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In colossal magnetoresistance materials, ferromagnetic double exchange presumably coexists with a direct
nearest-neighbor antiferromagnetic interaction. We construct a single-site mean-field theory that explicitly
takes into account the different nature of carrier-mediated ferromagnetism vs Heisenberg-like superexchange.
We find, in contrast to previous results in the literature, that the competition between these two exchange
interactions leads to ferromagnetic or antiferromagnetic order with incomplete saturation of the magnetization
(or sublattice magnetizatignrather than spin canting. The associated experimental implications are discussed.
[S0163-182698)08537-3

I. INTRODUCTION systems, we consider primarily the two-dimensiof2D)
lattice. By doing so, we expect to capture the basic magnetic
Recently, there has been a renewed inteirestivated by ~ properties of the layered compounds, while avoiding the
technological problems of microelectronjds the properties cumbersome quantitative treatment of bilayers. We also note
of colossal magnetoresistan¢EMR) manganese oxidés. that our 2D results are qualitatively representative of the
The CMR behavior typically corresponds to an intermediatehree-dimensional case as well.
doping range, when these materials are ferromagnetic. The We will see that the fact that the double exchange—
latter property is generally attributed to a conductionSUPerexchange competition occursltattice bondsi.e., in
electron-mediated double exchar(@E) interaction? In ad-  the 3D case, for in-, as well as out-of-plane interactions
dition, there exists evidente that suggests the presence of Ieads to the enhancement of spin fluctu.at|on§.'LOW_est qrder
antiferromagnetic superexchange interactions of comparabfé‘e" Hartree—Fock liketreatments are insufficient in this

scale. In this paper, we study the behavior of a classica 2> Therefore, in the present paper we introduce a new

. ; agproach to the problem.
magnet with competing double exchange and superexchang We construct a single-site mean field theory which explic-

interaqtions, a}nd Sh.OW’ in particu!ar, that in an i{seotropic Cas(?tly takes into account the main feature of the present prob-
the spin cantingwhich was pI’EVIOUS.|)./ suggestetb pg a lem, namely, the carrier kinetic energy origin of the double
generic outcome of such a competifiocan be stabilized exchange ferromagnetism. We note that the mean field

Onlgr:f/i\giz rr:alg,: Jéeléj; ci?gtigl%;z%kt))\:avetr?mgrefg?x;%s.for a schemes previously reported in the literaftr@ssentially
strongly anisotropic model in which the intepr- and intra-layer ¢ 2" effective Heisenberg-like ferromagnetic exchange in-
gl P Y€ teraction to describe the double exchange. Such schemes

. H i
direct exchange cor)stants 'have different sigihiere, we would not adequately reflect the very different nature of the
assume that direct interactions have everywhere the sam

(antiferromagnetic sign and magnitude. This is viewed as Mo competing interactions. It is of interest, then, to see how

more aopropriate for the LaCaMnO. perovskite famil the results are changed if a more proper treatment of the
pprop - "r‘g & 3 PETOVSKI W double exchange is carried out. We begin with the standard

away from thex=0 endpoint, as well as for the layered Hamiltonian®° corresponding to an infinite on-site Hund’s

manganates such as 48,Sr.,,Mn,O;. In these com- rule coupling:

pounds, pairs of stacked Mn-O planes form the bilayers, '

which are separated by poorly conducting layers of La(Sr)O

(see Rt_af. 3 Since the lengths of the intralayer and interlgyerH: _ t_OE COS@{CTC_JFC_TQ}JF JﬁZ é'é-— EE <z

bonds in a bilayer are roughly the same, the values of inter- 255 2 IS Posg T

layer hopping coefficient and superexchange constant should (1)

be of the same order of magnitude as their intralayer coun- ] . o ]

terparts. The observed interlayer cantingr canted Here, the first term is the kinetic energy of the carriers

correlations’, presumably caused by superexchange betweefyvhich are represented by the fermion operatgraherej is

the two layers of a bilayer complex, can be used to suggeéhe site index The second term corresponds to the nearest-

relatively large values of superexchange within the layers ageighbor antiferromagneticJi>0) exchange interaction

well. In view of the considerable interest in these layeredbetween the classicaBg1) core(localized spinsS;, and
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in the carrier kinetic energy. This perturbation shifts the en-
ergy levels of individual carriers, thus resulting in a change
in the total kinetic energy of the band. This kinetic energy
contribution toSsF, which can be evaluated following Refs.
13-15(see Appendix A is given by

5FDE<b,t,T>=J f(e)&(e)det A(b— 1) o(zo)— ¢~ DY),
®

where the spectral shift functiof(e) takes values between
—1 and 1, and is given by

