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Discrete-lattice theory for Frenkel-defect aggregation in irradiated ionic solids
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A microscopic theory of diffusion-controlled aggregation of radiation Frenkel defects—called in ionic solids
H and F centers—is presented. This is based on a discrete-lattice formalism for the single defect densities
~concentrations! and the coupled joint densities of similar and dissimilar defects treated in terms of a modified
Kirkwood superposition approximation. The kinetics of defect aggregation is studied in detail; the cooperative
character of this process for both types of complementary defects is shown. The theory is applied to the
description of the kinetics of metal colloid formation during heating of electron-irradiated CaF2 crystals.
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I. INTRODUCTION

It is well known that the primary radiation defects in ion
solids—theF centers~electron trapped by anion vacanc!
and theH centers~interstitial halide atoms!—begin to aggre-
gate under intensive irradiation and at sufficiently high te
peratures. This leads to the formation of alkali metal collo
and gas bubbles, respectively~see Ref. 1 and reference
therein!; a similar process occurs also in heavily irradiat
metals.2 Intensive experimental studies of the conditions
the defect aggregation and subsequent colloid forma
~such as the temperature interval, dose rate, etc.! continue
nowadays for many alkali halides,3,4 in particular for the
technologically important CaF2 ,5,6 and for ceramic
materials.7 This problem is also interesting from a fundame
tal point of view, being an example ofpattern formationand
self-organization in reaction-diffusion systems far from
equilibrium.8 It should be stressed that metal colloid form
tion is a rather slow process which in real experiments of
lasts several weeks or longer; another reason why this p
lem is a difficult one for direct computer~Monte Carlo!
simulations is that the mobilities of the two kinds of defec
involved ~interstitials and vacancies! differ typically by
10–15 orders of magnitude. In order to model theF center
aggregation, one has to use a very small time increm
which is dictated by the highly mobileH centers.

Existing theories of radiation-induced defect aggregat
and colloid formation can be classified, in terms of the ma
ematical formalism used, into three categorie
macroscopic,9 mesoscopic,10,11 and microscopic.12–15 We
call microscopica theory on an atomic scale which uses
fitting or uncertain parameters like numerous reaction ra
but only several basic defect parameters such as the diffu
energies and interaction energies. Such a theory has
presented recently by us.12 However, the continuum approxi
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mation used there has led to nonphysical problems ass
ated with cutting off the interaction potentials at the neare
neighbor ~NN! distance, and with large gradients of th
correlation functions at these distances. The first point ma
results very sensitive to the manner in which the potent
are defined at distances shorter than NN. The second
forces us to use very small coordinate increments in the
culations which then strongly restricts the time interv
which can realistically be reached using such an approa

In this paper we develop a microscopic,discrete-lattice
theory of diffusion-controlled aggregation occuring durin
the bimolecular annihilation,A1B→0, under a permanen
particle source. The theory is based on the mathematical
malism for stochastic processes in spatially extended syst
which has been developed by the authors for catalytic s
face reactions.15,16In this paper our microscopic formalism i
generalized for the bulk processes in three dimensions,
ing also into account creation of Frenkel defects under ir
diation. To make the problem solvable, we restrict oursel
to lattice models where both elementary events~diffusion
hops, recombination! and particle interactions occur only be
tween NN particles. This is a good approximation for diff
sion. However, dissimilar particle recombination in som
cases, e.g., in metals, needs incorporation of longer
tances. The same is true for a description of realistic lo
range particle interaction, since in fact in this paper we
glect the ‘‘tail’’ of the elastic attraction of Frenkel defec
which decays asr 23, with r the distance between the tw
defects. Such approximations are unavoidable in a stud
many-particle systems with a strong interaction between p
ticles ~defects!.

We apply the theory to the study of the cooperative kin
ics of colloid formation under irradiation of CaF2 crystals.
However, after minor modifications it can be used for oth
systems too, e.g., metals or microelectronic materials.
8454 © 1998 The American Physical Society
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The plan of the paper is as follows: in Sec. II a physic
model is described and its mathematical realization is
cussed in detail in Sec. III. Section IV deals with the descr
tion of the transition rates of the basic processes and par
interactions, whereas the master equations are analyze
Sec. V. The theory is illustrated in Sec. VI by application
H and F center aggregation kinetics in CaF2 crystals. This
effect is important for CaF2 applications in optical windows
and nanolithography. Conclusions are given in Sec. VII.

