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Magnon modes and magnon-vortex scattering in two-dimensional easy-plane ferromagnets
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We calculate the magnon modes in the presence of a vortex on a circular system, combining analytical
calculations in the continuum limit with a numerical diagonalization of the discrete system. The magnon modes
are expressed by tiematrix for magnon-vortex scattering, as a function of the parameters and the size of the
system and for different boundary conditions. Certain quasilocal translational modes are identified with the
frequencies which appear in the traject&@t) of the vortex center in recent molecular dynamics simulations
of the full many-spin model. Using these quasilocal modes we calculate the two parameters of a third-order
equation of motion foDZ(t). This equation was recently derived by a collective variable theory and describes
very well the trajectories observed in the simulations. Both parameters, the vortex mass and the factor in front

of )2 depend strongly on the boundary conditiof$0163-182@08)07937-3

[. INTRODUCTION magnon interaction is the change of the magnon density of
states, which affects strongly the soliton density in thermal
Two-dimensional2D) magnets have been intensively in- equilibrium® For 2D magnets the vortex density can be ob-
vestigated due to different reasons: There are several classesned from the correlation length by a renormalization group
of quasi-2D materials for which the magnetic interactionsapproach,® therefore the vortex-magnon interaction is not
within planes of magnetic ions are typically three to six or-so important for the density. In principle, it can be important
ders of magnitude larger than the interactions between thfor the damping force which acts on a vort@x soliton in
planes. These classes include layered magnety., a near-equilibrium magnon gasOn the other hand, the
Rb,CrCl,), graphite intercalated compounds.g., CoCJ),  damping force for the 2D case can be obtained by general
magnetic lipid layerge.g., manganese steanat@nd highT,  hydrodynamic theories for the relaxation processes in
superconductors. For theoreticians 2D magnets %i¥h or magnets?
easy-plane symmetry are particularly interesting due to the The most important effect of the vortex-magnon interac-
existence of vortices, which have nontrivial properties fromtion seems to be that for a finite system certain magnon
the viewpoint of certain homotopical groups, see Refs. 1-3modes are excited due to the vortex motion, and vice versa.
There are two types of vortices: In-plaié®) ones with  Such modes were obtained in recent papjetdby a numeri-
all spins lying in the easy plane and out-of-plai@P) ones  cal diagonalization for relatively small, circular, discrete sys-
having nonzero spin components orthogonal to the eastems. A calculation in the continuum limit was presented for
plane. Both types have a;-topological charge or vorticity the antiferromagnetic cas2 Analytical investigations were
gq=*1,+2,..., which determines the directions of the spinsdone for planar vortices in antiferromagriétsand
in the easy plane far away from the vortex center. The ORerromagnets® These articles demonstrate nontrivial proper-
vortices have an additionat,-topological chargéPontrya- ties of the eigenmodes, e.g., the presence of quasifocalr
gin invariant, see Ref.)3=—1qp, wherep is integerp is  truly local®> modes. Moreover, the relevance of these modes
denoted polarization because its sign determines to whicfor the vortex dynamics was shown, in particular an IP-OP
side of the easy plane the spins point in the vortex centetransition was predictéd!? and an effective vortex mass
Therefore the IP vortices can be considered as haping was defined and calculated using the above méegw-
=0. For Q#0 there is a gyrocoupling force, or gyroforce, ever, for OP vortices all this was based on the numerical
which is formally equivalent to the Lorentz forée. diagonalization of small systems with fixeDirichlet)
Besides the vortices, which are strongly nonlinear excitaboundary condition$BC's).
tions, there are also magnons. The dynamic properties of 2D This article deals with a more general theory of vortex-
easy-plane magnets can be described by a phenomenologitahgnon coupling for arbitrarily large systems with circular
theory which assumes two ideal gases for the vortices ansymmetry and general boundary conditions. The method
magnons. The vortex-magnon interaction naturally is the consists of a natural combination of analytical calculations in
next question which arises. In particular, one would like tothe continuum limit with numerical diagonalization of dis-
know how the dynamics of the vortices is affected by thiscrete systems. The main issue is the calculation of the scat-
interaction. tering matrix for vortex-magnon collisiongFor antiferro-
For 1D magnets the soliton-magnon interaction is nearlynagnets this matrix was calculated by a different mettpd.
reflectionless. In this case the main effect of the solitonUsing these data general formulas for the eigenfrequencies
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are obtained, as a function of the parameters and size of theherer and y are polar coordinates angl, is an arbitrary
system, and for different boundary conditions. constant. The functiod, is the solution of a nonlinear ordi-
An important point is a link with a recent collective vari- nary differential equation which cannot be solved
able theory’ in which an equation of motion was derived analytically>? Numerical integration, however, shows a sur-
which describes very well the vortex trajectories observed irprisingly good agreement with the data obtained from the
computer simulations. This equation is third order in time,numerical analysis of the full discrete modd), even for
and is a generalization of the Thiele equatfolf which is  r,=1.5a, (\=0.9), Ref. 13. This means that at least con-

first order in time. Using the scattering data the parameters Qferning static properties strong inequalities suctag¥ m|
the third-order equation of motion can be calculated, and<1 can be replaced by usual ones. As will be seen, the same

agree very well with those obtained from simulatidfs. is correct for some dynamical properties, t@g.fulfills the
boundary conditions co&—p for r—0 and8y— /2 for r
ll. THE MODEL AND ELEMENTARY EXCITATIONS —o0, g andp are topological charges of vorticity and polar-

We consider the classical 2D model of a Heisenberg ferlzatlon‘ In the following OP vortices wit=1 will be con-

romagnet(FM) with the Hamiltonian sidered; for definiteness we et 1.

