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Thermal expansion of polymers: Mechanisms in orthorhombic polyethylene
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Quasiharmonic lattice dynamics is used to examine the mechanisms underlying the anisotropic thermal
expansion of orthorhombic polyethylene, with particular attention to low temperature behavior. Several sets of
interatomic potentials all give good qualitative agreement with experiment. Tensions caused by vibrations with
components away from the bond directions are responsible for the negative expansion along the polymer
chains, and contribute significantly to the expansion perpendicular to the chains; associated torques on the
bonds have only a small effect, except at very low temperatures. The anisotropy of the expansion perpendicular
to the chains results from a subtle interplay of thermal stress and elasticity. The results suggest that this
anisotropy will be greatly reduced or even reversed at low temperaf@@%63-182608)06437-4

[. INTRODUCTION ing mechanisms and is also quantitatively sound at suffi-
ciently low temperatures.

In principle, the thermal expansion of simple solids is We start in Sec. Il by describing the crystal structure and
well understood. It is driven predominantly by the effect of the coordinates used to describe its state of strain, together
vibrations on central force interactions between neighboringvith available experimental data on thermal expansion. Sec-
atoms. Such models can account, for example, for the neg&on Il gives the background theory, including that of central
tive expansion observed at low temperatures in many tetre{Qrce mechanisms of thermal expansion, together with a brief

hedrally bonded crystals. Other crystals, however shovccount of computational details of particular interest. Sec-

more complex behavior. This may be due to intricate election IV summarizes earlier conclusions from skeletal chain

tronic behavior, as in some magnetic and heavy fermion S0|r_r_1odelz~:, before our present results for the expansion coeffi-

ids, but may also be due to the complexity of the CrystalC|ents and Gmeisen functions of polyethylene are given in

structure and bonding, and sometimes to disorder. Polymen%ec' V'. These mclulde the contributions from qm‘erent
mechanisms, zero-point energy effects and behavior at low

materials are a case in point, presenting formidable prOblemtsemperatures Final remarks are in Sec. VI
for the theorist, owing to their long chain structure and the ' o

consequent need for an accurate representation of the inter-
play of both the weak intermolecular and strong intramolecu-!l- CRYSTAL STRUCTURE AND THERMAL EXPANSION

lar forces. In addition, many polymeric materials are semi-  The orthorhombic unit cell is shown in Fig. 1. This primi-

Crysta”ine, making it d|ff|CU|t, if not impossible, to obtain tive Ce” Contains twe|ve atoms Wh|Ch be'ong to two

reliable estimates of ideal crystalline behavior from experi-conformationally-equivalent chains. The space group is

ment. Pnam® There are nine structural parameters: the lattice pa-
In the present paper we continue a systematic theoreticahmetersa, b, andc, and six internal coordinates,(m=1

study of mechanisms underlying the thermal expansion of . .6) which determine the positions of all the atoms in frac-

crystalline polymers, which has been under way in our group

for some years. In this work the internal expansioear-

rangement of atoms within the unit celk treated simulta- a

neously and on the same footing as the macroscopic

expansiort:? After summarizing the conclusions reached

from the study of skeletal chain modélg,we study several 1

models and potentials for orthorhombic polyethyléodPE),

with particular attention to the anisotropic thermal expansion

at low and intermediate temperatures and the underlying G\i

mechanisms. X
For this purpose it is efficient to use quasiharmonic lattice

dynamics consistently in the first order approximation: the FiG. 1. unit cell of ideal orthorhombic polyethylene.

thermal expansion coefficients are calculated from analytig—7 121 A b=4.851 A, c=2.548 A (Ref. 7. Atoms colored

expressions, and evaluated at all temperatures for the geomBmck are at heighic, empty circles denote a height efic. Large

etry of the static lattice. This neglects all effects of highercircles denote C atoms, small circles denote H atoms. Dashed lines

order in the anharmonicity, including those due to the changehow the H - - H intermolecular interactions considered, labelled by

of geometry with temperature. For a crystal as soft as polyincreasing distance1) 2.5349 A,(2) 2.6330 A,(3) 2.6597 A, and

ethylene this would be a serious drawback for quantitative4) 2.8858 A. Dotted lines show the-C- H interactionsi5) 3.1789

studies at most temperatures, but it is efficient for investigatA and(6) 3.3605 A.
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TABLE I. Arrangement of atoms in the unit cell of o-Pi&;, from ab initio calculations. When a crystal structure has no
=0.044183, w,=0.059859, w;=0.186360, w,=0.011509, ws internal degrees of freedom, the mean position of each atom

=0.027079, andvg=0.277646. is determined by symmetry anl; vanishes. When this is
not so, a model in any state of internal strain can be main-
Atoms Fractional coordinates tained in equilibrium by applying appropriate internal
c (W, ) stresses. _ o . _
AT T2 The harmonic approximation of lattice dynamics assumes
H + (W3, Wy, 7) that the amplitude of vibrations is sufficiently small for the
H * (Ws,Wg, 7) anharmonic term&3; and beyond to be neglected. The vi-
C +(dowy i tw,,— 1) brational motion is then a superposition of independent har-
—\2 12 2y 4 . . . .
H o b, d) monic modes. In a periodic _stru_cture each mode is labelled
2 Weh2 T4y 4 by its wave vectoq and polarizatiors. For each wave vector
H +(3-Ws,3+We,— 1) the squares of the mode angular frequencieg,)¢, with

their associated polarization vectors, are obtained as eigen-

values and eigenvectors of the Hermitidynamical matrix

H(q), which is derived in the usual wi} from the atomic
asses and the coefficients occurring in the quadratic form

tional coordinates, as listed in Table I. We have taken th

lattice parameters, measured at 4 K, from Ref. 7.