II. A PHYSICAL MODEL

The physical modelincludes creation of interstitials, i.e
H centers, and vacancies, i.e.,F centers~called hereafter jus
defects or particlesA andB). This takes place with a given
~dose! rate p, AB pairs are not spatially correlated at bir
and recombine when they approach each other during t
migration to within the NN distance. Therefore, the
macroscopic concentrations always coincide,n5nA5nB .
Isolated~single! defects hop with the activation energyEl

and are characterized by the diffusion coefficientsDl

5dlexp(2El /kBT), l5A,B. When several defects are clos
together, the hop rate of a given defect to the nearest em
lattice site is determined by both the local defect configu
tion and the interaction between defects; this can chang
effectivediffusion coefficientDl

eff by many orders of magni
tude compared to that for a single defect. This affects
effective reaction rate Kof the A andB recombination; for
the dilute system in the continuum approximation this rate
well known to beK054pr 0(DA1DB), wherer 0 is the re-
combination radius.

From previous theoretical studies10–12 it follows that de-
fect attraction plays a decisive role in the aggregation p
cess. It is incorporated in our model via three types of N
attractions between the two types of NN defects~in the spirit
of the Ising model!: EAA , EAB , andEBB . Note that only a
few theoretical studies have been devoted up to now to
effects of particle interaction~especially, for similar par-
ticles! in the kinetics of the bimolecular diffusion-controlle
reaction A1B→0, with the emphasis on fluctuation ph
nomena. Rare exceptions are the papers.17,18Particle interac-
tions render the kinetic equations essentially nonlinear
this causes manifestation of self-organization~pattern forma-
tion! under irradiation.

III. A MATHEMATICAL MODEL

A. Definitions

Each lattice site is given a lattice vectorr l and coordina-
tion numberz. The state of the siter l is described by the
local variables l . The spectrum of its valuess l50,A,B de-
scribes three possible states of the lattice site: 0 represe
vacant site, whereasA andB are sites occupied by anA or B
particle, respectively. A particle aggregate or colloid
treated as a dynamical domain containing particles of
type only (A or B). In other words, an isolated particleA or
particleA inside the aggregate are described in a similar w
through the local state variables l .
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B. State probabilities

The lattice processes under consideration can be treate
stochastic Markov processes. Each lattice state characte
by a set of local variabless5$s1 ,s2 , . . . % arises with the
probability r(s). The latter gives formally a complet
probabilistic description of the system, however the equat
determiningr(s) cannot be solved exactly. The probabili
tic description of the lattice states can be done also us
another set of quantities, the so-calledmany-point probabili-
ties which depend oni lattice sites and are coupled throug
recurrence sum rules. Such a limited set of probabilities b
ter suits our particular problem.

1. Single-point probabilities

The single-point probabilityr (1)(s l) is the probability to
find at time t the lattice siter l in the states l . Due to the
translational invariance these probabilities can depend o
on time. Using the abbreviationl5s l , Cl5r (1)(s l) one
can write down the obvious normalization condition

(
l

Cl5CA1CB1C051. ~1!

In terms of physics the quantityCl is nothing but a simple
density of particles on the lattice~site population!. CA , CB ,
andC0 are densities for particlesA,B or empty sites, respec
tively. The usual, dimensional densitiesnl ~per unit volume!
are just

nl5
Cl

a0
3

, ~2!

wherea0 is a lattice parameter. Obviously, the use of su
macroscopic values as the simple particle densitiesCl is not
sufficient for the description of the particle aggregation. T
latter needs a detailed analysis of the relative distribution
several types of particles on the lattice and an analysis
their relevant spatial correlations. For this purpose the tw
point densities and relevant correlation functions are w
suited.

2. The correlation functions

The two-point probabilityr (2)(s l ,sm) is the probability
of finding at the timet the siter l in the statel5s l and the
site rm in the statem5sm . It can be formally presented in
the factorized form

r~2!~s l ,sm!5ClCmFlm~r !, r5r l2rm , ~3!

where Flm(r ) is the joint correlation function. As follows
from Eq. ~3!, due to the translational invariance, both t
two-point density and the correlation function depend o
on the relative distance between two sites,r l and rm , char-
acterized by a vectorr . Besides,Flm(r ) satisfies severa
general conditions. The first one is that the correlation d
appears at large distances~due to the short-range nature o
the spatial correlations!. This means that asr→`, the states
of sitesr l and rm are statistically independent which resu
in r (2)(s l ,sm)5r (1)(s l)r

(1)(sm), i.e.,
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lim
r→`

Flm~r !51. ~4!

The second condition is a relation between single- and t
point densities, the sum rule

(
sm

r~2!~s l ,sm!5r~1!~s l !, ~5!

or

(
m

cm
~l!~r !51, cm

~l!~r !5CmFlm~r !. ~6!

The latter equation is similar to Eq.~1! and permits also a
similar interpretation. The quantity

cm
~l!~r !5r~2!~s l ,sm!/r~1!~s l ! ~7!

defines the conditional probability that the site atr is in the
statem when the central siter l is in the statel.

