density. Second, we have ignored any contributions
fined them. Since the minimum &f:(2) is bounded by the from three-body terms in the interaction potential. The
minimum of V. andV y, its lowest eigenvalue will also lie  Axilrod-Teller potential is known to give significant contri-
between these bounds. We are thus confident that the lowestitions to energy of a dense three-dimensional helium

eigenvalue o/(2) is an accurate approximation to the low- crystal’®?® We have made a simple estimate of the contri-
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FIG. 7. The chemical potentials of the second layer and first layers. The three chemical potentials of the second layer have been

calculated using the potentidg,., (- + - ), Viin & — ), and?/E (—.—.—.—). The chemical potential of the first layéer—) was
calculated from the GFMC equation of state.

bution of this potential in the high density range of the solideral authors have noted the melting density of the incommen-
first layer. This is based on a static lattice motlednd we  surate solid first layef0.07 A ?) is almost the same as that
find contributions to the chemical potential of the film of of the basal plane of the 3D hcjHe crystal at its melting
approximately+3.0 K. This change i leads to an increase density. Thus at this density we are in a familiar density
of about 1% in our estimates of the density at which the firsfange. However the completion densities are 60 to 70 %
layer will complete. Third we have replaced the periodichigher than the melting density. In 3D this is much higher
potential of the carbon substrate with an averaged mean pehan any density at which simulations have been done. As we
tential. Estimate® of the binding energy of the film on a have already noted the film has become close to a harmonic
corrugated carbon substrate suggest that it differs by abowblid at these densities.
0.01 K from that on a plane substrafeThis small charge We can now use these results to test the two-dimensional
will have no appreciable effect on the completion density.approximation in which the equation of state of the first layer
The corrugations of the carbon potential have become veris replaced by the equation of state of 2D helium in the
small at the distance of the second layer and again will havgresence of the carbon substrate and the chemical potential
no appreciable effect on the chemical potential of the secongf the dilute second layer is computed from an effective po-
layer. Finally, as we have already pointed out, we have usetkntial provided by a 2D crystalline first layer. From our
an effective potential approximation to calculate the chemiprevious work on the 2D helium system we have an accurate
cal potential of the second layer. We are able to check thigquation of state and can thus compute the chemical poten-
assumption. We have available the results of computing théal. For the effective potential for the second layer we have
chemical potential of the dilute second layer by path-integrathosen to use the mean potential provided by the 2D crys-
methods. Using this method we simulated the dense firgalline layer. This corresponds to integrating the Aziz poten-
layer in the presence of a single second layer atom withouial across the plane of the second layer, and is the 2D analog
using any effective potential approximation. By the methodof the mean potential we used for our previous calculation.
we found a value 0f-29.8 K for the chemical potential of Figure 6 shows that this 2D mean potential is close to the
the dilute second layer. Our bounds for the chemical potenfilm mean potential, suggesting that this approximation is
tial based on the effective potentidf are—30.1 and—19.6  accurate. These approximate chemical potentials intersect at
K. The path-integral value lies in this range and we thereforea density of 0.111 A% which is outside the bounding den-
conclude that for the second layer the effective potential apsities of the previous calculation but which is within the
proximation provides an accurate description. The basic reaange of experimental values. This type of 2D approximation
son for this is that at completion the first layer is an ex-was introduced by Campbell and ScHitland their results
tremely dense solid and cannot be readily perturbed by atonare close to ours, although they used several simplifying as-
in the second layer. This argument does not apply so corsumptions and in addition used the Lennard-Jones potential
vincingly to an effective potential for atoms in the third for helium. At that time the modern Aziz potentials were not
layer. At completion the second layer has only just solidifiedavailable.
and is therefore more likely to be perturbed by atoms in the Since this rather simple approximation leads to satisfac-
third layer. tory results it is natural to ask whether we can use it to
It is worth noting that these completion densities, rangingdetermine the densities at which subsequent layers will form.
from 0.11 to 0.118, imply that the first layer is an extremelyWe believe that the effective potential approximation will be
dense system when the second layer begins to form. As seaccurate as long as the layers are well separated. That is as
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long as the density profiles, or wave functions do not overlagence of a dilute second layer and in the presence of the
appreciably. However, as we move farther and farther awagompleted second layer. We find that the position of the
from the carbon substrate the layers will be less tightlymaximum is unchanged, but that the height has increased by
bound and will inevitably begin to overlap appreciably. 6% and the width has decreased by 8%. Clearly the first layer
Again as long as we are dealing with tightly bound layers wehas been compressed by the completed second layer.
should be able to approximate them accurately with 2D sys- There has been some discussion in the literature as to
tems. However, we need to go beyond this simplified pictureyhether the second layer crystallizes into an incommensurate
It is easy to see, and it is well established experimentallysqjiq just before completion or whether it requires the com-
that as the density of the second layer increases towarqsassion provided by a partly full third layer. Within the
completion the density of the first layer also increases. It ig., ework of our 2D model the second layer completes at a
therefore incorrect to treat the first layer as an entirely pasdensity of 0.08 A2. This is well above the freezing density

sive source of an effective potential for the second layer. A%f 2D helium. which is 0.0678 A2. We can however make a

the seco_nd layer becomes more dense the pressure startsglgn o\ yhat stronger statement. We notice from Table IV that
rise rapidly and consequently its chemical potential als

