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Nuclear resonant inelastic absorption of synchrotron radiation in an anisotropic single crystal
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The Singwi and Sjander theory of nuclear resonant inelastic absorption of x rays is extended to the general
case of an anisotropic single crystal. The energy dependence of nuclear inelastic absorption for the specific
direction of the x-ray quantum relative to the crystal lattice is described using the density of phonon states,
weighted by the projection of the phonon polarization vectors to the wave vector of the x-ray quantum. An
applicability of the sum rules in the case of the anisotropic crystal is analyzed. The method of calculation of the
phonon projected density of states from experimental data is proposed, where deconvolution of the data with
the instrumental function of the monochromator and the subtraction of the multiphonon absorption is handled
using the Fourier transformation. The results are illustrated by processing the experimental data of nuclear
inelastic absorption of x rays in the anisotropic ferric borate FgBiBgle crystal[S0163-18208)01938-9

[. INTRODUCTION with an x-ray monochromator of higher energy resolution.
However, even in this case the elimination of the instrumen-

Inelastic scattering of radiation with creation or annihila-tal function remains desirable. We show that both problems
tion of phonons is a powerful technique to study the latticecan be solved successfully using the forward and the re-
dynamics. Neutroh, x-ray? and lighf inelastic scattering Versed Fourier transformations of the data from energy to
have long been used to measure the phonon dispersion Idiine space.
w(q), wherefw is the phonon energy angl is the wave We illustrate the developed technique by two examples:
vector. Recent progress in the domain of nuclear resonaruclear inelastic absorption in the polycrystalliaéron foil
scattering of synchrotron radiatibpaved the way for a new and anisotropic nuclear inelastic absorption in the ferric bo-
inelastic technique, nuclear inelastic absorpfidieasure- rate FeBQ single crystal. In the first case we demonstrate
ments of nuclear inelastic absorption benefit much from thdhe reliability of the data processing technique by comparing
large nuclear resonant cross section, so the new field develhe calculated DOS with the data known from a neutron scat-
ops rapidly?=° The theoretical description of nuclear inelas- tering experiment? In the second case we obtain the densi-
tic absorption in the case of an isotropic crystal was done byies of states, weighted by the projection of the phonon po-
Singwi and Sjtander (for other relevant theoretical papers larization vectors to the different crystallographic axes. They
see Refs. 11,12 significantly differ in shape, revealing the anisotropy of the

The determination of phonon energy by means of nuclealattice vibrations in the noncubic single crystal.
inelastic absorption assumes no momentum resolved infor-
mation on the phonon spectra and therefore is not applicable 1. THE PROBABILITY OF NUCLEAR INELASTIC
to the investigation of the phonon dispersion lafq). In- ABSORPTION OF X RAYS IN A SINGLE CRYSTAL
stead of this, the experimental energy spectra of inelastic ,
nuclear absorption are discussed in terms of the phonon den- W€ start from the general expression for an x-ray absorp-

; . ; ; - i leus in terms of the time integral
sity of stateSDOS) g(E). This is described by the Singwi UON CToss section per anucleus in terms of t gral,
and Sjdander theory’® which was proposed for a crystal Which was obtained by Singwi and $jader.” We assume

with a cubic Bravais lattice. The theory fails to describe thethat the phonon energy is much larger than the possible hy-

anisotropy of nuclear inelastic absorption, which has beeferfine splitting of the nuclear levels, therefore the hyperfi.ne
recently observelin the FeBQ single crystal. Therefore a structure can be neglected. In contrast to Ref. 10 we consider
more general theoretical description is necessary, whic the expl|_C|t form alt(:jr_}/fstal with acomplex”unlt cell, WT'%h

takes into account the direction of the incident x-ray beanwa3|' contain several dilierent atomsr?s wel as sgvera]} iden-
relative to the crystal lattice and considers the densities ofi¢@l atoms atvarious positions. Let the total number of reso-

phonon states with various phonon polarizations. Such §2nt nuclei per unit cell be, . The resonant nuclei in the
theory is the main subject of this work. unit cell are labeled with inder. We consider the normal-