. .. L IIl. NORMAL MODES ON THE VORTEX:
A=-J2 ) [S:S:—(1-M)SS; 1 D CONTINUUM APPROACH
(n,n’

Here J>0 is the exchange integral and<0.<1 describes We consider small deviations from the static vortex solu-

. 2 . tions, i.e.,
easy-plane anisotropy. The spi@sre classical vectors on a
square lattice with the lattice constamy. n,n’ denote 6=0o(r)+9, G=qx+(sin 6 ‘u. 7
nearest-neighbor lattice sites. Our main interest lies in the o o ) o
small anisotropy case which corresponds toxi<1. Substituting this in Eqs(2) and(3) and linearizing ind and

A continuum model for FM’s can be derived from H4) ~ # 9ives the following set of coupled partial differential equa-
in the usual way defining the unit vector of magnetization ad!Ons:
a function of continuous variables and t, i.e., m(r,t)
=§ﬁ(t)/S. The dynamical equations fon have the form of [—V>2<+V1(x)]19+
the well-known Landau-Lifshitz equation, see Refs. 1, 2. In
usual angular variabldsn,+im,=sin § exp{¢), m,= cos ]

2q cos by du r, ou

2 o ca ®

: 2q cos by 99 r, 09
they can be written as [—V2+V,(x)]u— 29995% . 0 5: + E" rE 9)
) 1 sin 6 d¢ i )
V26—sin 0 cosb| (V¢p)°— —|=+———, (2) wherex=r/r, andV,=r,V. The additional factor (sii) *
My cr, dt in Eq. (7) was introduced for convenience, because it leads to
) equations that are symmetric ih and u with Schralinger-
V(sir? 6V )= — Sin 6 ‘9_‘9 3) type differential operators in front. The “potentiald’,(x),
cr, oat’ V,(x) have the same form as for the antiferromadriet,
wherer, andc are the characteristic length scale and mag- 2 q d6,]?
non speed, respectively. For the Hamiltonidn we have V= X7—1 cos ¥, sz[;z—l 005260—[5} ,
a, (10
r,=—= c=2JSg\1—A\, (4)

2 1-\’ but the dynamical parts differ strongly.

o In order to solve Eqs(8), (9) the following ansatz ford
where we sefi=1. Note that the Eq92), (3) arise in the and u is appropriate:
long-wave approximation a|Vm|<1) not only for the

model we are considering here, but for a whole set of dis- tee

crete models, for example, FM’s on different kinds of lattices 9=2, > {[f,+if/]lexpimy+iw,t)+c.c},

and FM’s with additional single-ion anisotropy. Merely the nome=e

expressions forc and r, change. For the homogeneous (1D
ground statgall spins are parallel and confined to the easy .
plane the 2D model has well-known magnon excitations _ g Texn(imy + i 1)+ c.c
with the gapless dispersion law H ; m:Z—oo {gatigolexpimyFiwqt)+e.cy.
(12
w=ck(1+k?r?)12 5 . ;
a=(n,m) is a full set of numbers labeling the magnon
wherek=|k| andk is the magnon wave vector. eigenstates. Substituting this ansatz gives two uncoupled sets
Other well-known excitations are the OP vortices, de-Of two equations for the pairs of functioné’(g") on the one
scribed by the formulas side and {”,g’) on the other side. However, the equations

for (f”,9") can be obtained from the corresponding equa-
0=0q(r), G=qx+ o, (6) tions for (f’',g") simply by replacingm— —m and o—
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—w. Thus, among the four functiorfs, f”, g’, andg” only
two are independent. Therefore, instead of Ef$),(12) we
can use the simplified ansatz

+ oo

9=, 2 f(r)cogmy+ w t+ 8y), (13)
p=2 2 gur)sinmy+o,t+dy), (14

with arbitrary phasess,,. For the functionsf and g (the
index « is omitted in the following we then finally obtain
the following two differential equations:

d> 1d m? v _[wr, 2gmcos 6,
d@ xdx x2 Y | ¢ X2 9
(195
d2+1 d m? v.ae wr, 2gqm cos b,
o xdx x2 297 ¢ X2
(16)

f and g cannot be determined analytically from Ed45),
(16). The “potentials” V,(x) andV,(x) in these equations

are not small, and the use of the Born approximation looks

inadequate; for IP vortices and=0,+1 this was already
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kr
g= C.—2%
%: ™ J1+K2r2
The J,, are Bessel functiond and w are connected by the
dispersion law(5), and C,, and §,, are arbitrary constants.
For a finite circular system with radilsand general bound-
ary conditions

Jm(kr)cogmy+ wt+8,,). (18

au+br

d+b o =0, (19
av+ rv? r:L_ ’ ( )

2 -
or r=_L
with arbitrary constants andb; the values of the frequen-
ciesw are determined by the roots of linear combinations of
Bessel functions and its derivatives. Note tathtfrequencies

for the system without a vortex have d.ldependence with
respect to the system size. For free boundary conditions, i.e.,
a=0 in Eq. (19), there is a Goldstone mod&M) with o

=0 due to the rotational symmetry in spin space of the
model. Fora# 0 this symmetry is obviously broken.