X ! ) : Ghe melting and freezing densities of 2D helium and the first
starts to rise. However, if the second layer is to be in qUitayer film are very close. We expect on this basis that the

librium with the first layer its chemical potential must also melting and freezing densities of the second layer will be

rise. The only way this can come about is for its density 10q,emely close to these of the first layer. While the density
increase. Thus as we increase the total coverage sufficie

. he first | hat its chemical ! IBPofiIe of the second layer is 50% wider than that of the first
atoms go into the first layer so that its chemica pOtentIaCowever it is still so narrow that the configurations of the

increases to maintain equality with the chemical potential o econd layer must be very close to those of the 2D system.

the s_econd Iaygr. To determine_ this inpr_ease ‘U a fuI_Iy S?"the thus have very good reason to believe that the second
consistent fashion would require a difficult simulation in,ye il crystallize before completion. This qualitative ar-
which atoms are |.nserted and _remo_ved frpm the dense fir ument has been confirmed by explicit calculations. We find
layer. However, this can be avoided if we simply assume th t a density of 0.08 A? that the crystal phase has a lower
the density of the first layer is unknown and determine itenergy than the fluid phase. These are GFMC results, the
from the equation for the equality of the chemical potentials.energy difference being approximately 0.4 K. This is, in
For example, given the densipy of the second layer we can agreement with the neutron-scattering dita.

write On the basis of our work we cannot make any firm pre-
diction as to whether the third layers will crystallize at or
before completion. Experimentally the third lageompletes

at a lower density0.07 A?) than the second. This density is
now very close to the melting density of both the 2D and the

about because the effective potential for particles in eacfirSt layer. We should also point out that the density profile

layer depends on the density of the other. Hence for a givef! th€ third layer is approximately twice as wide as that of
02, Eq.(18) can be solved fop; . the first layer. This will lead to a significant lowering of the

With these preliminary remarks in mind we now use our€nergies of both the fluid and solid phasé®ne exity thus

2D model to determine the density of the first and secon(fnakmg it difficult to predict the freezing density of the layer.

layers at which the third layer starts to form. We have to findWh“eI it is plal;]sible that the third layer remains ﬂ#id at
p, and p, which satisfy the two equations completion we have no strong argument to support that con-

clusion.
(19) It is interesting to note that under our assumptions the
chemical potential of the dilute third layer is8.5 K. This
can be compared with the chemical potential of bulk 3D
liquid helium which, with our two-body potential and no
Sincepjy is the density of a dilute system; can be evalu- three-body potential, is-7.2 K. These values can be con-
ated at zero density. It is the binding energy of an atom in theérasted with the values of the chemical potential of the dilute
effective potentials provided by the carbon substrate, firsfirst and second layers which are approximatel$40 and
and second layers. We thus have two equations to be solved25 K, respectively. The chemical potential of the third
self consistently fop, andp,. In the 2D approximation the layer will slowly rise as the layer fills and reaches comple-
chemical potentials are easily calculated and the two equdion. Its value at that density must be close to, but below that
tions can be readily solved interactively. We find that theof the bulk fluid. We can thus conclude that since four more
density at which the second layer completes s layers can be observed at low temperatures each of these
=0.08 A"2, and at this density the first layer density haslayers must lead to a very small increments in the chemical
increased by 4% to 0.115&. The density of total coverage potential of the system. This appears to be a very subtle
is thus 0.195 A2 The experimental range is 0.204 to 0.212 effect and would be very difficult to treat with precision by
A~2390ur result is approximately 5% below the lowest ex- our methods; indeed the variational methods developed by
perimental values. Thus for both the first and second layer€lementset al® may well be more suitable.
the 2D approximation yields completion densities which are These values of the chemical potentials of each dilute
somewhat low. The density of the first layer has increased blayer merely reflect the strength of the attractive potentials
about 4% which is in the range of experimental values. Weseen by the atoms in the dilute layer. For the first layer the
can compare the density profiles of the first layer in the presatoms merely see the potential of the carbon substrate: this