— — Iargl b2+ (22— b2 [ PH297
FIG. 1. Single-spin fluctuation in the ferromagnetic phase. The &(e)= T g ( e e~ 7
bold arrow represents the average magnetization, and the dashed
lines correspond to the hopping amplituglewhich differs from the Lo o
background hopping valuie(solid lines. +mi(t"=b%ev(e), )

the last term is the Zeeman energy of these spins in thi® bound state energy< —Dt is the root of

external fieldH. The double exchange interaction results in s o

the modulation of carrier hopping coefficients by the factors 1+t —-b [_ 1+ZJ v(n)d 7]] _o

cos(#;/2), where co§;; =§i . §j /S?. Since in the present ’

work we restrict ourselves to a single-site mean-field treat- ) )

ment, we omit the additional phase factors that would result(€) i the density of states,

in Berry phase effects. We use units in which the bare hop-

ping coefficienty, %, kg, g, and the lattice spacing are all o(2)=—T In[ 1+exr{ﬂ—z

equal to unity. T
Our mean-field framework is based on the exact solution

of the single site problem, which is outlined in the following (6)

section. Details of the derivation are relegated to Appendix _ . . .
A, whereas the implications for th&=0 energetics are andu is the chemical potential. Although we will apply Egs.

briefly discussed in Appendix B. Sec. lll is concerned with (3)~(5) only to the case of a 2D square lattice, they remain

the mean field treatment of different magnetic phases of th(\-fa"d for. a CUDi(? lattice in 3D, as well as in the 1D case. The
system, and the resultant mean field phase diagram is g&nergy integrations are performed over the conduction band

scribed in Sec. IV. We conclude with a brief discussion ofWidth’ —Dt<e,n<Dt whereD is th_e _dimensionality of the .
the experimental relevance of our findirids. system. It should be stressed that it is because of the locality

of the perturbatiori2), which represents a lattice analogue of
an s-wave scattering problem, that the quantiif can be
Il. EXACT SOLUTION OF THE SINGLE-SITE PROBLEM eva|uatecbxact|y13—16

The second term in Eq3) is a contribution of a bound
state that appears in the carrier spectrumbfoit (when the
Frturbation may be viewed as a “potential well'ln 2D,
e binding energy of this state vanishes exponentiatig
—t, whereas in 3D it has a threshold behavior. This bound
) state is related to one that causes the formation of magnetic
we will see below[Egs.(8), (13), and(19)], such a fluctua-  55|510ns!® but it should be distinguished from the true mag-

tion gives rise to a difference between the values of hoppingetic nolaron that is an extended object and cannot be treated
coefficientb from the site of the fluctuating spi§, to the  within a single-site approach.

©)

The random distribution of localized spins leads in Hg.
to a highly disordered electronic hopping problem. Our
mean-field treatment is based on evaluating the energy co
SoF of a fluctuation of a single spilil, embedded in an
effective medium with a uniform average value of GpsAs

neighboring sites and the background hoppiir(@#b); for In order to gain additional intuition about the meaning of
clarity these parameté?sare indicated schematically in Fig. Egs. (3)—(5), it is useful to calculate the energy cost of a
1 single-spin fluctuation in various phasesTat 0. This is dis-

The quantitiesh andt depend, in a self-consistent fash- cussed in Appendix B. This Appendix highlights the impor-
ion, on the chang@éF ¢ in the free energy, associated with tant differences between the double exchange and familiar
the local change in hopping matrix elememtsb. Such a Heisenberg direct exchange interactions.
local change, originating from a local spin fluctuation on the  For the purposes of the present work, the virtual crystal
site (0,0), gives rise to a perturbation, approximation, based on the parameters shown in Fig. 1, is

expected to be appropriate as long as the carrier concentra-

. tion is not too small. This is because the quantities of interest
V=— E(b_t){c(o,o)(c(o,l)_l'C(l,O) involve integration over carrier energies in the metallic
phase. In order to extend this formulation beyond the single-

+Co-1)TC(-10)tH.C}, (20  site mean-field scheme, we note that multisite spin fluctua-
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tions can also be treated as local perturbations following Ref. 1F ' T ' T T 0
14. This in principle allows one to study systematically the Mo T
effects of correlations, by constructing an analogue of an 0.8 .

impurity-concentration expansion. This procedure would
also verify whether the virtual crystal approximation is a
good starting point for studying othée.g., transpojtprop-
erties.

Ill. THE MEAN-FIELD-SCHEME

A. Ferromagnetic phase
0 0.005 0.01 0.0156
T

In the ferromagnetic phase at-0, the net energy cost of

a single-spin fluctuation iéin 2D) given by FIG. 2. Magnetization vs temperature in the ferromagnetic

. phase aH=0, x=0.4, andJ,-=0.06. The solid, dashed, and dot-
SF 1= 6Fpe(b,t,T) +4J,(cos; ), — Hcosa, ted lines correspond to the 2D DE- superexchange magnet, effec-
—4JAr(COS15) 1o+ H{COSK 7)1 . (7)  tive exchange approximation, and usual Heisenberg ferromagnet,
respectively.
Here, 6,5 is the angle between the directions of the fluctuat-
ing spin§1 and any of the neighboring spins, denotedS_)ay |Eo| <8Jar< \/§| Eol, (11
(we assume that spin fluctuations on different sites are sta-,,

tistically independent and ; is the angle betwee8,; and Jerr(M) changes sign a! varles.f_rom 0 to 1. This behav-
ior has important consequences: it leads to a lack of satura-

the direction of magnetizatioM (see Fig. 1. The angular (o, in the low temperature magnetization. Typical results for
brackets(- - -}, are used to denote the average values ovef) (T) are plotted in Fig. 2 for these moderately strong ex-
the Boltzmann probability distribution of spi§, w,xexp  change interactions. Here the solid line represents the full

