Si-NMR study of antiferromagnetic heavy-fermion compounds CePd₂Si₂ and CeRh₂Si₂

Y. Kawasaki, K. Ishida, Y. Kitaoka, and K. Asayama

Department of Physical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

(Received 27 January 1998)

We report Si-NMR studies on the magnetic property of pressure-induced superconductors $CePd₂Si₂$ and CeRh₂Si₂, which exhibit antiferromagnetic (AF) order with the Ne´el temperature T_N =10 K and 36 K at ambient pressure, respectively. The NMR results in $CePd₂Si₂$ are consistent with those obtained from the previous neutron-diffraction (ND) experiments. On the other hand, the NMR study in oriented powder $Cerh₂Si₂$ has revealed that the spectrum splits into two peaks due to the onset of the AF order with the wave vector of $q_1 = (1/2 \frac{1}{2} 0)$ below $T_{\text{N1}} = 36$ K and each peak splits further into two peaks below $T_{\text{N2}} = 25$ K due to the formation of AF domains with $q_2 = (1/2 \frac{1}{2} \frac{1}{2})$. The saturation moment $M_{AF}(NMR) = 0.36$ and $0.22\mu_B$ estimated from NMR are significantly smaller than $M_{AF}(ND) = 1.86$ and $1.69\mu_B$ from ND. From this discrepancy in the sizes of M_{AF} , it is proposed that a correlation time in fluctuations of f -electron moments is longer than the characteristic time of observation for thermal neutrons but shorter than that for NMR. This probe dependence of M_{AF} was observed in the uranium heavy-fermion (HF) compounds UPt₃ and URu₂Si₂. From the temperature dependence of the nuclear spin-lattice relaxation rate $1/T₁$ in the paramagnetic state, the Kondo temperature T_K in CeRh₂Si₂ is estimated to be around \sim 100 K, much higher than $T_K \sim 12$ K in CePd₂Si₂. The $1/T_1$'s in both the compounds decrease markedly below T_N , followed by a $T_1T=$ constant behavior far below T_N . From the latter result, it is suggested that low-lying excitations at low temperatures are dominated by quasiparticle excitations in the AF ordered state in $CePd₂Si₂$ and $CeRh₂Si₂$. [S0163-1829(98)00837-6]

I. INTRODUCTION

A series of Ce-based compounds with the $ThCr₂Si₂$ -type structure possess various types of ground states, including superconductivity at ambient pressure, pressure-induced superconductivity near an antiferromagnetic (AF) to nonmagnetic phase boundary, long-range magnetic order, and a nonmagnetic phase with magnetic correlations.¹ A parameter controlling physical properties is believed to be a strength in the hybridization between conduction electrons and *f* electrons $(c-f)$ hybridization). A competition between the Ruderman-Kittel-Kasuya-Yosida (RKKY) and the Kondo interaction, both of which originate from the *c*-*f* hybridization, governs what types of ground states are realized. $²$ In the case</sup> of weak hybridization, the RKKY interaction is dominant, leading to a long-range magnetic order. In contrast, in the case of strong hybridization, the Kondo interaction is dominant, leading to a nonmagnetic valence fluctuating state. For heavy-fermion (HF) states in the case of intermediate c - f hybridization, superconductivity or itinerant magnetism with tiny magnetic moments was reported so far. Pressureinduced AF to a nonmagnetic phase transition is the focus of recent experiments since non-Fermi-liquid behaviors deviating from the canonical Fermi-liquid concept are observed³ and superconductivity is realized close to such a phase boundary.⁴

CePd₂Si₂ and CeRh₂Si₂ show the AF order at $T_N \sim 10$ K and 36 K, respectively.⁵ In CePd₂Si₂, the neutron-diffraction (ND) experiments clarified that the AF spin structure has a wave vector of $q=(1/2 1/2 0)$ and its saturation moment is M_{AF} ~0.7 μ_{B} . It was reported that the AF order is suppressed by an application of pressure, $P_c \sim 2.5 \text{ GPa}^{6-9}$ which is much smaller than $P_c \sim 7.6$ GPa for CeCu₂Ge₂.⁴ Remarkably, an onset of superconductivity has been found below

