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Discrete-lattice theory for Frenkel-defect aggregation in irradiated ionic solids
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A microscopic theory of diffusion-controlled aggregation of radiation Frenkel defects—called in ionic solids
H andF centers—is presented. This is based on a discrete-lattice formalism for the single defect densities
(concentrationsand the coupled joint densities of similar and dissimilar defects treated in terms of a modified
Kirkwood superposition approximation. The kinetics of defect aggregation is studied in detail; the cooperative
character of this process for both types of complementary defects is shown. The theory is applied to the
description of the kinetics of metal colloid formation during heating of electron-irradiated ©gftals.
[S0163-182608)06937-9

I. INTRODUCTION mation used there has led to nonphysical problems associ-
ated with cutting off the interaction potentials at the nearest-
It is well known that the primary radiation defects in ionic neighbor (NN) distance, and with large gradients of the
solids—theF centers(electron trapped by anion vacancy correlation functions at these distances. The first point makes
and theH centerd(interstitial halide atoms—begin to aggre- results very sensitive to the manner in which the potentials
gate under intensive irradiation and at sufficiently high tem-are defined at distances shorter than NN. The second one
peratures. This leads to the formation of alkali metal colloidsforces us to use very small coordinate increments in the cal-
and gas bubbles, respectivelgee Ref. 1 and references culations which then strongly restricts the time interval
therein; a similar process occurs also in heavily irradiatedwhich can realistically be reached using such an approach.
metals? Intensive experimental studies of the conditions for In this paper we develop a microscopitiscrete-lattice
the defect aggregation and subsequent colloid formatiotheory of diffusion-controlled aggregation occuring during
(such as the temperature interval, dose rate) etmtinue the bimolecular annihilationA+B—0, under a permanent
nowadays for many alkali halidé$,in particular for the particle source. The theory is based on the mathematical for-
technologically important Caf>® and for ceramic malism for stochastic processes in spatially extended systems
materials’ This problem is also interesting from a fundamen-which has been developed by the authors for catalytic sur-
tal point of view, being an example phttern formatiorand  face reaction$>°In this paper our microscopic formalism is
self-organization in reaction-diffusion systems far from generalized for the bulk processes in three dimensions, tak-
equilibrium?® It should be stressed that metal colloid forma-ing also into account creation of Frenkel defects under irra-
tion is a rather slow process which in real experiments ofterdiation. To make the problem solvable, we restrict ourselves
lasts several weeks or longer; another reason why this prolte lattice models where both elementary eve(u#fusion
lem is a difficult one for direct computefMonte Carlg hops, recombinatigrand particle interactions occur only be-
simulations is that the mobilities of the two kinds of defectstween NN particles. This is a good approximation for diffu-
involved (interstitials and vacancigsdiffer typically by  sion. However, dissimilar particle recombination in some
10-15 orders of magnitude. In order to model theenter cases, e.g., in metals, needs incorporation of longer dis-
aggregation, one has to use a very small time incremertances. The same is true for a description of realistic long-
which is dictated by the highly mobilel centers. range particle interaction, since in fact in this paper we ne-
Existing theories of radiation-induced defect aggregatiorglect the “tail” of the elastic attraction of Frenkel defects
and colloid formation can be classified, in terms of the mathwhich decays as 3, with r the distance between the two
ematical formalism used, into three categories:defects. Such approximations are unavoidable in a study of
macroscopi¢, mesoscopi¢®!! and microscopi¢?™*®> We  many-particle systems with a strong interaction between par-
call microscopica theory on an atomic scale which uses noticles (defects.
fitting or uncertain parameters like numerous reaction rates We apply the theory to the study of the cooperative kinet-
but only several basic defect parameters such as the diffusidns of colloid formation under irradiation of Caferystals.
energies and interaction energies. Such a theory has beé&towever, after minor modifications it can be used for other
presented recently by d§However, the continuum approxi- Systems too, e.g., metals or microelectronic materials.
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The plan of the paper is as follows: in Sec. Il a physical B. State probabilities

model is described and its mathematical realization is dis- The |attice processes under consideration can be treated as
cussed in detail in Sec. Il Section IV deals with the descripsiochastic Markov processes. Each lattice state characterized
tion of the transition rates of the basic processes and particl@y a set of local variables={o,05, . ..} arises with the
interactions, whereas the master equations are analyzed fiobability p(¢). The latter gives formally a complete
Sec. V. The theory is illustrated in Sec. VI by application to probabilistic description of the system, however the equation
H andF center aggregation kinetics in CaErystals. This  determiningp(o) cannot be solved exactly. The probabilis-
effect is important for Caf~applications in optical windows tic description of the lattice states can be done also using
and nanolithography. Conclusions are given in Sec. VII.  another set of quantities, the so-call@dny-point probabili-
tieswhich depend on lattice sites and are coupled through
recurrence sum rules. Such a limited set of probabilities bet-

Il. A PHYSICAL MODEL ter suits our particular problem.

The physical modelncludes creation of interstitials, i.e., 1. Single-point probabilities
H centers, and vacancies, i.E.centergcalled hereafter just

defects or particles andB). This takes place with a given find at timet the lattice siter| in the stateos,. Due to the

(dosg rate b, AB pairs are not spatially correlated a_t hirth translational invariance these probabilities can depend only
and recombine when they approach each other during thegn time. Using the abbreviation=a,, C,=p®(a,) one

migration to within the NN distance. Therefore, their .o \irite down the obvious normalization condition
macroscopic concentrations always coinciges ny=ng.

Isolated(single defects hop with the activation enerdy

and are characterized by the diffusion coefficieldg E C\,=CatCgt+Cy=1. (1)
=d,exp(—E, /ksT), A=AB. When several defects are close »

together, the hop rate of a given defect to the nearest emp{y, terms of physics the quantit@, is nothing but a simple
lattice site is determined by both the local defect configura—density of particles on the lattidsite population C,, Cg,
tion and the interaction between defects; this can change “a°ndC0 are densities for particle,B or empty sites, respec-
effectivediffusion coefficientDS" by many orders of magni- tively. The usual, dimensional densitieg (per unit volume
tude compared to that for a single defect. This affects thewre just

effective reaction rate Kof the A andB recombination; for

The single-point probability*)( o) is the probability to

the dilute system in the continuum approximation this rate is C,
well known to beKg=4mro(Da+Dg), Wherery is the re- m=—, 2
combination radius. 2

From previous theoretical studi@s*?it follows that de-
fect attraction plays a decisive role in the aggregation pro
cess. It is incorporated in our model via three types of NN
attractions between the two types of NN defdatsthe spirit
of the Ising modet Exn, Epg, andEgg. Note that only a
few theoretical studies have been devoted up to now to th
effects of particle interactioriespecially, for similar par-
ticles) in the kinetics of the bimolecular diffusion-controlled
reaction A+B—0, with the emphasis on fluctuation phe-
nomena. Rare exceptions are the papét8Particle interac-
tions render the kinetic equations essentially nonlinear and
this causes manifestation of self-organizatipattern forma- The two-point probabilityp'®)(o ,0,) is the probability
tion) under irradiation. of finding at the timet the siter, in the statex = ¢y and the

site r,, in the stateu=o,. It can be formally presented in
the factorized form

wherea, is a lattice parameter. Obviously, the use of such
macroscopic values as the simple particle dens@igss not
sufficient for the description of the particle aggregation. The
latter needs a detailed analysis of the relative distribution of

everal types of particles on the lattice and an analysis of
their relevant spatial correlations. For this purpose the two-
point densities and relevant correlation functions are well
suited.

2. The correlation functions

Il. A MATHEMATICAL MODEL
A. Definitions (o o) = CrCUFu(n), T=1 =T, )

Each lattice site is given a lattice vectqrand coordina- whereF, ,(r) is the joint correlation function. As follows
tion numberz. The state of the site, is described by the from Eq. (3), due to the translational invariance, both the
local variables, . The spectrum of its values;=0,A,B de-  two-point density and the correlation function depend only
scribes three possible states of the lattice site: 0 representa the relative distance between two sitgsandr,, char-
vacant site, whereas andB are sites occupied by aknor B acterized by a vector. Besides,F, ,(r) satisfies several
particle, respectively. A particle aggregate or colloid isgeneral conditions. The first one is that the correlation dis-
treated as a dynamical domain containing particles of onappears at large distancédue to the short-range nature of
type only (A or B). In other words, an isolated partickeor  the spatial correlationsThis means that as—, the states
particleA inside the aggregate are described in a similar wayf sitesr; andr, are statistically independent which results
through the local state variablg . in p@(oy,00)=p V(o) pP(oy), ie.,
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limF, ,(r)=1. (4) mers, and higher configurations. Similar to Eg) the di-
r—o mensional density of isolated particles can be found as
The second condition is a relation between single- and two- cs
point densities, the sum rule nM=—% (10)
a
(2) NG A
Uzm poo,om)=p (o), (5) 4. The density of dimer particles

In the dimer configuration, the two NN particles are char-
acterized by the lattice vectors andr,, and the statea
N N =p=A,B, whereas all surrounding sites are empty. Such a
> cV(r)=1, cP(r)=C,F,,(r). (6)  state is described by the £Rpoint probability p*? pro-
K’ vided that the states of the central sites afie=o,=\,
The latter equation is similar to Eq1l) and permits also a Wwhereas those ofz(-1) NN sites(surrounding each of the

or

similar interpretation. The quantity two central sites are {o}F '={oy,...,0, 1}
={0,...,0, {oV¥'={o},... .00 }={0,....G, re-
cM(r)=p?(a),0mp(a)) (7)  spectively. Note that this is true for cubic lattices onbge

Refs. 15,16 However, our formalism can be generalized for
any lattice structures.
Using the cluster approximation, E(), we arrive at

defines the conditional probability that the siteras in the
statex when the central sitg is in the state\.

3. Density of single particles z-1 z—1

To handle the complicated statistical problem under ques- P<ZZ):CxCVFAV(1)H Cifi)(l)_[[ Cﬁfj)(l)- (12)
tion, we use a reduced probabilistic description of the many- =t =
particle system in terms of single and joint particle densitiesTaking into account Eq(11) and all possible spatial orien-
only, i.e., many-point probabilitiesp® are expressed tations of the dimefa dumbbeli, one gets
through simple densitiegconcentrationsC, and the joint
correlation functiond=, ,(r). Let us illustrate this principle cd=
by an example. We call aisolated particle(single centera A
local state where the sitg is in the state\ = o, whereas all
its nearest-neighbor (NN) sites are empty {o}f
={o4,...,0,4={0,...,0). The probability to find an iso-
lated (single particle C} is defined by the £+ 1)-point
probability C = p**1). The density of dimer-, trimer- and 5. The mean particle number and aggregate size
higher particle configurations can be found in a similar way
(see beloy, i.e., through many-particle densities with a
larger number of argumentthree, four etg. As a result, one
arrives at an infinite set of coupled equations for the corre
lation functions of all orders which cannot be solved exactly.. > = ) .
An approximation to handle this problem is to cut off this inside it, N, . For _th_|§ plzxrg)ose_ We can use th? following
infinite hierarchy. Single densities can be calculated usin?rguments. By definitior™’(r) is the mean density of par-
the cluster approximatidf well known in theory of phase icles\ at the distance from the central site occupied by a

transitions. The approximation is based on the relation ~ Similar particle A. If the particle distribution is random,
Fru(r)=1, the local density coincides with the macroscopic

z one,c{M(r)=C, . However, this is only the case if there are
p#v=c,[] Cifi)(l)- (8)  no particle interactions or reaction. In the general case the
=1 relationsF, ,(r)—1 andc{*)(r)=C, hold only asymptoti-
In other words, the probability of finding a cluster of ( cally, as r—o. This is why the quantity 5c{)(r)
+ 1) sites is approximated as a product of the probab@ity =C,[F,,(r)—1] gives the surplus particle density at short
to find the central site in tha state and the conditional relative distances as compared to their random distribution.
probabilities to find NN sites in the statgs=o; (its argu-  Its positive magnitude characterizes the aggregation of par-
mentr=1). From this general expression for the isolatedticles. Usingéci")(r) as a weighting function, we can define
particles one gets the mean number of particles inside the aggregate as

z
2
The density of dimers is defined in such a way that the di-

mensional concentration{*)=C%a3 gives a mean number
of dimers per unit volume.

C2F (1) (cgM(1))27 D, (12)

In a similar manner the density of trimers, tetramers, and
larger aggregates can be found. However, large aggregates
(colloids) can be better characterized by such averaged quan-
tities as aggregate siZ®, and the mean number of particles

Cs=C,(cM (1))~ © N =1+ scM(r) (13)

Since the conditional probabilities are limited from above

[Eq. (6)], as expected the relatioB;=<C, holds (not all and its radius

particles are isolatgdIt will be shown below that by incor- 1

poration of particlse attractionH, , <0) thi; nonquality can R)\:_E |r|50(x“(r). (14)
be strengthened;; <<C, , due to formation of dimers, tri- N\ T
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The unity on the right-hand side of E(L3) corresponds to ke ko, .,

the central particle in whose surroundings the excess particle 0107 — 070 OF Av—ATvr. (17
density is integrated. For a random particle distribution,|t is convenient to present the transition rateaking into
Fru(r)=1, and the definition13) and (14) yield Ny\=1  account the coordination number k=K(Av—\'v')/z.

and R,=0, i.e., the concentration of dimers, trimers, etc.Examples areti) dissimilar particle recombination,
which always statistically exist, is assumed to be much

sma_ller t_han the_ aggregation effect driven by the re_:action and AB—k>00 with K(AB—00)=1), (18)
particle interaction. It should be noted here that in real ex-

periments in insulating crystals concentrations of isolatedii) particle diffusion(particle random walks on the lattice,
centers, dimers, and trimers [the so-called A=A,B),

F, F, (M), F3 (R) centers, i.e., the smallest aggregates, K

on the one hand, and the large colloid size and a total con- ANO—ON with K()\O—>O)\)=Dg. (19

centration of metalfraction of sites occupied by defegton o L .
the other hand, can be estimated from absorptiorFor simplicity we assume the recombination rate to be infi-

measurementslnformation aboutd aggregates is much less nite, ) — oo, yvhich corresp_onds to the instant re_combination
accurate, only the smallest clusters are detectable by Ra- ©f defeocts W'ﬂ}) a restoration of the perfect lattice. The hop
man spectroscopy. Gas bubble formation in irradiated,CaFfatesD andDg have simple relations to the diffusion coef-
has been reported in Ref. 20. In metals experimental inforficients
mation on the defect aggregation is even more qualitative. 22 £
D,=—D?, DA=d}\ex;{—ﬁ), (20)
IV. TRANSITION RATES z B

After definition of the spectrum of the site state variablesW.here dy is the diffusion prefactor anao_ is the hopping
distance(assumed to be equal to the lattice congtant

o=\ the stochastic lattice Markovian model of the aggre-
gation kinetics needs also the definition of the transition
rates. The latter are monomolecular and bimolecular transi-
tions. Equations(17), (18), and (19) describe particle creation,
diffusion, and recombination but neglect their energetic in-
A. Monomolecular transitions teraction. Due to this interaction the transition rate can de-
end on the NN states and temperature. Examples of such

'I_'he S|mp_lest, _monomolecular transitions depend only Ofinteractions are Coulomb and elastic attraction of defects in
a single lattice site state whereas the states of surroundlrgq) ids1517.18Tq take this into account. the monomolecular

sites remain unchanged. These transitions can be presented ciion rate P(A—\') should be replaced byP()

C. Energetic interaction of particles

as —\N'|{o}f) and the bimolecular rat&K(Av—\'v') by
k k K\v—\"v'|{o}f Hol2Y). This dependence can be
o—o| of A—\’, (15  found from the asymptotic behavior of the steady state of the

kinetic system under study and the equilibrium Gibbs distri-
bution. This problem arose in the study of the kinetic Ising
model in lattice phase transitions. We follow here the general
approach developed by us for the stochastic surface
reactions® The so-calledstandard modepresented there al-
3 lows us to obtain uniquely the rates of mono- and bimolecu-
P(0—A)=P(0—B)=po=pay, (16)  Jar transitions including the particle interactions. It should be
stressed once more that we restrict ourselves to NN interac-
I1.|ion. Due to the interaction similar particles begin to aggre-
gate. It is clear that the probability of some particle in the
Fenter of an aggregate to find an empty NN site for a diffu-
ion hop is quite small. Also, the hop probability for a par-
le at the periphery of the aggregate to leave it is because of
e particle attraction smaller than the probability to hop into
the interior of the aggregate and make it denser. This is why
the aggregation kinetics should depend on temperature and
the three interaction energies between similar and dissimilar
particles,Exn, Eag, Egg. FOr more details see Secs. VIl
and VIII and Egs(12)—(31) in Ref. 16.
. - A system of interacting particles can be characterized by
B. Bimolecular transitions the effective diffusion coefficienD®". By definition, Eq.
Such transitions are related to a simultaneous change ¢19), rates of bimolecular hops are proportional to the diffu-
the state of two NN sites with lattice vectarsandr,. Inthe  sion coefficients. Let us define the effective dimensional dif-
general case bimolecular transitions are described by thiision coefficient,Df“/DA. Here D, is the usual diffusion
equation coefficient in a dilute system consisting of isolated defects

where the transition rate=P(\—X\’') does not depend on
the lattice vector;. Examples aréA (B) particle (defec)
creation in an empty lattice site, 9A and 0—B, respec-
tively.

where p is defined in Sec. Ill as the irradiation intensity
(dose ratg That is, Frenkel defects are created in pairs, eac
occupying two lattice sites. Depending on the irradiation
conditions, the distance within such a pair can vary. Unde
an electron irradiation considered here it is known to be quite;
large, so that dissimilar defect creation can be considered '
a random, uncorrelated creationAdfandB particles in equal
concentration$*!® In principle, the spatial correlation of
Frenkel defect pairsAB, can also be taken into accobint
but it is not directly related to the problem of aggregation
kinetics.
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which is proportional to the raté(NO—O\). In turn, in the 22 ———rrrrm
dense system of interacting particl@§ff is proportional to
the avaraged transition raiK (\0—O\|{o}? o} 1)).
The latter transition rate is averaged.( .)) over all con-
figurations of particles surrounding a given particle. This can

20 E,,=E,,=-0.03 eV —=

i

be done using the cluster probability, E§1). As we show ‘:;: __________ 3.

below in Sec. VI D, under particle aggregation the parameter o% _0.00 eV“\

DM/D, is by many orders of magnitude less than unity thus & 13 o '

characterizing migration properties in a dense interacting

system. ‘ 1
16 MR R | MR | i s aaanal PR

V. MASTER EQUATIONS 0.01 0.1 1 10
As was noted above, the stochastic Markovian process is t (min)

uniquely defined by a set of mono- and bimolecular transi- —
tion rates. The relevant, discrete-lattice formalism based on
the hierarchy of the correlation functions has been presented
recently®>! and illustrated by the particle aggregation in the
course of the catalytic surface reactiér :B,—0. This is
why in this paper we do not repeat complicated general
equations which can be solved only using special iterative
procedures. In contrast, we discuss only the basic idea of the
approach and its application to the particular bulk-B
—0 reaction in three dimensions. In fact, the latter reaction
under study is mathematically isomorphic to the above-
mentioned surface catalytic reaction where the molecule 12 A rre— T r—
adsorption/desorption is replaced by the defect production 0.1 1 10 100
ratep in the bulk.

The final set of kinetic equations read

12

t (min)

FIG. 1. (a) Time development of totdf, H concentrationgin

dC, cm %) under irradiation at 193 K for 30 mifshown by an arroyv
WZGA(C’F)’ 2D it a subsequent heating at the rate 1.3 K/min. Curves 1 and 2
show the effect of the dose ratp£10?°° andp=10"" cm 3 s %,
dF, ,(r) respectively, whereas curve 3 shows the effect of the neglect in the
d—’; = G)\M(C, F), (22 latter case of similar defect interatid, =0, A=A,B. Note rapid

defect recombination in case 3 when irradiation is switched(bff.

. . . . i inglen® imer n@ )
whereG, and G, , are expressions nonlinear in the lattice 1S dynamics of singlen™, and dimer,n™, H center aggrega
M tion and total H concentrations,n,, for a dose ratep

densities and the correlation functions. They arise due to the 107 em~2 s under irradiation at 193 Kas in curve 2 above
systematic use of approximations such as the cluster appro@hd at 150 K
mation, Eq.(11) (for more details see Ref. 16To illustrate '

this approach, we write down the structure of EZfl) where  ,, yhe statistical weights: E¢g) for the calculation of quan-

GX=G;”—G§L", 23 tity (26) and Eq.(11) for the quantity(27) below:
P'(A—=N")=(P(N\—=N\"|{a})), (26)
GY=2 P'(M=NCu+ 2 K'(\v
}\!

Ny

K'(\v—=\'p")=(K\v—\"v'|{o}F Ho}e ).
27

The lengthy expressions for these functions are given in
the Appendix of Ref. 16 and consist of 35 equations. As a
Ggutzz P'(A—\")C, + > K'(ww result, the kinetic eqqations <_jepend on the kinetic_constants,
NG N temperature and NN interaction energies. The particle aggre-
gation is characterized by the shape of the joint correlation
—\'v')F,,(1)C,C,. (25  functions; at distances=|r;—r |, where some joint density
considerably exceeds the asymptotic value of unity, a large
The equations above describe all possible mono- and biexcess of neighboring similar particlése., an aggregates
molecular processes. Formally these equations remind us éfund compared to the randoffPoisson distribution. The
the usual rate equations for defect concentratfddewever, — aggregate size can be estimated as the distance at which the
the key factor is that the functio®’(A—\’) andK’(Av  joint correlation functionsF,,(r) approach the value of
—\'v') are effectivetransition rates. These quantities are unity. Our stochastic formalism operates with a finite set of
obtained via averaging over the nearest-neighbor states baskedtice densitiesC, and joint correlation functions, ,(r).

_>)\V)F}\’V’(1)C)\’CV’ , (24)
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FIG. 2. (a) Heating-induced growth of the mean radius-bfaggregatesR, (in units of theF — F distancea,=2.73 A in Cak). Note
thatH andF defects are denoted as defeatandB, respectively(b) The mean number of particles inside each aggred¥te,lrradiation
with the dose ratgp=10" cm 3 s~ for 30 min. Curves 1 and 2 correspond to the attraction eneff§jgs= Egg=—0.02eV. and
—0.03 eV, respectively(c) and (d) the same for thé& centers, respectively.

The set of resulting ordinary differential equations to be caltions: (iv) the temperatur@, and(v) the dose rate charac-
culated is formally infinite due to the infinite number of lat- terizing the irradiation intensity. In the particular case of
tice sitesr; andr,; but in practice we restrict ourselves to CaF, the activation energies for tieandH center diffusion
finite relative distancescorrelation lengthswhich is justi-  are known from the thermostimulated luminescence experi-
fied by the short-range nature of the spatial correlations ifnents (0.7 and 0.46 eV, respectively The energies of the
the particle densities. elastic interactions are less well known. Calculations for
The relevant computer codeNETIKA (Ref. 21 permits  nairs of NN defects in KBr show that they are about
us to calculate the time development of the total defect con-_g g2 10— 0.05 eV?23 In this paper we vary these energies
centrations, single and dimer centers, effective diffusion coy, the mentioned limits and compare results with experimen-
efficients and reaction rate, mean sizes of the aggregates, afiff gata. For simplicity the defect interaction energies are
the number of particles therein. This gives a complete picturgssymed to be equaExa=Egg. Additional calculations
of the diffusion-controlled aggregation process. have demonstrated that for unequal interaction energies re-
sults remain qualitatively the same. It is also assumed that
VI. RESULTS FOR CaF, there .is no attraction beftweehh andF centers; an inclugior!
of their attraction only slightly accelerates the recombination
The key parameters which govern particle aggregation inate.
a binary systen{Frenkel defect® andB discussed aboye To make the model as simple as possible, we assume that
include:(i) the lattice parametex, which usually serves also parameters of a dense defect system are entirely determined
as the recombination radiugi) The activation energies for by parameters of isolated single particles or isolated pair par-
diffusion hops E, and pre-exponential factorsl, (A  ticles. This is true for NN interactions between particles
=A,B) which define the diffusion coefficient for the isolated treated in this paper. Effects of long-range particle interac-
particlesA and B. The activation energies for interstitials tion are not considered here, this is a subject of another study
and vacancies may differ by an order of magnitygeg, which is in progress now. Note however, that the effective
E,o=0.1 eV andEg=1 eV in NaC). (iii) similar and dis- parameters for dense systems, such as the diffusion coeffi-
similar particle interaction energieSaa, Eag, and Egg. cients of particles to be discussed below, can in the frame-
These energies, along with the temperature, directly contravork of our simple model differ by many orders of magni-
the rate of theH, F center attachment and detachment to/tude from properties of isolated particles. This justifies the
from the aggregate of similar particles. These three intrinsizise of a simplgand thus, handablenodel for colloid for-
parameters characterize the actual physical system, whereastion.
the remaining two parameters describe the external condi- In real experiments samples are irradiated at a given fixed
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temperature for a certain time<t,, then the irradiation is
switched off, and the sample is heated with a constant rate.
We have modeled this process, asuming that after irradiation
T(t)=To+ y(t—ty), wherey is the heating ratétypically,

1-2 K/min. We compare our calculations with the Ca-
colloid growth kinetics observed in Ref. 5 for Cakradi-
ated by low-energy electrons at low{~ 200 K) tempera-
tures and subsequently heated with the ratel.3 K/min.
This irradiation corresponds to a dose rate of abput
=107 ecm3s 1,

A. Defect concentration growth under irradiation

Let us start with a study of the kinetics of defect concen-
tration growth in Cak under irradiation at low temperatures
when theF centers are definitely immobile but thecenters
are moving either slowly150 K) or are already quite mobile
(193 K). The first conclusion from curve 2 in Fig(d is that
up to the end of the irradiatiotshown by an arrow at the
time scale the defect concentration grows almost linearly
with time. Under such a dose rate the concentration satura-
tion can be expected aft@ h of irradiation. The magnitude
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of the defect concentration achieved agrees well with experi-
mental dat&. " s 2

Simulation of a very intensive irradiatiogurve 1 indi-
cates that the theoretical prediction of the defect concentra-
tion which can be achieved is of the order of?4®n=3. 8 \
Lastly, curve 3 clearly demonstrates thegglectof the de-
fect interaction leads to a reduction by several orders of mag-
nitude in defect concentrations at their saturation and a very
fast recombination when irradiation is switched off.

The time development of the totHl-aggregate concentra-
tion (n), and of smgle_ and dimer centers is Illus.tra.ted n I:lg'tration (a), that for singleH centers(b) and dimer,H, center con-
1(b). Total concentrations dff centers almqst coincide aF the centration(c). Curves 1 and 2 are for the interaction energies given
two temperatures; thel center concentration at 150 K irra- in Fig. 2; (d)—(f)—the same for th& centers.
diation exceeds that at 193 K irradiation only fdr
>70 min when irradiation is switched off and a sample is The dvnamics of the totdfi center concentration as well
heated up by about 50 K. It is seen that the concentration of h tfy inal i ddi is plotted in Figa-3
singleH centersn®), decreases due to growth of the dimeraSt at for single centers and dimers is plotted in Figa)

concentrationn®, and the latter drops also at a certain time3(c) as a function of temperature. Since at 200 K te
’ . enters already have aggregated, the concentration of single
to due to the growth of larger aggregates. The tipeale- centers already have aggregated, entration o g

creases by three orders of magnitude when the irradiatioand dimer centers is smaller than the tdthlconcentration

. : By 5 and 8 orders of ma nitude, respectivdlMote from
temperature increases just from 150 K up to 193 K. For thq:?/g 2Ab) that such a smal? aggregate pcontaieg); aboutkR0
value ofEg=0.7 eV theF centers at temperatures shown in _ 7'

Fig. 1 are immobile and their aggregation occurs only Oncentersl . .
heatinaafter irradiati It foIIow; fr_om Figs. 3d)—3(f) that at 200 K only singlé&
gafter irradiation. 13
centers exist in a concentration close t¢1@m™3, whereas

the concentration of dimers is smaller by three orders of
magnitude. As the temperature reaches the one wherg the

Curves 1 in Figs. @) and Zc) corresponding to the de- centers become mobile, 250 K, both concentrations drop by
fect attraction energies 6f 0.02 eV show that thél andF many orders of magnitude. However, the tdtatoncentra-
center aggregates’ radii as well as the mean number of deion decreases insignificantly after heating up to 350 K and
fects thereifFigs. 2b) and Zd), respectively begin to grow  exceeds 1¥cm 2 s 1. This indicates that most of thE
synchronously, at 250 K when tifecenters become mobile. centers are gathered now into large aggregates and only a
(Note that theH centers are mobile already above 150 K. small fraction recombines with the centers. This is another
Due to computational difficulties we cannot follow the last confirmation of what we concluded from an analysis of Fig.
stage of the large aggregate growth but its typical size op.
100 ap=28 nm is close to the experimental value
(25 nm). The experimentally observed temperature for a
sharp metal colloid growth is 270 K. An increase of the
interaction energy by 50%curves 2) shifts the temperature
of the efficient defect aggregation by about 50 K.

2)

loggna

200 250 275 300

TI(K) T(K)

FIG. 3. Temperature development of the tdtatenter concen-

B. Aggregate growth upon heating

C. Reaction rate

The reason why the recombination becomes so inefficient
is clear from Fig. 4. The reaction rate betwednand F



PRB 58 DISCRETE-LATTICE THEORY FOR FRENKEL-DEFEC. .. 8461

0 T T T T v T T I v T T T T 4 T T T
\ (a) 20 3 ) °r (a) p=10" def/cm’ s
2 p=10""def/cm” s _ A
=3 « N
< 1 8 :
X 3 -
2 -
g . 2
o ) > .
2 o
8- 3 Tt -~ -
10 L 1 L 1 ' I N 1 . -8 1 1 ] 2 1 1 N
0 30 60 90 120 150 0 30 60 90 120 150
t (min) t (min)
0 T T T T T 1 T T T T
j=]
'd
~
X
=)
o)}
o
10 L 1 L | . | X L ) -8 1 N 1 N 1 N 1 N
0 30 60 90 120 150 0 30 60 90 120 150
t (min) t (min)
FIG. 4. (a) The dynamics of the dimensionless reaction Katas FIG. 5. Time development of the dimensionless effective diffu-
a function of time. The dose rate {5=10?° cm 3 s ! and the sion coefficients for theH centers at the dose rates qf
interaction energies 0.02,—0.03, and—0.04 eV(curves 1, 2, and =10 cm3s ! (@) and p=10"" cm *s ! (b). Parameters for

3, respectively. (b) The same fop=10'7 cm 3 s 1, curves 1, 2, and 3 are the same as in Fig. 4.

centers rapidly drops down at the very beginning of irradia—very likely because of the separation of some-bkenters

tion, by three orders of magnitude in about a minute. [tSyom their aggregates which leads to recombination of some

sta'billized value does not depend on the interaction ENET9¥%f them with theF centersnote the concentration decay in
This is caused by thei center aggregation shown above in Fig. 2@]. This recombination is an important factor for a

Flgs. 1 and.2. As a result, sudi aggrgggtes are rather subsequent considerable growth of tHecenter aggregates
immobile which preventsl andF recombination. The main . . )
o A hich takes place synchronously with the aggregation of the
contribution to the recombination comes from newly create ¢ T~250 K. R binati Its in the di
H centers whose concentration is proportional to the dos centers, a - Recombination results in the disap
pearance of numerous disperdedenters in a region around

rate p . This is why, when irradiation is switched off, the IH tes. Thi ¢ dditional
reaction rates are reduced additionally, by an order of magf§ma aggregates. 1his creates additional Space necessary
or further considerable growth of the aggregates.

[ forp=10"cm 3 571 f i ) o .
nitude forp=10"'cnv"* s * but by two orders of magnitude Unlike theH centers, thé= centers remain immobile up

— 0 -3 o1 H :
gogfgct ﬁ'\??aracc?on Znér;;ls reduction depends also on the to the timet=60 min when the temperature approaches the
F center mobility edge, 250 KFig. 6(a)]. Reduction in the

F center mobility directly indicates their aggregation. Stabi-
lization of the effective diffusion coefficient atT

The dynamics of thél center mobility for two dose rates ~300-350 K(curves 1 to 3 arises due to formation of
is plotted in Figs. 88 and 5b), respectively. These plots stable aggregates. The latter are in a dynamical equilibrium
demonstrate a clear correlation between defect mobilities andith the F centers joining and leaving the aggregate. This is
recombination rate. Curve 1 in Fig(és shows that theH why the stabilization plateau occurs at higher temperatures,
center mobility repeats a two-step fall and stabilizatipla-  asE,, increases from-0.02 to—0.04 eV.
teay observed foK in Fig. 4. What is interesting here isthe  Figure b) demonstrates the effect of unequal interaction
fact that upon heating, the effective diffusion coefficient,energies. A comparison of curves 1 in Figga)éand Gb)
Df\ﬁ, starting at a certain temperature begins to increaseshows that an increase Bf,, stimulates thé= mobility.

D. Defect mobility
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of irradiation, (b) after subsequent 25 min heatifigp to 330 K.
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! ! Curves 1 and 2 demonstrate the-H and F—F center correla-
0 30 60 90 120 150 tions, curve 3,4 “empty sité center” and “empty siteH center”
t (min) correlations, and curve 5 correlation of dissimilar defecks (
—H). Note thatF,, and Fgg are plotted in the semilogarithmic
FIG. 6. (@) The same as in Fig.(B) for the F centers.(b) the scale.
effect of unequal interaction energieS,,=—0.03 eV is fixed;

Egg=—0.02,-0.03, and—0.04 eV (curves 1-3, respectively Y aggregates is larger, about 3. After 25 min of heating
(plot b) the radii of F and H aggregates increase g
E. Spatial distribution of defects ~30 ap andR,~70 ag, respectively. The correlation func-

It is interesting to compare the results given above withfion for dissimilar defects xg(r), (curve 3 is anticorrelated
the irradiation at higher temperatures when bbtrand F 10 Faa @andFgg. At the end of the irradiation it increases
centers are very mobile. To this end, we performed calculalfom zero ar<ao up to unity atr~30 a,, which gives us
tions for the irradiation at room temperature, 300 K. Inan estimate of the average distamesween HandF aggre-
agreement with experiment, the total concentratiofr afe- ~ 9ates. o _ _ _
fects at the end of irradiation is nearly the same as for low- Lastly, the joint correlation functions of an empty site
temperature irradiation. Unlike the previous study at 193 KWith a defectFo, andFog, curves 3 and 4, show that these
we observe now growth of the aggregatesiuring the irra- ~ aggregates have small, dense cof#eere are almost no
diation. However, the mean radius of this aggregate remain@MPpty sites in their centers but they are quite loose on their
small (Rg<10 a, after 30 min due to efficienF-H recom-  Periphery,r=10 ao).
bination. This is again in qualitative agreement with experi-
ments W_he_re only nm-scale metal colloids are observed dur- VII. DISCUSSION AND CONCLUSIONS
ing irradiation.

As the irradiation is switched off; aggregates begin to The microscopic theory of diffusion-controlled radiation
grow. This process is well illustrated by an analysis of thedefect aggregation reproduces the main experimental results
joint correlation functions characterizing the relatsqgatial ~ for the electron-irradiated Caland permits us to understand
distribution of defectgFig. 7). Large values of the joint cor- the mechanism and kinetics of this process. Despite the fact
relation functions of similar defect$ 54, Fgg (note their  that theH andF centers have very different mobilities, and
logarithmic scalg at short relative distancasclearly dem-  start to perform diffusion hops at 150 and 250 K, respec-
onstrate a strong aggregationkmith HandF centers. Atthe tively, they showsimultaneousaggregation. The growth of
end of the irradiatior{plot a) we have a relative distance of large aggregates is also determined by the defect interaction
r~10a, where Fgg (curve 2 approaches the asymptotic energy. Thus, curve 2 in Fig(® shows that after formation
value of unity. This agrees with the above-mentioned calcuat 250 K of small aggregates bf centers(about 10 defects
lation of the effective radiu®g . The effective radius of the in each they do not grow further until the temperature in-



PRB 58 DISCRETE-LATTICE THEORY FOR FRENKEL-DEFEC. .. 8463

creases up to 320 K. At this temperature the thermal energgates(providedkgT,~Ex,). This results in singléd center
kgT, turns out to be close to the interaction enerByg, recombination with the nearly centers and the appearance
and singleF centers start to leave small aggregates which iof a region aroundH clusters free of centers. This process
a precondition for growth of large aggregates. Such a procedeads to the transformation of smafl clusters into large
of the transformation of small aggregates into large ones isnes(with the average number of defedts,~ 10°).
often calledOstwald ripening Note that we present here the At the temperature when thHe centers start to move, they
first microscopic theory for this process; previous phenomform, first of all, small clusters, very similarly to those laf
enological theories are unable to incorporate the defect intezenters created at short times. Similarly to khaggregation,
actions(see Ref. 24 and references thejelBven our sim-  their subsequent rearrangment into large aggregates takes
plifed treatment of defect interaction required a lot of place at the temperatur&, when kgTo~Egg. If Eaa
computational timetypically, several days or a wegKThis ~ ~Egg, aggregation of both kinds of defect occurs simulta-
is why it is hard to go beyond the NN approximation for neously.
defect interaction.

The scenario of this cooperative process can be summa-
rized as follows. Under irradiation mobild centers aggre-
gate first(at t~10 3s) forming small clusterstypically of This work has been partly supported by the Volkswagen
10 defecty whereas- centers remain randomly distributed. Foundation. V.K. is also indebted to the Commission of the
As irradiation continues, the size of thegeactically immo-  European Communities for support under Contract No. ERB
bile) H clusters does not change with time, only their numberCIPDCT 940008(amendment to ERB CHRX CT 930134,
increases. After irradiation upon heating to some criticalthe European network SSAESThe authors thank E. Mat-
temperaturd ., H centers begin to detach from small aggre-thias and M. Reichling for numerous stimulating discussions.
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