Another problem we address is the calculation of the phol2€d Probability of absorptiokV(E) per unit energy interval
non density of states from the experimental data. In order t§t (e energyE. Now Eq. (2) of Ref. 10 can be rewritten as
extract the density of states, one has to deconvolute the daf@/oWs:
with the instrumental function of the monochromator and to
separate' the single-'phonon absorption from t'he multiphonon W(E)= j ﬁex;{ —iEr— £|7-|
contributions. The first problem may be partially overcome 2m 2
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where 7=t/#, t is the time,I" is the natural width of the dr r 1 r
nuclear excited statd; is the energy of the x-ray quantum f 2—ex;{ —iE7T— —|r|> P e ~(E)
relative to the resonance energy of nuclear transition,kand 77 ™ (E*+I7/4)

is the wave vector of the incident ray. The function )

As a result we have
Fm(k,7)=(exd —ikuy(0)Jexdikuy(7)]) i)

is the time-dependent correlation function, which describes  Wy(E)= 5F(E)i2 fm(k), lim 6p(E)=68(E), (8)
the correlation between the displacemamtsof the nucleus Ar“m r—o0

at two different moments of time separated by the time in-
tervalt=7%7. In the single crystal this function has transla-
tional symmetry. It may be different for various nuclei inside
the unit cell.

To deal with this function, Singwi and Sandet? intro-
duced the Van Hove space-time correlation functiyfr,t) | (q)l
in a spherically symmetrical approximation. Afterwards they 2 fm k)E {( qit1or
applied this function to the case of a cubic Bravais lattice. In (@)
this way the dependence on the direction of the photon beam
has been lost. However, it is not necessary to consider the
space-time correlation functid®g(r,t) for the calculation of
Fm(k,7). As it was shown by Van Hovésee Eq.(51) of
Ref. 14, this function can be represented in a general case
an anisotropic crystal as follows:

where §(E) is the Diracé function.

The first term describes the single-phonon nuclear inelas-
tic absorption. It is calculated through the same inte@fal
however, the result has a more complicated form:

><[E—ﬁwJ-(q)]%jar[E%wj(q)]}. (9)

After the replacement oér(E) by 6(E) and taking into

gecount tha’n_qj depends only ok w;(q) [see Eq(6)], the
expressior(9) can be represented as follows:

1
Fm(k,7)=exf — Zn(K)Jexd M n(k, 7], €) W, (E)= n—%} f_ (k) S(E.k),
r
where
ErOn(|E[,9)
s 2 SM(Ek)= : (10)
Zy(K)=Mp(k,0)= E | ﬁe;'((g)ﬂ (2ng;+1), (4 " E[1-exp(—BE)]
g . The form of this expression is similar to that used for the
s em (q)|2 polycrystalline sampldsee, for example, Refs. §,How-
M (k,7)= Z Z iRt {(nq]-f-l)exqmwj(q)ﬂ ever, the dependence of the absorption probability on the
aj (a) direction of the incident photon beam relative to the crystal