In the presence of a vortex, one can use the approximate
formula f~kr,g/(1+k?r2)¥2 for large distances>r, and
then the EVRA(15), (16) reduces to the form of a SEVP, too.
The solutions have the same form as E@<), (18); one
only has to replace

In(KD) = I (KE) + o (K) Y (KT).© (20)

mentioned in Ref. 15. Only the asymptotic behavior can béiere theYr are Neumann functions. The quantivy,(k)

calculated. For —0 we obtaing, f ~r!9*™ which describes
the presence of a “hole” in the function8, u at the vortex
core for large values afn (see Sec. 1. Only the casém|

determines the intensity of magnon scattering due to the
presence of the vortex. In usual scattering theory for 2D
Schralinger equations th8 matrix S,,(k) can be represented

=1 can be considered in a long-wave approximation, sefS

below, Egs.(22)—(27).

For the IP vortex, where ca%, is zero, the modes corre-
sponding to+|m| are degenerate. As a change of sign in the

1—ioy(K)

Sm(k)= THion (k) (21)

numberm can also be interpreted as a change of the sense qhe values ofo,,(k) are determined by the shape of the

rotation of the eigenmodéchange of sign in the eigenfre-

solution near the vortex core, practicallyrdt ,<3---4. Due

quencyw), physically we have the situation of two indepen- {g the structure of the continuum equatidas), (16), o (k)
dent oscillators rotating clockwise and counterclockwisemst be some universal function gf= kr,, independent of
with the same frequencihich can also be combined to the concrete values of the magnetic coupling constants, the

give two linear oscillators in independent directipns
For the OP vortex, however, with c@s+0, this degen-

system size or the applied boundary conditions.
on(K) could be calculated directly by solving the set of

eracy is removed due to the presence of the term withyquationg15), (16) using a shooting procedure as described
2qm cosé,/r?. Therefore the two senses of rotations corre-in Ref. 13 for the case of the antiferromagnet. The shooting
sponding to positive and negative frequencies are not equivgsarameter is the free constant which appears in the general
lent anymore. The presence of this term is also responsiblgg|ytion of the set of two coupled Sclaiager-like EVP's. In

for the fact that the Eqs(15) and (16) are only invariant

this article we used another approach and extracted the scat-

under the combined conjugation of both topological charge§ermg data from the eigenfrequencies we found numeri-

(q,p)—(—q,—p). The productgp is proportional to the

magnitude of the so-called gyrovector, which acts on the

vortex as gself-inducedl magnetic field in the direction for
a charged particle. Therefore, physically, far|=1 the re-

cally for the discrete 2D system in Sec. IV.

In the next section the general propertiesrgi k) will be
established for differen, and characteristic features of the
normal modes will be discussed. Here we consider only the

moval of thex|m| degeneracy in the OP case can be undergase|m|=1, for which theS matrix in the long-wave ap-

stood as the effect of a gyroscopic force.

proximation can be calculated analytically.

In order to describe the magnon scattering due to the vor- Thjs can be done by using the fact that for 0 (o=0)
tex, we note that without the vortex the eigenvalue problemynq .« a nontrivial solution of Eqs(15), (16) is known,

(EVP), Egs.(8), (9) can be reduced to a usual Sotirmer
EVP (SEVP with the general solution

w=2> Cpdm(kr)sinimy+ wt+8.,), (17)

and by applying a special perturbation theory. This solution
readsfo=d@fy/dx, go= —sin 6,/x, and corresponds to a vor-
tex displacementtranslational Goldstone moge

In order to construct the asymptotics of such a solution for
a small but finite frequency, we make the ansatz
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f=(dOy/dx)[1+ a(x)], g=—(sin 6y/x)[1+ B(X)], ary conditions. Static vortex solutions were obtained using a
(220  relaxation procedure similar to that described in Ref. 12, or,
in slightly more detail, in Ref. 20.

One problem with the diagonalization of 2D systems is
that the number of sites in the system and therefore the di-
mension of the matrix to diagonalize grows very rapidly with
the linear size of the system. Already for a rather small sys-
tem with radiusL=20a, this matrix has dimension 2528

where a(x),8(x) must be proportional ta. Inserting this
ansatz into the set of Eg¢l5), (16), multiplying Eq. (16)
with go and Eq.(15) with fy, and adding the results, one

obtains the equation
sin 6, " wr,
[ B,( X] =2—(cosbp)’. (23)  x2528. If we use a conventional numerical method which
needs to store the whole matrix in the memory of the com-
Here the prime denoted/dx, and small terms such asa,  puter, this is already more or less the size limit for matrices
w3 were omitted. The formal solution of this equation can beyhich can practically be diagonalized. In order to go further,