(—&F[T). We then find thatcoss;,),=Mcosy;, and® mean-field calculatiofwhich makes use of Eq&3) and(4)],
) while the dashed line corresponds to the effective exchange
b%=(cos(6,2)),=(1+Mcosay)/2, approximation. The dotted line represents the behavior of a
conventional Heisenberg magnet with the same value of Cu-
t?=(b?%;=(1+M?)/2. (8)  rie temperature, and a constant nearest-neighbor exchange

. . . integral.
The magnetization has to be determined self-consistently as The lack of saturation seen in Fig. 2 can be understood as

M =(cosay), ; generally, the latter equation has to be SOIVedfollows. In the paramagnetic phadd,=0 and, by virtue of

numerically. Egs. (100 and (11), the effective exchange constant has a

In the ferromagnetic and antiferromagnetic_phase_s, it i%egative(ferromagnetiic sign. AsT decreases, the system
useful to construct a reference framework with which toundergoes a Curie transition 5&“4“5%(0)“3- Decreas-

compare our results. We defide;(M) which represe_nts an ing T further results in a decrease in the magnitude of spin
effective M- dependent exchange constant for a He|senbergf

like magnet. The appropriate exchange constant can be d |uctuations, i.e., |PManI|n(zjr_easte ?f] Th?tlat_ter 'Sf op_pofslsed
duced by considering small spin fluctuationsdsy—M| ifl, leading to the softening of Spin fiuc-

by adecreasén |-
<1), which correspond to small fluctuations in the hoppingtuat'ons' As a result, the effective exchange constant “self-
matrix elements |(—b|<t). A perturbation expansion of

adjusts” in such a way that it never becomes large in com-
Eq. (3) then leads to parison with T, and even at lowT the behavior of an
effective exchange magnet is similar to that of a conven-
t—b tional Heisenberg magnet in a “high-temperature” regime of
5FDE(b,t,T)~—ZTf ef(e)v(e)de=2(t—b)|Ey|, T~Tc~J. In this way, the nonvanishing thermal fluctua-
) tions do not allow the magnetization to reach its proper satu-
ration value,My=1. At zero field, the value of magnetiza-
at leading ordéf in T/t, whereE, is the kinetic energy of tion asT—0 is instead given
the carriers fort=1. In the ferromagnetic state, using the
corresponding formula for a Heisenberg ferromagnet Mo=V(Eq/Jar)?/32—1<1. (12)

[6F =(4IM—H)(cosx; —M)], we obtain These self-consistent changes|#}7| lead to inadequacies

of the effective exchange approximation at Idw As may
(10 be seen in Fig. 2, the behavior obtained in this approximation
differs significantly from that found using the full calculation
of M(T). This difference is due to the fact that whagfi
The second term in the above equation represents the DET is small (in comparison with the electronic energy
contribution. This term, which is contained in other meanscale$, quadratic term$in (t—b)/t] dominate the physics.
field scheme&?! increases asM decreases. As a conse- The details are discussed in Appendix C. Within the effec-
qguence, for moderately strong antiferromagnetic exchangtve exchange approximation, strong fluctuationdofh an-
interactions, wheft gular coordinates of each spin persist at [BwBy contrast,

1
FMonviy— 1 o -
Jetf(M)=Jar 8|E0| TIYES
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the full calculation shows that the fluctuations of the polarfields) the canted state is destabilized, as a result of the un-
angle freeze out, cas— M,. Independent fluctuations of derlying degenerac¥: Since it is site locaf® its effects will

the azimuthal angles of the spins, which persist dowif to persist as long as the energy scale of a perturbatemin-
—0, appear to be an artifact of the single-site mean-fieldlividual spinremains small in comparison with the charac-
treatment. It is natural to expect that, at least in the classicdkristic energykgT, of the thermal motion of a@ingle spin.

case ofS>1, these azimuthal fluctuations also freeze out

(albeit at a lower temperature than the polar ¢gresulting

To characterize the finite field canted state, we use the full
non-perturbative expressidi3). The mean-field framework

in the formation of a multisublattice or spin-glass-like stateof Egs.(7) and (8) has to be modified to allow for a self-

with the net magnetization given approximately by EtR).