3. Density of single particles

To handle the complicated statistical problem under qu
tion, we use a reduced probabilistic description of the ma
particle system in terms of single and joint particle densit
only, i.e., many-point probabilitiesr (k) are expressed
through simple densities~concentrations! Cl and the joint
correlation functionsFlm(r ). Let us illustrate this principle
by an example. We call anisolated particle~single center! a
local state where the siter l is in the statel5s l , whereas all
its nearest-neighbor ~NN! sites are empty ($s% l

z

5$s1 , . . . ,sz%5$0, . . . ,0%). The probability to find an iso-
lated ~single! particle Cl

s is defined by the (z11)-point
probability Cl

s5r (z11). The density of dimer-, trimer- and
higher particle configurations can be found in a similar w
~see below!, i.e., through many-particle densities with
larger number of arguments~three, four etc.!. As a result, one
arrives at an infinite set of coupled equations for the co
lation functions of all orders which cannot be solved exac
An approximation to handle this problem is to cut off th
infinite hierarchy. Single densities can be calculated us
the cluster approximation19 well known in theory of phase
transitions. The approximation is based on the relation

r~z11!5Cl)
i 51

z

cm i

~l!~1!. ~8!

In other words, the probability of finding a cluster of (z
11) sites is approximated as a product of the probabilityCl

to find the central site in thel state and the conditiona
probabilities to find NN sites in the statesm i5s i ~its argu-
ment r 51). From this general expression for the isolat
particles one gets

Cl
s5Cl„c0

~l!~1!…z. ~9!

Since the conditional probabilities are limited from abo
@Eq. ~6!#, as expected the relationCl

s<Cl holds ~not all
particles are isolated!. It will be shown below that by incor-
poration of particle attraction (Ell,0) this nonequality can
be strengthened,Cl

s,,Cl , due to formation of dimers, tri-
o-

s-
-
s

y

-
.

g

mers, and higher configurations. Similar to Eq.~2! the di-
mensional density of isolated particles can be found as

nl
~1!5

Cl
s

a0
3

. ~10!

4. The density of dimer particles

In the dimer configuration, the two NN particles are cha
acterized by the lattice vectorsr l and rm and the statesl
5n5A,B, whereas all surrounding sites are empty. Suc
state is described by the (2z)-point probability r (2z) pro-
vided that the states of the central sites ares l5sn5l,
whereas those of (z21) NN sites~surrounding each of the
two central sites! are $s% l

z215$s1 , . . . ,sz21%
5$0, . . . ,0%, $s%n

z215$s18 , . . . ,sz218 %5$0, . . . ,0%, re-
spectively. Note that this is true for cubic lattices only~see
Refs. 15,16!. However, our formalism can be generalized f
any lattice structures.

Using the cluster approximation, Eq.~8!, we arrive at

r~2z!5ClCnFln~1!)
i 51

z21

cm i

~l!~1!)
j 51

z21

cm j

~n!~1!. ~11!

Taking into account Eq.~11! and all possible spatial orien
tations of the dimer~a dumbbell!, one gets

Cl
d5

z

2
Cl

2Fll~1!„c0
~l!~1!…2~z21!. ~12!

The density of dimers is defined in such a way that the
mensional concentrationnl

(2)5Cl
d/a0

3 gives a mean numbe
of dimers per unit volume.

5. The mean particle number and aggregate size

In a similar manner the density of trimers, tetramers, a
larger aggregates can be found. However, large aggreg
~colloids! can be better characterized by such averaged qu
tities as aggregate sizeRl and the mean number of particle
inside it, Nl . For this purpose we can use the followin
arguments. By definition,cl

(l)(r ) is the mean density of par
ticles l at the distancer from the central site occupied by
similar particle l. If the particle distribution is random
Flm(r )51, the local density coincides with the macroscop
one,cl

(l)(r )5Cl . However, this is only the case if there a
no particle interactions or reaction. In the general case
relationsFlm(r )→1 andcl

(l)(r )5Cl hold only asymptoti-
cally, as r→`. This is why the quantity dcl

(l)(r )
5Cl@Fll(r )21# gives the surplus particle density at sho
relative distances as compared to their random distribut
Its positive magnitude characterizes the aggregation of
ticles. Usingdcl

(l)(r ) as a weighting function, we can defin
the mean number of particles inside the aggregate as

Nl511(
r

dcl
~l!~r ! ~13!

and its radius

Rl5
1

Nl
(

r
ur udcl

~l!~r !. ~14!
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The unity on the right-hand side of Eq.~13! corresponds to
the central particle in whose surroundings the excess par
density is integrated. For a random particle distributio
Flm(r )51, and the definitions~13! and ~14! yield Nl51
and Rl50, i.e., the concentration of dimers, trimers, e
which always statistically exist, is assumed to be mu
smaller than the aggregation effect driven by the reaction
particle interaction. It should be noted here that in real
periments in insulating crystals concentrations of isola
centers, dimers, and trimers @the so-called
F, F2 (M ), F3 (R) centers#, i.e., the smallest aggregate
on the one hand, and the large colloid size and a total c
centration of metal~fraction of sites occupied by defects!, on
the other hand, can be estimated from absorpt
measurements.5 Information aboutH aggregates is much les
accurate, only the smallestH clusters are detectable by R
man spectroscopy. Gas bubble formation in irradiated C2
has been reported in Ref. 20. In metals experimental in
mation on the defect aggregation is even more qualitativ

IV. TRANSITION RATES

After definition of the spectrum of the site state variab
s l5l the stochastic lattice Markovian model of the agg
gation kinetics needs also the definition of the transit
rates. The latter are monomolecular and bimolecular tra
tions.