+nqjexp:—iﬁwj(q) s ) ![ngce is obtained here in an explicit form through the func-
Equationg3)—(5) extend the Van Hove formulas to the gen-
eral case of a non-Bravais crystal lattice with several reso-
nant nuclei in the unit cell. The derivation is similar to that
given by Van Hov&* and we omit it here. In the formulas
(4),(5) Eg=1%2k?/2M is the recoil energyN is the number of da,dg,
unit cells per unit volume of a crystak;(q) is the phonon (277)3 f grado;(q)] |s-emi(@)]? (1D
dispersion relation for the branghe,;(q) is the polarization
vector of vibrations formth atom in the mode{qj}, s  HereV,=1/N is the volume of the unit cell. We have passed
=k/K, from the sum to the integral according to the usual technique.
The integral is taken over the surface of the constant energy
qu:{exqtgﬁwj(q)]—l}*l (6) ﬁwj(q')=E in q space within the first Brillouin zone. The
coordinatesq,; and g, are the axes of the local reference
is the Bose-Einstein distribution functiof= (kgT) "%, kg is  Cartesian system. They lie on the surface of the constant
the Boltzmann constant, aridis the temperature. We note energyE. The third axisq; of Cartesian system is directed
that exp—2Z,(k)]=fn(k) is the angular-dependent Lamb- along the vector grag »;(q).
Mossbauer factor. The function g,,(E,s) coincides with the conventional
To calculate the integral in Eq1) we expand the expo- phonon density of states for an isotropic crystal, whey)
nent expM,(k,7)] in powers series of the argument and does not depend gnTaking into account the property of the
arrive at the expansioW(E)=ZX_W,(E), where each polarization vectorsS|s-e,;(q)|?=1 we find that the de-
term corresponds to the photon absorption accompanied tpendence ors vanishes in this case. The dependenceson
creation or annihilation of phonons. also vanishes for a polycrystalline sample, where the direc-
The zero term of this expansion describes elastic nuclearon of photon beam relative to the crystal lattice averages
absorption, which is not accompanied by phonon creation oover many crystalline grains. However, in an anisotropic
annihilation. It can be calculated directly using the tabulatedsingle crystal the functiomy,,(E,s) does not coincide with
integral the DOS. In contrast to the DOS, it contains the contribu-
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tions of phonons, weighted by the projection of their polar- lll. LIPKIN SUM RULES
ization vectors to the direction of the x-ray beam.

Therefore we will call this function the projected density d
of states(PDOS. We note that it may be different for vari-
ous sitegan of the resonant nuclei in the unit cell. As will be

shown below, this function is normalized to unity for asy the case of an anisotropic single crystal. We rewrite €.

direction. as follows:
Considering the higher-order terms of the multiphonon '

expansion we omit the energy widih of the nuclear levels dr
as negligible compared to the phonon energy. Then we re- W(E)= f 2—exp(—iEr)d>(r)
write Eq. (1) as follows: ™

The Lipkin sum rule¥ offer a useful tool for treating the
ata on inelastic nuclear absorption, because they simplify
the normalization of the experimental spe&rgherefore it
is important to investigate the application of the sum rules in

1 _ 1 (dr ) d"®(7)
Wo(E)= =2 f () SP(EK), (12) = o) ZpeRiEn| ] (19
where where
n—-1 1" 1
Sp(E) = [ prex—iEn et Hat win=ed i 23 Fulkr) @0

(13 is the Fourier image of the energy spectrum of the absorption

probability. The right side of Eq19) is obtained by integra-

uct of two functions. It can be represented as the convolutiofi°" by parts taking into account thd¥(7) and all its deriva-

of the Fourier images of these functions. This leads to thdiVeS equal zero gtr|—c. ] . .
recursive relation We will use the notatioE™ 5= [ ©,dE A(E) E" for the

nth momentum of the functioA(E). The zero momentum
of the absorption probability is

The integral in Eq(13) is the Fourier image of the prod-

1
SV(E, k)= ﬁf dE’ S(M(E’ k) S"V(E—E’ k),

(14) <E°>W=f dEWE)=®(0)=1, (22)
which permits us to calculate the multiphonon scattering ) ) ]
cross section from the single-phonon term. which follows immediately from the left side of EC11_9) and
As a result we obtain the expression for the probability ofth® expressiori3). This proves the correct normalization of
nuclear absorption in a form which is similar to the formula the absorption probability in Ed1).

obtained by Singwi and Sjander;° namely, The first momentum can be easily calculated through the
right side of Eq.(19) with n=1, namely,
1 oo
B (n) do
W(E k)= - % f 5F(E)+n§1 SM(Ek)|. (15 <E1>W=f JE WE) E= id(:))
=0

In our case, however, the explicit dependence of nuclear ab-
sorption on the directiok of the photon propagation relative :iz (de(va)) 22)
to the crystal lattice is revealed through the projected density n, idr o
of phonon statey,,(E,s). o ]