These nine parameters are convenient for the theory
internal .expansion when developing_algebraic expressi.ons z'i'he total Helmholtz free energf, is the sum of static
fc_)r use in computer codes, but for dI.SCUSSIng the physma(lmd vibrational contributions:
significance of the results we use equivalent sets with mac-
roscopic straingy,= dlna, n,= dlnb, .= dinc, and internal F=d_ +F. @)
strains related directly to changes in distances between mean stat™ T vib
atomic positions and to changes in various angles determineghere the harmonic approximation gives;, as the sum of
by these positions, including the “setting angle’ which  independent contributions from all the normal modes:
the plane of a carbon chain makes with #eplane. Results 1 .
obtained with different sets are related to each other by linear Wqs
transformations. Vib:% {Ehwqﬁ KTin 1—ex;{ _W) ] )

The thermal expansion is highly anisotropic. The carbon
chains run continuously in thedirection, and the coefficient The quasiharmonic approximationobtains the strain-
of expansiona, is negative. The expansion coefficientg  dependence df,;, by applying the harmonic approximation
and «,, perpendicular to the chains are positive, and largeafresh at each state of strain. The term “quasiharmonic” is
than a. by an order of magnitude or more. There is a lessused because for a truly harmonic crystal potenfiaith
marked anisotropy in thab-plane, witha,>a, down to at ®,=0 for n>2) the coefficients ind,, and hence,;,,
least 100 K. At lower temperatures x-ray diffractidnbe-  would be independent of strainThe approximation gives
comes insufficiently sensitive for expansion détee Fig. 4 the thermal expansion coefficient correct to the first order in
of Ref. 9. Much more precise dilatometric measurementsthe anharmonicity of the potentige.g., Ref. 15 In the
can be made on bulk samples, with results extrapolated tpresent work, we keep consistently to this order of approxi-
100% crystallinity!®!! Isotropic materidf*?then gives a mation, neglecting higher order effects; in particular we
single coefficienta,,,. Drawn materidf gives two, «  evaluate all quantities at the equilibrium geometry of
along the draw direction and, perpendicular to it; these are the static latticé® Quantities are thus calculated as a func-
approximately equal te. and (a,+ a;,)/2, leaving undeter- tion of temperature at constant strain, both internal and ex-
mined the anisotropy in thab plane at low temperatures. ternal. They should be close to constant pressure quantities at
Accuracy obtainable by different experimental methods idow temperatures, diverging at higher temperatures.
reviewed in a recent handbodk.

B. Thermodynamics of internal strain: the general regime

lll. THEORY Through the frequencies,,;, is a function both of exter-

A. Quasiharmonic approximation nal strain coordinatesy, and of internal coordinategy.
Since crystal symmetry is preserved in thermal expansion, it

The effective potential energp governing the lattice vi- i ¢ ider all ible strains. but onl i
brations, as given for example by the Born-Oppenheimer ap'—S notnecessary 1o consider all possibie strains, but only a se
f nine independent coordinates as described in Sec. Il. In

proximation, is a function of the positions of the atoms, and’®

can be expanded as a Taylor series in the displacements I&Itice dynamics it is Convenient. to treat all t_hese strains si-
the atoms from their mean positions: multaneously, as thermodynamic variables in the so-called

“general regime.”?
O=Py+ D+ P+ Py+Dy+-- -, 1) Together thep, and thee, comprise the set of general-

, . , ized coordinatest,. The stresses/, thermodynamically
where®,=d ., is the static lattice energy anll,, denotes conjugate to thet, are then
the term of ordem in the displacements. In computations,
the coefficients occurring in thé, may be the input data 1/ oF
defining a model, they may be derived from pair potentials or A_7< —) , 4
more general valence force-fields, or they may be obtained VAXE2 T
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whereV is the volume of the reference configuration and soEXPansion coefficients, , stiffnesse<C, ,, etc. The defini-
is independent of strain. The isothermal elastic stiffnesselions Of these functions are analogous to those for the general

follow by taking second order derivatives Bf regime; €.g.,
a7, 1/ 9%F 1/ oF [ dm
Cos=\ 7e =:( ) . ®) “‘?(a— - eloT) (12
(953 a1t V agAﬂgB et \ LN 7', T t
The second order compliances To relate macroscopic functions to those computed in the

general regime, we remember that in macroscopic experi-
ments the internal coordinates adjust to give minimum free
(6) energy, corresponding in the general regime to a condition of
7.7 constantzerg internal stress. We can therefore immediately
identify the expansion coefficientd, in the general regime
v‘/ith the macroscopic coefficients, , since both correspond
0 conditions of constant internal and external stress. For the
same reason, the macroscopic compliance méi;}pds the
( a2F> same as the submatr, of Sig. In contrast, the stiffness
=-T
&

IE

T _ —_—
SAB_ a/TB

are then found by inverting the entire stiffness maﬂﬁg.
The heat capacity at constant macroscopic and intern
strain is

(7)  submatrixCy, does not give the macroscopic stiffnesses,
because it refers to conditions of constant internal strain
(rather than constant internal strgsmistead, theCI# are
obtained by inverting thé;IM matrix. Similarly, the macro-
scopic Grueisen functionsy, , which are often used in the

C = -
¢ aT?

and the thermodynamic Gmeisen functiond A(T) are pro-
portional to the thermal stress coefficients:

analysis of thermal expansion data, are defined by
FAT)= V(‘ﬁ“) ®
A B Cg aT g. V (9t)\
Nl (13
The thermal expansion coefficients are given by n n

o7 c The v, allow for the relaxation of internal degrees of free-
Ap=—>, SXB<—B) =ZES STTe(T). (99  dom, and so differ from thE, of the general regiméTo the
B T, V7B present first order accuracy they are given by