A. Monomolecular transitions

The simplest, monomolecular transitions depend only
a single lattice site state whereas the states of surroun
sites remain unchanged. These transitions can be prese
as

s l→
k

s l8 or l→
k

l8, ~15!

where the transition ratek5P(l→l8) does not depend on
the lattice vectorr l . Examples areA (B) particle ~defect!
creation in an empty lattice site, 0→A and 0→B, respec-
tively.

P~0→A!5P~0→B!5p05pa0
3 , ~16!

where p is defined in Sec. III as the irradiation intensi
~dose rate!. That is, Frenkel defects are created in pairs, e
occupying two lattice sites. Depending on the irradiati
conditions, the distance within such a pair can vary. Un
an electron irradiation considered here it is known to be q
large, so that dissimilar defect creation can be considere
a random, uncorrelated creation ofA andB particles in equal
concentrations.14,15 In principle, the spatial correlation o
Frenkel defect pairs,AB, can also be taken into account15

but it is not directly related to the problem of aggregati
kinetics.

B. Bimolecular transitions

Such transitions are related to a simultaneous chang
the state of two NN sites with lattice vectorsr l andrn . In the
general case bimolecular transitions are described by
equation
le
,

.
h
d
-
d

n-

n

r-

s
-
n
i-

n
ng
ted

h

r
e
as

of

he

s lsn→
k

s l8sn8 or ln→
k

l8n8. ~17!

It is convenient to present the transition ratek taking into
account the coordination numberz: k5K(ln→l8n8)/z.
Examples are:~i! dissimilar particle recombination,

AB→
k

00 with K~AB→00!5V, ~18!

~ii ! particle diffusion~particle random walks on the lattice
l5A,B),

l0→
k

0l with K~l0→0l!5Dl
0 . ~19!

For simplicity we assume the recombination rate to be in
nite, V→`, which corresponds to the instant recombinati
of defects with a restoration of the perfect lattice. The h
ratesDA

0 andDB
0 have simple relations to the diffusion coe

ficients

Dl5
a0

2

z
Dl

0 , Dl5dlexpS 2
El

kBTD , ~20!

where dl is the diffusion prefactor anda0 is the hopping
distance~assumed to be equal to the lattice constant!.

C. Energetic interaction of particles

Equations~17!, ~18!, and ~19! describe particle creation
diffusion, and recombination but neglect their energetic
teraction. Due to this interaction the transition rate can
pend on the NN states and temperature. Examples of s
interactions are Coulomb and elastic attraction of defect
solids.15,17,18 To take this into account, the monomolecul
transition rate P(l→l8) should be replaced byP(l
→l8u$s% l

z) and the bimolecular rateK(ln→l8n8) by
K (ln→l8n8u$s% l

z21$s%n
z21). This dependence can b

found from the asymptotic behavior of the steady state of
kinetic system under study and the equilibrium Gibbs dis
bution. This problem arose in the study of the kinetic Isi
model in lattice phase transitions. We follow here the gene
approach developed by us for the stochastic surf
reactions.16 The so-calledstandard modelpresented there al
lows us to obtain uniquely the rates of mono- and bimole
lar transitions including the particle interactions. It should
stressed once more that we restrict ourselves to NN inte
tion. Due to the interaction similar particles begin to agg
gate. It is clear that the probability of some particle in t
center of an aggregate to find an empty NN site for a dif
sion hop is quite small. Also, the hop probability for a pa
ticle at the periphery of the aggregate to leave it is becaus
the particle attraction smaller than the probability to hop in
the interior of the aggregate and make it denser. This is w
the aggregation kinetics should depend on temperature
the three interaction energies between similar and dissim
particles,EAA , EAB , EBB . For more details see Secs. V
and VIII and Eqs.~12!–~31! in Ref. 16.

A system of interacting particles can be characterized
the effective diffusion coefficientDl

eff . By definition, Eq.
~19!, rates of bimolecular hops are proportional to the diff
sion coefficients. Let us define the effective dimensional d
fusion coefficient,Dl

eff/Dl . Here Dl is the usual diffusion
coefficient in a dilute system consisting of isolated defe



a

te
u

tin

s
s
o

nt
he

ra
tiv
f t

io
ve
u
tio

ce
th

ro

b
s

re
a

in
s a
nts,
gre-
ion

rge

h the
f
of

d 2

the

8458 PRB 58V. N. KUZOVKOV, E. A. KOTOMIN, AND W. von NIESSEN
which is proportional to the rateK(l0→0l). In turn, in the
dense system of interacting particlesDl

eff is proportional to
the avaraged transition ratêK (l0→0lu$s% l

z21$s%n
z21)&.