2
) ta'(6)°

written as we applied a special method which takes advantage of the
« structure and sparseness of the matrix. Details are described
B(X)=pB(0)— f a' (X)(x64/sin 6,)%dx in the Appendix. Using this method we calculated the lowest
0

eigenvalues and eigenvectors for systems up /i,=100
X corresponding to a matrix with dimensions 6285&2856.
—(wrvlc)f [x/coZ(6y/2)]dx. (24 The eigenvalue spectrum we obtained for fixed boundary
0 conditions is plotted in Fig. 1 as a function of the anisotropy
It is easy to see that the last term is divergentder0, while ~ parameteix for different values of the angular momentum
the integral witha' (x) is convergent due to the presence of quantum numbefm|. For comparison, we have also calcu-
0' (x)~exp(—Xx). Thus, far from the vortex core we simply lated the eigenvalues for a system linearized around the fer-

have romagnetic ground state of the modgee., without a vortex
. ) being present in the systenThese data are the dashed lines
B(X)=—(wr,/c)x"=—kr X, 29 in Fig. 1.A.~0.70 is the critical value of anisotropy which
valid in the region *x<(1/kr,)*2 g(r) then reads separates the different regimes of stability of IP and OP vor-

tices. As can easily be seen, the mode which is responsible
r, r for this transition is them=0 mode(the lowest branch in
g(r)zT—krv(r—>. (260 Fig. 1), which becomes soft at.. Mainly the m=0 and
’ |m|=1 modes are sensitive to the IP-OP transition. The ei-
On the other hand, in the regiop<r<(r,/k)"* the argu-  genvalues abovi, are split where for fixed boundary con-
ments of the Bessel functions i20) are small: kr  ditions the lower branch corresponds to negativand the
<(kr,)"><1. Using the asymptoticd;(kr)=kr/2, Y1(kr)  upper branch to positiven.

= —2/mkr, one can rewrite Eq26) in the form For A<\., only eigenmodes witodd |m| are twofold
degenerate, as predicted in the continuum theory.even

g(r)zcons{ ﬁ+ kI, ( _ i)] |m| the expected degeneracy is slightly removed. This is a

2 4 wkr discreteness effect, due to the fourfold symmetry of the un-
akr derlying square lattice: eigenvectors with ejen tend on

~J,(kr)+ 2y, (kr), (27)  the one hand to align with a coordinate system parallel to the

4 symmetry axes of the underlying lattice, and on the other

which gives us the long-wave approximation of the scatterhand with a coordinate system parallel to the lattice diago-
ing amplitude:o~,— * wkr /4. This is in good agreement nals. The latter eigenmodes oscillate with a slightly higher

with the numerical data as we will see in the next section. réguency. _ .
The classification of the eigenvalues according to values

of |[m| was done by expanding the eigenvectors in a Fourier
series similar to Egs.(13), (14) (excluding the time-
dependent part For A=0.9 some of the radial profiles of

A numerical diagonalization of the same model we areeigenvectors obtained this way are plotted in Fig. 2. The
considering here was also already performed by Wysin andumerical computation always gives a complex eigenvector.
Volkel.*? These authors found, for example, the splitting of For odd|m|, the real and imaginary radial profiles coincide
them+0 modes for OP vortices, as discussed above, and theith a high numerical accuracy. For evpn|, however, as a
lack of such a splitting for IP vortices. For a detailed descrip-consequence of the discreteness effect already described
tion of the eigenvalues and eigenfunctions of Et) we  above, the radial eigenfunctions of the real and imaginary
therefore refer to their paper. For the rest of this section wegpart differ slightly, especially near the center of the vortex.
relate some points which were not discussed in Ref. 12 intFigure 2 only shows a mean value in these cagdso, for
cluding a short description of discreteness effects. Our maigven|m|, the sense of rotation of the eigenmode can only
interest however, lies in the scattering of magnons due to thgpproximately be determined: modes in the continuum
presence of a vortex. theory which belong to positive and negatiwveintermix in

We consider a circular system of radiuson a square the discrete system for evgm|. This second effect is more
lattice with either fixed Dirichlet) or free(Neumanibound-  pronounced for larggm| and larger system sizes. As a con-

IV. NUMERICAL DIAGONALIZATION AND
SCATTERING DATA CALCULATION
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FIG. 1. Eigenvalue spectrum as a function of the anisotropy parameied the “quantum number of angular momentum’calculated
for a circular system of radius= 20 with fixed boundary conditions. The dashed lines are eigenvalues with no vortex in the system.

sequence, these eigenmodes are not in the separated formWwg start our discussion for the modes with|>1 andm
Egs.(13) and (14). =0. The translational mode$ng|=1) will be considered in
The main point in our approach is to calculate the scatterthe next section.
ing matrixSi,(k) and to use its values for the investigation of  For |m|>1 and fixed BClb=0 in Eq. (19)], taking into
general properties of the magnon modes in the presence gtcounto,,,<0, it can easily be seen that E9) has no
the vortex. For the extraction of th&,(k) dependence on gojution in the regionkL<1 where J(z)~(z/2)™ and
the basis of Eqs(19), (20) we only need values of eigenfre- y (z)~ —(2/z)™ . The nth root can be written akL
quencies for one boundary condition for different values of—z  withy,. <z, <jmn. Herey,,, andj, , are thenth
the system size. Concretely, we used the fixed[BE0 in  zeros ofY,,(z) andJ,(z), respectively. Becausg,, and
Eq. (19)] leading to the simple formula Ymn are smaller thanr(n-+m)/2 for largen or m, the low-
lying modes have the valuds, ,,=maxn,m)/L. This means
Im(kiL) (28) on<<1 forr,/L<1, hence the eigenfrequencies can approxi-
Ym(kiL) mately be described by the zerosbf(z) (which have ap-
proximately the same values as for the system without vor-
tex). This can also be observed very clearly in Fig. 1.
S For the cas@a~Db in the BC(19) the same holds because
of the presence of the small parameltey, in the term with
the derivatives. Foa=0 (Neumann B, however, the situ-
ation changes. First of all, the formula fky ,, can be pre-
sented in the fornk, =], /L wherej,  is thenth zero of
J/(2). More importantly, a new root of Eq29) appears,
with k=ko,<1/L corresponding to the lowest mode with
|m|>1. In order to show this we use again the asymptotics of
Jn(2) and Y(z) for z<1. Applying the formulaoc,=
—Aq(kr,)¢, one easily obtains

om(k)=—

with k;=k;(w;) according to the dispersion la(®).