 $T_c \sim 0.3$ K under a pressure of 2.7 GPa.⁷ In CeRh₂Si₂, the previous ND $(Refs. 5 and 10)$ experiments revealed that there exist two AF phases with the wave vector of q_1 $=$ (1/2 1/2 0) below T_{N1} ~ 36 K and q_2 = (1/2 1/2 1/2) below T_{N2} \sim 25 K.^{11,12} An application of *P_c* \sim 0.9 GPa, which is much lower than $P_c \sim 2.5$ GPa in CePd₂Si₂, is reported to be enough to destroy the AF order with $T_{\text{N1}}=36$ K completely.^{6,9,13,14} Pressure-induced superconductivity was reported in a range of 0.5–1.6 GPa where the superconducting transition temperature reaches a maximum value of T_c \sim 0.35 K, although the subsequent experiments have not yet confirmed the onset of superconductivity.¹³ CePd₂Si₂ and $CeRh₂Si₂$ are thus suitable systems for the investigation of magnetic and electronic properties in the vicinity of the AF magnetic to nonmagnetic phase boundary.

In this paper we report the Si-NMR studies of both compounds at ambient pressure. $CePd₂Si₂$ is a conventional AF magnet with T_N =10 K and a Kondo temperature T_K ~12 K. By contrast, the magnetic properties in $Cer(h₂Si₂$ are found to be anomalous. T_K is estimated to be as high as 100 K, whereas T_N has a record high value of T_{N1} =36 K in ceriumbased HF AF compounds. Below T_{N2} =25 K, the two AF domains coexist with different wave vectors and saturation moments. A remarkable finding is that the sizes in M_{AF} (NMR) obtained from NMR are much smaller than $M_{AF}({\rm ND})$ from ND. This suggests that a correlation time of fluctuations in *f*-electron moments is longer than the characteristic time of observation for thermal neutrons but shorter than that for NMR.

II. EXPERIMENTAL PROCEDURES

Polycrystal ingot samples of $CePd_2Si_2$, $CeRh_2Si_2$, $LaPd_2Si_2$, and $LaRh_2Si_2$ were prepared by an argon-arc fur-

FIG. 1. Temperature dependence of the magnetic susceptibilities, $\chi(T)$ of CePd₂Si₂ and CeRh₂Si₂. Inset shows the inverse susceptibilities, $\chi^{-1}(T)$.

nace. Stoichiometric quantities of Ce $(3N)$, La $(3N)$, Pd $(3N)$, Rh $(3N)$, and Si $(5N)$ were melted in an argon atmosphere with zirconium getters, followed by annealing in vacuum for 4–5 days at 1000 °C in CePd₂Si₂ and LaPd₂Si₂, and at 800 °C in CeRh₂Si₂ and LaRh₂Si₂. The x-ray diffraction confirmed that all the samples are of a single phase with the $ThCr₂Si₂$ -type structure. The magnetic susceptibility was measured at 1 kOe by using a superconducting quantum interference device magnetometer. The temperature (*T*) dependence of susceptibilities, $\chi(T)$ in CePd₂Si₂ and CeRh₂Si₂, are indicated in Fig. 1. $\chi(T)$ has a sharp cusp at 10 and 36 K for CePd₂Si₂ and CeRh₂Si₂, respectively, pointing to an onset of AF order. From the respective Curie-Weiss behavior in $\chi(T)$ above 60 and 100 K in CePd₂Si₂ and CeRh₂Si₂, an effective paramagnetic moment μ_{eff} is estimated to be 2.61 and 2.58 μ_B , which is close to 2.54 μ_B for the trivalent Ce³⁺ state. These results are consistent with the previous results.15,16 The samples were crushed into powder with a size smaller than \sim 38 μ m for NMR measurements. The Si NMR was carried out by a conventional phase-coherent laboratory-built pulsed NMR spectrometer. A field-swept Si-NMR spectrum was obtained by using a boxcar integrator at a constant frequency of 11.1 and 25.14 MHz for $CePd₂Si₂$ and $Cerh_2Si_2$ in a *T* range of 1.4–300 K, respectively. The nuclear spin-lattice relaxation time T_1 was measured by the saturation recovery method.