They thus depend on the interplay of compliances and ther- ot stat
mal stress coefficients, as discussed by Mtfn. y=I—> Ieaesa (14
Thermodynamically, Eqg4)—(9) are exact. But when the om

quasiharmonic approximation is used faj, and its deriva-  whereG;§is the inverse of the internal submat€g2 of the

tives, the vibrational contributions to the stres§gsand the  atrix ¢ Stat

lalt ! Ag- We also note in passing that the heat capacity
consequent contributions td, are correct only to the first given by the sum of harmonic mode contributions is Gt

order .in the arlharmonicity. Sjnqe the variation of. elasticy ¢ C.: if required, it can be converted thermodynamically
compliances with temperature is itself an anharmonic effect 1o macroscopic properti€, andCp .12
) .

we keep consistently to the lowest order in the anharmonicity
by using the static lattice compliances in evaluatitg: D. Integration grids
To evaluate thermodynamic properties, expressions in-
volving the normal mode frequencies and their strain deriva-
tives are integrated over the first Brillouin zoffeBZ). For

wherec(% w/KT) is the heat capacity of a harmonic oscilla- 0-PE the FBZ is rectangular, and symmetry enables us to

in this regime, defined by Fine meshes were used to obtain high accuracy, and also to

test the reliability of results from coarser meshes. For testing,
two different types of meshes were employed, both obtained
(1) by dividing reciprocal space into cells similar in shape to the
e’ Brillouin zone but smaller in linear dimensions by a factor

In the computation, mode gammas are obtained from straif/m: One mesh comprised the cell centétrse Monkhorst-
derivatives of the eigenvalues. These derivatives are od-ack mesf?); the other comprised the cell corners, except
tained by first order perturbation theo]ry_z,lg that thel” point was omitted because it is a singular point for

the Grineisen parameters of acoustic modes.
For each mesh an iterative procedure was used to extend
the accuracy of the integration to very low temperatures,
We use a different script to denote variables in thac-  where only low-frequency acoustic modes withvectors
roscopic regimeof thermodynamics, which considers only lying close to thel’ point contribute to the thermodynamic
external degrees of freedow), , with conjugate stressds, properties'? In the first step the integration over the inner

fiw
as

1
Ap=52, S FB(q,s)C(
VvV B gs

dNwgs
IEg

I'g(d,s)=—

C. Derivation of macroscopic properties
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TABLE II. Values of y, andy, for VFF2 at 1.0 K and at 100 K, obtained with varying mesh size in the
FBZ for two different types of mesh. Faster convergence is obtained by combining them in accordance with
Simpson'’s rule.

Yo
T=10 K T=100.0 K
Mesh Center Corner Simpson'’s rule Center Corner Simpson'’s rule
4 3.080 3.109 3.090 1.229 1.489 1.316
8 2.896 3.181 2.991 1.188 1.362 1.246
16 2.850 3.060 2.920 1.215 1.275 1.235
32 2.863 2.961 2.896 1.235 1.245 1.238
48 2.883 2.926 2.897 1.239 1.241 1.240
64 2.893 2.913 2.900 1.240 1.240 1.240
Ye
T=10 K T=100.0 K
Mesh Center Corner Simpson'’s rule Center Corner Simpson'’s rule
4 —20.34 —5.992 —15.56 —2.328 —1.601 —2.086
8 —16.50 —11.87 —14.96 —1.603 —1.978 —1.728
16 —15.71 —14.05 —15.16 —1.665 —1.793 —1.708
32 —15.24 —14.84 —15.11 —1.707 —-1.729 —1.714
48 —15.10 —15.00 —15.07 —1.715 —-1.720 —-1.717
64 —15.06 —15.04 —15.05 —-1.717 —1.718 —-1.717

region with linear dimensions half that of the full zone is of the mean interatomic distance with increasing amplitude
recalculated with a finer mesh employing the same numbeof vibrations. An equivalent argument is to consider the
of points as that used originally for the full zone. In the nextmean interatomic distance held constant; as also illustrated in
iteration the inner region of the first inner region is treatedrFig. 2, the vibrations give rise to a time averaged force be-
similarly, and so on until satisfactory convergence is ob-tween the atoms which tends to increase the interatomic dis-
tained after three to six steps. The procedure had no signiftance, and the thermal expansion is the elastic response to
cant effect on the results at temperatures above about 10 khis force. This “bond-stretching” effect is dominant in the
but was essential in the range down to 0.4 K, even for a mesfpositive) thermal expansion of many solids.
with m=64. Tension effects.When the vibration includes components
Convergence with increasing value mfproved slow for  of relative motion perpendicular to the bond, the mean inter-
some of the quantities calculated, especially at low temperaatomic distance is greater than the distance between the
tures; and most of the final results were obtained from anean atomic positions; the resulting increase in bond tension
Monkhorst-Pack mesh withm=64, giving a density of causes a thermal stress tending to contract the bond and so
262 144 points per zon@nd much higher in the inner re- restore the mean interatomic distance to its equilibrium value
gions. Even so, for some quantities full convergence wagFig. 3. When the relative motion also has a component
not achieved, and for them a simple scheme based on Sinalong the bond, there is in addition a net torque tending to
pson’s rule was applied. This will be described in more detail
elsewheré! Examples of the degree of convergence
achieved with different meshes are given in Table Il for the
macroscopic Goeisen functionsy, and v, .

o)

E. Central force mechanisms for thermal stress r

So far the theory given above applies to any type of crys-
tal potential. This section considers specifically the action of
pair potentials. The net thermal expansion of a crystal is its
elastic response to the total thermal stress, and there are sev- : ; :
eral ways in which thermal stresses arise in a central force -@ O ,,,,,, PG
model. A