B. Antiferromagnetic phase

The Neel antiferromagnetic statéof the metallic phase
can be treated similarly. We findcosd;»),=—mcosx;,
wherea; is the angle formed by the spél with its average
direction andm is sublattice magnetization. Eq®) are re-
placed by

b2=(1-mcosx;)/2, t2=(1—m?)/2. (13
Instead of Eq(10) we obtain
AFM 1
Jeif (M) =Jae— 2| Eol PR (14

It is easy to show that the ek ordering arises fod,r
>2"%E | in zero field and aff <Ty~4J5M(0)/3. It al-

consistent determination of thevo mean-field variablesn
and y. We now obtain two coupled mean field equations,
which, as in the ferromagnetic phase, follow from the self-
consistent definition of the sublattice magnetization For

the component ofS;) parallel to the magnetization of sub-
lattice |, we obtain

—sin2y(sina,c0s8); + cos2y{cosx,),=m, (16
whereas the perpendicular component must vanish,
cos2y(sina; cosB1)1+ sin2y(cosx,),=0. a7

In writing Egs. (16) and (17) we used a coordinate system
with a polar axis parallel to the sublattice 11 magnetization.
a4 and B, are polar and azimuthal angles of the sﬁ)ﬁnin
this frame, with8;=0 corresponding to the spi§1 lying
within the plane containing the two sublattice magnetiza-
tions.

ways exhibits undersaturation of the sublattice magnetiza- For the net energy of a single-site fluctuation we now

tion: atT—0,

m—mMy=1—(Eq/Jap)?/32<1. (15

This undersaturatiofwhich leads to a finite bandwidtimay

be viewed as consistent with the presumed metallic state.

Numerical calculations yield the dependencerobn T,

which is similar toM(T) in the ferromagnetic phase and

obtain, instead of Eq(7),
S8F 1= 6Fpe(b,t,T) +4Jsemcosw, — 4J 4 em{cosyy )4
—H(—siny sina; cosB;+ cosycosx;)
+H(—siny(sine; cosB;),+cosy{cosx,),) (18)

whereas the values of the hopping coefficigigse Fig. 1

shows the same low-temperature features. and Eq.(2)] are given by

b%=(1+mcos;)/2, t2=(1+m?cos2y)/2. (19

Our discussion thus far has not included the canted phasgnhe |ow-T canted state is found to be stable fér0 and
first proposed by De Gennésn our case, this is a two- 8Jar>|Eo|+H.
sublattice (checkerboard magnetic phase; the sublattice e begin with the case of relatively large bandfilling,
magnetizations have an equal magnitudeand form an  corresponding to the undersaturated ferromagnetic behavior
angle 2y with each other. In the present model, spin cantinggt H=0 [see Eq.(11) and Fig. 4. The solution® of Egs.
requires the presence of a magnetic field to break the higty6) and(17) for typical parameters are illustrated in Fig. 3.
degeneracy that would otherwise occur. This degeneracy ®ne can see that, &0 in the canted phase, the sublattice
related to the fact that &l =0, the energy of the system magnetizationm approaches its proper saturation vaie
depends solely on the values of the angles formed by the-1 Note that the ferromagneticy&0) solution to the
pairs of neighboring spins. All the neighbors of any sfin  mean-field equations is presenttat-0 as well. In Fig. 3,
of sublattice | belong to sublattice Il, and are parallel to eaclthe corresponding magnetizatidvizy(T), is represented by
other atT=0. Therefore, the energy of the system does nothe dotted line. However, when the canteg>0) solution
change as the spiél moves along any cone around their €Xists, it corresponds to a lower value of the free energy.
common direction. In the context of single site mean fieldThis is obvious from the fact that the net magnetization in
approaches, the same holdsTat0 for any cone around the the canted stat®l ¢y,(T)= — JF/JH =mcosy (dashed line in
averagedirection of the sublattice Il spins. Thus, the prob- Fig. 3) is larger tharM g (T). The canted solution branches
ability distribution of the spirS; will be axially symmetric ~ rom the ferromagnetic one at temperatdrg~H, when
with respect to the direction of the magnetization of sublat-

tice Il, with which the spin§1 will therefore be aligned on
average(rather than with sublattice).I Thus, in the absence at this point the undersaturated ferromagnetic state under-
of perturbationgcaused by next-nearest-neighbor exchangegoes a second-order spin-flip transition into the low-
anisotropy effects, quantum corrections, or small externalemperature canted stdteOne can therefore conclude that

C. Canted phase

ATM=H(sira;);; (20
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FIG. 3. The behavior of the sublatticesolid line and net 0.06) (C) 0.06- (d)
(dashed ling magnetizations in the canted state kt=0.01, x T ' T
=0.4, andJ,=0.06, in comparison with the magnetization of the
ferromagnetic statédotted ling. The dashed-dotted line represents 0.04+ 0.04+
the results for the canting angle, \ PM M
undersaturation is representative of the generic low- 0021 i 0.02
temperature behavior of a double exchange-superexchange AFM M AFM M
magnef® oM
For smaller values of carrier concentration,Hat-0 we 00 01 02 03 x5 05 00 01 02 03 X, 05
X X

find the spin-flop phagof the undersaturated antiferromag-
net, which evolves into the canted state via a smooth cross- -~ ¢ ppase diagrams of the DE—superexchange magnet for
over atT~H, as sh0\_/vn in Fig. 4. The Ipw-temperatyre re- Jpe=0.06 atH=0 (a) and H=0.01 (b), and for J,e=0.05 atH

gion where the canting angle rapidly increases withl

=0 (c¢) andH=0.01(d), showing the ferromagnetic, antiferromag-
corresponds to the canted phase.

