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Magnon modes and magnon-vortex scattering in two-dimensional easy-plane ferromagnets
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We calculate the magnon modes in the presence of a vortex on a circular system, combining analytical
calculations in the continuum limit with a numerical diagonalization of the discrete system. The magnon modes
are expressed by theS matrix for magnon-vortex scattering, as a function of the parameters and the size of the
system and for different boundary conditions. Certain quasilocal translational modes are identified with the

frequencies which appear in the trajectoryXW (t) of the vortex center in recent molecular dynamics simulations
of the full many-spin model. Using these quasilocal modes we calculate the two parameters of a third-order

equation of motion forXW (t). This equation was recently derived by a collective variable theory and describes
very well the trajectories observed in the simulations. Both parameters, the vortex mass and the factor in front

of XŴ , depend strongly on the boundary conditions.@S0163-1829~98!07937-5#
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I. INTRODUCTION

Two-dimensional~2D! magnets have been intensively i
vestigated due to different reasons: There are several cla
of quasi-2D materials for which the magnetic interactio
within planes of magnetic ions are typically three to six o
ders of magnitude larger than the interactions between
planes. These classes include layered magnets~e.g.,
Rb2CrCl4!, graphite intercalated compounds~e.g., CoCl2!,
magnetic lipid layers~e.g., manganese stearate!, and high-Tc

superconductors. For theoreticians 2D magnets withXY- or
easy-plane symmetry are particularly interesting due to
existence of vortices, which have nontrivial properties fro
the viewpoint of certain homotopical groups, see Refs. 1

There are two types of vortices: In-plane~IP! ones with
all spins lying in the easy plane and out-of-plane~OP! ones
having nonzero spin components orthogonal to the e
plane. Both types have ap1-topological charge or vorticity
q561,62,..., which determines the directions of the spi
in the easy plane far away from the vortex center. The
vortices have an additionalp2-topological charge~Pontrya-
gin invariant, see Ref. 3! Q52 1

2 qp, wherep is integer.p is
denoted polarization because its sign determines to w
side of the easy plane the spins point in the vortex cen
Therefore the IP vortices can be considered as havinp
50. For QÞ0 there is a gyrocoupling force, or gyroforc
which is formally equivalent to the Lorentz force.4

Besides the vortices, which are strongly nonlinear exc
tions, there are also magnons. The dynamic properties o
easy-plane magnets can be described by a phenomenolo
theory which assumes two ideal gases for the vortices
magnons.5 The vortex-magnon interaction naturally is th
next question which arises. In particular, one would like
know how the dynamics of the vortices is affected by t
interaction.

For 1D magnets the soliton-magnon interaction is nea
reflectionless. In this case the main effect of the solito
PRB 580163-1829/98/58~13!/8464~11!/$15.00
ses
s
-
e

e

3.

sy

P

ch
r.

-
D
ical
d

y
-

magnon interaction is the change of the magnon density
states, which affects strongly the soliton density in therm
equilibrium.6 For 2D magnets the vortex density can be o
tained from the correlation length by a renormalization gro
approach,7–9 therefore the vortex-magnon interaction is n
so important for the density. In principle, it can be importa
for the damping force which acts on a vortex~or soliton! in
a near-equilibrium magnon gas.2 On the other hand, the
damping force for the 2D case can be obtained by gen
hydrodynamic theories for the relaxation processes
magnets.10

The most important effect of the vortex-magnon intera
tion seems to be that for a finite system certain magn
modes are excited due to the vortex motion, and vice ve
Such modes were obtained in recent papers11–13by a numeri-
cal diagonalization for relatively small, circular, discrete sy
tems. A calculation in the continuum limit was presented
the antiferromagnetic case.13 Analytical investigations were
done for planar vortices in antiferromagnets14 and
ferromagnets.15 These articles demonstrate nontrivial prope
ties of the eigenmodes, e.g., the presence of quasilocal11,12or
truly local13 modes. Moreover, the relevance of these mo
for the vortex dynamics was shown, in particular an IP-O
transition was predicted11,12 and an effective vortex mas
was defined and calculated using the above modes.16 How-
ever, for OP vortices all this was based on the numer
diagonalization of small systems with fixed~Dirichlet!
boundary conditions~BC’s!.

This article deals with a more general theory of vorte
magnon coupling for arbitrarily large systems with circul
symmetry and general boundary conditions. The meth
consists of a natural combination of analytical calculations
the continuum limit with numerical diagonalization of dis
crete systems. The main issue is the calculation of the s
tering matrix for vortex-magnon collisions.~For antiferro-
magnets this matrix was calculated by a different method13!
Using these data general formulas for the eigenfrequen
8464 © 1998 The American Physical Society
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are obtained, as a function of the parameters and size o
system, and for different boundary conditions.

An important point is a link with a recent collective var
able theory17 in which an equation of motion was derive
which describes very well the vortex trajectories observed
computer simulations. This equation is third order in tim
and is a generalization of the Thiele equation18,19 which is
first order in time. Using the scattering data the parameter
the third-order equation of motion can be calculated, a
agree very well with those obtained from simulations.17

II. THE MODEL AND ELEMENTARY EXCITATIONS

We consider the classical 2D model of a Heisenberg
romagnet~FM! with the Hamiltonian

Ĥ52J (
~nW ,nW 8!

@SW nWSW nW 82~12l!SnW
z
SnW 8

z
#. ~1!

Here J.0 is the exchange integral and 0<l,1 describes
easy-plane anisotropy. The spinsSW are classical vectors on
square lattice with the lattice constanta0 . nW ,nW 8 denote
nearest-neighbor lattice sites. Our main interest lies in
small anisotropy case which corresponds to 12l!1.

A continuum model for FM’s can be derived from Eq.~1!
in the usual way defining the unit vector of magnetization
a function of continuous variablesrW and t, i.e., mW (rW,t)
5SW nW(t)/S. The dynamical equations formW have the form of
the well-known Landau-Lifshitz equation, see Refs. 1, 2.
usual angular variables@mx1 imy5sinu exp(if), mz5cosu#
they can be written as

¹2u2sin u cosuF ~¹f!22
1

r v
2G51

sin u

crv

]f

]t
, ~2!

¹~sin2 u¹f!52
sin u

crv

]u

]t
, ~3!

wherer v andc are the characteristic length scale and m
non speed, respectively. For the Hamiltonian~1!, we have

r v5
a0

2
A l

12l
, c52JSa0A12l, ~4!

where we set\51. Note that the Eqs.~2!, ~3! arise in the
long-wave approximation (a0u¹mW u!1) not only for the
model we are considering here, but for a whole set of d
crete models, for example, FM’s on different kinds of lattic
and FM’s with additional single-ion anisotropy. Merely th
expressions forc and r v change. For the homogeneou
ground state~all spins are parallel and confined to the ea
plane! the 2D model has well-known magnon excitatio
with the gapless dispersion law

v5ck~11k2r v
2!1/2, ~5!

wherek5ukW u andkW is the magnon wave vector.
Other well-known excitations are the OP vortices, d

scribed by the formulas

u5u0~r !, f5qx1w0 , ~6!
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where r and x are polar coordinates andw0 is an arbitrary
constant. The functionu0 is the solution of a nonlinear ordi
nary differential equation which cannot be solve
analytically.1,2 Numerical integration, however, shows a su
prisingly good agreement with the data obtained from
numerical analysis of the full discrete model~1!, even for
r v51.5a0 (l50.9), Ref. 13. This means that at least co
cerning static properties strong inequalities such asa0u¹mW u
!1 can be replaced by usual ones. As will be seen, the s
is correct for some dynamical properties, too.u0 fulfills the
boundary conditions cosu0→p for r→0 andu0→p/2 for r
→`. q andp are topological charges of vorticity and pola
ization. In the following OP vortices withq51 will be con-
sidered; for definiteness we setp51.

III. NORMAL MODES ON THE VORTEX:
CONTINUUM APPROACH

We consider small deviations from the static vortex so
tions, i.e.,

u5u0~r !1q, f5qx1~sin u0!21m. ~7!

Substituting this in Eqs.~2! and~3! and linearizing inq and
m gives the following set of coupled partial differential equ
tions:

@2¹x
21V1~x!#q1

2q cosu0

x2

]m

]x
52

r v

c

]m

]t
, ~8!

@2¹x
21V2~x!#m2

2q cosu0

x2

]q

]x
51

r v

c

]q

]t
, ~9!

wherex5r /r v and¹x5r v¹. The additional factor (sinu0)
21

in Eq. ~7! was introduced for convenience, because it lead
equations that are symmetric inq andm with Schrödinger-
type differential operators in front. The ‘‘potentials’’V1(x),
V2(x) have the same form as for the antiferromagnet,13

V15Fq2

x2 21Gcos 2u0 , V25Fq2

x2 21Gcos2u02Fdu0

dx G2

,

~10!

but the dynamical parts differ strongly.
In order to solve Eqs.~8!, ~9! the following ansatz forq

andm is appropriate:

q5(
n

(
m52`

1`

$@ f a81 i f a9 #exp~ imx1 ivat !1c.c.%,

~11!

m5(
n

(
m52`

1`

$@ga81 iga9 #exp~ imx1 ivat !1c.c.%.

~12!

a5(n,m) is a full set of numbers labeling the magno
eigenstates. Substituting this ansatz gives two uncoupled
of two equations for the pairs of functions (f 8,g9) on the one
side and (f 9,g8) on the other side. However, the equatio
for ( f 9,g8) can be obtained from the corresponding equ
tions for (f 8,g9) simply by replacingm→2m and v→
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2v. Thus, among the four functionsf 8, f 9, g8, andg9 only
two are independent. Therefore, instead of Eqs.~11!,~12! we
can use the simplified ansatz

q5(
n

(
m52`

1`

f a~r !cos~mx1vat1dm!, ~13!

m5(
n

(
m52`

1`

ga~r !sin~mx1vat1dm!, ~14!

with arbitrary phasesdm . For the functionsf and g ~the
index a is omitted in the following! we then finally obtain
the following two differential equations:

F d2

dx2 1
1

x

d

dx
2

m2

x2 2V1G f 5Fvr v

c
1

2qm cosu0

x2 Gg,

~15!

F d2

dx2 1
1

x

d

dx
2

m2

x2 2V2Gg5Fvr v

c
1

2qm cosu0

x2 G f .

~16!

f and g cannot be determined analytically from Eqs.~15!,
~16!. The ‘‘potentials’’ V1(x) andV2(x) in these equations
are not small, and the use of the Born approximation lo
inadequate; for IP vortices andm50,61 this was already
mentioned in Ref. 15. Only the asymptotic behavior can
calculated. Forr→0 we obtaing, f ;r uq1mu, which describes
the presence of a ‘‘hole’’ in the functionsq, m at the vortex
core for large values ofm ~see Sec. IV!. Only the caseumu
51 can be considered in a long-wave approximation,
below, Eqs.~22!–~27!.