Bond-stretching effect. The most common intuitive ex-
planation for thermal expansion is that atoms need more FiG. 2. Vibrational displacements along the internuclear direc-
room in which to vibrate at higher temperatures. This crud&ion between two atoms, which interact via an anharmonic pair
oversimplification can be made more precise by consideringotential, produce a mean repulsive force. Positions connected by
the typical form of the interatomic potenti@Fig. 2. The the dashed line represent the amplitude of motion of atom B with
asymmetry of the form of the potential leads to an increaseespect to atom A.
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FIG. 5. Three types of “struts(C- - -C, C- - -H, H- - -H
between next-nearest neighbors used to simulate three-body angle
forces. Filled circles: C atoms; empty circles: H atoms.

where the terms on the right-hand si@RHS) are due respec-
tively to changes in the pair force constant, in the tension,
and in the bond direction. The corresponding terms in the

FIG. 3. Vibrational displacements perpendicular to the bond dihirg order derivatives occurring in the perturbation matrix
rection produce a mean attractive force. Positions connected by ti‘@/ (q) are

dashed line represent the amplitude of motion of atom B with re-
spect to atom A.

J &Zd) _ " rarﬁr'y ” ¢,
rotate the direction of the bond away from the direction of (977 40 g =(re”) r4 + e T
the relative motioff (Fig. 4). Different vibrational modes

tend to rotate the bond in different directions, and in cubic Mol gt @'

crystals the net effect is zero; but it is not zero for bonds in X ry5a/;——2 +| " - T)

crystals of lower symmetry such as o-PE. r

The contributions of each of these mechanisms to the 2
: S . ) [ M

strain derivatives of the dynamical mati(q) can be easily X| T y8gy 1 580y~ “_2/3“/) .17

identified. Each potentiab(r) between two atoms separated r

by a vectorr contributes linearly to the elements bBf(q),

with terms proportiona| to the derivatives where the terms on the RHS are, respectively, the bond

stretching, nonrotational tension, and rotational tension con-
) , ¢ ¢’ tributions. We can therefore readily study the relative impor-
oy ( @' = 1 |CaCpt T Sap. (19 tance of the different effects.

wherec,=r,/r andcg=rg/r are the direction cosines of

the bond. When the crystal is subject to a perturbing strain, F. Analysis of internal adjustments within the unit cel

may change in both length and direction: In some crystal structures the readjustment of atomic po-
sitions within the unit cell has a major effect on the macro-
r—r+Ar, C,Cp—C,CstA(C,Cp). scopic thermal expansion. A striking example is provided by

a quartz, where the ability of the SjQGetrahedra to rotate
easily gives rise to positive thermal expansion, whereas for
other silica structures without this ability the expansion is
negative.

)(%g‘%%) With an appropriate choice of internal strain coordinates
the present analysis permits the study of such effects; not
only does it reveal how the coordinates change with tempera-

A(c,Cp), (16)  ture, but also by constraining one or more of them to remain

constant we can study the effect of their relaxation on the

temperature dependence of other strains. Theoretically, such

“clamping” reduces the number of active strains and

stressesé, and 75, but does not change the values of the

thermal stress coefficients, Greisen functions and elastic
stiffnesse<C, g for those that remain. The new compliances

Sag are obtained by inverting the matri4 g for the clamped

crystal, which is simply a submatrix of that for the

unclamped crystal; and the remaining properties follow as
described earlier.

The consequent perturbation B(q) thus contains a contri-
bution proportional to

(—712
A
Ir 401

!

) =(Ag¢")c,cptA e

¢/

n__
r

—+

IV. CONCLUSIONS FROM SKELETAL CHAIN MODELS

FIG. 4. Vibrational displacements with components both along W€ summarize here conclusions reached previously in
and perpendicular to the bond direction produce a mean torque difis laboratory from studying a series of central-force skel-
the bond in addition to the forces shown in Figs. 2 and 3. Position€tal chain models of increasing complexity. Properties of
connected by the dashed line represent the amplitude of motion dhe models were evaluated at a fixed geoméstgtic equi-
atom B with respect to atom A. librium). Short-range pair potentialé(r) were used, with
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TABLE Ill. Parameter listings. For intramolecular pair potentials, including strufg’/ ¢” was set to
—21 (the value given by a 6—12 potential wheri=0), except that for VFF2 they came from the Morse
potential in GULP(Ref. 26 and for VFF4¢! =0.25 ¢2VF 2. All intramolecular potentials were fitted to a
Buckingham form, except for VFF4 whe#”[H---H (3) and (4)=1.256"YF2 and both¢”[C- - - H]
=0.50¢"VFF2. For all interactionsp’ was put equal to zero.

Strut model force-fields (N mt)

Type BRC BT VFF1 VFF2 VFF4
C—C bond: ¢ 400.00 400.00 220.704 208.155 208.155
¢"”  —8400.00 —8400.00 —4634.784 —3193.816 —3193.816
C—H bond: ¢ 400.00 400.00 220.704 208.055 208.055
¢"”  —8400.00 —8400.00 —4634.784 —2260.558 —2260.558
C- - -C strut; ¢ 100.00 100.00 150.425 102.379 102.379
¢”  —2100.00 —2100.00 —3158.925 —2149.959  —537.490
C- - -H strut: ¢ 100.00 100.00 127.813 103.577 103.577
¢”  —2100.00 —2100.00 —2684.073 —2175.117 —543.779
H- - -H strut: ¢ 100.00 100.00 126.342 101.243 101.243
¢”  —2100.00 —2100.00 —2653.182 —2126.103 —531.526
H---H (1):2 ¢ 1.000 0.413 0.413 0.484 0.484
@ —21.000 ~5.264 ~5.264 ~5.595 ~5.595
H---H(2):2 ¢ 1.000 0.432 0.432 0.509 0.509
@" —21.000 —5.476 ~5.476 ~5.832 ~5.832
H---H (3):2 @ 1.000 0.201 0.201 0.212 0.212
@" —21.000 —-2.834 —-2.834 —2.864 —3.580
H---H (4):2 ¢ 1.000 0.806 0.806 1.008 1.008
@" —21.000 -9.373 -9.373 —10.305 —~12.884
C---H (52 ¢ 0.273 0.273 0.291 0.291
@ —-5.410 —-5.410 -4.301 —-2.151
C---H (6):2 ¢ 0.122 0.122 0.142 0.142
—2.974 —2.974 —2.428 —1.214
Torsion CCCC° T 4.700 4.700 4.700 4.700

3 abeling as in Fig. 1.
°From Ref. 24, by Eq(19).