ma(p1ip2)=wa(p2;p1)- (18

It is important to note that, depends parametrically on
p1, and thatu, depends parametrically gs,. This comes

wi(p1ip2)=wa(p2;ip1),

Ma(p2;p1)=m3(p3ip1,p2) = m3(0;p1,p2). (20
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has a value of approximately 180 K. The atoms in the freeze into a triangular lattice. The lowest density, 0.0%,A
dilute second layer see a much weaker potential of approxis definitely above the density at which a homogeneous film
mately —50 K. It is interesting to note that this has approxi- will form in our smooth substrate model. This discrepancy
mately equal contributions of about25 K from the distant may be due to the irregularities on the surface leading to
carbon substrate and from the dense first layer. The atoms preferential condensation on steps and thus delaying the for-
the third layer see only a very weak carbon potentied, K, mation of a homogeneous, or at least extended fluid film.
a smaller contribution from the dense first layer2 K, and  Alternatively it may be due to the presence of a commensu-
the largest contribution from the second layed,5 K. These rate phase. The surface structure is clearly important to un-
values are at the minimum of the total potential; the totalderstanding the behavior of the first and second layer films
depth at the minimum being-22 K. This value is close to on graphite. For this reason we plan to explore the topic with
the minimum of the two-layer model potential used by Clem-both variational and GFMC calculations.
entset al®
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We can readily find a potential,,{(2) which is larger
thanVg for all x,y. Similarly we can findV,,i,(2) which is a
lower bound toVe for all (x,y). It is then straightforward to

We have shown, within the framework of a smooth sub-prove that the lowest eigenvalue ¥ must be between the
strate model, that one can accurately calculate the propertiédgwest eigenvalues o ,,(2) andV (2. The upper bound
of the first two layers of helium on graphite. In the model V{2 occurs when the coordinat&gy are held fixed above
these layers are well separated and very tightly bound to the helium atom in the crystalline layer. The lower bound
substrate. As the density in each layer increases, condensés,(2) occurs wherx,y are held fixed at the center of one of
tion into a uniform self-bound liquid will take place at about the triangles of the lattice.
0.04 A2, and crystallization into a triangular lattice will First we show that ifV(r)<V,,(r), for all r, thenE
occur at 0.07 A% We are able to compute the completion <E,,,. Let ¥ . (r) denote the normalized ground-state
densities of both the first and second layers and find agreavave function for the potential ,,,(r), then
ment, to within a few percent, with the experimental values.
Beyond the second layer our methods may be less useful. 3 ot
The major defect in our model is the absence of a realistic E max= f A Wi DT+ Va1 ¥Wmax,  (AD)
substrate. Not only have we removed the basic periodicity of
the graphite lattice we have also eliminated any irregulariwhereT is the three-dimensional kinetic energy operator, and
ties, such as steps and islands on the surface. In our modelthie symbol 1 indicates complex conjugation. If we choose
low densities nearly two-dimensional clusters will form V¥ ,,{r) as a variational wave function for the Hamiltonian
which will increase in size and eventually percolate to form g T+ V(r)], then from the variational theorem we know that
connected fluid film. On a realistic substrate condensation
may well take place preferentially on step edges and other 3 ot
irregularities. Moreover the condensation into clusters has to ng A% WingNITHV(O) W ma)(T). (A2)
compete with the formation of a commensurate phase. These
considerations are of course most important for the first layeSubtracting Eq(Al) from Eq. (A2) we find that
where the helium atoms experience only the bare graphite
potential. In the second layer the periodicity of the graphite 3 ot
potential is quite small and the irregularities of the graphite E_Emang A1 Wia[ V(1) = Vimal )] ¥max,  (A3)
surface may well be smoothed out by the dense first layer.
Nevertheless the second layer atoms experience the periodind sinceV(r)=<V{r) for all r,
potential provided by the dense triangular lattice of the first
layer. For this layer too, condensation has to compete with
the formation of a commensurate phase. f
Superfluidity has b;gen seen in the second ldy&he
highest density, 0.07 A, at which it has been detected is _ 3 2
approximately the density at which the layer will start to =J drV(r) = Vinal ][ Wma1)[*<0. - (A4)

VI. DISCUSSION

@3 WOV = Va1 IV ()
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From Egs. (A3) and (A4) we conclude thatE<E,,. ing one-dimensional eigenvalue problems. These
By a similar argument we can show that\if,,(r)<V(r)  one-dimensional eigenvalue problems are easily solved
the E,in<E. This proves our assertion. Now sin®&,,(r) numerically and we therefore do not need to find
and V,,(r) depend only onz it follows that E.,  the lowest eigenvalue of the full three-dimensional potential

and E.,;, are the ground-state energies of the correspondvy.
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