netic (flop phase aH>0), paramagnetic, and canted phaded,
AFM, PM, and CM, respective)y The dashed line irfia) and (c)
IV. MEAN-FIELD PHASE DIAGRAMS denotes the boundary of the thermodynamically unstathje/dx
<0) region, andk=Xx; in (c) and (d) separates undersaturated (
Typical phase diagrams for the DE—superexchange mag<x;) and saturated low-temperature regimeblat0. The behavior
net in(a,0 zero andb,d) nonzero field are presented in Fig. of the system is symmetric with respect to quarter fillirg; 0.5.
5. Forty of the order of an eV, our choice of parameters
corresponds to reasonable valuesJaf<300 K. In zero AFM state becomes thermodynamically unstabig./dx
field (a,0, the solid line represents the phase boundary be<<0), signalling either the onset of a more complicated spin
tween paramagnetitPM) and antiferromagnetiéAFM) or ~ arrangement or phase separatitsee Appendix € The
ferromagnetic(FM) metallic phases. For the values of pa- dashed line in Figs.(8) and Fc) corresponds to the antici-
rameters used in Fig.(8), the ordered phases are undersatu-Pated boundary of this regiom/x=0). We note that the
rated at lowT. For slightly smallerJ,r we find a critical ~ Possibility of phase separation in DE-superexchange sys-
value of bandfiling,x;, which divides the saturated tems has been suggested both by analytical sttftiEsd
>x,, and undersaturated regimfsee Fig. &)]. At low  numerical simulations: .
temperatures and small concentrations, the undersaturated Figures %b) and §d) show that in the presence of a mag-
netic field the PM—FM transition is replaced by a smooth
crossover(dotted ling. The spin arrangement of the AFM
phase becomes noncolline@diop phas¢ and has the same
symmetry properties as that of the canted phase, which be-
comes stable at lower (replacing theH =0 undersaturated
FM and AFM phases The two are separated from the PM
and FM region by a second-order phase transitionT at
=T,4(x), which is represented by the solid line. At suffi-
ciently smallx the latter approaches thé=0 Neel transi-
tion line. The thermodynamic instability lingot shown in
Figs. 5b) and §d)] is only slightly affected byH.

m, Magm

V. DISCUSSION

0 .01 02 T,
T

FIG. 4. Mean-field results for the case of strong superexchange, e expect that our calculations are directly relevant to the
Jar=0.08, x=0.3. The solid and dashed-dotted lines represent théluasi-2D layered materials ba,,Sr; ,,,Mn,0;. The exis-
result for the sublattice magnetization and canting angley for ~ tence of a strong superexchange interaction in this system is
H=0.01. The dotted line corresponds to the sublattice magnetizasuggested byi) relatively high values of Nel temperatures
tion mapy of Néel AFM phase aH =0. observed at the<=1 endpoint? (i) intra-layer antiferro-
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magnetic correlations present ndgy (Ref. 3, (iii ) interlayer 1 1

(within the same bilayercanting found at low temperatures a3 ,=——=C(00*—=(C1,0tC0n T C(-1.0TClo—1))»

(see also Ref. 24and interlayer canted correlatié‘qsresent \/E 2\/E

aboveT.. The latter point is associated with the structure of (A2)

the quasi-2D manganates, which was discussed in the Intrqghjch anticommute with each other. Perturbations of this
duction. form can be treated exactly by following I. M. Lifshits’

The verification of the undersaturated behavior at bw theory of local perturbatior'fg"’.vl4 Here we will use mainly

remains an open question. It is not clear whether the materihe Green’s functiongesolvent operatoyspproach of Refs.
als Lg_,Sr12xMn,0O7, with x=0.4, lie within the region 14 and 16. We will, without loss of generality, consider the
where the system exhibits undersaturated ferromagnetic bep case.

havior at lowT, or outside of this regiofiin the latter case, Perturbation(A1) results in a change of the net free en-

we still expect thermal fluctuations to be stronger than in &rqgy of the carriers, which can be evaluated as
Heisenberg magnet, due to the presense of superexchange

Some measurements of the absolute value of magnetiZation pw—Hyc—V
in x=0.4 samples indicate undersaturatiéri® while others oF=060=-T Tr[ In 1+9XF< f”
do not3®

We suggest that magnetic properties of the samples ex- m—Hyc
hibiting undersaturation should be studied in the high-field, —In 1+eXP( T H

low-temperature regime of<H. Our result{see Eq(20)]

indicate that the intralayer canted spin ordering should be | ~

stabilized in this region. Another important prediction of our = jﬁx‘P(f)[Vtot(f)— Vior(€) Jde. (A3)

theory is the unusual dependence of the effective ferromag- ~

netic exchange constant on magnetization and hence on terHere, ¢(¢€) is defined by Eq(6), v;o:(€) is the total(for the

peraturd Eq. (10)]. While we did not study spin waves in the entire systern carrier density of states in the presence of

undersaturated low-temperature phase, it is clear that in sugkerturbation(Al), and

a situation the usual relationship between the bwalue of

spin stiffnessD, and the Curie temperatur®(xTc) is no 4N 1 2t—| €

longer valid. This might help explain the recent experimental vior(€) =Nv(e) = — 2t+|e|K( 2tt]e]

findings in perovskite manganatésWe propose that the &

magnetization dependence of the effective exchange constaihere (x) is the complete elliptic integral and is the