¢'=0 andr¢”=—21¢" as at the minimum of the 6—-12 to the chains, so that the thermal expansion in the chain
potential direction is dominated by tension effects and is small and
negative. In contrast, the much weaker interchain interac-

d(r)=egl—2(rIr)8+(r/rg)*3. (18)  tions give rise both to positive bond stretching and to nega-

tive tension effects, which depend on the angles made with

Thus ¢" was the variable parameter specifying the interacthe polarization directions for each vibrational mode. Both
tion between a pair of atoms. Intramolecular potentials wereffects are appreciable, but the bond-stretching effect is
taken between successive atoms in the chéiesd: ¢,),  greater, resulting in a large approximately isotropic expan-
and between next-nearest successive atoms in zigzag chaisisn perpendicular to the chains.
(strut: ¢s). A much weaker potential was taken between Crystals of parallel planar zigzag chains behave differ-
nearest neighbors in adjacent chaiirsterchain: ¢;), and  ently. In the absence of strutg{=0) the chains are flex-
most of the models were constructed so that all interactingpble, and stress along the chain can be largely relaxed by
pairs of atoms in different chains were at the same distancehanging the CCC angle, affecting both the elasticity and the
apart. The axi©z was taken along the chain direction, and thermal stress; the crystals are no longer incompressible
for crystals of parallel zigzag chair@y was perpendicular along Oz, and the final macroscopic thermal stress is no
to the molecular plane. The models had orthorhombic, telonger strongly anisotropic. Results depend on details of the
tragonal or trigonal symmetry. All of the cross-compliancesgeometry. For a chain angle of 90° the thermal stress is
S,3, Si3, Sio Were negative, giving positive Poisson’s ratios. almost isotropic, andS;;=S,,=S33; but a very strongly

The first models studied consist of parallel linear chainsnegative cross-complianc® ; in the plane of the molecular
They are easily compressible in thg plane, withS,;, S5, chains lowers the expansion in directiddg andOz parallel
S, large, and incompressible aloi@gz, with S;3, S;3, S,3  to the molecular planes below that in the perpendicular di-
very small. Vibrations polarized along the chain lengths areectionQy. For a different geometry with a tetrahedral chain
mostly of high frequency, of small amplitude and not excitedangle, there is greater anisotropy in both thermal stress and
at low and intermediate temperatures. The amplitude of thelasticity; the expansion coefficients are still all positive,
excited atomic vibrations is therefore mainly perpendiculawith ay greatest; buty, is now much smaller thaw, .
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When the chains are stiffened by struts between seconc (a)
neighbors, stresses along the chain direction can no longer b 3 T T T

relaxed easily by internal rearrangement. Negative expansior
along the chain direction is restored, a8g is small again.
Thermal expansion remains greatest in the direction perpen
dicular to the molecular chains except at very low tempera-
tures.

The final skeletal models examined approach more
closely the geometry of polyethylene. All chains run in the
same directior© z, but the molecular planes are no longer all

parallel but made alternately anglesand —a to the Oxz 0 50 100 150 200
plane. For all these models the expansion is small and nega
tive along the chain direction and large and positive in per-
pendicular directions, but the anisotropy in Bey plane is

model dependent. A geometry based roughly on polyethyl-

ene, witha=42° and a tetrahedral bond angle, gives a mod-
erate anisotropy withw,> a, (opposite to that observed ex-
perimentally; but with a bond angle of 90° the expansion in
the Oxy plane is virtually isotropic.

Thus for all the skeletal models the tension effect, due
primarily to vibrations perpendicular to the polymer planes,
is responsible for negative expansion in the chain direction;
but expansion perpendicular to the chains is due to a combi-
nation of both bond stretching and tension effects, and its
anisotropy is strongly model dependent. We shall see that
this remains true for models of polyethylene, although the
addition of H atoms changes the detailed behavior, including 0.02

the nature of the anisotropy in tla plane. 0
-0.02

-0.04

a, (107K

ap (1074K7Y)

V. MODELS FOR POLYETHYLENE

—4K—1)

The models used here for polyethylene are developed=
from those described above for skeletal polymers. Intramo-

&

-0.06
-0.08

-0.1
012

lecular pair potentials are now required for C—H bonds in © 014l A
addition to the C—C bonds, and for C- - -H and H- - -H 016 . - : 4
“struts” in addition to the C- - -C struts, so as to stiffen the 0 0 100 150 200
all the tetrahedral angles at each carlibig. 5). Intermo- T (K)
lecular pair potentials are taken between all pairs of hydro-
gen atoms H--H less tha 3 A apart, and for most of the (d)
models also between carbon and hydrogen atoms i€ less % T T T
than 4 A apart. Most of the models include a harmonic in- 7
tramolecular torsional potential for each sequence of four 55
carbon atoms in the chains, of the form 'g
7(hy—h,—hz+h,)?/2, where h, is the displacement of ™~
atomn normal to the skeletal plane. s
Because we are using the first order approximation of +
evaluating the thermal expansion coefficients for the geom-§
etry of the static lattice, the pair potentials of the models are ~=

completely specified by giving the values#f, ¢”, and®” 0 50 100 150 200
for each pair of interacting aton@able 11l), together with T (K)
that of the torsional constant We shall giye the r.eason$ for FIG. 6. Macroscopic thermal expansion as a function of tem-
the chc_)|ce of _these models, by explaining their relation toperature_ _ _ BRC;i:-, BT; - —. VFF2: —, VFF4. Expt. M,
others in the literature. Ref 9:0]. Ref. 12