III. RESULTS AND DISCUSSIONS

A. NMR spectrum, Knight shift, and internal field

*1. CePd***2***Si***²**

Figure $2(a)$ indicates the *T* dependence of the Si-NMR spectrum above $T_N=10$ K for partially-oriented powder $CePd₂Si₂$, where the [110] direction is parallel to an external field H_0 . As compared with the spectrum of the unoriented powder sample at 11.4 K shown in the inset of Fig. $2(a)$, the

FIG. 2. The Si-NMR spectra of oriented powder $CePd₂Si₂$ with the $[110]$ direction parallel to the external field (a) above and (b) below T_N . Inset shows the NMR spectrum for the unoriented powdered sample.

NMR linewidth in the oriented powder is one-third narrower than that in the unoriented one. This allows us to measure the Knight shift precisely. Figure 3 shows the *T* dependence of the Knight shift $K_{ab}(T)$ parallel to [110]. The inset of Fig. 3 indicates the $K_{ab}(T)$ vs $\chi_{ab}(T)$ plot with the temperature as an implicit parameter. The susceptibility, χ_{ab} parallel to

FIG. 3. Temperature dependence of the Knight shift K_{ab} parallel to the [110] direction. Inset shows the $K_{ab}(T)$ vs $\chi_{ab}(T)$ plot for CePd₂Si₂. Solid line indicates a best fit to the data with $A_{\text{hf}}=2.84$ kOe/ $\mu_{\rm B}$.

FIG. 4. Temperature dependence of the half width at half maximum (HWHM) in the Si-NMR spectrum of CePd₂Si₂ below T_N . HWHM is proportional to the internal field H_{int} . Open circle shows the square root of the neutron magnetic scattering intensity $(Ref. 5)$.

[110] in the single crystal was used.¹⁵ K_{ab} is nearly proportional to χ_{ab} . From a linear fit to the data, as drawn by solid line, a hyperfine-coupling constant $A_{\text{hf}}=2.84 \text{ kOe}/\mu_{\text{B}}$ is obtained from the relation of $K_{ab} = (A_{hf}/N\mu_B)\chi_{ab}$, where *N* is the Avogadro's number and μ_B is the Bohr magneton.

Below T_N , the spectrum is markedly affected by the appearance of the internal field H_{int} at the Si sites, as seen in Fig. $2(b)$. The spectrum forms a rectangular shape characteristic of the AF powder pattern for $H_0 \gg H_{int}$. The orientation of the powder seems to be disturbed below T_N , associated with some change in the anisotropy of susceptibility. Figure 4 shows the *T* dependence of the half width at half maximum (HWHM) proportional to H_{int} . As seen in the figure, H_{int} increases to \sim 530 Oe at 4.2 K as the temperature decreases below T_N . It is evident that $H_{int}(T)$ is in good agreement with the *T* dependence of the square root of the ND intensity proportional to M_{AF} .⁵ In this AF-spin structure with *q* $=$ (1/2 1/2 0), the direction of M_{AF} is aligned along [110] and, hence, H_{int} is produced through the transferred hyperfine interaction with one Ce AF moment in the five nearestneighbor Ce sites. This is because the contributions from the four Ce AF moments in the basal plane are canceled out at the Si sites. The isotropic transferred hyperfine-coupling constant *H*_{thf} per Ce 1 μ_B is estimated to be $A_{hf}/5 \sim 568$ Oe/ $\mu_{\rm B}$. By using $H_{\rm int}$ =532 Oe, an estimate of its size at 4.2 K gives rise to $M_{AF}(NMR) \sim 0.94 \mu_B$ from the ratio of 532(Oe)/568(Oe/ μ_B), which is somewhat larger than $M_{\text{AF}}(ND) \sim 0.7 \mu_{\text{B}}$.

*2. CeRh***2***Si***²**

Figure 5 indicates the *T* dependence of the Si-NMR spectrum at 25.14 MHz for the oriented powder $CerRh₂Si₂$ with the *c* axis parallel to H_0 . The NMR spectrum above T_N consists of a single peak. The Knight shift K_c increases upon cooling, in proportion to the susceptibility, as seen in Fig. 6. The inset displays the K_c vs χ_c plot with χ_c parallel to the *c*

FIG. 5. The Si-NMR spectra of $CeRh₂Si₂$ at $f = 25.14$ MHz with the *c* axis parallel to the external field.

axis for the single crystal.¹¹ From a slope in the K_c vs χ_c plot, a hyperfine-coupling constant is deduced to be *A*hf $= 2.34 \text{ kOe}/\mu_{\text{B}}$.