The latter transition rate is averaged (^ . . . &) over all con-
figurations of particles surrounding a given particle. This c
be done using the cluster probability, Eq.~11!. As we show
below in Sec. VI D, under particle aggregation the parame
Dl

eff/Dl is by many orders of magnitude less than unity th
characterizing migration properties in a dense interac
system.

V. MASTER EQUATIONS

As was noted above, the stochastic Markovian proces
uniquely defined by a set of mono- and bimolecular tran
tion rates. The relevant, discrete-lattice formalism based
the hierarchy of the correlation functions has been prese
recently15,16 and illustrated by the particle aggregation in t
course of the catalytic surface reactionA1 1

2 B2→0. This is
why in this paper we do not repeat complicated gene
equations which can be solved only using special itera
procedures. In contrast, we discuss only the basic idea o
approach and its application to the particular bulkA1B
→0 reaction in three dimensions. In fact, the latter react
under study is mathematically isomorphic to the abo
mentioned surface catalytic reaction where the molec
adsorption/desorption is replaced by the defect produc
ratep in the bulk.

The final set of kinetic equations read

dCl

dt
5Gl~C,F !, ~21!

dFlm~r !

dt
5Glm~C,F !, ~22!

whereGl and Glm are expressions nonlinear in the latti
densities and the correlation functions. They arise due to
systematic use of approximations such as the cluster app
mation, Eq.~11! ~for more details see Ref. 16!. To illustrate
this approach, we write down the structure of Eq.~21! where

Gl5Gl
in2Gl

out, ~23!

Gl
in5(

l8
P8~l8→l!Cl81 (

l8n8n

K8~l8n8

→ln)Fl8n8~1!Cl8Cn8 , ~24!

Gl
out5(

l8
P8~l→l8!Cl1 (

l8n8n

K8~ln

→l8n8)Fln~1!ClCn . ~25!

The equations above describe all possible mono- and
molecular processes. Formally these equations remind u
the usual rate equations for defect concentrations.9 However,
the key factor is that the functionsP8(l→l8) and K8(ln
→l8n8) are effectivetransition rates. These quantities a
obtained via averaging over the nearest-neighbor states b
n

r
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g
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-
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on the statistical weights: Eq.~8! for the calculation of quan-
tity ~26! and Eq.~11! for the quantity~27! below:

P8~l→l8!5^P~l→l8u$s% l
z!&, ~26!

K8~ln→l8n8!5^K ~ln→l8n8u$s% l
z21

ˆs‰n
z21

…&.
~27!

The lengthy expressions for these functions are given
the Appendix of Ref. 16 and consist of 35 equations. A
result, the kinetic equations depend on the kinetic consta
temperature and NN interaction energies. The particle ag
gation is characterized by the shape of the joint correlat
functions; at distancesr5ur l2rmu, where some joint density
considerably exceeds the asymptotic value of unity, a la
excess of neighboring similar particles~i.e., an aggregate! is
found compared to the random~Poisson! distribution. The
aggregate size can be estimated as the distance at whic
joint correlation functionsFll(r ) approach the value o
unity. Our stochastic formalism operates with a finite set
lattice densitiesCl and joint correlation functionsFlm(r ).

FIG. 1. ~a! Time development of totalF, H concentrations~in
cm23) under irradiation at 193 K for 30 min~shown by an arrow!
with a subsequent heating at the rate 1.3 K/min. Curves 1 an
show the effect of the dose rate (p51020 and p51017 cm23 s21,
respectively!, whereas curve 3 shows the effect of the neglect in
latter case of similar defect interationEll50, l5A,B. Note rapid
defect recombination in case 3 when irradiation is switched off.~b!
The dynamics of single,n(1), and dimer,n(2), H center aggrega-
tion and total H concentrations, nA , for a dose rate p
51017 cm23 s21 under irradiation at 193 K~as in curve 2 above!
and at 150 K.
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FIG. 2. ~a! Heating-induced growth of the mean radius ofH aggregates,RA ~in units of theF2F distance,a052.73 Å in CaF2). Note
thatH andF defects are denoted as defectsA andB, respectively.~b! The mean number of particles inside each aggregate,NA . Irradiation
with the dose ratep51017 cm23 s21 for 30 min. Curves 1 and 2 correspond to the attraction energiesEAA5EBB520.02eV. and
20.03 eV, respectively;~c! and ~d! the same for theF centers, respectively.
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The set of resulting ordinary differential equations to be c
culated is formally infinite due to the infinite number of la
tice sitesr l and rm ; but in practice we restrict ourselves
finite relative distances~correlation lengths! which is justi-
fied by the short-range nature of the spatial correlations
the particle densities.