We start with the simplified model described in Ref. 5, 7' 77
which has no C--H interactions and has the same force-were incorrect, due to a small programming error. Corrected
constants for all H- - H pairs less than 3 A apart. It has also results for this mode{hereafter referred to as model BRC
no torsional force constants, so that restoring forces for torgive much poorer quantitative agreement with experiment
sional oscillations are due solely to the HH interactions.  (see Fig. 6 than reported in Ref. 5, although the qualitative
Rounded values are taken for tl¢/, based on published agreement with experiment remains encouraging, including
valence force fields, and againg”=—21¢". Unfortu- the anisotropy perpendicular to the chains.
nately, the results for the expansion coefficients in Ref. 5 We therefore make a number of simultaneous refinements
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TABLE IV. Calculated elastic stiffnessé&P3.

BRC BT VFF1 VFF2 | VFF4 Ref. 28 Ref. 30 Expt.
Cn 12.32 6.35 6.34 7.33 12.6 7.99 11.5
Cio 6.18 3.44 3.43 3.92 6.5 3.28
Cis 4.09 2.21 2.06 2.39 2.1 1.13
Ca 12.72 8.24 8.24 9.89 12.4 9.92
Cys 5.28 3.42 3.20 3.85 43 2.14
Cas 312 312 456 313 316 316 290
Cus 4.88 3.11 3.12 3.76 3.19
Css 4.74 2.08 2.08 2.33 1.62
Ces 5.93 3.28 3.29 3.77 3.62

aAt 77 K, from Ref. 30.
bFrom Ref. 31.

to the model: the 3 A cutoff is retained for the HH in- Because elasticity plays an important role in thermal ex-
teractions, but they become a function of distance; and botRansion, we list in Table 1V the elastic stiffnesses in the
C.--H interactions(with a cutoff of 4 A) and the torsional static limit for the five models. It is clear that they are in
potential are added. For simplicity we retain the zero valuegeneral comparable to those of previous work.

for ¢’ for all pair interactions, but the value ofp”/®"
varies.

We have investigated extensively the parametrization o
the pair potentials in a series of models. For intramolecular To estimate the zero-point dilation &=0 from static
potentials, in addition to using the parameters of BRC lattice equilibrium geometry, we retain only the first term on
model BT), we have tested parameters derived from thethe RHS in Eq.(3). Each mode contributesi/2) to the
Urey-Bradley force field of Tashiret al?3 (in model UBFF  zero-point energy, and so high frequency modes are impor-
and from three different valence force fields: one taken frontant here; whereas only low frequency modes are thermally
Kobayashi and Tadokof®(in model VFF1; one developed excited at low temperatures and so determine the subsequent
by us during this workin model VFF2; and one taken from expansion as the temperature is raised atiow®. Table V
Hwang et al?® (in model VFF3. We have converted the gives macroscopic dilations at=0 along thea, b, andc
force field parameters into force constants appropriate for ouaixes for models BT, VFF1, VFF2, and VFF4, as calculated
strut model, but it is important to note that this translation isfrom (h/2V)EBS£BEqSFB(q,s)qu. All the dilations are
not exact. Valence force fields have a greater number gpositive and bond-stretching modes dominate. The magni-
second order force constants than the strut models, and sade of the dilations in tha, b, andc directions are given in
struts cannot reproduce all the features of a valence forc@able V; VFF4 is closest to the estimates of Lacks and
field; while struts are fully adequate for keeping an angleRutledge?®
rigid, they are not wholly satisfactory for describing proper-  The macroscopic expansion coefficients computed for the
ties which depend on departures from rigidity. The torsionaBRC, BT, VFF2, and VFF4 potentials are compared with
force-constantr was obtained from the parametgr. of  experiment in Fig. 6 and for all five models at selected tem-

fA. Zero-point dilation and macroscopic expansion coefficients

Kobayashi and Tadokofdby the transformation peratures in Table VI; alsay; and «; derived from mea-
o, surements on drawn samples are compared withand
7=9./(Rsind)*, (19 (a,+ ay)/2 in Figs. Gc) and Gd). Each model has the same

whereR is the C—C distance and is the C—C—C angle. qualitative  agreement with ~experiment as obtained

For intermolecular potentials the same set of Buckinghanﬂ)rev'c’usly'5 including the correct sign of the anisotropy in

potentials, of the form the ab plane. _ _ _
The BT model gives better agreement with experiment
o(r)=Aexp—r/p)—Clr® (200  than the BRC model, in two ways. First, there is much closer

agreement with experiment far. between 40 and 100 K,

was taken from Ref. 24 and used to derieand 4™ values which is low enough for the lowest order quasiharmonic ap-

for models BT, UBFF, VFF1, and VFF3; for VFF2 the po-
tentials were determined by using the program GUERijth N : .

the criterion that the calculated equilibrium structure in thezerlé?)li_nEt :ﬁeggcroscomc dilations(%) due to the inclusion of
static limit reproduced closely the experimental structure; P '
None of the models includes long-range Coulombic interac-

tions — unlike, for example, that of Karasaweaal?’ Of . Force fields

our models, BT, VFF1, VFF2, and a later modification VFF4 Strain BT VFFL VFF2 VFFa Ref. 28
(see below give the most satisfactory general agreementy, 4.15 4.19 3.52 2.48 1.93
with experiment. It is for these, together with BRC, that we 5, 2.91 3.07 2.50 1.78 1.48
present results here; their potential parameters are listed i;)C 0.31 0.40 0.20 0.12 0.47

Table Il1.
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TABLE VI. Macroscopic expansion coefficients (10 K~ 1) given by different force fields.