As seen in Fig. 5, the spectrum below T_{N1} =36 K splits into two peaks (*A*1 and *A*2) due to the appearance of the first AF phase with $q_1 = (1/2 \frac{1}{20})$. Below $T_{N2} = 25$ K, where the secondary AF phase sets in, the two peaks (*B*1 and *B*2) newly appear, as seen in the figure. The intensities of *A*1 and *A*2 decrease rapidly below T_{N2} = 25 K but remain about half volume. The intensities of *A*1, *A*2, *B*1, and *B*2 are

FIG. 6. Temperature dependence of the Knight shift K_c in CeRh₂Si₂. Inset shows $K_c(T)$ vs $\chi_c(T)$ plot. Solid line indicates a best fit to the data with $A_{hfl}=2.34$ kOe/ μ_B .

FIG. 7. Temperature dependence of the internal fields $H_{A, int}(T)$ and $H_{\text{B, int}}(T)$ that are obtained from the half value of separation in the *A* and *B* peaks in Fig. 5.

independent of the temperature below \sim 23 K where both the intensities for the *A* and *B* peaks are comparable to each other. Figure 7 shows the respective *T* dependence of $H_{A, int}(T)$ and $H_{B, int}(T)$, which are obtained from a half value of separation in the *A* and *B* peaks. $H_{A, int} = 161$ Oe and $H_{\text{B, int}}$ =101 Oe stay constant below 23 K, which means that both the M_{AF} 's are totally saturated just below T_{N2} $=25$ K.

The ND measurements revealed that the two independent magnetic reflections with $q_1 = (1/2 \frac{1}{20})$ and q_2 $=$ (1/21/21/2) coexist at low temperatures, indicative of two possible magnetic structures.^{5,10} One scenario is that two AF phases exist with different magnetic moments and AF wave vectors, $M_{q_1} = 1.86 \mu_B$ with q_1 (denoted as the q_1 domain) and M_{q_2} = 1.69 μ _B with q_2 (denoted as the q_2 domain). Another one is that the two magnetic structures are superimposed in the single magnetic phase, which yields the modulated structure with two kinds of moments, 2.52 and $0.12\mu_B$. For either case, the two Si sites should exist with different H_{int} . The ratio of the internal field $H_{A,int}/H_{B,int}$ = 161/101 \sim 1.59, deduced from NMR is comparable to the ratio of M_{AF} , $M_{q_1}/M_{q_2} = 1.86/1.69 \sim 1.1$ for the former scenario, but far from $2.52/0.12 \sim 21$ for the latter scenario. From the NMR spectrum combined with the ND results, it is concluded that the two AF domains coexist below T_{N2} . The comparable NMR intensities in the *A* and *B* peaks indicate that each domain occupies half volume.

In estimating M_{AF} for each domain, we notice that one Ce moment in the five nearest-neighbor Ce sites yields a dominant transferred hyperfine field, H_{thf} , at the Si sites. This is because a sum of H_{thf} at the Si sites arising from the four Ce moments in the basal plane becomes zero in $Cerh₂Si₂$ as well as in CePd₂Si₂. From the relation of $H_{\text{thf}} = A_{\text{hf}}/5$ =467 Oe/ μ_B with A_{hf} =2.34 kOe/ μ_B , the M_{AF} in the q_1 and q_2 domains are estimated to be 0.36 and $0.22\mu_B$, respectively. The result is that $M_{AF}(NMR) = 0.36$ and $0.22\mu_B$ are more significantly reduced than $M_{AF}(ND) = 1.86$ and $1.69\mu_B$ in the q_1 and q_2 domain, respectively. This is in a striking contrast with the result in $CePd_2Si_2$ where $M_{AF}(NMR)$ $\sim 0.9\mu_{\rm B}$ is comparable with $M_{\rm AF}(\rm ND)\sim 0.7\mu_{\rm B}$. The fact that M_{AF} is apparently probe dependent in CeRh₂Si₂ shows that the correlation time in fluctuations of *f*-electron moments is longer than the characteristic time of observation for thermal neutrons but shorter than for NMR.

The probe dependence of M_{AF} was reported in the uranium HF compounds UPt₃ (Refs. 17–19) and URu₂Si₂.^{20–22} In these compounds the saturation moments are as small as \sim 10⁻² μ_B from ND, but no indication of *H*_{int} from NMR was observed. The AF saturation moments in $CeRh₂Si₂$, which are two orders of magnitude larger than those in $UPt₃$ and $URu₂Si₂$, may make it easy to detect the reduced magnetic moments in $Cerh₂Si₂$ by NMR. Such a probedependent aspect of M_{AF} in CeRh₂Si₂ may be explored from the μ SR experiment as well.

The recent ND result on the single crystal, 23 which is consistent with the previous ND results by Grier *et al.*, ⁵ has revealed that the q_1 domain involves two structures with crystallographically equivalent wave numbers of q_1^+ $= (1/2 1/2 0)$ and $q_1^- = (-1/2 1/2 0)$. Combined with the NMR results, they concluded that the three phases form a AF domain-superlattice structure with 1.42μ _B for the q_1^+ and $q_1^$ domains and $1.34\mu_B$ for the q_2 domain. We stress that these values are significantly different from those obtained from NMR as well. In magnetic structures with wave vectors of (1/2 1/2*C*) in the body-centered lattice, the magnetic interaction is independent of *C* between the nearest-neighbor *c* planes and, hence, has a similar energy between each domain. This may be the main reason why the AF domainsuperlattice structure is stabilized as the peculiar ground magnetic structure. Furthermore, due to the small energy difference between each domain, thermal and/or quantum fluctuations of each domain are likely sources for the estimate in M_{AF} being probe dependent in CeRh₂Si₂. This magnetic state may be responsible for the small critical pressure P_c \sim 0.9 GPa, regardless of the large value of T_{N1} .

B. Nuclear spin-lattice relaxation rate, 1/*T***¹**

Measurements of the nuclear spin-lattice relaxation rate $1/T_1$ were performed at $f = 11.1$ MHz for CePd₂Si₂, LaPd₂Si₂, and LaRh₂Si₂. The $1/T_1$ in CeRh₂Si₂ was measured at $f = 25.1$ MHz at the A1 peak in an entire temperature range. $1/T_1$ in all the compounds was uniquely determined with a single T_1 component. Figure 8 shows the T_1 dependence of $1/T_1$ in $CePd_2Si_2$ (closed circles) and $CeRh₂Si₂$ (closed triangles) together with those in LaPd₂Si₂ (open circles) and LaRh₂Si₂ (open triangles). A T_1T = constant behavior for $LaPd_2Si_2$ and $LaRh_2Si_2$ is observed with respective value of $(T_1T)^{-1} \sim 0.079$ (K·sec)⁻¹ and 0.040 $(K \cdot \text{sec})^{-1}$. The $1/T_1$ in CeRh₂Si₂ is in agreement with the previous results.²⁴

In the high-temperature region, local spin fluctuations of $4f$ moments dominate the relaxation process, $1/T_1$ being nearly *T* independent above 12 and 100 K for $CePd₂Si₂$ and $CeRh₂Si₂$, respectively. Empirically, the temperature at which $1/T_1$ starts to decrease from the *T*-independent behavior corresponds to a Kondo temperature T_K , below which the systems enter a crossover regime towards the HF state. The T_K in CePd₂Si₂ is 12 K, which is in good agreement with T_{K} ~ 10 K determined from the quasielastic ND.^{25,26} The fact that T_K is comparable with the T_N in CePd₂Si₂ implies that

FIG. 8. Temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ for $CePd_2Si_2$, $CeRh_2Si_2$, $LaPd_2Si_2$, and $LaRh₂Si₂$.

the AF ordered state occurs before the HF state is fully established, and its nature is anticipated to hold a localized character rather than an itinerant character. On the other hand, the T_K in CeRh₂Si₂ is estimated to be as high as \sim 100 K, being much higher than $T_K \sim 33$ K deduced from the quasielastic ND.²⁶ The fact that T_K is much higher than the T_N in CeRh₂Si₂ means that the AF order must be in the itinerant regime, which makes magnetic interactions different from the conventional RKKY interaction.

The $1/T_1$'s in both the compounds drop rapidly below T_N without any critical divergence near T_N . Any anomaly in $1/T_1$ is not appreciable around T_{N2} =25 K in CeRh₂Si₂. Experimentally, $1/T_1$ below T_N is well reproduced by the following expression as

$$
(T_1T)^{-1} = A + B \exp(-E_g/k_B T),
$$

as indicated by the solid line in Fig. 8. An exponential drop in $1/T_1$ may be due to a partial loss of low-lying excitations below T_N . The energy gap E_g in CePd₂Si₂ is estimated to be 2.37 meV, which is in good agreement with E_g ~ 2.3 meV in the spin-wave excitation spectrum probed by the inelastic ND .^{25,27} The first term *A* is the quasiparticle contribution. The value of $(T_1T)^{-1} \sim 0.33$ (sec \cdot K)⁻¹ in CePd₂Si₂ below 4 K is larger than $(T_1T)^{-1} \sim 0.079$ (sec \cdot K)⁻¹ in LaPd₂Si₂. This suggests that a part of the *f* electrons that do not participate in the AF ordered moments may have an itinerant character to form the HF state even far below T_N . On the other hand, the value of $(T_1T)^{-1} \sim 0.0188(\text{sec} \cdot \text{K})^{-1}$ in CeRh₂Si₂ below 10 K is smaller than $(T_1T)^{-1}$ $\sim 0.0402(\text{sec}\cdot\text{K})^{-1}$ in LaRh₂Si₂. This result indicates that the Fermi-liquid excitation below 10 K is considered to originate from the HF band, which is the consequence of the strong c -*f* hybridization, since $1/T_1$ cannot be explained by the sum of two relaxation contributions from itinerant 4 *f* electrons and conduction electrons. The result of $1/T_1$ also suggests that the magnetic order in $CerRh₂Si₂$ occurs in the HF regime, consistent with above-mentioned experimental results of higher T_K and the small ordered moments.

IV. SUMMARY

The Si-NMR studies in CePd₂Si₂ and CeRh₂Si₂, which undergo the pressure-induced superconducting transition, have revealed differences in magnetic characteristics. The NMR results in $CePd₂Si₂$ are consistent with those obtained from ND as regarding the sizes in M_{AF} , T_K , and the gap in the spin-wave excitation spectrum.

In contrast, the NMR results in $Cerh_2Si_2$ are unconventional. Another splitting in the NMR spectrum at T_{N2} =25 K was found, indicating a magnetic structure consisting of independent AF domains. A notable result is that $M_{AF}(NMR) = 0.36$ and $0.22\mu_B$ are significantly smaller than $M_{AF}(ND)$ =1.86 and 1.69 μ_B . We have suggested that the correlation time in fluctuations of *f*-electron moments is longer than the characteristic time of observation for thermal neutrons, but shorter than that for NMR. Relevant to this, we propose that quantum spin fluctuations are responsible for this probe dependence of M_{AF} . A probable source for quantum spin fluctuations may originate from the fluctuations of each domain due to the small difference between the energies of each domain suggested from the recent ND experiments.²³

ACKNOWLEDGMENTS

We wish to thank S. Kawarazaki, Y. Onuki, and Y. Miyako for helpful discussions, and T. C. Kobayashi and K. Amaya for DC- χ measurement. This work was supported by Grants-in-Aid for the Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.