We calculated the scattering data for four different value
of A\, namely,\ =0.80, 0.85, 0.90, and 0.98, and for different
system sizes up tb/ay;=100. These data are presented in
Fig. 3 as a function ofk=kr,. We note that the points
on(x) fit well to one curve for different. and\, at least for
small values ofkay. (Strictly speaking, the inequalitia,
<1 should be satisfied, but even foay~ 0.4 the discrepan-
cies among different values afare negligible for the mainly
interesting cas¢m|=1.)

For the general boundary conditiof&9) the frequency
spectrum is determined by the dimensionless equation

a[Jn(kL) + op(kr,)Ym(kL) 1+ kr,b[ 3/ (kL) A

p/2m p 1
+om(kr,) Y, (kL)]=0. (29) ruko,m=(7) (T) P=T"aom L (30
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FIG. 2. Radial part of eigenfunctions for the lowest eigenvalues=a0.9 using fixed boundary conditions. Solid and dashed lines
correspond to eigenfunctions with positieeand negativem, respectively.

The corresponding frequenayym~Cky, decreases faster construction of equations of motion for the vortex dynamics.
than 1L for L— . From Fig. 3 one can see that the scattering parameter for
The eigenmodes witm=0 can be described in the same |m|=1 have a linear dependenee. ;(k)=FA.kr,. The
way as for|m[>1. Only the valuek,o=(1/L)jon Or kno  long-wave approximatiof27) givesA, = (/4), which is in
=(1L)jo, are present in this case, akgy~1/L for general good agreement with Fig. 3. Using the asymptotits
boundary conditions. The only exception is the lowest mode=z/2, Y~ —2/7z for z<1, we get for the frequency of the
for Neumann BC. For this mode the analysis of the asymptowest translational mode,= *+cr, /L2 where the positive
totics of cylindrical functions gives exactty=0. This value  sijgn corresponds to Neumann and the negative sign to Di-
corresponds to the Goldstone mode due to the presence ofighlet boundary conditions, respectively. Usingr,

rotational symmetry in spin space which is still exact for the— 323s,/\ and replacing/\— 1, which is natural in the con-

finite system. tinuous small anisotropy approximation, we obtaig=
2
V. TRANSLATIONAL MODES AND COLLECTIVE iJSE.g/L Co o . .
This analytical result is in agreement with the eigenvalue
VARIABLE APPROACH . . . .
data obtained numerically. However, in the discrete system,
This section deals with the analysis of the translationakwy does actually not tend to zero for—o but to a finite
modes|m|=1 and the application of their properties for the constantw, . Using the collective variable approach this con-
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FIG. 3. Scattering data for different values »of(C0=0.80, A =0.85, +=0.90, ¢ =0.98 and different system sizes in the ranige

=15-100.

stant can easily be understood as a pinning effect as wehich, apart from the constant part, agrees with the depen-
would like to show now. It is known that the dynamics of the dency we have found above. In order to calculgiérom the
OP vortex can be described in lowest approximation by theaumerical eigenvalue data one can use the fact that Dirichlet
boundary conditions generate an image of the same vorticity
while Neumann boundary conditions generate an image of
opposite vorticity. Therefore from E(33) two equations

so-called Thiele equatidf®®

—GxX=F.

(31)

HereG is the gyrovectoiG=(2wqpYa2)z, wherez is the

unit vector along the hardzj axis, X the position of the

follow:

vortex center, and the force acting on the vortex. In the

case where the vortex is only slightly displaced from the
center of the system, Thiele’s equation just describes the
dynamics of the lowest translational mode. There are two
types of forces acting on the vortex. The first one is due to an

image vortex which resides at the positioh?(X?)X, X

= |>?|, and the second one is due to the pinning potential o

the underlying lattice. Putting both together we obtain

—GXX=—

wo=

L2

2m3SqagX
L2—X?

99JS8&  kyag

27S

>

—kpX,

(32

(33

JSg  kyag
L2 2%S

W0 Dirichlet™ —

JSg  kyag
L2

W0 Neumanfi-

(34)

Adding them leads to the following formula fas, which is

independent of the concrete size of the system:

2
_ kpaO _ o Dirichlet™ ®W0,Neumann

wa

27S

(35

Assuming a pinning potential of the forra [ cos(2mx/ay)

whereq; is the vorticity of the image vortex. We have as- +cos(2rylag)+2]/2, w, is connected to the pinning energy
sumed that the pinning potential is harmonic in lowest ap£, by the formula
proximation leading to a linear force with spring constant
Kp. In the limit X—0, Eq. (32) has the solutionX,(t)
=X COSwot, Xz(t):X Sin wot with