Force fields Experiment
T (K) BRC BT VFF1 VFF2 VFF4 Ref. 8 Ref. 9 Ref. 12
o, 1 0.00185 0.00681 0.00679 0.00418 0.00320
10 1.89 5.95 5.50 3.56 2.79
20 16.18 31.71 30.49 21.09 16.50
40 83.46 93.74 91.07 66.40 53.02 B.50
100 218.9 182.6 179.2 136.6 112.4 £.007 1.0x 107
150 253.3 204.6 201.2 155.0 128.2 % B0 1.2x 1%
200 269.7 215.0 211.7 164.2 136.1 X 50 1.4x 1%
o 1 0.00268 0.00440 0.00428 0.00230 0.00307
10 2.34 3.20 2.94 1.73 2.40
20 16.52 17.25 16.32 10.36 13.94
40 67.40 42.85 41.11 27.83 37.72
100 149.2 63.65 61.90 41.38 59.68 .50 0.6X 107
150 168.4 66.88 65.63 43.11 63.70 0610 0.6x 107
200 176.9 67.90 67.07 43.51 65.07 06BY 0.6x 1%
. 1 —0.00020  —0.00096  —0.00094  —0.00066  —0.00067
10 -0.13 -0.37 -0.34 -0.28 -0.31 -0.175
20 —-0.93 -1.51 —1.47 -1.25 —1.45 -0.79
40 —4.88 —-3.95 -4.17 —3.52 —4.43 —-3.05
100 —9.80 —-5.83 —~7.66 —-5.63 -9.01 -0.1x 17 -6 -6.0
150 —9.00 —4.55 -7.57 —4.59 -9.71 -0.1x 107 -7 -6.8
200 —-7.89 —-3.28 —6.88 —-3.33 —9.65 —0.1X 1(? -8 -8.0

proximation to be fair. Secondly, the magnitudesagfand  tween 40 to 90% of theetpositive value for BT, VFF1 and
ay, are considerably smaller than for BRC. VFF4, or 55 to 130% for VFF2. The rotational contribution
VFF1 gives only a slight improvement on the results forranges from~15% below 10 K to~3% at 150 K for all
BT, but VFF2 is distinctly better for bothw, and (@,  models. The net positive thermal expansion in dleplane
+ ap)/2. However, all the first four sets predict incorrectly is due to the dominant bond-stretching effect, but the large
that o, should decrease in magnitude above 100 K. This iontributions of the tension effects are important in any
due to the excitation of longitudinal compressive modesquantitative study. In particular, at low temperatures the ro-
along the chains, which contributes positivelydg because tational contributions tax, and «, are of opposite sign, re-
of the asymmetric C- - -C strut. The disagreement with ex-ducingea, and increasingy,, thus having a marked effect on
periment may of course be due to the neglect of higher ordethe anisotropy in thab plane.
anharmonic effects, but it suggests that a strut with the an- Conversely, there are large positive bond-stretching con-
harmonicity of a typical interatomic potential overestimatestributions to «., which in magnitude range from 60%
the anharmonicity of the valence bond angle. (VFF1) up to 160%(BT and VFF2 of the netnegative val-
We therefore developed model VFF4, which has the samaes at 150 K. We confirmed that this is due chiefly to the
harmonic force constants as VFF2 but has much less anhaanharmonicity of the C- - -C strut pair potential by examin-
monicity in the strutgsee Table IIJ; in addition, adjustments ing the effect of puttingg” =0 in Eq. (17) for each strut
have been made to the anharmonic parameters of some of thetential in turn; whenp” was set to zero for the C- - -C
intermolecular interactions so as to give closer agreemerstrut, the calculated values ef. no longer passed through a
with the experimental anisotropy in treeb plane. As ex- minimum with increasing temperature. In VFF4, which has a
pected, this removes the marked risexinabove 100 K; but  low value of ¢™ for the C- - -C strut, the bond-stretching
agreement is now poorer at low temperatures. contribution toa, is only 4% at 150 K. The rotational ten-
sion contribution tox, is negligible at low temperatures, but
above 100 K is of the order of 10% of the nonrotational

_ o ~contribution, with opposite sign.
The calculations reveal explicitly the separate contribu-

tions from the tension mechanisrt®ec. Ill). The BT, VFF1,
VFF2, and VFF4 models all lead to the same general con-
clusions. Fora,, the negativenonrotational tension effects Consider first the configuration of the individual molecu-
are approximately in the range 10—25 % of thet positive  lar chains. The increasing amplitude of vibrations perpen-
values. The rotational tension contribution is appreciablalicular to the C—C bonds leads to a decrease in the distance
only at low temperatures, ranging from10% of thenet R between the mean positions of the carbon atoms, while
positive values below 10 K t6<1% at 150 K. Foray, the  leaving the instantaneous C—C bond distances virtually un-
nonrotational tension effect is relatively large, varying be-changed. The proportional decreas®iis larger than that of

B. Mechanisms

C. Internal expansion
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(a) D. Gruneisen functions and parameters

Examples of the calculated temperature variation of the
macroscopic Gmeisen functionsy, defined in Eq(13) are
given in Fig. 7. For all our modely, and vy, are both posi-
tive and decrease with temperatuse;is large and negative
at low temperatures, becoming much smaller at high tem-
peratures. By the macroscopic analog of Ej, the expan-
sion coefficientsw, are related to they, through the com-
pliancesS, , :

Macroscopic Griineisen Gammas
[ -]
T

C 3
_ 77 T
a =</ Zl S\ (22)

When vy, and y, are approximately equal, the anisotropy
a,> ay, arises becausg;;>S,, (see Table VII. However,
the negative cross-complian&, causesy, to contribute
negatively toa, andvy, similarly to «,,, and a comparatively
small change with temperature in the anisotropy of thermal
stress in theb plane brings about a much greater change in
the anisotropy of expansion; thus for VFF4 the expansion is
almost isotropic a—0, wherey,/y,=0.84. In contrast,

all contributions toa, are negative; in VFF2y, and v,
together contribute 27% ta. at 100 K.