In order to calculate the Lamb-i8sbauer factor we note Substitution of Eq(5) gives
that

m

Er < [semi(@))?
(EYw= g > e
SST})(E’k):fS_;exq_iET)Mm(k,T): (16) NNy g 'ﬁw_,(q) -
therefore X[ wj(q) (ngj+1)—ihwj(q)ng; ]
= Ny, [semi(@*=Er. 29

Mm(k,r):f dEexp(iE7) S{V(E k). 17
Thus we obtain the Lipkin sum rufé:the first momentum of
Now from Egs.(4) and(10) we obtain the Lamb-Mssbauer the total probability of nuclear absorption equals the mean

factor recoil energyEg.
The higher-order energy momenta can be calculated simi-
o _, 1+exp(—BE) larly. For example, the second energy momentum of the ab-
fmn(k) =ex _ERL dE gn(E,5) E 1—exp(— BE) | sorption probability equals
, . . -~ . 2 2 d*® ()
We see that the Lamb-Késbauer factor in an anisotropic (E >w=f dEWE) E*=| - —— . (29
crystal is determined completely by PDOS. dr* /.
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We note that this momentum diverges if the integral is takerenergy bandwidth of the x-ray beam, whereas in the discus-
over the infinite energy interval. The divergence results fronmsion above we assumed monochromatic radiation. Therefore
the property of the functiod-(E), which is not exactly the it is necessary to examine the application of the Lipkin sum
8 function, but behaves aBE 2 at the tails. However, in rules to the experimental energy spectra and to consider the
practice we handle the data, which are taken over the finitdeconvolution of the data with the instrumental function.
energy range of B,,,,, whereE,.,is larger than the phonon We note that the conventional measurements of inelastic
energy but much smaller thafE?)/T". This allows us to absorption® do not allow one to distinguish the different
neglect the tails during the integration and tréatE) as the  sites of the resonant atoms in the unit cell. Therefore in the
exacté function for all considered energies. In this approxi- discussion below we omit the inder. By these means we
mation we obtain obtain the density of phonon states, which is averaged over
the different sites of the resonant atoms.

" >, Er ) — Let P(E) be the normalized energy distribution of the
(E9w=Eg+ Nn, r% |s-emj(Q)[*fiwj(a) (2ng;+1) quanta in the x-ray beafinstrumental function of the mono-
chromato}. We exclude the elastic part of the absorption
” 1+exp(—BE) from our analysis for the reasons discussed in the previous
_F2 - LA
=Ert ERnr % fo dEgn(E,9 E 1—exp(—BE)" section, and consider only the inelastic part of the absorption.

The experimental energy spectruhfE,k) can be repre-
(29) sented as follows:

To obtain this expression we multiplied the right-hand side

by unity in the form[ydE 6] E—#%w;(q)] and performed the 1(E,k)= f dE’'P(E")W,o(E—E' k)
integration. ’ 0 ine ’
Using the same approximation one may consider the d r
higher energy momenta. For example, =|ofuv|(k)f 2—Texp< —iET— §|7-|)Q(7-)
a
1 o0
Bt S [“dEaEs X{exetM (k, )~ 11). @
rm 0
Herel is the scaling factor an@(7) is the Fourier image of
«| 3E2E 1+exp—BE) +EE2 (26) P(E). Itis evident thatQ(7) is a peak with a characteristic
R R . . . . g . . .
1—exp(—BE) width w which satisfies the inequality>T". For example, if