The relevant computer codeKINETIKA ~Ref. 21! permits
us to calculate the time development of the total defect c
centrations, single and dimer centers, effective diffusion
efficients and reaction rate, mean sizes of the aggregates
the number of particles therein. This gives a complete pict
of the diffusion-controlled aggregation process.

VI. RESULTS FOR CaF2

The key parameters which govern particle aggregation
a binary system~Frenkel defectsA andB discussed above!
include:~i! the lattice parametera0 which usually serves also
as the recombination radius.~ii ! The activation energies fo
diffusion hops El and pre-exponential factorsdl (l
5A,B) which define the diffusion coefficient for the isolate
particlesA and B. The activation energies for interstitia
and vacancies may differ by an order of magnitude~e.g,
EA50.1 eV andEB51 eV in NaCl!. ~iii ! similar and dis-
similar particle interaction energiesEAA , EAB , and EBB .
These energies, along with the temperature, directly con
the rate of theH, F center attachment and detachment
from the aggregate of similar particles. These three intrin
parameters characterize the actual physical system, whe
the remaining two parameters describe the external co
l-
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-
-
nd

re
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/
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eas
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tions: ~iv! the temperatureT, and~v! the dose ratep charac-
terizing the irradiation intensity. In the particular case
CaF2 the activation energies for theF andH center diffusion
are known from the thermostimulated luminescence exp
ments (0.7 and 0.46 eV, respectively!.22 The energies of the
elastic interactions are less well known. Calculations
pairs of NN defects in KBr show that they are abou
20.02 to20.05 eV.23 In this paper we vary these energie
in the mentioned limits and compare results with experim
tal data. For simplicity the defect interaction energies
assumed to be equal,EAA5EBB . Additional calculations
have demonstrated that for unequal interaction energies
sults remain qualitatively the same. It is also assumed
there is no attraction betweenH andF centers; an inclusion
of their attraction only slightly accelerates the recombinat
rate.

To make the model as simple as possible, we assume
parameters of a dense defect system are entirely determ
by parameters of isolated single particles or isolated pair p
ticles. This is true for NN interactions between particl
treated in this paper. Effects of long-range particle inter
tion are not considered here, this is a subject of another s
which is in progress now. Note however, that the effect
parameters for dense systems, such as the diffusion co
cients of particles to be discussed below, can in the fram
work of our simple model differ by many orders of magn
tude from properties of isolated particles. This justifies t
use of a simple~and thus, handable! model for colloid for-
mation.

In real experiments samples are irradiated at a given fi
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temperature for a certain time,t,t0 , then the irradiation is
switched off, and the sample is heated with a constant r
We have modeled this process, asuming that after irradia
T(t)5T01g(t2t0), whereg is the heating rate~typically,
1–2 K/min!. We compare our calculations with the C
colloid growth kinetics observed in Ref. 5 for CaF2 irradi-
ated by low-energy electrons at low (T0' 200 K) tempera-
tures and subsequently heated with the rateg51.3 K/min.
This irradiation corresponds to a dose rate of aboup
51017 cm23 s21.

A. Defect concentration growth under irradiation

Let us start with a study of the kinetics of defect conce
tration growth in CaF2 under irradiation at low temperature
when theF centers are definitely immobile but theH centers
are moving either slowly~150 K! or are already quite mobile
~193 K!. The first conclusion from curve 2 in Fig. 1~a! is that
up to the end of the irradiation~shown by an arrow at the
time scale! the defect concentration grows almost linea
with time. Under such a dose rate the concentration sat
tion can be expected after 2 h of irradiation. The magnitude
of the defect concentration achieved agrees well with exp
mental data.5

Simulation of a very intensive irradiation~curve 1! indi-
cates that the theoretical prediction of the defect concen
tion which can be achieved is of the order of 1022cm23.
Lastly, curve 3 clearly demonstrates thatneglectof the de-
fect interaction leads to a reduction by several orders of m
nitude in defect concentrations at their saturation and a v
fast recombination when irradiation is switched off.

The time development of the totalH-aggregate concentra
tion (n), and of single and dimer centers is illustrated in F
1~b!. Total concentrations ofH centers almost coincide at th
two temperatures; theH center concentration at 150 K irra
diation exceeds that at 193 K irradiation only fort
.70 min when irradiation is switched off and a sample
heated up by about 50 K. It is seen that the concentratio
singleH centers,n(1), decreases due to growth of the dim
concentration,n(2), and the latter drops also at a certain tim
t0 due to the growth of larger aggregates. The timet0 de-
creases by three orders of magnitude when the irradia
temperature increases just from 150 K up to 193 K. For
value ofEB50.7 eV theF centers at temperatures shown
Fig. 1 are immobile and their aggregation occurs only
heatingafter irradiation.