- ¹ See, for example, F. Steglich, C. Geibel, S. Horn, U. Ahlheim, M. Lang, G. Sparn, A. Loidl, A. Krimmel, and W. Assmus, J. Magn. Magn. Mater. 90-91, 383 (1990).
- 2S. Doniach, in *Valence Instabilities and Related Narrow Band Phenomena*, edited by R. D. Parks (Plenum, New York, 1977), p. 169.
- 3 See, for example, H. v. Löhneysen, F. Huster, S. Mock, A. Neubert, T. Pietrus, M. Sieck, O. Stockert, and M. Waffenschmidt, Physica B 230-232, 550 (1997).
- 4D. Jaccard, K. Behnia, and J. Sierro, Phys. Lett. A **163**, 475 $(1992).$
- ⁵B. H. Grier, J. M. Lawrence, V. Murgai, and R. D. Parks, Phys. Rev. B 29, 2664 (1984).
- ⁶ J. D. Thompson, R. D. Parks, and H. Borges, J. Magn. Magn. Mater. 54-57, 377 (1986).
- 7 F. M. Grosche, S. R. Julian, N. D. Mathur, and G. G. Lonzarich, Physica B 223-224, 50 (1996).
- ⁸P. Link, D. Jaccard, and P. Lejay, Physica B 223-224, 50 (1996).
- 9 F. M. Grosche, S. R. Julian, N. D. Mathur, F. V. Carter, and G. G. Lonzarich, Physica B 237-238, 197 (1997).
- 10S. Kawarazaki, Y. Kobashi, J. A. Fernandez-Baca, S. Murayama, Y. Onuki, and Y. Miyako, Physica B **206-207**, 298 (1995).
- 11R. Settai, A. Misawa, S. Araki, M. Kosaki, K. Sugiyama, T. Takeuchi, K. Kindo, Y. Haga, E. Yamamoto, and Y. Onuki, J. Phys. Soc. Jpn. 66, 2260 (1997).
- 12T. Graf, M. F. Hundley, R. Modler, R. Movshovich, J. D. Thompson, D. Mandrus, R. A. Fisher, and N. E. Phillips, Phys. Rev. B **57**, 7442 (1998).
- 13R. Movshovich, T. Graf, D. Mandrus, J. D. Thompson, J. L. Smith, and Z. Fisk, Phys. Rev. B 53, 8241 (1996).
- ¹⁴T. Graf, J. D. Thompson, M. F. Hundley, R. Movshovich, Z. Fisk, D. Mandrus, R. A. Fisher, and N. E. Phillips, Phys. Rev. Lett. 78, 3769 (1997).
- ¹⁵ R. A. Steeman, E. Frikkee, R. B. Helmholdt, A. A. Menovsky, J. van den Berg, G. J. Nieuwenhuys, and J. A. Mydosh, Solid State Commun. **66**, 103 (1988).
- ¹⁶S. Quezel, J. Rossat-Mignod, B. Chevalier, P. Lejay, and J. Etourneau, Solid State Commun. **49**, 685 (1984).
- ¹⁷G. Aeppli, E. Bucher, C. Broholm, J. K. Kjems, J. Baumann, and J. Hufnagl, Phys. Rev. Lett. **60**, 615 (1988); G. Aeppli, D. Bishop, C. Broholm;, E. Bucher, K. Siemensmeyer, M. Steiner, and N. Stüsser, *ibid.* **63**, 676 (1989).
- 18R. H. Heffner, D. W. Cooke, A. L. Giorgi, R. L. Hutson, M. E. Schillaci, H. D. Rempp, J. L. Smith, J. O. Willis, D. E. MacLaughlin, C. Boekema, R. L. Lichti, J. Oostens, and A. B. Denison, Phys. Rev. B 39, 11 345 (1989).
- 19Y. Kohori, M. Kyogaku, T. Kohara, K. Asayama, H. Amitsuka, and Y. Miyako, J. Magn. Magn. Mater. **90-91**, 510 (1990); H. Tou, Y. Kitaoka, K. Asayama, N. Kimura, Y. Onuki, E. Yamamoto, and K. Maezawa, Phys. Rev. Lett. 77, 1374 (1996).
- 20C. Broholm, J. K. Kjems, W. J. L. Buyers, P. Matthews, T. T. M. Palstra, A. A. Menovsky, and J. A. Mydosh, Phys. Rev. Lett. **58**, 1467 (1987).
- 21D. E. MacLaughlin, D. W. Cooke, R. H. Heffner, R. L. Hutson, M. W. McElfresh, M. E. Schillaci, H. D. Rempp, J. L. Smith, J. O. Willis, E. Zirngiebl, C. Boekema, R. L. Lichti, and J. Oostens, Phys. Rev. B 37, 3153 (1988).
- 22Y. Kohori, K. Matsuda, and T. Kohara, J. Phys. Soc. Jpn. **65**, 1083 (1996).
- 23S. Kawarazaki, M. Sato, N. Chigusa, Y. Miyako, N. Metoki, Y. Koike, and M. Nishi (unpublished).
- 24K. Fujiwara, K. Kumagai, C. Sekine, and S. Murayama, Physica B 186-188, 517 (1993).
- 25B. H. Grier, J. M. Lawrence, S. Horn, and J. D. Thompson, J. Phys. C 21, 1099 (1988).
- 26A. Severing, E. Holland-Moritz, and B. Frick, Phys. Rev. B **39**, 4164 (1989).
- 27 F. Hippert, B. Hennion, J.-M. Mignot, and P. Lejay, J. Magn. Magn. Mater. 108, 177 (1992).