(available through spin-wave measuremgst®ould be stud- number of lattice sitgsis the total density of states corre-

ied in more detail in both 3D and 2D systems. sponding to the unperturbed virtual-crystal band Hamiltonian
It should be noted that the presence of undersaturation in

ferromagnetic and antiferromagnetic phases may well signal t

that in reality the system favours more complicatedy., Hye=— EUED (clej+cfen, (AS)

spin-glass-like, cf. Ref. 36spin ordering, that cannot be ad- o

dressed within a single-site mean-field theory. The fact thatvith the spectrumge(q)= —t(cosy+cosyy). The perturbed

there have been no observations ofranalayer spin canting density of stategztot(e) may includes-function peaks cor-
in the layered compounds dH is consistent with our responding to the discrete levels which split off downwards
results. from the bottom of the band. As we shall see below, only
one discrete level may appear in the present proBfeamd
after integration by parts the free-energy chaty@) can be
rewrittent>€in the form of Eq.(3) (where the first term on
This work has benefited from enlightening discussionghe r.h.s. accounts for the contribution of the continuous part
that we had with many theorists and experimentalists, espef the spectrum We note that Eq(3) is an example of a
cially A. G. Abanov, A. Auerbach, A. V. Chubukov, M. I. Krein trace formula. The quantity
Kaganov, M. Medarde, J. F. Mitchell, R. Osborn, R. M. Os-
good, T. F. Rosenbaum, and A. E. Ruckenstein. We ac-
knowledge the support of a Univ. of Chicago/Argonne Na-
tional Lab. collaborative Grant, U. S. DOE, Basic Energy. ) ) ) ) )
Sciences, Contract No. W-31-109-ENG-38, and the MRSEGS called thespectral shift functiofecause of its relationship

program of the NSF under Grant No. DMR 9400379. to the perturbation-induced shifts of the energy levels in the
case of a discretéor discretizedl unperturbed spectrufi.It

can be evaluated as

. (A4
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APPENDIX A: DERIVATION OF EQS. (3)-(5).
1
We begin by rewriting the local perturbati@®) as &(e)= ;Im Tr{InG(e—i0)—InGy(e—i0)}, (A7)

V=—(b—t)(ala;—ala,) (A1)  where the operatorGy(e)=(e-1—H,c) * and

in terms of the fermion operators, G(€)=(Gy ' (e)— V) 1=(1—Gy(€e)V) Gy(e) (A8)
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are the Green'’s functions for the unperturbed and perturbedthere the branch of arc cot should be selected in a way

Hamiltonians, respectively, and i the identity operator. Which respects both the continuity éfe) (Ref. 16 and the
Equation (A7) yields dé/de=—ImTr{G(e—i0)—Go(e fact thaté(e)=0 for b=t.

—i0)Y/ 7. In turn, We note that the r.h.s. of the E¢AL13) has the form
F(e)/v(e), diverging asv(e)— 0. Therefore its possible val-

TH(G—Gg)=Tr{(1-GyV) 1G,VGy} ues below the bottom of the band afe~, corresponding

either toé(e)=—1 or to £(e)=0. The case of(e)=—-1
=Tr{(1-GoV) G2V} corresponds to the values efbetween the bottom of the

band and the bound state when the latter is present, while for
e smaller than all the eigenvalues &f (continuous and dis-
crete alike the spectral shift function vanishege) =0. The
q change between these two values, which corresponds to the
_- . bound state, can occur only atz,, wherez, satisfies the

de In Detd=GoV), (A9) equationF(z)=0. The latter condition yields Eq5). Al-

. though it appears rather intuitive, this consideration of the
where we used the fact that the operators-@,V) ~* and  pound-state problem can be substantiated by a direct calcu-
GoV commute with each other. Therefdfe!® lation along the lines of Ref. 15.

Interestingly, in Ref. 13 the notion of a finite trace of
certain operators in an infinte-dimensional Hilbert spaee
Eq. (A3)] was essentially introduced for the first time. Math-
ematical studies of related issues were initiated by M. G.

Since, according to EqA1), the perturbatiorV is nothing  Krein ¢ and since then the Krein trace formulas remain an
but the sum of two projection operators, it is convenient toactive research topic of functional analysis.

evaluate the r.h.s. of EgA10) in a basis which includes the

d N
~Je Tr In(1—-GyV)