For the IP vortex, where cosu0 is zero, the modes corre
sponding to6umu are degenerate. As a change of sign in
numberm can also be interpreted as a change of the sens
rotation of the eigenmode~change of sign in the eigenfre
quencyv!, physically we have the situation of two indepe
dent oscillators rotating clockwise and counterclockw
with the same frequency~which can also be combined t
give two linear oscillators in independent directions!.

For the OP vortex, however, with cosu0Þ0, this degen-
eracy is removed due to the presence of the term w
2qm cosu0 /r2. Therefore the two senses of rotations cor
sponding to positive and negative frequencies are not equ
lent anymore. The presence of this term is also respons
for the fact that the Eqs.~15! and ~16! are only invariant
under the combined conjugation of both topological char
(q,p)→(2q,2p). The productqp is proportional to the
magnitude of the so-called gyrovector, which acts on
vortex as a~self-induced! magnetic field in thez direction for
a charged particle. Therefore, physically, forumu>1 the re-
moval of the6umu degeneracy in the OP case can be und
stood as the effect of a gyroscopic force.

In order to describe the magnon scattering due to the
tex, we note that without the vortex the eigenvalue probl
~EVP!, Eqs.~8!, ~9! can be reduced to a usual Schro¨dinger
EVP ~SEVP! with the general solution

m5(
m

CmJm~kr !sin~mx1vt1dm!, ~17!
s
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q5(
m

Cm

krv

A11k2r v
2

Jm~kr !cos~mx1vt1dm!. ~18!

The Jm are Bessel functions,k and v are connected by the
dispersion law~5!, and Cm and dm are arbitrary constants
For a finite circular system with radiusL and general bound
ary conditions

S am1brv

]m

]r D
r 5L

50, S aq1brv

]q

]r D
r 5L

50, ~19!

with arbitrary constantsa andb; the values of the frequen
ciesv are determined by the roots of linear combinations
Bessel functions and its derivatives. Note thatall frequencies
for the system without a vortex have a 1/L dependence with
respect to the system size. For free boundary conditions,
a50 in Eq. ~19!, there is a Goldstone mode~GM! with v
50 due to the rotational symmetry in spin space of t
model. ForaÞ0 this symmetry is obviously broken.

In the presence of a vortex, one can use the approxim
formula f 'krvg/(11k2r v

2)1/2 for large distancesr @r v and
then the EVP~15!, ~16! reduces to the form of a SEVP, too
The solutions have the same form as Eqs.~17!, ~18!; one
only has to replace

Jm~kr !→Jm~kr !1sm~k!Ym~kr !. ~20!

Here theYm are Neumann functions. The quantitysm(k)
determines the intensity of magnon scattering due to
presence of the vortex. In usual scattering theory for
Schrödinger equations theS matrix Sm(k) can be represente
as

Sm~k!5
12 ism~k!

11 ism~k!
. ~21!

The values ofsm(k) are determined by the shape of th
solution near the vortex core, practically atr /r v,3¯4. Due
to the structure of the continuum equations~15!, ~16!, sm(k)
must be some universal function ofk5krv , independent of
the concrete values of the magnetic coupling constants,
system size or the applied boundary conditions.

sm(k) could be calculated directly by solving the set
equations~15!, ~16! using a shooting procedure as describ
in Ref. 13 for the case of the antiferromagnet. The shoot
parameter is the free constant which appears in the gen
solution of the set of two coupled Schro¨dinger-like EVP’s. In
this article we used another approach and extracted the
tering data from the eigenfrequenciesv i we found numeri-
cally for the discrete 2D system in Sec. IV.

In the next section the general properties ofsm(k) will be
established for differentm, and characteristic features of th
normal modes will be discussed. Here we consider only
caseumu51, for which theS matrix in the long-wave ap-
proximation can be calculated analytically.

This can be done by using the fact that fork50 (v50)
andL→` a nontrivial solution of Eqs.~15!, ~16! is known,
and by applying a special perturbation theory. This solut
readsf 05du0 /dx, g052sinu0 /x, and corresponds to a vor
tex displacement~translational Goldstone mode!.

In order to construct the asymptotics of such a solution
a small but finite frequency, we make the ansatz
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f 5~du0 /dx!@11a~x!#, g52~sin u0 /x!@11b~x!#,
~22!

wherea(x),b(x) must be proportional tov. Inserting this
ansatz into the set of Eqs.~15!, ~16!, multiplying Eq. ~16!
with g0 and Eq.~15! with f 0 , and adding the results, on
obtains the equation

H Fb8S sin u0

x D 2

1a8~u08!2GxJ 8
52

vr v

c
~cosu0!8. ~23!

Here the prime denotesd/dx, and small terms such asva,
vb were omitted. The formal solution of this equation can
written as

b~x!5b~0!2E
0

x

a8~x!~xu08/sin u0!2dx

2~vr v /c!E
0

x

@x/cos2~u0/2!#dx. ~24!

It is easy to see that the last term is divergent forx→0, while
the integral witha8(x) is convergent due to the presence
u8(x);exp(2x). Thus, far from the vortex core we simpl
have

b~x!.2~vr v /c!x252krvx2, ~25!

valid in the region 1!x!(1/krv)1/2. g(r ) then reads

g~r !.
r v

r
2krvS r

r v
D . ~26!