. _ P(E) is the Gaussian with the standard deviatjoandom
The theory presented above descrilme®herentnuclear ab mean squaréRMS)] o, thenQ(7) is also Gaussian with the

sorption, which is valid only for thénelastic contribution. RMS o -
Due to the relatively small cross section of inelastic absorp- '
tion the experimental data in this case are proportional to the 5

absorption probability. In contrast to thaasticinteraction P(E) = 1 exp( 3 E_)

of x rays with nuclei may also proceambherently In this 252)’

case the x-ray field in the sample is governed by forward

scattering® which significantly influences the absorption )

process. The signal, which is measured in the experiment _ . _ T

(delayed fluorescence radiatjpis no longer proportional to Q(T)_J dEequT)P(E)_eXp( 20—2)' (28)
the absorption probability. It can be described by the more

extended theory® Therefore the experimental energy spectraTherefore we again may consider the limhit-0 and omit

of nuclear absorption do not provide the correct ratio of elasthe term containingd’.

tic and inelastic contributions. Thus it is of interest to con-  The contribution of single-phonon absorption to the ex-
sider the energy momenta separately for the elastic and irperimental data is

elastic parts of the absorption probability.

o2

We note that the probability of elastic nuclear absorption
W,(E) as determined by Ed8), leads to the zero momen- 1(E.k)=1of , (k)f dE' P(E’) Si(E-E’ k),
tum <E°>Wo=nr‘12mfm(k), whereas all other momenta
equal zero. Therefore, the relatio(®3), (25), (26) hold for Erg(|E],9)
the inelastic part of nuclear absorptidi(E)—Wy(E) as Si(E, k)= : . (29
well. E[1—exp—BE)]
We suppose that the functids [ 1—exp(—BE)] ! is slow
IV. CALCULATION OF PHONON PDOS in the range of the energy width of the monochromator. This
In this section we address the practical point of the calcule"jlds to an approximate formula
lation of the projected density of phonon states from the _
experimental data. PDOS can be obtained from the single- LER=1-f (K Er9(|E[,9) 30
phonon term of inelastic absorption. Therefore this term has 1(EK) =10 LM ( )E[l—exp(—,BE)]’ (30

to be separated from elastic and multiphonon contributions.
In addition, the experimental data are influenced by the finitavhere
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E(E s)=f dE’' P(E')g(E—E’,s) D(E s)=£[1—exp(—,8E)]f ﬁexﬂ—iEr) M(k,7)
, : , Eq 5 7)),
3 dg 2 _
=Vo f - P[E—fiwj(0)]|s eni(Q)|2. 9(E.s)=D(|E|.s). (37)
j (2)

We note that Eq(35) eliminates the multiphonon processes
3D by means of logarithm functiol,whereas Eq(36) provides
the deconvolution of the data with the instrumental function.

In addition, we consider the possibilities to verify the re-

;eng(l)a(l)ctﬁsﬂ'byn;tge ggedrgztrsupc?icvt;ul;?a 5;322 mgr}ﬁﬁhr%nz;ci)g Th'l?ability of the experimental data and to check the procedure
g may g fOf their treatment. For this purpose we derive several rela-

not a slow function in general. It may contain sharp peaks i . X
) : tions, which connect the various energy momenta of the ex-
the phonon dispersion branches have plane areas on the

: . perimental data with those of PDOS. It is convenient to write
curvew;(q) in q space with a small value ¢gracghwj(q)|. them as the conditions on the function
In this cases the deconvolution procedures are desirable.

Considering the higher-order terms, we note that the re-
cursive relation(14), which was obtained for the mul-
tiphonon contributions to the absorption probability
S(M(E, k), is not valid forl ,(E,k). Therefore the procedures
which use the recursive relatigh4) in order to eliminate the n
multiphonon terms from the experimental data are, in gen- C.(E)= 1-(=1 exp( — BE). (39)
eral, not exact. Here we propose a quite different approach, A 2
which allows one to separate the single-phonon term fro ;
multiphonon contributions simultaneously with the deconvor]?:rom Egs.(18), (23), (25), and(26) we obtain
lution of the data with the instrumental function.

This function is the smoothed PDOS, where thiainction is

1+C,(E)

Gn<s>=f:dE oEIE ey

In the first step we determine the scaling fadtgr Simi- G_y(9)= iln (39)
lar to Ref. 6, we use for this purpose the sum rules. The zero -1 Er \fim(k)/)’
and the first momentum of the experimental energy spectrum
can be found as follows: Gy(9=1, (40)
<E°>|=f dEIEK)=l[1-fiu(K)], (32 Gu(s)=Er (E?)w—Er, (4D
Gy(9)=Er (E})w—3(E?)w+2ER, (42

(EY),= J dE I(E,k) E=(E®)(EY)p+1gEg. (33)  where the momenta of probability density are connected with
the measured data as follows:

Here we use thatE%) ,=Q(0)=fdE P(E)=1, because the
instrumental function is normalized. It, however, can be (EDw=1g "((E?) —(E®p(E®%)) — 2(EY)pER, (43
asymmetric, therefore the first momentfE) may be dif-

ferent than zero. From Eq$32), (33) we obtainl, and <E3>W:I61(<E3>|_<E3>P<EO>I)_3<E1>P<E2>W
fum(k) as
—3(E?)pER. (44)
lo={EY,—(EO(ENp)/ER, fim(k)=1—(E%,/I,. These relations follow directly from Eq$34)—(37).
(34) Conditions(39)—(42) can be used for the verification of

the experimental results. In particular, EQ9) gives the
In the next step we calculate the functibi(k,7) directly ~ comparison of the Lamb-Mssbauer factor obtained from the
from the experimental energy spectrum using the Fouriearea of the inelastic part of the normalized experimental en-
transformation as follows: ergy spectrum to that calculated from the derived PDOS.
Equation(40) verifies the normalization of PDOS.
Another possibility to examine the reliability of the ex-
M(k,7)=In[1+J(k,7)], (35 perimental data is to compare the results of E3j7) for
positive and negative values Bf The part ofE>0 describes
the PDOS, which is determined from the processes of pho-

j dEexpiE7) I(E, k) non absorption, while the part &<0 describes the PDOS
Ik, 7)= ' (36) from the processes of phonon creation. Both functions must
' lofm(K)Q(7) coincide, namelyD (—E,s)=D(E,s). In fact, it is more ac-

curate to calculate the projected density of phonon states
Finally, we perform the reverse Fourier transformationfrom the positive part, because the processes of phonon ab-
and obtain the projected density of phonon states as sorption provide higher statistical accuracy.
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V. SINGLE-PHONON SCATTERING WITH SMALL
ENERGY TRANSFER

The experimental energy spectra of nuclear inelastic ab- 200(*; @
sorption allows one to obtain the PDOS and the Lamb- é ]

Mossbauer factor. PDOS may be used to verify theoretical 3 100(;

models of the dispersion relations and of the interatomic po- %
tential. The most simple analysis can be performed for small ] % :
energy transfer, where only the acoustic phonons participate 0] ,._.._j &N g
in the inelastic absorption. Let us estimajéE,s) in this 160 40 20 G 20 40 80 |
limit. ] :

For the acoustic modes;(q)=qc;(n), wheren=q/q is 200(*; ®) o4 % g
the unit vector along andc;(n) is the sound velocity for the £ ] s 8 § %E
given direction of the phonon propagation. Using the spheri- 5 100(; T I |

cal coordinates in the integral over and calculating the

integral over modulug] by means of the5 function we ob- ] 4 t
tain 3 i
0 n

\Y; 2m T s-e(6,9)|? ]
g(E,9)=E2— 3f dgof d@sing, |;—| 1 © S g
(2mh)=Jo 0 ] Cj(t9,go) L, 400 H & a
£ 3 8 9 oo :
Vo 1 g s 5 ¥ g
=E? . (45) Y 200 $ &3 3
27218 c(9) ] A %ﬁ} b i
Here we introduced the mean sound velodityalong the ] S 3
directions through the relation 0 20 '
Energy (meV)
2 2\ —1/3 )
E(s)— i Wd Wdasin 02 |S'ej(6!‘P)| FIG. 1. Energy spectra of nuclear resonant absorption of syn-
S\ \ 4 0 ¢ 0 7 C-3(t9 ) chrotron radiatior{a) in the polycrystallinex-iron foil and (b),(c) in
] 7

(46) the 3"FeBQ, single crystal, where the angle between the x-ray beam
and the[111] axes wagb) 85° and(c) 0°.

Equationg10) and(45) show, that for small energy trans- ) ) _ o
fer the probab”lty of Sing'e_phonon absorption is approxi_for two different orientation of the incident X'ray beam rela-

mately a linear function of energy: tive to the crystal lattice. One spectrdifig. 1(b)] was mea-
sured when the angle between the beam and 1thé&] axis
_ Er Vo 1 B was 85°, in the second cafdeg. 1(c)] the beam was parallel
lim Wi (E,s)~fu(s)— — 3_3—(1— EE)' to the[111] axes(see Ref. 9 for the details of the crystal
|E| —0 B 2nh cs(s) orientation). The data were taken at the Nuclear Resonance

beamliné® ID18 at the European Synchrotron Radiation Fa-

This function varies slowly with energy, so it is not influ- Cility. The energy resolution of the monochromafowas
enced much by the convolution with the instrumental func-1-65 meV. The abundance of the resonéffte isotope in
tion. In the cases of negligible multiphonon processes EqPOth samples was about 0.95. All data were taken at room
(47) provides a useful approximation of the energy spectrunfemperature. The instrumental function of the monochro-
of inelastic absorption in the small energy region. This ap-/nator P(E) was known from the energy spectrum of for-
proximation helps to eliminate the central elastic peak fromvard scattering.

the experimental data. On the other hand, E&) allows In order to use the fast Fourier transformation code the
one to estimate the mean velocity of sound for the particulafXPerimental data were smoothed with use of the standard
Crysta“ographic direction from the calculated PDOS. mathematical teChanue. This allowed us to decrease the sta-

tistical errors and to obtain the constant step array. The cen-
tral peak of elastic absorption was removed from the experi-
mental spectruml(E) according to the relatiorl (E)

In order to illustrate the theory we present here the ex=I(E) — aP(E), wherel(E) stands for the energy spec-
amples of processing the experimental data for the polycrysfum of pure inelastic absorption. At room temperature the
talline a-iron foil and for the FeBQ single crystal. As dis- contribution of the multiphonon processes is small, therefore
cussed above, in the case of polycrystallin@on[Fig. 1(a)]  according to Eq(47) | (E) should be approximately linear in
there is no dependence of nuclear absorption on the directidhe vicinity of the central peak. This property was used to
of the incident photon beam. Nevertheless we choose thidetermine the factow before the subtracted instrumental
example in order to demonstrate the reliability of the datafunction. Then the derived energy spectrum of pure inelastic
processing, since the data on the phonon DOG-abn are  absorptionl (E) was normalized according to E(B4).
availablé® from neutron scattering. For the FeB@ingle The density of the phonon states was calculated from the
crystal we consider the energy spectra of nuclear absorptiomormalized spectrum of inelastic absorption through the for-

VI. SPECIFIC EXAMPLES
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+ ' ' ' ' ' ' According to Eq.(11), the peaks of PDOS correspond to the
'1'; “high-density” areas inq space, wherdgradfw;(q)| is
2 087 @ small for the particular branchof the phonon modes. The
g 06 conventional DOS includes the contributions of all branches,
5 R and all high-density areas contribute equally to DOS. In con-
o .04 trast to that, the contribution to PDOS is determined by the
o 02_5 projection of the polarization vecta,;(q) of the particular
T branchj to the directiors of the x-ray beam. Therefore high-
0.1 S —— e =t density areas of various branches contribute differently to the
0640 10 20 30 40 50 60f projected density of states. Comparison of Figb) and 2c)
- 1 (b) shows that the phonons with the polarization vectors perpen-
g o4 dicular to the[111] axis have one main high-density area in
= ] g space around the equienergetic surfaceEef22 meV,
§ 1 whereas the phonons polarized along fh#1] axis have at
a 02 least two such areas, around&E=20 meV and E
. =30 meV.
0.4 S S : For each set of the experimental data the Lamb-
0640 10 20 30 40 50 60[ Mossbauer factor was calculated. Feriron we obtained
. 1 © [ fLv=0.803+0.001%° This agrees perfectly with the data of
2 oad Ref. 6 and Ref. 7 (0.8050.003 and 0.8030.003, respec-
= ] tively). For the FeBQ@ crystal we obtainedf y=0.837
2 1 +0.003 for the crystallographic direction, which has an
§ 02 angle of 85° to thg111] axes andf ,,=0.800+0.005 for
2 1 the direction along th¢111] axes. This confirms the data
0. ] obtained in the previous studies of lattice vibrations in the
0 1o 20 30 40 50 60 FeBO, crystaP (0.82+0.02 and 0.8%0.02, respectively
Energy (meV) Finally, we have calculated the mean sound velocifgr

FIG. 2. Results of processing the experimental data from Fig. 1two considered crystallographic directions of the FgBO

(a) DOS for the polycrystallinex-iron foil, (b),(c) PDOS for the  crystal according to Eq(45). For both directions we ob-
*FeBQ, single crystal in the cases where the axis of projection hasginedc= (8+2)x10° cm/s. This value is close to the data
the angle of(b) 85° relative to thd111] axes, or(c) parallel to the reported in Ref. 21[transversal modes sound velocity

[111] axes. =(5+0.5)x10° cm/s, longitudinal mode ¢;=(9+1)
. _ _ X10 cm/g.

ward and the reversed Fourier transformations according to

Egs. (36) and (37). In practice, the complete deconvolution VII. SUMMARY

of the experimental data with the instrumental function is
impossible, because it would increase significantly the re- We have considered nuclear resonant inelastic absorption
mained statistical error of the data. Therefore applying Edof x rays in the general case of the anisotropic single crystal.
(36) we used the function (*b)/[Q(7)+b] instead of The derived expressions are similar to those of the Singwi
1/Q( 7). This substitution means that the calculated functionand Sjdander theori? of nuclear absorption in the isotropic
is not the exact DOS, which is described by E2J/), butthe  crystal. However, instead of the conventional DOS, the
linear combination of the exact DOS and the “smoothed” theory presented here deals with the projected density of
DOS [given by Eq.(31)], with the relative weights of 1/(1 phonon states, which is weighted by the projection of the
+b) andb/(1+b), respectively. In order to reach the effi- phonon polarization vector to the direction of the x-ray
cient elimination of the instrumental function one needs tobeam.
choose the constatt as small as possible. In practice, the We have described the method of calculation of PDOS
allowed compromise depends on the statistical accuracy dfom the experimental data, which is based on the forward
the experimental data. In our calculations we ubedD.3. and reversed Fourier transformations. The method provides
The calculated DOS for polycrystalline-iron is shown the separation of the single-phonon absorption from the mul-
in Fig. 2@). It is compared to the data from neutron tiphonon contributions and deconvolution of the data with
measurements (solid line). Two sets of data show good the instrumental function of the monochromator. Several
agreement, however, our results do not reveal the sharp pealkeful relations between the energy moments of the experi-
atE=36 meV. This discrepancy may be connected with themental data with those of PDOS are derived, which allow
noncomplete elimination of the instrumental function andone to verify the reliability of the obtained results.
with the preliminary “smoothing” of the experimental data  In conclusion, we note that the developed theory is valid
before the Fourier transformation. only for nuclearabsorptionexperiment, where the yield of
Figures 2Zb) and Zc) show the projected densities of pho- the products of nuclear internal conversi@iomic fluores-
non states for the FeBCsingle crystal, calculated for two cence or conversion electrons monitored. A theoretical
nonequivalent crystallographic directions. The obvious dif-description of the nuclear inelastcattering which consid-
ference in two PDOS confirms the anisotropy of phonon vi-ers the radiative channel of reemission of the incident x-ray
bration in the ferric borate crystal, observed earlier in Ref. 9photon, demands quite a different theoretical approach.
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