B. Aggregate growth upon heating

Curves 1 in Figs. 2~a! and 2~c! corresponding to the de
fect attraction energies of20.02 eV show that theH andF
center aggregates’ radii as well as the mean number of
fects therein@Figs. 2~b! and 2~d!, respectively# begin to grow
synchronously, at 250 K when theF centers become mobile
~Note that theH centers are mobile already above 150 K!
Due to computational difficulties we cannot follow the la
stage of the large aggregate growth but its typical size
100 a0528 nm is close to the experimental valu
(25 nm). The experimentally observed temperature fo
sharp metal colloid growth is 270 K. An increase of t
interaction energy by 50%~curves 2) shifts the temperatur
of the efficient defect aggregation by about 50 K.
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The dynamics of the totalH center concentration as we
as that for single centers and dimers is plotted in Figs. 3~a!–
3~c! as a function of temperature. Since at 200 K theH
centers already have aggregated, the concentration of s
and dimer centers is smaller than the totalH concentration
by 5 and 8 orders of magnitude, respectively.@Note from
Fig. 2~b! that such a small aggregate contains about 20H
centers.#

It follows from Figs. 3~d!–3~f! that at 200 K only singleF
centers exist in a concentration close to 1021 cm23, whereas
the concentration of dimers is smaller by three orders
magnitude. As the temperature reaches the one where tF
centers become mobile, 250 K, both concentrations drop
many orders of magnitude. However, the totalF concentra-
tion decreases insignificantly after heating up to 350 K a
exceeds 1019cm23 s21. This indicates that most of theF
centers are gathered now into large aggregates and on
small fraction recombines with theH centers. This is anothe
confirmation of what we concluded from an analysis of F
2.

C. Reaction rate

The reason why the recombination becomes so ineffic
is clear from Fig. 4. The reaction rate betweenH and F

FIG. 3. Temperature development of the totalH center concen-
tration ~a!, that for singleH centers~b! and dimer,H2 center con-
centration~c!. Curves 1 and 2 are for the interaction energies giv
in Fig. 2; ~d!–~f!—the same for theF centers.
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centers rapidly drops down at the very beginning of irrad
tion, by three orders of magnitude in about a minute.
stabilized value does not depend on the interaction ene
This is caused by theH center aggregation shown above
Figs. 1 and 2. As a result, suchH aggregates are rathe
immobile which preventsH andF recombination. The main
contribution to the recombination comes from newly crea
H centers whose concentration is proportional to the d
rate p . This is why, when irradiation is switched off, th
reaction rates are reduced additionally, by an order of m
nitude forp51017cm23 s21 but by two orders of magnitude
for p51020 cm23 s21. This reduction depends also on th
defect interaction energy.

D. Defect mobility

The dynamics of theH center mobility for two dose rate
is plotted in Figs. 5~a! and 5~b!, respectively. These plot
demonstrate a clear correlation between defect mobilities
recombination rate. Curve 1 in Fig. 5~a! shows that theH
center mobility repeats a two-step fall and stabilization~pla-
teau! observed forK in Fig. 4. What is interesting here is th
fact that upon heating, the effective diffusion coefficie
DA

eff , starting at a certain temperature begins to increa

FIG. 4. ~a! The dynamics of the dimensionless reaction rateK as
a function of time. The dose rate isp51020 cm23 s21 and the
interaction energies20.02,20.03, and20.04 eV~curves 1, 2, and
3, respectively!. ~b! The same forp51017 cm23 s21.
-
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very likely because of the separation of some ofH centers
from their aggregates which leads to recombination of so
of them with theF centers@note the concentration decay i
Fig. 2~a!#. This recombination is an important factor for
subsequent considerable growth of theH center aggregate
which takes place synchronously with the aggregation of
F centers, atT'250 K. Recombination results in the disa
pearance of numerous dispersedF centers in a region aroun
small H aggregates. This creates additional space neces
for further considerable growth of theH aggregates.

Unlike theH centers, theF centers remain immobile up
to the timet560 min when the temperature approaches
F center mobility edge, 250 K@Fig. 6~a!#. Reduction in the
F center mobility directly indicates their aggregation. Sta
lization of the effective diffusion coefficient atT
'300–350 K ~curves 1 to 3! arises due to formation o
stable aggregates. The latter are in a dynamical equilibr
with theF centers joining and leaving the aggregate. This
why the stabilization plateau occurs at higher temperatu
asEll increases from20.02 to20.04 eV.

Figure 6~b! demonstrates the effect of unequal interacti
energies. A comparison of curves 1 in Figs. 6~a! and 6~b!
shows that an increase ofEAA stimulates theF mobility.