On the other hand, in the regionr v!r !(r v /k)1/2 the argu-
ments of the Bessel functions in~20! are small: kr
!(krv)1/2!1. Using the asymptoticsJ1(kr)5kr/2, Y1(kr)
522/pkr, one can rewrite Eq.~26! in the form

g~r !.constH kr

2
1

pkrv

4 S 2
2

pkr D J
;J1~kr !1

pkrv

4
Y1~kr !, ~27!

which gives us the long-wave approximation of the scat
ing amplitude:s71→6pkrv/4. This is in good agreemen
with the numerical data as we will see in the next sectio

IV. NUMERICAL DIAGONALIZATION AND
SCATTERING DATA CALCULATION

A numerical diagonalization of the same model we a
considering here was also already performed by Wysin
Völkel.12 These authors found, for example, the splitting
themÞ0 modes for OP vortices, as discussed above, and
lack of such a splitting for IP vortices. For a detailed descr
tion of the eigenvalues and eigenfunctions of Eq.~1! we
therefore refer to their paper. For the rest of this section
relate some points which were not discussed in Ref. 12
cluding a short description of discreteness effects. Our m
interest however, lies in the scattering of magnons due to
presence of a vortex.

We consider a circular system of radiusL on a square
lattice with either fixed~Dirichlet! or free~Neumann! bound-
e

f

r-

e
d
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ary conditions. Static vortex solutions were obtained usin
relaxation procedure similar to that described in Ref. 12,
in slightly more detail, in Ref. 20.

One problem with the diagonalization of 2D systems
that the number of sites in the system and therefore the
mension of the matrix to diagonalize grows very rapidly w
the linear size of the system. Already for a rather small s
tem with radiusL520a0 this matrix has dimension 252
32528. If we use a conventional numerical method wh
needs to store the whole matrix in the memory of the co
puter, this is already more or less the size limit for matric
which can practically be diagonalized. In order to go furth
we applied a special method which takes advantage of
structure and sparseness of the matrix. Details are descr
in the Appendix. Using this method we calculated the low
eigenvalues and eigenvectors for systems up toL/a05100
corresponding to a matrix with dimensions 62856362856.

The eigenvalue spectrum we obtained for fixed bound
conditions is plotted in Fig. 1 as a function of the anisotro
parameterl for different values of the angular momentu
quantum numberumu. For comparison, we have also calc
lated the eigenvalues for a system linearized around the
romagnetic ground state of the model~i.e., without a vortex
being present in the system!. These data are the dashed lin
in Fig. 1. lc'0.70 is the critical value of anisotropy whic
separates the different regimes of stability of IP and OP v
tices. As can easily be seen, the mode which is respons
for this transition is them50 mode~the lowest branch in
Fig. 1!, which becomes soft atlc . Mainly the m50 and
umu51 modes are sensitive to the IP-OP transition. The
genvalues abovelc are split where for fixed boundary con
ditions the lower branch corresponds to negativem and the
upper branch to positivem.

For l,lc , only eigenmodes withodd umu are twofold
degenerate, as predicted in the continuum theory. Foreven
umu the expected degeneracy is slightly removed. This i
discreteness effect, due to the fourfold symmetry of the
derlying square lattice: eigenvectors with evenumu tend on
the one hand to align with a coordinate system parallel to
symmetry axes of the underlying lattice, and on the ot
hand with a coordinate system parallel to the lattice dia
nals. The latter eigenmodes oscillate with a slightly high
frequency.

The classification of the eigenvalues according to val
of umu was done by expanding the eigenvectors in a Fou
series similar to Eqs.~13!, ~14! ~excluding the time-
dependent part!. For l50.9 some of the radial profiles o
eigenvectors obtained this way are plotted in Fig. 2. T
numerical computation always gives a complex eigenvec
For oddumu, the real and imaginary radial profiles coincid
with a high numerical accuracy. For evenumu, however, as a
consequence of the discreteness effect already desc
above, the radial eigenfunctions of the real and imagin
part differ slightly, especially near the center of the vorte
~Figure 2 only shows a mean value in these cases.! Also, for
even umu, the sense of rotation of the eigenmode can o
approximately be determined: modes in the continu
theory which belong to positive and negativem intermix in
the discrete system for evenumu. This second effect is more
pronounced for largerumu and larger system sizes. As a co
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FIG. 1. Eigenvalue spectrum as a function of the anisotropy parameterl and the ‘‘quantum number of angular momentum’’m calculated
for a circular system of radiusL520 with fixed boundary conditions. The dashed lines are eigenvalues with no vortex in the system
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Eqs.~13! and ~14!.

The main point in our approach is to calculate the scat
ing matrixSm(k) and to use its values for the investigation
general properties of the magnon modes in the presenc
the vortex. For the extraction of theSm(k) dependence on
the basis of Eqs.~19!, ~20! we only need values of eigenfre
quencies for one boundary condition for different values
the system size. Concretely, we used the fixed BC@b50 in
Eq. ~19!# leading to the simple formula

sm~ki !52
Jm~kiL !

Ym~kiL !
~28!

with ki5ki(v i) according to the dispersion law~5!.
We calculated the scattering data for four different valu

of l, namely,l50.80, 0.85, 0.90, and 0.98, and for differe
system sizes up toL/a05100. These data are presented
Fig. 3 as a function ofk5krv . We note that the points
sm(k) fit well to one curve for differentL andl, at least for
small values ofka0 . ~Strictly speaking, the inequalityka0
!1 should be satisfied, but even forka0'0.4 the discrepan-
cies among different values ofl are negligible for the mainly
interesting caseumu51.!

For the general boundary conditions~19! the frequency
spectrum is determined by the dimensionless equation

a@Jm~kL!1sm~krv!Ym~kL!#1krvb@Jm8 ~kL!

1sm~krv!Ym8 ~kL!#50. ~29!
of

r-

of

f

s

We start our discussion for the modes withumu.1 andm
50. The translational modes (umu51) will be considered in
the next section.

For umu.1 and fixed BC@b50 in Eq. ~19!#, taking into
accountsm,0, it can easily be seen that Eq.~29! has no
solution in the regionkL!1 where Jm(z);(z/2)m and
Ym(z);2(2/z)m/p. The nth root can be written askL
5zn,m with ym,n,zm,n, j m,n . Hereym,n and j m,n are thenth
zeros ofYm(z) and Jm(z), respectively. Becausej m,n and
ym,n are smaller thanp(n1m)/2 for largen or m, the low-
lying modes have the valueskn,m.max(n,m)/L. This means
sm!1 for r v /L!1, hence the eigenfrequencies can appro
mately be described by the zeros ofJm(z) ~which have ap-
proximately the same values as for the system without v
tex!. This can also be observed very clearly in Fig. 1.

For the casea;b in the BC~19! the same holds becaus
of the presence of the small parameterkrv in the term with
the derivatives. Fora50 ~Neumann BC!, however, the situ-
ation changes. First of all, the formula forkn,m can be pre-
sented in the formkn,m5 j m,n8 /L wherej m,n8 is thenth zero of
Jm8 (z). More importantly, a new root of Eq.~29! appears,
with k5k0,m!1/L corresponding to the lowest mode wit
umu.1. In order to show this we use again the asymptotics
Jm(z) and Ym(z) for z!1. Applying the formulasm5
2Am(krv)a, one easily obtains

r vk0,m5S Am

p D p/2mS 2r v

L D p

, p5
1

12a/2m
.1. ~30!
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FIG. 2. Radial part of eigenfunctions for the lowest eigenvalues atl50.9 using fixed boundary conditions. Solid and dashed li
correspond to eigenfunctions with positivem and negativem, respectively.
r

e

d
p

o
he

na
e

cs.
for

Di-

lue
em,

n-
The corresponding frequencyv0,m'ck0,m decreases faste
than 1/L for L→`.

The eigenmodes withm50 can be described in the sam
way as for umu.1. Only the valueskn,05(1/L) j 0,n or kn,0

5(1/L) j 0,n8 are present in this case, andkn,0;1/L for general
boundary conditions. The only exception is the lowest mo
for Neumann BC. For this mode the analysis of the asym
totics of cylindrical functions gives exactlyv50. This value
corresponds to the Goldstone mode due to the presence
rotational symmetry in spin space which is still exact for t
finite system.

V. TRANSLATIONAL MODES AND COLLECTIVE
VARIABLE APPROACH

This section deals with the analysis of the translatio
modesumu51 and the application of their properties for th
e
-

f a

l

construction of equations of motion for the vortex dynami
From Fig. 3 one can see that the scattering parameter
umu51 have a linear dependences61(k)57A1krv . The
long-wave approximation~27! givesA15(p/4), which is in
good agreement with Fig. 3. Using the asymptoticsJ1

.z/2, Y1.22/pz for z!1, we get for the frequency of the
lowest translational modev056crv /L2 where the positive
sign corresponds to Neumann and the negative sign to
richlet boundary conditions, respectively. Usingcrv
5a0

2JSAl and replacingAl→1, which is natural in the con-
tinuous small anisotropy approximation, we obtainv05
6JSa0

2/L2.
This analytical result is in agreement with the eigenva

data obtained numerically. However, in the discrete syst
v0 does actually not tend to zero forL→` but to a finite
constantvp . Using the collective variable approach this co
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FIG. 3. Scattering data for different values ofl ~h50.80, n50.85, 150.90, L50.98! and different system sizes in the rangeL
515– 100.
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stant can easily be understood as a pinning effect as
would like to show now. It is known that the dynamics of th
OP vortex can be described in lowest approximation by
so-called Thiele equation18,19

2GW 3XẆ 5FW . ~31!

HereGW is the gyrovectorGW 5(2pqpS/a0
2) ẑ, whereẑ is the

unit vector along the hard (z) axis, XW the position of the
vortex center, andFW the force acting on the vortex. In th
case where the vortex is only slightly displaced from t
center of the system, Thiele’s equation just describes
dynamics of the lowest translational mode. There are t
types of forces acting on the vortex. The first one is due to
image vortex which resides at the position (L2/X2)XW , X

5uXW u, and the second one is due to the pinning potentia
the underlying lattice. Putting both together we obtain

2GW 3XẆ 52
2pJS2qqiXW

L22X2 2kpXW , ~32!

whereqi is the vorticity of the image vortex. We have a
sumed that the pinning potential is harmonic in lowest a
proximation leading to a linear force with spring consta
kp . In the limit X→0, Eq. ~32! has the solutionX1(t)
5X cosv0t, X2(t)5X sinv0t with

v052
qqiJSa0

2

L2 2
kpa0

2

2pS
~33!
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e

e
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which, apart from the constant part, agrees with the dep
dency we have found above. In order to calculatekp from the
numerical eigenvalue data one can use the fact that Diric
boundary conditions generate an image of the same vort
while Neumann boundary conditions generate an image
opposite vorticity. Therefore from Eq.~33! two equations
follow:

v0,Dirichlet52
JSa0

2

L2 2
kpa0

2

2pS
,

v0,Neumann51
JSa0

2

L2 2
kpa0

2

2pS
. ~34!

Adding them leads to the following formula forvp which is
independent of the concrete size of the system:

vp[2
kpa0

2

2pS
5

v0,Dirichlet1v0,Neumann

2
. ~35!

Assuming a pinning potential of the formEp@cos(2px/a0)
1cos(2py/a0)12#/2, vp is connected to the pinning energ
Ep by the formula

Ep5
Suvpu

p
. ~36!

We have evaluated Eqs.~35! and~36! for some values ofl,
see Table I. Naturally, the pinning energy decreases w
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decreasing anisotropy because the size of the OP stru
increases strongly, making discreteness effects less and
important.

The pinning energy can also be measured directly, co
paring the energy of static vortices centered on different
tice coordinates. These numbers, labeledEp

direct in Table I,
compare very well withEp due to formula~36!.

Next, we discuss the higher modes obeying theumu51
symmetry. Due to the general features discussed in the
vious section, these modes can be considered as dou
with frequenciesvn.0 andvn11,0 with uvn11u.vn . For
general BC’s the mean frequency can be written as

v̄n.cxn /L, ~37!

where xn is the nth root of the equation aJ1(x)
1bx(r v /L)J18(x)50. For fixed and free BC’s one hasv̄n

5c j1,n /L and v̄n5c j1,n8 /L, respectively.
We concentrate on the lowest doublet with the frequ

cies v1 and v2.2v1 for the following reasons:~i! these
modes can be compared with long-time computer simu
tions of the vortex motion and~ii ! they can be used for th
calculation of parameters in equations of the vortex moti
In the lowest approximation inr v /L one can write

v̄1

SJ
.2x1A12l

a0

L
, ~38!

wherex15 j 1,1.3.832 for fixed BC’s andx1. j 1,18 .1.8412
for free ones. For general BC’sx1 lies between these value
Note, however, that fora'b the value ofx1 is still close to
j 1,1, and the ‘‘switching’’ to the valuej 1,18 occurs only for

small a<b(a0 /L). We remind the reader thatv̄1 does not
depend on the scattering data in the first approximation
a0 /L. The use of scattering data becomes important, h
ever, for the calculation of the doublet widthDv5uv2u
2v1 . Considering the leading approximationkrv;a0 /L,
the width can be presented in the form

Dv

SJ
5

pAl

2 S a0

L D 2 x1
2~ax12b!Y11x1bY0

x1~x1a2b!J01@~22x1
2!b2x1a#J1

,

~39!

whereJ0 , J1 , Y0 , andY1 all have the argumentx1 . One can
see thatDv is practically independent of the anisotropy~we
will omit the coefficientAl below!, and it is inversely pro-
portional toL2. This is the same dependence as for the lo
est translational modev0.JS(a0 /L)2, but the coefficients
are different.

Next we compare our results forv0 and the lowest dou-
blet v1,2 with data from recent computer simulations17 for

TABLE I. Pinning frequency and energy in dependence of
anisotropy paramterl.

l uvpu/JS Ep /(JS2) Ep
direct/(JS2)

0.80 0.0672 0.0214 0.0233
0.85 0.0181 5.7631023 5.8731023

0.90 1.8831023 5.9831024 6.0531024

0.98 8.0731025 2.5731025 3.8531026
re
ess
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re-
ts,

-

-

.

in
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the motion of one OP vortex on large circular systems~up to
L572a0! with free boundaries. The Landau-Lifshitz equ
tion was integrated for a square lattice witha051 and the
Hamiltonian ~1!, where J5S51 and l50.9. The vortex
center performs oscillations around a mean trajectoryXW 0(t)
which is a circle with radiusR0 around the circle center~Fig.
4!. The mean trajectory can be interpreted as a station
solution of the Thiele equation~31!, where the vortex is
driven by the interaction with its image vortex. The rot
tional frequencyv0 goes to a constant forR0→0; the ex-
trapolated value 0.20131023 agrees well with our resul
0.19331023 ~both for L572!.

The Fourier spectrum of the oscillations aroundXW 0(t)
shows a doubletv1,28 with about equal amplitudes, an
phases7p/2 between the two components. As the spectra
Ref. 17 were evaluated in a moving polar coordinate fra
we must add and subtractv0 in order to compare with our
results in Eqs.~38! and ~39!

v1,25v1,28 6v0 . ~40!

The data agree very well, e.g., forL572 andR0516.11 the
frequenciesv052.0531024, v1851.54631022, and v28

51.66131022 were observed which yieldsv̄51.604
31022 for the mean andDv50.7431023 for the differ-
ence. This agrees with our theoretical valuesv̄51.617
31022 andDv50.765731023 within 0.8 and 4 %, respec
tively.

Note that the very good agreement of our normal mo
approach with the data from the simulations is not a triv
result: we have calculated the frequencies appearing in
vortex dynamics forfree boundary conditions, using as input
the scattering data forfixed boundary conditions. This shows
that our scattering theory actually works for the general ca

We conclude that the vortex motion is accompanied by
generates, the two quasilocal magnon modes withumu51.
These show up in two ways:~i! in the trajectory of the vortex

e

FIG. 4. Trajectory of a vortex obtained by numerically integra
ing the Landau Lifshitz equation in time. The simulation was p
formed on a circular system with radiusL536a0 and free boundary
conditions.
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center as oscillations around a mean trajectory,~ii ! as oscil-
lations of the dynamic parts of the vortex structure~see be-
low!.

There remains the question of whether the trajectory
the vortex center can be obtained from an equation of m
tion. If the rigid-shape assumption of Thiele is dropped
allowing for a deformation due to the velocity,21 a second-
order equation of motion can be derived22 which exhibits an

additional termMXẄ with an effective vortex massM . The
additional term causes cycloidal oscillations23 with fre-
quencyvc5G/M around a mean trajectory. For the vorte
massM; ln L was predicted, which was not confirmed b
computer simulations, see Refs. 24, 25. Recently Wys16

proposed to calculateM by using the two lowest eigenfre
quencies,v0 and v1 in our notation. His formulaMW
5G/(v01v1) gave a linearL dependence when the fre
quencies from his numerical diagonalization were insert
The same dependence is obtained@in O(a0 /L)# if we insert
our analytical results for the frequencies.

However, meanwhile new simulations had been p
formed which resulted in the observation of the abovem
tioned doubletv1,2, instead of a single frequencyvc . This
dynamics can be fully described by a third-order equation
motion17 which was derived by a collective variable theor
starting from a generalized traveling wave ansatz

SW ~rW,t !5SW ~rW2XW ,XẆ ,XẄ !, ~41!

where the vortex shape is assumed to depend also on
acceleration. In fact, this dependence can be seen in sim
tions with free BC’s when one considers the spin configu
tions at the turning points of the trajectory where the acc
eration is maximum while the velocity is small.17

The third-order equation has the form

GW 33XŴ 1MXẄ 2GW 3XẆ 5FW ~42!

with GW 35G3eW z and a new parameterG3 . We note that this
is the most general third-order equation for the given ea
plane symmetry. In Ref. 17,G3 was defined as an integra
over rW which could not be performed because the dynam
vortex structure is not known analytically for the vortex co
However, the size dependenceG3;L2 was obtained from
the outer region of the integral. We will see below that o
theory allows for the calculation ofG3 andM .

We consider Eq.~42! for the case of vortex motion clos
to the center of the circle where the image force is appro
mately linear

FW 522pqqiXW /L2. ~43!

Then Eq.~42! can be solved by a harmonic ansatz, where
frequencyv fulfills

2G3v32Mv21Gv522pqqi /L2. ~44!

The parameters can be obtained from the three rootsv i ,
using Vieta’s rules

v01v11v252M /G3 , ~45!

v0v11v0v21v1v252G/G3 , ~46!
f
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v0v1v252pqqi /~G3L2!. ~47!

We now identify v0 with the Goldstone mode2qqi /L2,
neglecting the frequencyvp from the pinning force since Eq
~42! was derived in the continuum limit;v1 andv2,0 are
identified with the lowest doublet calculated in Eqs.~38!,
~39!.

From Eq.~47! we obtain26

G35
2p

v̄2
~48!

with v̄5Av1uv2u. 1
2 (v11uv2u), which gives

G35
p

2x1
2~12l!

L2. ~49!

The result 4.634L2 for free BC’s agrees very well with
4.67L2.002 for large L obtained from the simulation data.17

For fixed BC’s,G351.07L2 is about four times smaller.
From Eq.~45! we obtain

M5
2p

v̄2 S Dv1
qqi

L2 D ~50!

with Dv5uv2u2v1 . Here allL dependencies just cancel i
the lowest approximation onL, thus the vortex mass in Eq
~42! is independentof the system size, as already obtain
from the simulations.17 Inserting Eq.~39! we get for free
BC’s

M5
p

2~12l! S p

2

x1Y02Y1

~x1
221!J1

2
1

x1
2D . ~51!

The numerical valueM514.74 agrees well withM515
which we have extrapolated forR0→0 from the data in Ref.
17 for three different system sizes (L524,36,72). We note
that the vortex mass~51! is in the same order of magnitud
as the two-dimensional soliton massM5E0 /c2 in Ref. 21,
where E054p ~in units JS2! is the Belavin-Polyakov en-
ergy.

For fixed BC’s

M5
p

2~12l! S p

2

Y1

x1J0
1

1

x1
2D ~52!

yieldsM57.661, which is about one half of the above val
for free boundary condition. Thus in the equation of moti
~42! only the gyrovectorGW is an intrinsic property of the
vortex. The quantitiesM andG3 , which are connected to th
quasilocal modes with frequenciesv1,2, are determined by
the whole system ‘‘vortex plus magnons’’ which include
the geometry of the system and the boundary conditions.
G3 this is obvious because it strongly depends onL; but M
does not depend onL ~in the lowest order!, however, it de-
pends on the boundary conditions. On the other hand, thS
matrix naturally is determined only by the region of the vo
tex core and can thus be used for the calculation of the
rametersM and G3 for arbitrary geometry and boundar
conditions.

Finally we point out that Eq.~42! belongs to a whole
hierarchy of equations of motion which can be derived17 by
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taking into account higher and higher time derivatives

XW (t) in the generalized traveling wave ansatz~41!. More-
over, only the odd-order equations of this hierarchy repres
valid approximations, because the even-order equations

a very weak leading term, e.g.,MXẄ in the second-orde
equation. Therefore the solutions of the latter equations
qualitatively different from the solutions of the odd-ord
equation and are in fact not confirmed by the simulatio
~see the above discussion of the single frequencyvc and the
doubletv1,2, which exhibit quite different dependencies o
the system size!. The fifth-order equation of the hierarch
predicts a second doubletv3,4 which was in fact observed in
the simulations, but only for specially designed initial a
boundary conditions because the amplitudes of this dou
are very small.17 Thus the third-order equation represen
already a very good approximation. The observed additio
doublet naturally also appears in the results of our numer
diagonalization in Sec. IV and its frequencies can be ca

lated byv̄n and (Dv)n , see Eq.~37! and below.

VI. CONCLUSION

We have developed a general theory which allows ca
lation of the magnon modes of a circular easy-plane fe
magnet in the presence of an out-of-plane vortex. T
method consists of a combination of numerical diagonali
tion of the discrete system with analytical calculations in
continuum limit. The frequencies of the magnon modes
be expressed in terms of the functionssm(krv), which are
independent of the magnetic coupling constants, the sys
size, and the boundary conditions. Thesm describe the in-
tensity of the magnon scattering due to the presence of
vortex.

The translational modes withumu51 are particularly in-
teresting for two reasons:~i! Their frequencies are identifie
in the vortex motion which was observed in simulatio
where the Landau-Lifshitz equation was integrated for
circular discrete spin system.~ii ! Using these frequencies
one can calculate the two parameters of a third-order eq
tion for the vortex motion~a generalization of the Thiele
equation!, which was derived by a collective variable theo
starting from a generalized traveling wave ansatz. Our ca
lated parameters agree very well with those obtained by
scribing the simulations using the third-order equation
motion. Both parameters, the vortex massM and the third-
order gyrocoupling constantG3 , depend strongly on the
boundary conditions. This is due to the fact that both
in-plane and the out-of-plane structure of the moving vor
are not localized. In fact, the dynamic parts of the vor
structure oscillate with the frequencies of the translatio
modes withumu51.
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APPENDIX: NUMERICAL DIAGONALIZATION OF
HAMILTONIAN MATRICES

If a classical Hamiltonian system is linearized around
static solution, an eigenvalue problem

AzW5lzW ~A1!

results with a coefficient matrixA fulfilling the generalized
symmetry relation

ATJ5JTA. ~A2!

J is the ‘‘symplectic unit matrix,’’ i.e.,

J5S 0 1

21 0D . ~A3!

For obvious reasons the matrixA is called a ‘‘Hamiltonian
matrix.’’ It is easy to see thatA can always be written asJH
where H is a symmetric matrix. Note that the eigenvalu
and eigenvectors ofA are complex in general.

For the most general case, Hamiltonian matrices have
special properties which could profitably be used in the
merical diagonalization. An exception, however, is the ca
of a positive definite matrixH, for which Eq.~A1! is equiva-
lent to an Hermitian eigenvalue problem with pure imagina
eigenvalues. In order to show this, we note that a posi
definite matrix can always be written as

H5LL T, ~A4!

the so-called Cholesky decomposition ofH, cf. Ref. 27. Sub-
stituting this in Eq.~A1! and additionally defininglª iv we
obtain

~ iLTJL !~LTzW !52v~LTzW !. ~A5!

Now, J is antisymmetric and thereforeiLTJL is Hermitian.
Unfortunately, it is somewhat difficult to use this equiv

lence directly for the purpose of numerical diagonalizatio
The Cholesky decomposition of a sparse symmetric ma
can be computed easily only for certain cases, otherwise
very time consuming. For this reason we did not directly u
formula~A4!. Instead we utilized a method called Wielandt
version of the inverse iteration procedure. The basic strat
is to multiply a ~randomly chosen! vector over and over by
the inverse of the spectral-shifted matrixA, i.e., (A
2l̄I )21. The resulting series of vectors converges to an
genvector ofA, usually the one corresponding to the eige
value closest to the chosen spectral shiftl̄. The details of the
method can be found in Ref. 27. For Hamiltonian matric
supposing a positive definite matrixH and therefore imagi-
nary eigenvalues and an imaginary spectral shiftl̄5 i v̄,
Wielandt’s inverse iteration amounts to the following iter
tion formula:

S H 2v̄J

v̄J H
D S xW ~ j 11!

yW ~ j 11!D 52S JPxW ~ j !

JPyW ~ j !D . ~A6!
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xW ( j ) andyW ( j ) are the real and imaginary part of the eigenv
tor in the j th iteration step. The initial vector (xW (0),yW (0)) must
be chosen randomly. The matrixP is a symplectic projection
operator which is defined as

P5(
k< j

yW ~k!xW ~k!T2xW ~k!yW ~k!T

xW ~k!TJyW ~k!
J. ~A7!

The sum runs over all eigenvectors which were compute
previous runs. The purpose of this operator is to avoid
the method converges to an already-known eigenvector.

After some iteration steps the parameterv̄ can also be
iterated, for example, according to the formula

v̄5
1

i

zW1AzW

uzWu2
, zW5xW ~ j !1 iyW ~ j !. ~A8!
.

-

in
at

As zW converges to an eigenvector ofA, l̄ converges to the
corresponding eigenvalue.

A positive definite matrixH is not a principal presump
tion for the inverse iteration, i.e., the above iteration formu
can in principle be generalized to include the case of n
definite matricesH. However, first of all, withH, the coef-
ficient matrix in Eq.~A6! is also positive definite. This al
lows us to use an efficient numerical method to solve E
~A6!. To be precise we have used theNAG library function
F04MBF for this purpose which is based on a Lanzcos alg
rithm. TheNAG routine makes it only necessary to supply
‘‘matrix3vector’’ function. Therefore one has to store on
the elements ofA which are nonzero which precisely make
the method suitable for large and sparse matrix equation
second point is that for nondefiniteH rather serious problem
with the numerical stability of the inverse iteration arise.
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