Ee)=— % Arg Def{1—Gy(e—i0)V}.  (A10)

states|1), |_2), annihilated by the operato, , [see Eq. APPENDIX B: SATURATED PHASES AT T=0
(A2)]. In this basis, the determinant reduces to that of a 2
X 2 matrix, and one obtains In this Appendix, we present some numerical and analyti-

cal results related to the phases which saturate affidiae.,

1 ) the phases with values of magnetization or sublattice magne-
§=— p Arg{1+(b—t)(I11—12) — (b—1) [Detl;;) tization approaching unity &—0). This being the simplest
application of Eqs(3)—(5), it provides insight into the mean-
—? Det(Cyj) ]+ mi[ (b—1t)(Cy3— Cp) + (b—1)? ing of these equations which are crucial for the present pa-
er. The undersaturated phases at Towill be considered in
X (Caal 21+ Caal 12~ Cual 22~ Coal 1) I} (A11) Fhe Appendix C. P
Here the quantities;; and C;; /= with i,j=1,2 denote, re- We wi_II assume that in the ground state, all the pair_s of
spectively, the real and imaginary parts of the matrix ele€ighboring spins form the same angle @nd that each spin
ments(i|Go(e—i0)|j). Explicitly, we find forms an angley with the z axis (thus, y=0 corresponds to

the ferromagnetic phase, and>0 — to the two-sublattice
1 €2 canted state of De Genne3hen the energy of the system at
Cyy(€)= Ev(e)( 1—;) , T=0 can be written &

FOO/N=—|Ey|cosy+2J,rcos2y—Hcosy, (B1)
2
ClZ(E)ZCZl(E):%V(E)( 1_:_2 Here, E, is the energy of electrons far=1. Let us now

consider a single-spin perturbation of the ground state corre-
sponding to the change of the polar angle value of a §pin

1 €\? 2t Cjj(mdny from y to . The energy difference between this configura-
Caal€)= EV(E)( 1+ ) lij(e) = fﬁZtP e—n tion and the ground state is given by
We then obtaif? SFO(a)=8Fpe[b(a),t,0]+4J4e[cOL a+ y) — cOS2y]
—H(cosx—cosy), B2
1 ez w(pdy ( Sy) (B2)
Det(C;;)=0, Detlj)=——+ —J P where SFpg[b(«),t,0] is given by Egs.(3)—(5) with t
t t =2t €E— 7 _ _ e . (0) .
(A12) =cosy and b= cog(a+y)/2}. By minimizing E'® with re-
spect to cog, we find that the saturated ferromagnetic phase
etc., and finally, Eq(A11) takes form of Eq(4). The latter is stable atEqy|+H=8J4¢. In this case one can use H§)
can be conveniently rewritten as to obtain the value o8F(® for a<1:
1 b2 1 f W(p)dy SFO(a)=— (43— H)(1—cosw), (B3)
cof =- - , . o
m cotmé(e)} ev(e) 2—p2  v(e) P ] where the effective exchange constéft Sec. Il)) is given

(A13) by % =J,r—|E|/8. In the case of pure double exchange,
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FIG. 6. Single-spin perturbation energf(?(«) in the ferro- FIG. 7. The functionsF©(«) in the canted state &t=0. The

magnetic state al=0 in zero field, forx=0.4 andJar=0.04.  |eft panel corresponds to=0.4, J5r=0.08, H=0.01. The dashed
Solid line represents the exact reséee Eq.(B2)], while the jine represents the band contribution. In the right pasef®(a) is

dashed line corresponds to the effective exchange approximatiowotted forJ,=0.06 andH=0.01 atx=0.4 (solid line), x=0.25
Eq. (B3). The dotted line represents the exact resultdef” (@) at  (dashed lingandx=0.15 (dotted ling.

x=0.15, Jor=0.025.

o i _ that as one lowers the bandfilling from=0.4 to x
Jar=0, and for sufficiently large carrier concentration =0.25, SFO(7—y) becomes negative, so that the total en-
=0.1, the effective exchange approximation is in fact ad-grgy can be lowered by flipping a single spin of sublattice |
equate even for large values af Numerically, the differ- {5 the direction antiparallel to that of sublattice Il spins, and
ence between Eq¢B2) and (B3) at a= does not exceed the canted state is metastable. As one further lowers concen-
15-20%. This relative differenc@vhich reflects the differ- tration to x=0.15, the sign 0f{925|:(0)(a)/(7a,2 at a=y
ent physics of the double exchange and Heisenberg exnanges, signalling the instability of the canted phase. In-
changg becomes more pronounced at ladge~|E|/8 (See  geeq since in 2D the principal-value integral on the r.h.s. of
Fig. 6). At smaller concentrationss<0.27 in 2D, and at Eq. (B5) diverges ate— — 2, the prefactor in front of ¢
sufficiently large values odae, we find 6F©(m)<0 (dot-  _ )2 in Eq. (B5) is negative at smalk. At H—0, this
ted line in Fig. 6. This means that the energy of the systemgeafficient changes sign at~0.215[cf. Appendix C, and
can be lowered by flipping a single spin, and the ferromagEq.(C4)]_
netic state becomes metastable.

For larger values oflar, corresponding talag> (|Eg|

; APPENDIX C: THE UNDERSATURATED
+H)/8, the canted state with

FERROMAGNETIC STATE AT LOW T
|Eol+H

cosy="g3 (B4)

In this Appendix, we present results on the breakdown of
the effective exchange approximation and on the low-

) temperature stability of the undersaturated ferromagnet.
emerges afr:Q, H>0 (see Sec. llI regard|_ng the .Iatter At H=0, the first term in the expansion éF, [see Eq.
condition. In this case, the energy of small single-spin Per-(7)] in powers of6M = cosa;—M

turbations is quadratic ifb—t|/t<1,

SF1(M,T)=AM,T)SM+B(M,T)(6M)%+ . . .,
(Cy

is proportional to the effective exchange constaAt,
=4JEM(M). If the temperature is not too low, this linear
%o _f“ JZ PV( n)dn 2u(e)d term (which generates the effective exchange approximation
SO B I ey LA provides a qualitatively reasonable approximation &t;
(see Fig. 2 Thus, the system behaves as a Heisenberg fer-

X (a—vy)? tarfy. (B5) romagnet with arM-dependent exchange constant. As ex-

lained in Sec. lll, for sufficiently large values df¢ [see

g. (1], JiMf decreases with decreasing so that
|JEM(M(T))|<T. Within the effective exchange approxima-
tion, Mo—M(T)=T at T—0.

The effective exchange approximation, however, breaks
down at lowT, when the second term on the r.h.s. of Eq.
(C1) becomes dominant. This situati@which is depicted in
Fig. 8 is due to the fact that the coefficieBt

16HJ -
6495 — (|Eo|+H)?

5F<°J(a)~( ( |Eol+

Note that the effective exchange approximation, which i
based on the first ordé¢in (b—t)/t] perturbation theory re-
sult (9), is inapplicable. The typical results f@iF(©(«) in
the canted state are shown in Fig(I&ft pane), where the
dashed line represents the contribution of the béirdt)
term on the r.h.s. of EJ3); one can see that the bound state
noticeably lowers energies of fluctuations with=2— y.

The origins of instabilities of the canted state which ap-

pear in our single-site treatment are illustrated in the right M2
panel of Fig. 7, where functionF©(a) at different B(M,T)~—[|E0|—Jﬂoez\]o(e)vo(s)de] (€2
band fillingsx for J,r=0.06,H=0.01 are plotted. We see 43 -2
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0.015 is easy to see that in any dimensionality- 1, the inequality
(C4) is violated atx—0. This follows from the fact that,

when e approaches the bottom of the band,
0.01

P”;O_( 7 41, (C5)

D
—eJo(e)=1~— f
-D €
0.005
On the other hand, in 2D or in higher dimensions, the in-
equality (C4) is always satisfied for sufficiently large It is
easy to see that the ratio of the .h.s. of Eg4) to the r.h.s.
increases as the maximum of(e) at e=0 becomes more
pronounced. Let us consider the extreme case of a constant
o density of statesyy(e)=1/4, and calculate both sides of Eq.
(C4) atx=0.5. We find:

FIG. 8. The energy cosfF, of a single-site fluctuation in the
ferromagnetic case at low-(see Appendix € The pronounced 1 0 1/2 1
minimum of 5} at the average value of the polar anglerepre- |Eol= =, f eZJO(e) Vo(é)déz_(_ In2+ =1,
sents a sharp difference from the effective exchange approximation 2 - 2\3 3

(dashed lingand causes the fluctuations ef(but not of the azi- . . . . .
muthal angle 8) to freeze out at lowT. The plot corresponds to so that the conditiofiC4) indeed is valid. Numerical calcu-

H=0, x=0.4, T=0.002, andJ,c=0.06. lations show tha_lt_in 2D, inequalityC4) h_olds f_orx>xC
~0.215. We anticipate that the value xf in 3D is lower.
does not vanish @ —M,. In Eq. (C2), t is given by Eq. We also expect that, similarly to the ferromagnetic or canted

(8), and state aflT =0 (see Appendix B the undersaturated FM state
at low T may become metastable at valuesxoflightly
2 yyle) abovex. .
Jo(e)= jzpn— cdn (€3 We note that the similar stability conditions for the anti-

ferromagnetic and cantg@t smallH) phases also take the
mo and vg(e) are the chemical potential and the density ofform of Eq. (C4). These should be distinguished from the
states in the unrenormalizeti<1) band. weaker thermodynamic stability conditiat./dx>0 men-
At Mo—M(T)<\T, the linear inéM term in Eq.(C1)  tioned in Sec. IV. The latter conditiofin the antiferromag-
can be omitted altogether. We then find ti&#\ =0 corre- netic, canted, and undersaturated ferromagnetic phases at

sponds to an energy minimum if H,T—0) can be rewritten as
Ko d 1 d 1 |Eo
E >f 2J de. C4 — - - — 2
[Eol> | €%Jo(e)vo(e)de (C4 ax Hot) = g3 gx (Kol Eel) 8JAJVc)(,uo) 14 (>0,

In this case, the fluctuations of eest low T are confined to €6
the vicinity of M, (see Fig. 8 and in 2D holds atx>0.165. In writing Eq.(C6), we as-

When the inequalitfC4) is not satisfied, the undersatu- sumed thaM —M, at T—O0; note that this may be incorrect
rated FM phase is expected to become unstable afflolvt ~ whenever the inequalityC4) is violated.
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