_Slwpl

P

(36)

We have evaluated Eqé&5) and(36) for some values of,
see Table I. Naturally, the pinning energy decreases with
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TABLE I. Pinning frequency and energy in dependence of the L B I
anisotropy paramtex. [

10 ]
Y |wpl/dS E /() Edrec (3P : :
0.80 0.0672 0.0214 0.0233 5F .
0.85 0.0181 5.7810°% 5.87x10°3 i 1
0.90 1.88¢10°3 5.98<10°* 6.05x< 104 of 1
0.98 8.0%10°° 2.57x10°° 3.85x10°° |

5[ ]

decreasing anisotropy because the size of the OP structure
increases strongly, making discreteness effects less and less i ]
important. 101 7
The pinning energy can also be measured directly, com- i
paring the energy of static vortices centered on different lat- b b L L L
tice coordinates. These numbers, Iabel@ﬂeCt in Table I, s 0 5 10
compare very well witE, due to formula(36). FIG. 4. Trajectory of a vortex obtained by numerically integrat-
Next, we discuss the higher modes obeying [me= 1 ing the Landau Lifshitz equation in time. The simulation was per-
symmetry. Due to the general features discussed in the préermed on a circular system with radils= 36a, and free boundary
vious section, these modes can be considered as doubleesnditions.
with frequencieso,>0 andw, ;<0 with |04 1|=w,. For

general BC's the mean frequency can be written as the motion of one OP vortex on large circular systenysto
— L=72a,) with free boundaries. The Landau-Lifshitz equa-
@p=CX, /L, 37 tion was integrated for a square lattice wah=1 and the

where Xn is the nth root of the equationa\]l(i) Hamiltonian (1), whereJ=S=1 andA=0.9. The vortex

+bx(r,/L)J;(x)=0. For fixed and free BC's one has, cerllter.perfqrms o_scillatipns around a mean trajecffﬂv)
—Cjyn/L andw,=cj}, /L, respectively. Z\;h@rr;] isa C|rclet with tradluRO at:ou.ncti the ctlrgle centeéltfutg..

We concentrate on the lowest doublet with the frequen—S o]utioi n‘;fe?;\e r'?Jh?;gBé Cf;[io(%i)n ev(/?wreeree thizs v%r?e?( |?Snary
cies w; and w,=— w4 for the following reasons(i) these q ’

modes can be compared with long-time computer simuladriven by the interaction with its image vortex. The rota-

tions of the vortex motion andi) they can be used for the Elronall f[egu\(lanlcyw% 3325189361 c?nstac\tl fICIR\?v?ho; t?er ex-lt
calculation of parameters in equations of the vortex motion apoiated vaiue o. agrees we our resu

—3 —
In the lowest approximation in, /L one can write 0.193<10 _(bOth forL=72). . -
The Fourier spectrum of the oscillations aroukd(t)

w, ag shows a doubletwi2 with about equal amplitudes, and
S3=2Xavi=A T (38)  phasest /2 between the two components. As the spectra in
Ref. 17 were evaluated in a moving polar coordinate frame
wherex; =], ,=3.832 for fixed BC's anck;=j;,~1.8412 we must add and subtraat, in order to compare with our
for free ones. For general BCig lies between these values. results in Eqs(38) and (39)

Note, however, that foa~b the value ofx; is still close to
j11. and the “switching” to the valug; ; occurs only for
smalla<b(ag/L). We remind the reader thai; does not
depend on the scattering data in the first approximation in
ao/L. The use of scattering data becomes important, howThe data agree very well, e.g., for=72 andR,= 16.11 the
ever, for the calculation of the doublet widthw=|w,|  frequencieswo=2.05¢10"%, w|=1.546<10"2, and w}
—wy. Considering the leading approximati&r,~ao/L,  _4 6611072 were observed which yieldsw= 1.604

the width can be presented in the form X 1072 for the mean and\w=0.74x 103 for the differ-

w1 2= wi’zi wq. (40)

Ao 7Y\ [ag)\? X2(ax;—b)Y;+x:bY, ence. This agrees with our theoretical values1.617

—_— —_— — 2 _ —3 . .

SJ 2 L) x(xa—b)Jo+[(2—xD)b—x;a]d;’ X10"“ andAw=0.7657<10"* within 0.8 and 4 %, respec-
(39) tively.

Note that the very good agreement of our normal mode
whereJg, J1, Yo, andY; all have the argument;. One can  approach with the data from the simulations is not a trivial
see thatAw is practically independent of the anisotrofye  result: we have calculated the frequencies appearing in the
will omit the coefficientyA below), and it is inversely pro- vortex dynamics fofree boundary conditionsising as input
portional toL2. This is the same dependence as for the lowthe scattering data fdixed boundary conditiondhis shows
est translational mode,=JS(a,/L)?, but the coefficients that our scattering theory actually works for the general case.
are different. We conclude that the vortex motion is accompanied by, or

Next we compare our results fars, and the lowest dou- generates, the two quasilocal magnon modes ith=1.
blet w, , with data from recent computer simulatidhgor ~ These show up in two ways) in the trajectory of the vortex
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center as oscillations around a mean traject6iy,as oscil- wow1w,= 270 /(G3L?). (47)
lations of the dynamic parts of the vortex structgsee be- ) ) ] 5
low). We now identify wg with the Goldstone mode-qq;/L*,

There remains the question of whether the trajectory oft€glecting the frequenay, from the pinning force since Eg.
the vortex center can be obtained from an equation of mot42) was derived in the continuum limity; and w,<0 are
tion. If the rigid-shape assumption of Thiele is dropped byldentified with the lowest doublet calculated in Eq88),
allowing for a deformation due to the velocitya second- (39.

order equation of motion can be deri?@avhich exhibits an From Eq.(47) we obtaif®

additional termM X with an effective vortex masM. The 27

additional term causes cycloidal oscillatiGhswith fre- G3:§ (48)
quencyw.=G/M around a mean trajectory. For the vortex

massM ~In L was predicted, which was not confirmed by with o= \/w1|w2|2%(w1+|a)2|), which gives

computer simulations, see Refs. 24, 25. Recently W{sin

proposed to calculat®! by using the two lowest eigenfre- Gae ™ L2 49
guencies,wy and w; in our notation. His formulaM,, 3_2)@(1_)\) : (49)

=G/(wp+ w,) gave a linear. dependence when the fre- )

quencies from his numerical diagonalization were insertedThe result 4.634.2 for free BC's agrees very well with

The same dependence is obtaifigzdO(a,/L)] if we insert ~ 4.67L>%%for largeL obtained from the simulation data.

our ana|ytica| results for the frequencies_ For fixed BC'S,G3= 107'.2 is about four times smaller.
However, meanwhile new simulations had been per- From Eq.(45) we obtain

formed which resulted in the observation of the abovemen-

tioned doubletw, ,, instead of a single frequenay,. This M= 2__77 Aw+ ﬂ) (50)
dynamics can be fully described by a third-order equation of w? L?

motion'’ which was derived by a collective variable theory, o _
starting from a generalized traveling wave ansatz with Aw=|w,|~ ;. Here allL dependencies just cancel in

the lowest approximation oh, thus the vortex mass in Eq.
- R R (42) is independenbf the system size, as already obtained
St =Sr=Xx,X,X), 4D from the simulationd? Inserting Eq.(39) we get for free
where the vortex shape is assumed to depend also on th¥C's
acceleration. In fact, this dependence can be seen in simula-
tions with free BC’s when one considers the spin configura- Mz — " 7 X Yo—Yy 1
tions at the turning points of the trajectory where the accel- 2(1-n)\ 2 (xi—l)Jl x% '

eration is maximum while the velocity is small. _ _
The third-order equation has the form The numerical valueM =14.74 agrees well withM =15

which we have extrapolated fét;— O from the data in Ref.
17 for three different system sizek £24,36,72). We note
that the vortex mas&b1) is in the same order of magnitude
with G3=Gs€e, and a new paramet&,. We note that this &S the two-dimensional soliton maks= Eo/c? in Ref. 21,
is the most general third-order equation for the given easywhere Eg=4 (in units JS) is the Belavin-Polyakov en-
plane symmetry. In Ref. 173 was defined as an integral €rgy:

overr which could not be performed because the dynamic For fixed BC's

(51)

Gox X+ MX—GxX=F (42)

vortex structure is not known analytically for the vortex core. - Y 1

However, the size dependenGy~L? was obtained from M= — L= (52)
; : : 2(1-\) | 2 x4 2

the outer region of the integral. We will see below that our 1Jo X3

theory allows for the calculation db; andM. yieldsM =7.661, which is about one half of the above value

We consider Eq(42) for the case of vortex motion close o, free houndary condition. Thus in the equation of motion
to the center of the circle where the image force is appl’OXI—(42) only the avrovector@ is an intrinsic property of the
mately linear y gy property

vortex. The quantitiem andGgz, which are connected to the
2 _ /1 2 quasilocal modes with frequencies ,, are determined by
F 2mqGXIL". “3 the whole system *“vortex plus magnons” which includes
Then Eq.(42) can be solved by a harmonic ansatz, where thehe geometry of the system and the boundary conditions. For

frequencyw fulfills G5 this is obvious because it strongly dependsLorbut M
3 ) ) does not depend ob (in the lowest order however, it de-
— G0’ Mo+ Gw=—2mqq/L". (44) pends on the boundary conditions. On the other handSthe
The parameters can be obtained from the three rapts matrix naturally is determined only by the region of the vor-
i iata’ tex core and can thus be used for the calculation of the pa-
using Vieta'’s rules ;
rametersM and G, for arbitrary geometry and boundary
(.L)0+ (.01+ (1.)2: - M/Gg, (45) Conditions.

Finally we point out that Eq(42) belongs to a whole
wWow1t Wowot W w,=—G/G3, (46) hierarchy of equations of motion which can be deriVeuly
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taking into account higher and higher time derivatives of = APPENDIX: NUMERICAL DIAGONALIZATION OF
X(t) in the generalized traveling wave ansat). More- HAMILTONIAN MATRICES

over, only the odd-order equations of this hierarchy represent |f 5 classical Hamiltonian system is linearized around a
valid approximations, because the even-order equations ha¥gatic solution, an eigenvalue problem

a very weak leading term, e.gM)? in the second-order L
equation. Therefore the solutions of the latter equations are Az=\z (A1)
qualitatively different from the solutions of the odd-order
equation and are in fact not confirmed by the simulationdesults with a coefficient matrid fulfilling the generalized
(see the above discussion of the single frequancynd the ~ Symmetry relation
doubletw, ,, which exhibit quite different dependencies on
the system size The fifth-order equation of the hierarchy ATI=JTA. (A2)
predicts a second doublet , which was in fact observed in  _
the simulations, but only for specially designed initial and? 'S the
boundary conditions because the amplitudes of this doublet
are very smalt’ Thus the third-order equation represents J:( 0 1) (A3)
already a very good approximation. The observed additional -1 0
doublet naturally also appears in the results of our numerical
diagonalization in Sec. IV and its frequencies can be calcuFor obvious reasons the matrix is called a “Hamiltonian
lated by;n and (Aw),, see Eq(37) and below. matrix.” IF is easy to see thah can always be wnttgn amH
whereH is a symmetric matrix. Note that the eigenvalues
and eigenvectors ok are complex in general.
For the most general case, Hamiltonian matrices have no
special properties which could profitably be used in the nu-
We have developed a general theory which allows calculMerical diagonalization. An exception, however, is the case
lation of the magnon modes of a circular easy-plane ferro®f @ positive definite matrixi, for which Eq.(A1) is equiva-

magnet in the presence of an out-of-plane vortex. Thégnt to an Hermitian eigenvalue prpblem with pure imagin'a.ry
method consists of a combination of numerical diagonaliza-e'g?r_‘values'_ In order to show th's’ we note that a positive
definite matrix can always be written as

tion of the discrete system with analytical calculations in the
continuum limit. The frequencies of the magnon modes can

be expressed in terms of the functiomg(kr,), which are

iqdependent of the magnetic.goupling constants, the sySte%e so-called Cholesky decompositiontdf cf. Ref. 27. Sub-
size, and the boundary conditions. Ta, describe the in- stituting this in Eq.(A1) and additionally defining :=iw we

tensity of the magnon scattering due to the presence of thg

“symplectic unit matrix,” i.e.,

VI. CONCLUSION

H=LLT, (Ad)

btain
vortex.
The translational modes withm|=1 are particularly in- - T T
teresting for two reasonsi) Their frequencies are identified (ILJL)(L'2)=—w(L 2). (A5)

in the vortex motion which was observed in simulations Ii . . d therefoie TIL is Hermiti
where the Landau-Lifshitz equation was integrated for th ow, J is antisymmetric and therefor IS Hermitian.

circular discrete spin systenii) Using these frequencies, Unfo_rtunately, it is somewhat d'ff'CU|t.t° use this equiva-
. lence directly for the purpose of numerical diagonalization.
one can calculate the two parameters of a third-order eq

. . o e 11 Cholesky decomposition of a sparse symmetric matrix
tion for the vortex motion(a generalization of the Thiele

) . X : . can be computed easily only for certain cases, otherwise it is
equatiof, which was derived by a collective variable theory very time consuming. For this reason we did not directly use

starting from a generalized traveling wave ansatz. Our calCug i (A4). Instead we utilized a method called Wielandt's
lated parameters agree very well with those obtained by d&jersion of the inverse iteration procedure. The basic strategy

scribing the simulations using the third-order equation ofis 1o multiply a(randomly chosenvector over and over by
motion. Both parameters, the vortex magsand the third-  the inverse of the spectral-shifted matri&, i.e., (A

order gyrocoupling constan®s, depend strongly on the _3y~1 The resulting series of vectors converges to an ei-

boundary conditions. This is due to the fact that both the, . vector ofA, usually the one corresponding to the eigen-

in-plane and the out-of-plane structure of the moving vorte — .
are not localized. In fact, the dynamic parts of the vortexValue closest to the chc_)sen spectral Sh'fﬂ—h? de§a|ls of th_e
X ethod can be found in Ref. 27. For Hamiltonian matrices,

structure oscillate with the frequencies of the translational" . o - . ;
modes with|m|= 1. supposing a positive definite matrbk and therefore imagi-

nary eigenvalues and an imaginary spectral shifti o,
Wielandt's inverse iteration amounts to the following itera-
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x1) andy() are the real and imaginary part of the eigenvec-As z converges to an eigenvector Af X converges to the

tor in thejth iteration step. The initial vectox(®,y(®) must ~ corresponding eigenvalue. o
be chosen randomly. The matfiis a symplectic projection A positive definite matrixH is not a principal presump-

operator which is defined as tion for the inverse iteration, i.e., the above iteration formula
can in principle be generalized to include the case of non-
yRxWOT— xRy T definite matricesH. However, first of all, withH, the coef-
P:é )Z(k)TN(k) J. (A7) ficient matrix in Eq.(A6) is also positive definite. This al-

lows us to use an efficient numerical method to solve Eq.
The sum runs over all eigenvectors which were computed ifiA6). To be precise we have used thec library function
previous runs. The purpose of this operator is to avoid thatoamsr for this purpose which is based on a Lanzcos algo-
the method converges to an already-known eigenvector.  rithm. TheNAG routine makes it only necessary to supply a
After some iteration steps the parametercan also be “matrix Xvector” function. Therefore one has to store only

iterated, for example, according to the formula the elements oA which are nonzero which precisely makes
- the method suitable for large and sparse matrix equation. A
— 1zZ7Az . -, - second point is that for nondefinike rather serious problems
w=———, z=xW+iyW, (A8) . . . . ) . :
i )z? with the numerical stability of the inverse iteration arise.
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