FIG. 5. Time development of the dimensionless effective dif
sion coefficients for theH centers at the dose rates ofp
51020 cm23 s21 ~a! and p51017 cm23 s21 ~b!. Parameters for
curves 1, 2, and 3 are the same as in Fig. 4.
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E. Spatial distribution of defects

It is interesting to compare the results given above w
the irradiation at higher temperatures when bothH and F
centers are very mobile. To this end, we performed calc
tions for the irradiation at room temperature, 300 K.
agreement with experiment, the total concentration ofF de-
fects at the end of irradiation is nearly the same as for lo
temperature irradiation. Unlike the previous study at 193
we observe now growth of theF aggregatesduring the irra-
diation. However, the mean radius of this aggregate rem
small (RB,10 a0 after 30 min! due to efficientF-H recom-
bination. This is again in qualitative agreement with expe
ments where only nm-scale metal colloids are observed
ing irradiation.

As the irradiation is switched off,F aggregates begin to
grow. This process is well illustrated by an analysis of t
joint correlation functions characterizing the relativespatial
distribution of defects~Fig. 7!. Large values of the joint cor
relation functions of similar defects,FAA , FBB ~note their
logarithmic scale! at short relative distancesr clearly dem-
onstrate a strong aggregation ofboth H andF centers. At the
end of the irradiation~plot a) we have a relative distance o
r'10a0 where FBB ~curve 2! approaches the asymptot
value of unity. This agrees with the above-mentioned cal
lation of the effective radiusRB . The effective radius of the

FIG. 6. ~a! The same as in Fig. 5~b! for the F centers.~b! the
effect of unequal interaction energies,EAA520.03 eV is fixed;
EBB520.02,20.03, and20.04 eV~curves 1–3, respectively!.
h
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H aggregates is larger, about 30a0 . After 25 min of heating
~plot b! the radii of F and H aggregates increase toRB
'30 a0 andRA'70 a0 , respectively. The correlation func
tion for dissimilar defects,FAB(r ), ~curve 5! is anticorrelated
to FAA and FBB . At the end of the irradiation it increase
from zero atr<a0 up to unity atr'30 a0 , which gives us
an estimate of the average distancebetween HandF aggre-
gates.

Lastly, the joint correlation functions of an empty si
with a defect,F0A andF0B , curves 3 and 4, show that thes
aggregates have small, dense cores~there are almost no
empty sites in their centers but they are quite loose on t
periphery,r>10 a0).

VII. DISCUSSION AND CONCLUSIONS

The microscopic theory of diffusion-controlled radiatio
defect aggregation reproduces the main experimental re
for the electron-irradiated CaF2 and permits us to understan
the mechanism and kinetics of this process. Despite the
that theH andF centers have very different mobilities, an
start to perform diffusion hops at 150 and 250 K, resp
tively, they showsimultaneousaggregation. The growth o
large aggregates is also determined by the defect interac
energy. Thus, curve 2 in Fig. 2~d! shows that after formation
at 250 K of small aggregates ofF centers~about 10 defects
in each! they do not grow further until the temperature i

FIG. 7. The joint correlation functions vs the relative distancer
between particles. Irradiation at 300 K,~a! corresponds to the end
of irradiation, ~b! after subsequent 25 min heating~up to 330 K!.
Curves 1 and 2 demonstrate theH2H and F2F center correla-
tions, curve 3,4 ‘‘empty site-F center’’ and ‘‘empty site-H center’’
correlations, and curve 5 correlation of dissimilar defectsF
2H). Note thatFAA and FBB are plotted in the semilogarithmic
scale.
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creases up to 320 K. At this temperature the thermal ene
kBT, turns out to be close to the interaction energy,EBB ,
and singleF centers start to leave small aggregates which
a precondition for growth of large aggregates. Such a proc
of the transformation of small aggregates into large one
often calledOstwald ripening. Note that we present here th
first microscopic theory for this process; previous pheno
enological theories are unable to incorporate the defect in
actions~see Ref. 24 and references therein!. Even our sim-
plifed treatment of defect interaction required a lot
computational time~typically, several days or a week!. This
is why it is hard to go beyond the NN approximation f
defect interaction.

The scenario of this cooperative process can be sum
rized as follows. Under irradiation mobileH centers aggre-
gate first~at t'1023s) forming small clusters~typically of
10 defects! whereasF centers remain randomly distribute
As irradiation continues, the size of these~practically immo-
bile! H clusters does not change with time, only their numb
increases. After irradiation upon heating to some criti
temperatureTc , H centers begin to detach from small aggr
.
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gates~providedkBTc'EAA). This results in singleH center
recombination with the nearbyF centers and the appearanc
of a region aroundH clusters free ofF centers. This process
leads to the transformation of smallH clusters into large
ones~with the average number of defectsNA'105).

At the temperature when theF centers start to move, they
form, first of all, small clusters, very similarly to those ofH
centers created at short times. Similarly to theH aggregation,
their subsequent rearrangment into large aggregates ta
place at the temperatureT0 when kBT0'EBB . If EAA
'EBB , aggregation of both kinds of defect occurs simulta
neously.
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