-10

15

Macroscopic Griineisen Gammas

0.1 1 10 100 1000

E. Expansion at very low temperatures
FIG. 7. Macroscopic Gmeisen parameters as a function of tem-
perature(a) y,: — —, BT; —, VFF4.y,: ---, BT; —-—, VFF4.
(b) y.: — —, BT; —, VFF4.

As the temperature is lowered the contribution of higher
frequency modes to the thermodynamic properties is pro-
gressively diminished, until finally the Debye elastic limit is
i . , . reached. A close approach to the Debye limit is observed
the c lattice parameter; this is as expected since, neglectmgmy at very low temperatures. It can be analyzed by plotting
correlation between the motions of the atoms, we are consid&A/Ta andy, againsfr?, and extrapolating t& = 0. Even at
ering the same amplitude of vibration perpendicular o the| "k there are appreciable differences from Debye values:
carbon chain an® is smaller tharc. e.g., for VFF2,a, differs by 1%, a, by 2% anda, by 4%.

. Because of this the contractions andc_ lead to an We have already seen that the radig/ o, decreases with
increase of the apparent C—C—C angle with temperatureﬂemperature. To illustrate what happens at the lowest tem-
and a decrease in the width of the skeletal polymer ”bbonperatures we scale the expansion coefficients by the
Calculations altering in turn the anharmonicity_of the in'temperatljre—dependent Brugger faorC,/V to obtain di-
tramolecular C—C bonds and C- - -C struts confirm that the, ¢ pgjonless guantities of order unity. The most striking
former produces a larger changedg than ina., while the change is observed for BRC, where the anisotropy irathe

Iatter has the opposne effept. For ‘h?‘ C—H bqnds too, th‘?)Iane is reversed below 20 kig. 8); but for all the models
tension nonrotational effect is predominant, leading to a con;

. . ..~ the ratioa,/a, asT—0 falls to roughly half of its 100 K
traction (.)f the dl_stance hetween fche mean C and H POSItION 5y e Singe tae experimental valueg mythis ratio at 100 K is
Several interactions are.responsmle for t.he overall change Buout 2, this suggests that at low temperatures the expansion
the H—C—H angle,A which decreases with temperature. of 0-PE in theab plane is almost isotropic, as predicted by
The setting angler determines the relative orientation of g4,

neighboring chains, and its variation with temperature can be The values ofx. at very low temperatures depend almost
expected to affect the nature of the expansion perpendiculantirely on the torsional oscillations of the carbon chain, by
to the chain direction. For all our modeds decreases with means of the nonrotational tension mechanism. For all mod-
temperature over the whole range; for VFF2 the change beels except BRC their magnitudes are well above the experi-
tween 0 and 300 K is about 0.5°. The effect of this moleculaimental @ (Table VI); the models thus overestimate the am-
rotation on the macroscopic expansion at 100 K is to diminplitude of these vibrations, indicating that the combined

ish @, by about 2.5% and to enhaneg by about 6%. torsional and intermolecular potentials do not stiffen the

TABLE VII. Calculated elastic compliances,,, A\=1---3, u=1---3 (102 GPal).

BRC BT VFF2/VFF4
10.74 —5.199 -0.053 20.36 —8.470 —0.052 17.32 —6.847 —0.048
—5.199 10.44 —0.108 —8.470 15.71 —0.112 -6.847 12.86 —0.106

—0.053 —0.108 0.323 —0.052 -0.112 0.323 —0.048 -0.106 0.321
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FIG. 8. The variation ofa,V/xCs with temperature for the FIG. 9. The variation of the polycrystalline averagg,,ss(two
BRC model. —a,; — — ap; -+, ac. upper lineg and yy,g; (two lower lineg with temperature: - -, BT;

—, VFF4. Experimental values af,,, extrapolated to 100% crys-
chain sufficiently. Since these vibrations also are importantallinity, are from Refs. 104) and 12 (J).
for expansion in thab plane, this too will be overestimated

at low temperatures. Ypoly from Refs. 10 and 12. VFF1 and VFF2 give values for
YreussClOSE t0 BT and VFF4, respectively. Singg and xy,
F. Polycrystalline behavior are much larger thag., YreussiS dominated byy, and yy,

whereasyy g is influenced equally by.. The actual poly-
funcii ists of randomlv oriented tallites. If crystalline value will lie somewhere between these two lim-
UNction ypoyy, CONSISIS of randomly oriented crystallites. its, depending upon morphology. Our results agree with Gib-

the _thermal expansion O.f a single crystal 1S anisotropic, th‘?gons’s conclusiotf that ygeuss is @ closer estimate than
strain and stress fields within a polycrystalline sample are no

; i Yvoigr- At low temperatures Refs. 10 and 12 give similar
Sion cosficient of s sample cannot be calcuiated exacteUIS ©rasay. and so the disagreement between them for
from .the single prys'gal properties. There are hovyever t\_/vogg;g wsthgsedggot%;&e;;g%o'C%i;nglyp\rlsi?ﬁ sasmg g;gther
cl_assmal approximations, due to Reuss and Voigt, \{vh|chav . '. Above about 50 K. it igyslightly be|OV\L¥|:euSS tor
give upper and Iowe_r bOL.mdS for_polycrystallme properties. .VFcl)Iigé and VFF4; but at the lowest temperatures ietu?;IIs well
In the Reuss approximation, the isotropic stress of the bulk '

i . L
assumed to be uniform throughout the polycrystal, as in §>elow YReuss though still well above}’Vