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Some aspects of the theory of magnets with competing double exchange
and superexchange interactions
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In colossal magnetoresistance materials, ferromagnetic double exchange presumably coexists with a direct
nearest-neighbor antiferromagnetic interaction. We construct a single-site mean-field theory that explicitly
takes into account the different nature of carrier-mediated ferromagnetism vs Heisenberg-like superexchange.
We find, in contrast to previous results in the literature, that the competition between these two exchange
interactions leads to ferromagnetic or antiferromagnetic order with incomplete saturation of the magnetization
~or sublattice magnetization!, rather than spin canting. The associated experimental implications are discussed.
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I. INTRODUCTION

Recently, there has been a renewed interest~motivated by
technological problems of microelectronics! in the properties
of colossal magnetoresistance~CMR! manganese oxides.1

The CMR behavior typically corresponds to an intermedi
doping range, when these materials are ferromagnetic.
latter property is generally attributed to a conducti
electron-mediated double exchange~DE! interaction.2 In ad-
dition, there exists evidence3–5 that suggests the presence
antiferromagnetic superexchange interactions of compar
scale. In this paper, we study the behavior of a class
magnet with competing double exchange and superexch
interactions, and show, in particular, that in an isotropic c
the spin canting~which was previously suggested6 to be a
generic outcome of such a competition! can be stabilized
only at very high fields and at very low temperatures.

Previous related calculations6 have been performed for
strongly anisotropic model in which the inter- and intra-lay
direct exchange constants have different signs.7 Here, we
assume that direct interactions have everywhere the s
~antiferromagnetic! sign and magnitude. This is viewed a
more appropriate for the La1-xCaxMnO3 perovskite family
away from thex50 endpoint, as well as for the layere
manganates such as La222xSr112xMn2O7. In these com-
pounds, pairs of stacked Mn-O planes form the bilaye
which are separated by poorly conducting layers of La(S
~see Ref. 8!. Since the lengths of the intralayer and interlay
bonds in a bilayer are roughly the same, the values of in
layer hopping coefficient and superexchange constant sh
be of the same order of magnitude as their intralayer co
terparts. The observed interlayer canting5 or canted
correlations,4 presumably caused by superexchange betw
the two layers of a bilayer complex, can be used to sugg
relatively large values of superexchange within the layers
well. In view of the considerable interest in these layer
PRB 580163-1829/98/58~13!/8617~10!/$15.00
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systems, we consider primarily the two-dimensional~2D!
lattice. By doing so, we expect to capture the basic magn
properties of the layered compounds, while avoiding
cumbersome quantitative treatment of bilayers. We also n
that our 2D results are qualitatively representative of
three-dimensional case as well.

We will see that the fact that the double exchang
superexchange competition occurs atall lattice bonds~i.e., in
the 3D case, for in-, as well as out-of-plane interactio!
leads to the enhancement of spin fluctuations. Lowest o
~i.e., Hartree–Fock like! treatments are insufficient in thi
case. Therefore, in the present paper we introduce a
approach to the problem.

We construct a single-site mean field theory which exp
itly takes into account the main feature of the present pr
lem, namely, the carrier kinetic energy origin of the doub
exchange ferromagnetism. We note that the mean fi
schemes previously reported in the literature6,9 essentially
use an effective Heisenberg-like ferromagnetic exchange
teraction to describe the double exchange. Such sche
would not adequately reflect the very different nature of
two competing interactions. It is of interest, then, to see h
the results are changed if a more proper treatment of
double exchange is carried out. We begin with the stand
Hamiltonian,6,10 corresponding to an infinite on-site Hund
rule coupling:

H52
t0

2 (
^ i , j &

cos
u i j

2
$ci

†cj1cj
†ci%1

JAF

S2 (
^ i , j &

SW i•SW j2
H

S(
i

Si
z .

~1!

Here, the first term is the kinetic energy of the carrie
~which are represented by the fermion operatorscj wherej is
the site index!. The second term corresponds to the neare
neighbor antiferromagnetic (JAF.0) exchange interaction
between the classical (S@1) core~localized! spinsSW i , and
8617 © 1998 The American Physical Society
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the last term is the Zeeman energy of these spins in
external fieldH. The double exchange interaction results
the modulation of carrier hopping coefficients by the fact
cos(uij /2), where cosu i j 5SW i•SW j /S2. Since in the presen
work we restrict ourselves to a single-site mean-field tre
ment, we omit the additional phase factors that would re
in Berry phase effects. We use units in which the bare h
ping coefficientt0 , \, kB , mB , and the lattice spacing are a
equal to unity.

Our mean-field framework is based on the exact solut
of the single site problem, which is outlined in the followin
section. Details of the derivation are relegated to Appen
A, whereas the implications for theT50 energetics are
briefly discussed in Appendix B. Sec. III is concerned w
the mean field treatment of different magnetic phases of
system, and the resultant mean field phase diagram is
scribed in Sec. IV. We conclude with a brief discussion
the experimental relevance of our findings.11

II. EXACT SOLUTION OF THE SINGLE-SITE PROBLEM

The random distribution of localized spins leads in Eq.~1!
to a highly disordered electronic hopping problem. O
mean-field treatment is based on evaluating the energy
dF of a fluctuation of a single spinSW 1 , embedded in an
effective medium with a uniform average value of cosuij . As
we will see below@Eqs.~8!, ~13!, and~19!#, such a fluctua-
tion gives rise to a difference between the values of hopp
coefficientb from the site of the fluctuating spinSW 1 to the
neighboring sites and the background hoppingt (tÞb); for
clarity these parameters12 are indicated schematically in Fig
1.

The quantitiesb and t depend, in a self-consistent fas
ion, on the changedFDE in the free energy, associated wi
the local change in hopping matrix elementst→b. Such a
local change, originating from a local spin fluctuation on t
site (0,0), gives rise to a perturbation,

V52
1

2
~b2t !$c~0,0!

† ~c~0,1!1c~1,0!

1c~0,21!1c~21,0!!1H. c.%, ~2!

FIG. 1. Single-spin fluctuation in the ferromagnetic phase. T
bold arrow represents the average magnetization, and the da
lines correspond to the hopping amplitudeb, which differs from the
background hopping valuet ~solid lines!.
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in the carrier kinetic energy. This perturbation shifts the e
ergy levels of individual carriers, thus resulting in a chan
in the total kinetic energy of the band. This kinetic ener
contribution todF, which can be evaluated following Refs
13–15~see Appendix A!, is given by

dFDE~b,t,T!5E f ~e!j~e!de1u~b2t !@w~z0!2w~2Dt !#,

~3!

where the spectral shift functionj(e) takes values betwee
21 and 1, and is given by

j~e!52
1

p
ArgH b21~ t22b2!eE Pn~h!dh

e2h

1p i~ t22b2!en~e!J , ~4!

the bound state energyz0,2Dt is the root of

11
t22b2

t2 H 211zE n~h!dh

z2h J 50, ~5!

n(e) is the density of states,

w~z!52T lnH 11expS m2z

T D J , f ~z!5
1

expS z2m

T D11

,

~6!

andm is the chemical potential. Although we will apply Eq
~3!–~5! only to the case of a 2D square lattice, they rem
valid for a cubic lattice in 3D, as well as in the 1D case. T
energy integrations are performed over the conduction b
width, 2Dt,e,h,Dt whereD is the dimensionality of the
system. It should be stressed that it is because of the loc
of the perturbation~2!, which represents a lattice analogue
an s-wave scattering problem, that the quantitydF can be
evaluatedexactly.13–16

The second term in Eq.~3! is a contribution of a bound
state that appears in the carrier spectrum forb.t ~when the
perturbation may be viewed as a ‘‘potential well’’!. In 2D,
the binding energy of this state vanishes exponentially17 as
b→t, whereas in 3D it has a threshold behavior. This bou
state is related to one that causes the formation of magn
polarons,18 but it should be distinguished from the true ma
netic polaron that is an extended object and cannot be tre
within a single-site approach.

In order to gain additional intuition about the meaning
Eqs. ~3!–~5!, it is useful to calculate the energy cost of
single-spin fluctuation in various phases atT50. This is dis-
cussed in Appendix B. This Appendix highlights the impo
tant differences between the double exchange and fam
Heisenberg direct exchange interactions.

For the purposes of the present work, the virtual crys
approximation, based on the parameters shown in Fig. 1
expected to be appropriate as long as the carrier conce
tion is not too small. This is because the quantities of inter
involve integration over carrier energies in the metal
phase. In order to extend this formulation beyond the sing
site mean-field scheme, we note that multisite spin fluct

e
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tions can also be treated as local perturbations following R
14. This in principle allows one to study systematically t
effects of correlations, by constructing an analogue of
impurity-concentration expansion. This procedure wo
also verify whether the virtual crystal approximation is
good starting point for studying other~e.g., transport! prop-
erties.

III. THE MEAN-FIELD-SCHEME

A. Ferromagnetic phase

In the ferromagnetic phase atT.0, the net energy cost o
a single-spin fluctuation is~in 2D) given by

dF15dFDE~b,t,T!14JAF^cosu12&22Hcosa1

24JAF^cosu12&121H^cosa1&1 . ~7!

Here,u12 is the angle between the directions of the fluctu
ing spinS1

W and any of the neighboring spins, denoted byS2
W

~we assume that spin fluctuations on different sites are
tistically independent!, anda1 is the angle betweenS1

W and
the direction of magnetization,MW ~see Fig. 1!. The angular
brackets,̂ •••& l , are used to denote the average values o
the Boltzmann probability distribution of spinSl

W , wl}exp
(2dFl /T). We then find that̂ cosu12&25Mcosa1, and19

b2[^cos2~u12/2!&25~11Mcosa1!/2,

t2[^b2&15~11M2!/2. ~8!

The magnetization has to be determined self-consistentl
M5^cosa1&1; generally, the latter equation has to be solv
numerically.

In the ferromagnetic and antiferromagnetic phases, i
useful to construct a reference framework with which
compare our results. We defineJe f f(M ) which represents an
effectiveM - dependent exchange constant for a Heisenb
like magnet. The appropriate exchange constant can be
duced by considering small spin fluctuations (ucosa2Mu
!1), which correspond to small fluctuations in the hoppi
matrix elements (ut2bu!t). A perturbation expansion o
Eq. ~3! then leads to

dFDE~b,t,T!'22
t2b

t E e f ~e!n~e!de52~ t2b!uE0u,

~9!

at leading order20 in T/t, whereE0 is the kinetic energy of
the carriers fort51. In the ferromagnetic state, using th
corresponding formula for a Heisenberg ferromag
@dF5(4JM2H)(cosa12M )#, we obtain

Je f f
FM~M !5JAF2

1

8
uE0uA 2

11M2
. ~10!

The second term in the above equation represents the
contribution. This term, which is contained in other me
field schemes,9,21 increases asM decreases. As a conse
quence, for moderately strong antiferromagnetic excha
interactions, when22
f.

n
d

-

a-

er

as
d

is

g-
e-

t

E

e

uE0u,8JAF,A2uE0u, ~11!

Je f f
FM(M ) changes sign asM varies from 0 to 1. This behav

ior has important consequences: it leads to a lack of sat
tion in the low temperature magnetization. Typical results
M (T) are plotted in Fig. 2 for these moderately strong e
change interactions. Here the solid line represents the
mean-field calculation@which makes use of Eqs.~3! and~4!#,
while the dashed line corresponds to the effective excha
approximation. The dotted line represents the behavior o
conventional Heisenberg magnet with the same value of
rie temperature, and a constant nearest-neighbor exch
integral.

The lack of saturation seen in Fig. 2 can be understood
follows. In the paramagnetic phase,M50 and, by virtue of
Eqs. ~10! and ~11!, the effective exchange constant has
negative~ferromagnetic! sign. As T decreases, the system
undergoes a Curie transition atTC'4uJe f f

FM(0)u/3. Decreas-
ing T further results in a decrease in the magnitude of s
fluctuations, i.e., in an increase ofM . The latter is opposed
by adecreasein uJe f f

FMu, leading to the softening of spin fluc
tuations. As a result, the effective exchange constant ‘‘s
adjusts’’ in such a way that it never becomes large in co
parison with T, and even at lowT the behavior of an
effective exchange magnet is similar to that of a conv
tional Heisenberg magnet in a ‘‘high-temperature’’ regime
T;TC;J. In this way, the nonvanishing thermal fluctu
tions do not allow the magnetization to reach its proper sa
ration value,M051. At zero field, the value of magnetiza
tion asT→0 is instead given by23

M05A~E0 /JAF!2/3221,1. ~12!

These self-consistent changes inuJe f f
FMu lead to inadequacies

of the effective exchange approximation at lowT. As may
be seen in Fig. 2, the behavior obtained in this approxima
differs significantly from that found using the full calculatio
of M (T). This difference is due to the fact that whenJe f f

FM

&T is small ~in comparison with the electronic energ
scales!, quadratic terms@in (t2b)/t] dominate the physics
The details are discussed in Appendix C. Within the effe
tive exchange approximation, strong fluctuations ofboth an-
gular coordinates of each spin persist at lowT. By contrast,

FIG. 2. Magnetization vs temperature in the ferromagne
phase atH50, x50.4, andJAF50.06. The solid, dashed, and do
ted lines correspond to the 2D DE– superexchange magnet, e
tive exchange approximation, and usual Heisenberg ferromag
respectively.
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the full calculation shows that the fluctuations of the po
angle freeze out, cosai→ M0. Independent fluctuations o
the azimuthal angles of the spins, which persist down toT
→0, appear to be an artifact of the single-site mean-fi
treatment. It is natural to expect that, at least in the class
case ofS@1, these azimuthal fluctuations also freeze o
~albeit at a lower temperature than the polar ones! resulting
in the formation of a multisublattice or spin-glass-like sta
with the net magnetization given approximately by Eq.~12!.

B. Antiferromagnetic phase

The Néel antiferromagnetic state~of the metallic phase!
can be treated similarly. We find̂cosu12&252mcosa1,
wherea1 is the angle formed by the spinSW 1 with its average
direction andm is sublattice magnetization. Eqs.~8! are re-
placed by

b25~12mcosa1!/2, t25~12m2!/2. ~13!

Instead of Eq.~10! we obtain

Je f f
AFM~m!5JAF2

1

8
uE0uA 2

12m2
. ~14!

It is easy to show that the Ne´el ordering arises forJAF

.225/2uE0u in zero field and atT,TN'4Je f f
AFM(0)/3. It al-

ways exhibits undersaturation of the sublattice magnet
tion: at T→0,

m→m05A12~E0 /JAF!2/32,1. ~15!

This undersaturation~which leads to a finite bandwidth! may
be viewed as consistent with the presumed metallic state

Numerical calculations yield the dependence ofm on T,
which is similar to M (T) in the ferromagnetic phase an
shows the same low-temperature features.

C. Canted phase

Our discussion thus far has not included the canted ph
first proposed by De Gennes.6 In our case, this is a two
sublattice ~checkerboard! magnetic phase; the sublattic
magnetizations have an equal magnitudem and form an
angle 2g with each other. In the present model, spin cant
requires the presence of a magnetic field to break the h
degeneracy that would otherwise occur. This degenerac
related to the fact that atH50, the energy of the system
depends solely on the values of the angles formed by
pairs of neighboring spins. All the neighbors of any spinSW 1
of sublattice I belong to sublattice II, and are parallel to ea
other atT50. Therefore, the energy of the system does
change as the spinSW 1 moves along any cone around the
common direction. In the context of single site mean fie
approaches, the same holds atT.0 for any cone around the
averagedirection of the sublattice II spins. Thus, the pro
ability distribution of the spinSW 1 will be axially symmetric
with respect to the direction of the magnetization of sub
tice II, with which the spinSW 1 will therefore be aligned on
average~rather than with sublattice I!. Thus, in the absenc
of perturbations~caused by next-nearest-neighbor exchan
anisotropy effects, quantum corrections, or small exter
r

d
al
t

a-

se

g
h
is

e

h
t

-

e,
al

fields! the canted state is destabilized, as a result of the
derlying degeneracy.24 Since it is site local,25 its effects will
persist as long as the energy scale of a perturbationper in-
dividual spinremains small in comparison with the chara
teristic energy,kBT, of the thermal motion of asinglespin.

To characterize the finite field canted state, we use the
non-perturbative expression~3!. The mean-field framework
of Eqs. ~7! and ~8! has to be modified to allow for a self
consistent determination of thetwo mean-field variables,m
and g. We now obtain two coupled mean field equation
which, as in the ferromagnetic phase, follow from the se
consistent definition of the sublattice magnetizationm. For
the component of̂SW 1& parallel to the magnetization of sub
lattice I, we obtain

2sin2g^sina1cosb1&11cos2g^cosa1&15m, ~16!

whereas the perpendicular component must vanish,

cos2g^sina1 cosb1&11sin2g^cosa1&150. ~17!

In writing Eqs. ~16! and ~17! we used a coordinate syste
with a polar axis parallel to the sublattice II magnetizatio
a1 andb1 are polar and azimuthal angles of the spinS1

W in
this frame, withb150 corresponding to the spinS1

W lying
within the plane containing the two sublattice magnetiz
tions.

For the net energy of a single-site fluctuation we no
obtain, instead of Eq.~7!,

dF15dFDE~b,t,T!14JAFmcosa124JAFm^cosa1&1

2H~2sing sina1 cosb11cosgcosa1!

1H~2sing^sina1 cosb1&11cosg^cosa1&1! ~18!

whereas the values of the hopping coefficients@see Fig. 1
and Eq.~2!# are given by

b25~11mcosa1!/2, t25~11m2cos2g!/2. ~19!

The low-T canted state is found to be stable forH.0 and
8JAF.uE0u1H.

We begin with the case of relatively large bandfillin
corresponding to the undersaturated ferromagnetic beha
at H50 @see Eq.~11! and Fig. 2#. The solutions26 of Eqs.
~16! and~17! for typical parameters are illustrated in Fig.
One can see that, asT→0 in the canted phase, the sublatti
magnetizationm approaches its proper saturation valuem
51. Note that the ferromagnetic (g50) solution to the
mean-field equations is present atH.0 as well. In Fig. 3,
the corresponding magnetization,MFM(T), is represented by
the dotted line. However, when the canted (g.0) solution
exists, it corresponds to a lower value of the free ener
This is obvious from the fact that the net magnetization
the canted stateMCM(T)[2]F/]H5mcosg ~dashed line in
Fig. 3! is larger thanMFM(T). The canted solution branche
from the ferromagnetic one at temperatureT1;H, when

4TM5H^sin2a1&1 ; ~20!

at this point the undersaturated ferromagnetic state un
goes a second-order spin-flip transition into the lo
temperature canted state.27 One can therefore conclude th
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undersaturation is representative of the generic lo
temperature behavior of a double exchange-superexcha
magnet.28

For smaller values of carrier concentration, atH.0 we
find the spin-flop phase29 of the undersaturated antiferroma
net, which evolves into the canted state via a smooth cr
over atT;H, as shown in Fig. 4. The low-temperature r
gion where the canting angleg rapidly increases withT
corresponds to the canted phase.

IV. MEAN-FIELD PHASE DIAGRAMS

Typical phase diagrams for the DE–superexchange m
net in ~a,c! zero and~b,d! nonzero field are presented in Fi
5. For t0 of the order of an eV, our choice of paramete
corresponds to reasonable values ofJAF&300 K. In zero
field ~a,c!, the solid line represents the phase boundary
tween paramagnetic~PM! and antiferromagnetic~AFM! or
ferromagnetic~FM! metallic phases. For the values of p
rameters used in Fig. 5~a!, the ordered phases are undersa
rated at lowT. For slightly smallerJAF we find a critical
value of bandfilling, x1 , which divides the saturated,x
.x1 , and undersaturated regimes@see Fig. 5~c!#. At low
temperatures and small concentrations, the undersatu

FIG. 3. The behavior of the sublattice~solid line! and net
~dashed line! magnetizations in the canted state atH50.01, x
50.4, andJAF50.06, in comparison with the magnetization of th
ferromagnetic state~dotted line!. The dashed-dotted line represen
the results for the canting angle,g.

FIG. 4. Mean-field results for the case of strong superexcha
JAF50.08, x50.3. The solid and dashed-dotted lines represent
result for the sublattice magnetizationm and canting angleg for
H50.01. The dotted line corresponds to the sublattice magne
tion mAFM of Néel AFM phase atH50.
-
ge

s-

g-

e-

-

ted

AFM state becomes thermodynamically unstable (]m/]x
,0), signalling either the onset of a more complicated s
arrangement or phase separation~see Appendix C!. The
dashed line in Figs. 5~a! and 5~c! corresponds to the antici
pated boundary of this region (]m/]x50). We note that the
possibility of phase separation in DE–superexchange
tems has been suggested both by analytical studies30 and
numerical simulations.31

Figures 5~b! and 5~d! show that in the presence of a ma
netic field the PM–FM transition is replaced by a smoo
crossover~dotted line!. The spin arrangement of the AFM
phase becomes noncollinear~flop phase!, and has the same
symmetry properties as that of the canted phase, which
comes stable at lowerT ~replacing theH50 undersaturated
FM and AFM phases!. The two are separated from the P
and FM region by a second-order phase transition aT
5T1(x), which is represented by the solid line. At suffi
ciently smallx the latter approaches theH50 Néel transi-
tion line. The thermodynamic instability line@not shown in
Figs. 5~b! and 5~d!# is only slightly affected byH.

V. DISCUSSION

We expect that our calculations are directly relevant to
quasi-2D layered materials La222xSr112xMn2O7. The exis-
tence of a strong superexchange interaction in this syste
suggested by~i! relatively high values of Ne´el temperatures
observed at thex51 endpoint,32 ~ii ! intra-layer antiferro-

e,
e

a-

FIG. 5. Phase diagrams of the DE–superexchange magne
JAF50.06 atH50 ~a! and H50.01 ~b!, and for JAF50.05 atH
50 ~c! andH50.01 ~d!, showing the ferromagnetic, antiferromag
netic ~flop phase atH.0), paramagnetic, and canted phases~FM,
AFM, PM, and CM, respectively!. The dashed line in~a! and ~c!
denotes the boundary of the thermodynamically unstable (dm/dx
,0) region, andx5x1 in ~c! and ~d! separates undersaturatedx
,x1) and saturated low-temperature regimes atH50. The behavior
of the system is symmetric with respect to quarter filling,x50.5.
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magnetic correlations present nearTC ~Ref. 3!, ~iii ! interlayer
~within the same bilayer! canting found at low temperatures5

~see also Ref. 24! and interlayer canted correlations4 present
aboveTC . The latter point is associated with the structure
the quasi-2D manganates, which was discussed in the In
duction.

The verification of the undersaturated behavior at lowT
remains an open question. It is not clear whether the ma
als La222xSr112xMn2O7, with x50.4, lie within the region
where the system exhibits undersaturated ferromagnetic
havior at lowT, or outside of this region~in the latter case,
we still expect thermal fluctuations to be stronger than i
Heisenberg magnet, due to the presense of superexcha!.
Some measurements of the absolute value of magnetizat33

in x50.4 samples indicate undersaturation,34,35 while others
do not.36

We suggest that magnetic properties of the samples
hibiting undersaturation should be studied in the high-fie
low-temperature regime ofT&H. Our results@see Eq.~20!#
indicate that the intralayer canted spin ordering should
stabilized in this region. Another important prediction of o
theory is the unusual dependence of the effective ferrom
netic exchange constant on magnetization and hence on
perature@Eq. ~10!#. While we did not study spin waves in th
undersaturated low-temperature phase, it is clear that in s
a situation the usual relationship between the low-T value of
spin stiffnessD0 and the Curie temperature (D0}TC) is no
longer valid. This might help explain the recent experimen
findings in perovskite manganates.37 We propose that the
magnetization dependence of the effective exchange con
~available through spin-wave measurements! should be stud-
ied in more detail in both 3D and 2D systems.

It should be noted that the presence of undersaturatio
ferromagnetic and antiferromagnetic phases may well sig
that in reality the system favours more complicated~e.g.,
spin-glass-like, cf. Ref. 36! spin ordering, that cannot be ad
dressed within a single-site mean-field theory. The fact t
there have been no observations of anintralayer spin canting
in the layered compounds atT@H is consistent with our
results.
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APPENDIX A: DERIVATION OF EQS. „3…–„5….

We begin by rewriting the local perturbation~2! as

V52~b2t !~a1
†a12a2

†a2! ~A1!

in terms of the fermion operators,
f
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a1,25
1

A2
c~0,0!6

1

2A2
~c~1,0!1c~0,1!1c~21,0!1c~0,21!!,

~A2!

which anticommute with each other. Perturbations of t
form can be treated exactly by following I. M. Lifshits
theory of local perturbations.13,14 Here we will use mainly
the Green’s functions~resolvent operators! approach of Refs.
14 and 16. We will, without loss of generality, consider t
2D case.

Perturbation~A1! results in a change of the net free e
ergy of the carriers, which can be evaluated as

dF5dV52T TrH lnF11expS m2Hvc2V

T D G
2 lnF11expS m2Hvc

T D G J
5E

2`

`

w~e!@ ñ tot~e!2n tot~e!#de. ~A3!

Here,w(e) is defined by Eq.~6!, ñ tot(e) is the total~for the
entire system! carrier density of states in the presence
perturbation~A1!, and

n tot~e!5Nn~e!5
4N

p2

1

2t1ueu
KS 2t2ueu

2t1ueu D , ~A4!

@whereK(x) is the complete elliptic integral andN is the
number of lattice sites# is the total density of states corre
sponding to the unperturbed virtual-crystal band Hamilton

Hvc52
t

2(
^ i , j &

~ci
†cj1cj

†ci !, ~A5!

with the spectrum,e(qW )52t(cosqx1cosqy). The perturbed
density of statesñ tot(e) may included-function peaks cor-
responding to the discrete levels which split off downwar
from the bottom of the band. As we shall see below, o
one discrete level may appear in the present problem,38 and
after integration by parts the free-energy change~A3! can be
rewritten13,16 in the form of Eq.~3! ~where the first term on
the r.h.s. accounts for the contribution of the continuous p
of the spectrum!. We note that Eq.~3! is an example of a
Krein trace formula. The quantity

j~e!52E
2`

e

„ñ tot~h!2n tot~h!…dh ~A6!

is called thespectral shift functionbecause of its relationship
to the perturbation-induced shifts of the energy levels in
case of a discrete~or discretized! unperturbed spectrum.13 It
can be evaluated as

j~e!5
1

p
Im Tr$ ln G~e2 i0 !2 ln G0~e2 i0 !%, ~A7!

where the operatorsG0(e)5(e•1̂2Hvc)
21 and

G~e!5„G0
21~e!2V…215„1̂2G0~e!V…21G0~e! ~A8!
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are the Green’s functions for the unperturbed and pertur
Hamiltonians, respectively, and 1ˆ is the identity operator.
Equation ~A7! yields dj/de52Im Tr$G(e2 i0)2G0(e
2 i0)%/p. In turn,

Tr~G2G0!5Tr$~ 1̂2G0V!21G0VG0%

5Tr$~ 1̂2G0V!21G0
2V%

5
d

de
Tr ln~ 1̂2G0V!

5
d

de
ln Det~ 1̂2G0V!, ~A9!

where we used the fact that the operators (1ˆ 2G0V)21 and
G0V commute with each other. Therefore,14,16

j~e!52
1

p
Arg Det$1̂2G0~e2 i0 !V%. ~A10!

Since, according to Eq.~A1!, the perturbationV is nothing
but the sum of two projection operators, it is convenient
evaluate the r.h.s. of Eq.~A10! in a basis which includes th
statesu1&, u2&, annihilated by the operatorsa1,2 @see Eq.
~A2!#. In this basis, the determinant reduces to that of a
32 matrix, and one obtains

j52
1

p
Arg$11~b2t !~ I 112I 22!2~b2t !2@Det~ I i j !

2p2 Det~Ci j !#1p i@~b2t !~C112C22!1~b2t !2

3~C12I 211C21I 122C11I 222C22I 11!#%. ~A11!

Here the quantitiesI i j and Ci j /p with i , j 51,2 denote, re-
spectively, the real and imaginary parts of the matrix e
ments^ i uG0(e2 i0)u j &. Explicitly, we find

C11~e!5
1

2
n~e!S 12

e

t D
2

,

C12~e!5C21~e!5
1

2
n~e!S 12

e2

t2 D ,

C22~e!5
1

2
n~e!S 11

e

t D
2

, I i j ~e!5E
22t

2t

P
Ci j ~h!dh

e2h
.

We then obtain39

Det~Ci j !50, Det~ I i j !52
1

t2
1

e

t2E22t

2t

P
n~h!dh

e2h
,

~A12!

etc., and finally, Eq.~A11! takes form of Eq.~4!. The latter
can be conveniently rewritten as

p cot$pj~e!%52
1

en~e!

b2

t22b2
2

1

n~e!
E Pn~h!dh

e2h
,

~A13!
ed

o

2

-

where the branch of arc cot should be selected in a w
which respects both the continuity ofj(e) ~Ref. 16! and the
fact thatj(e)[0 for b5t.

We note that the r.h.s. of the Eq.~A13! has the form
F(e)/n(e), diverging asn(e)→0. Therefore its possible val
ues below the bottom of the band are7`, corresponding
either to j(e)521 or to j(e)50. The case ofj(e)521
corresponds to the values ofe between the bottom of the
band and the bound state when the latter is present, while
e smaller than all the eigenvalues ofH ~continuous and dis-
crete alike! the spectral shift function vanishes,j(e)50. The
change between these two values, which corresponds to
bound state, can occur only ate5z0 , wherez0 satisfies the
equationF(z)50. The latter condition yields Eq.~5!. Al-
though it appears rather intuitive, this consideration of
bound-state problem can be substantiated by a direct ca
lation along the lines of Ref. 15.

Interestingly, in Ref. 13 the notion of a finite trace
certain operators in an infinte-dimensional Hilbert space@see
Eq. ~A3!# was essentially introduced for the first time. Mat
ematical studies of related issues were initiated by M.
Krein,16 and since then the Krein trace formulas remain
active research topic of functional analysis.

APPENDIX B: SATURATED PHASES AT T50

In this Appendix, we present some numerical and anal
cal results related to the phases which saturate at lowT ~i.e.,
the phases with values of magnetization or sublattice mag
tization approaching unity atT→0). This being the simples
application of Eqs.~3!–~5!, it provides insight into the mean
ing of these equations which are crucial for the present
per. The undersaturated phases at lowT will be considered in
the Appendix C.

We will assume that in the ground state, all the pairs
neighboring spins form the same angle 2g and that each spin
forms an angleg with the z axis ~thus,g50 corresponds to
the ferromagnetic phase, andg.0 – to the two-sublattice
canted state of De Gennes!. Then the energy of the system
T50 can be written as6

F ~0!/N52uE0ucosg12JAFcos2g2Hcosg, ~B1!

Here, E0 is the energy of electrons fort51. Let us now
consider a single-spin perturbation of the ground state co
sponding to the change of the polar angle value of a spinS1

W
from g to a. The energy difference between this configur
tion and the ground state is given by

dF ~0!~a!5dFDE@b~a!,t,0#14JAF@cos~a1g!2cos2g#

2H~cosa2cosg!, ~B2!

where dFDE@b(a),t,0# is given by Eqs.~3!–~5! with t
5cosg and b5cos$(a1g)/2%. By minimizing E(0) with re-
spect to cosg, we find6 that the saturated ferromagnetic pha
is stable atuE0u1H>8JAF . In this case one can use Eq.~9!
to obtain the value ofdF (0) for a!1:

dF ~0!~a!52~4Je f f
~0!2H !~12cosa!, ~B3!

where the effective exchange constant~cf. Sec. III! is given
by Je f f

(0)5JAF2uE0u/8. In the case of pure double exchang
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JAF50, and for sufficiently large carrier concentrationx
*0.1, the effective exchange approximation is in fact a
equate even for large values ofa. Numerically, the differ-
ence between Eqs.~B2! and ~B3! at a5p does not exceed
15–20%. This relative difference~which reflects the differ-
ent physics of the double exchange and Heisenberg
change! becomes more pronounced at largeJAF;uE0u/8 ~see
Fig. 6!. At smaller concentrations,x,0.27 in 2D, and at
sufficiently large values ofJAF , we find dF (0)(p),0 ~dot-
ted line in Fig. 6!. This means that the energy of the syste
can be lowered by flipping a single spin, and the ferrom
netic state becomes metastable.

For larger values ofJAF , corresponding toJAF.(uE0u
1H)/8, the canted state with

cosg5
uE0u1H

8JAF
~B4!

emerges atT50, H.0 ~see Sec. III regarding the latte
condition!. In this case, the energy of small single-spin p
turbations is quadratic inub2tu/t!1,

dF ~0!~a!'H S uE0u1
16HJAF

2

64JAF
2 2~ uE0u1H !2D

3cosg2E
22

m S E
22

2

P
n~h!dh

h2e D e2n~e!deJ
3~a2g!2 tan2g. ~B5!

Note that the effective exchange approximation, which
based on the first order@in (b2t)/t] perturbation theory re-
sult ~9!, is inapplicable. The typical results fordF (0)(a) in
the canted state are shown in Fig. 7~left panel!, where the
dashed line represents the contribution of the band~first!
term on the r.h.s. of Eq.~3!; one can see that the bound sta
noticeably lowers energies of fluctuations witha'2p2g.

The origins of instabilities of the canted state which a
pear in our single-site treatment are illustrated in the ri
panel of Fig. 7, where functionsdF (0)(a) at different
band fillingsx for JAF50.06, H50.01 are plotted. We se

FIG. 6. Single-spin perturbation energydF (0)(a) in the ferro-
magnetic state atT50 in zero field, forx50.4 andJAF50.04.
Solid line represents the exact result@see Eq.~B2!#, while the
dashed line corresponds to the effective exchange approxima
Eq. ~B3!. The dotted line represents the exact result fordF (0)(a) at
x50.15, JAF50.025.
-

x-

-

-

s

-
t

that as one lowers the bandfilling fromx50.4 to x
50.25, dF (0)(p2g) becomes negative, so that the total e
ergy can be lowered by flipping a single spin of sublattic
to the direction antiparallel to that of sublattice II spins, a
the canted state is metastable. As one further lowers con
tration to x50.15, the sign of]2dF (0)(a)/]a2 at a5g
changes, signalling the instability of the canted phase.
deed, since in 2D the principal-value integral on the r.h.s
Eq. ~B5! diverges ate→22, the prefactor in front of (a
2g)2 in Eq. ~B5! is negative at smallx. At H→0, this
coefficient changes sign atx'0.215 @cf. Appendix C, and
Eq.~C4!#.

APPENDIX C: THE UNDERSATURATED
FERROMAGNETIC STATE AT LOW T

In this Appendix, we present results on the breakdown
the effective exchange approximation and on the lo
temperature stability of the undersaturated ferromagnet.

At H50, the first term in the expansion ofdF1 @see Eq.
~7!# in powers ofdM5cosa12M,

dF1~M ,T!5A~M ,T!dM1B~M ,T!~dM !21 . . . ,
~C1!

is proportional to the effective exchange constant,A
54Je f f

FM(M ). If the temperature is not too low, this linea
term~which generates the effective exchange approximati!
provides a qualitatively reasonable approximation fordF1
~see Fig. 2!. Thus, the system behaves as a Heisenberg
romagnet with anM -dependent exchange constant. As e
plained in Sec. III, for sufficiently large values ofJAF @see
Eq. ~11!#, Je f f

FM decreases with decreasingT so that
uJe f f

FM(M (T))u&T. Within the effective exchange approxima
tion, M02M (T)}T at T→0.

The effective exchange approximation, however, bre
down at lowT, when the second term on the r.h.s. of E
~C1! becomes dominant. This situation~which is depicted in
Fig. 8! is due to the fact that the coefficientB,

B~M ,T!'
M2

4t3H uE0u2E
22

m0
e2J0~e!n0~e!deJ ~C2!

n,

FIG. 7. The functiondF (0)(a) in the canted state atT50. The
left panel corresponds tox50.4, JAF50.08, H50.01. The dashed
line represents the band contribution. In the right panel,dF (0)(a) is
plotted for JAF50.06 andH50.01 atx50.4 ~solid line!, x50.25
~dashed line! andx50.15 ~dotted line!.
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does not vanish atM→M0 . In Eq. ~C2!, t is given by Eq
~8!, and

J0~e!5E
22

2

P
n0~e!

h2e
dh, ~C3!

m0 and n0(e) are the chemical potential and the density
states in the unrenormalized (t51) band.

At M02M (T)!AT, the linear indM term in Eq.~C1!
can be omitted altogether. We then find thatdM50 corre-
sponds to an energy minimum if

uE0u.E
22

m0
e2J0~e!n0~e!de. ~C4!

In this case, the fluctuations of cosa at low T are confined to
the vicinity of M0 ~see Fig. 8!.

When the inequality~C4! is not satisfied, the undersa
rated FM phase is expected to become unstable at lowT. It

FIG. 8. The energy costdF1 of a single-site fluctuation in th
ferromagnetic case at low-T ~see Appendix C!. The pronounce
minimum of dV at the average value of the polar anglea repre-
sents a sharp difference from the effective exchange approxim
~dashed line! and causes the fluctuations ofa ~but not of the azi
muthal angle,b) to freeze out at lowT. The plot corresponds
H50, x50.4, T50.002, andJAF50.06.
.

-

h

e

f

is easy to see that in any dimensionalityD.1, the inequality
~C4! is violated atx→0. This follows from the fact that,
whene approaches the bottom of the band,

2eJ0~e!512E
2D

D

P
hn0~h!

h2e
dh.1. ~C5!

On the other hand, in 2D or in higher dimensions, the
equality~C4! is always satisfied for sufficiently largex. It is
easy to see that the ratio of the l.h.s. of Eq.~C4! to the r.h.s.
increases as the maximum ofn0(e) at e50 becomes more
pronounced. Let us consider the extreme case of a cons
density of states,n0(e)[1/4, and calculate both sides of Eq
~C4! at x50.5. We find:

uE0u5
1

2
, E

22

0

e2J0~e!n0~e!de5
1

2S 2

3
ln21

1

3D ,

so that the condition~C4! indeed is valid. Numerical calcu-
lations show that in 2D, inequality~C4! holds for x.xc
'0.215. We anticipate that the value ofxc in 3D is lower.
We also expect that, similarly to the ferromagnetic or can
state atT50 ~see Appendix B!, the undersaturated FM stat
at low T may become metastable at values ofx slightly
abovexc .

We note that the similar stability conditions for the an
ferromagnetic and canted~at smallH) phases also take the
form of Eq. ~C4!. These should be distinguished from th
weaker thermodynamic stability conditiondm/dx.0 men-
tioned in Sec. IV. The latter condition~in the antiferromag-
netic, canted, and undersaturated ferromagnetic phase
H,T→0) can be rewritten as

d

dx
~m0t !5

1

8JAF

d

dx
~m0uE0u!5

1

8JAF
H uE0u
n0~m0!

2m0
2J .0,

~C6!

and in 2D holds atx.0.165. In writing Eq.~C6!, we as-
sumed thatM→M0 at T→0; note that this may be incorrec
whenever the inequality~C4! is violated.
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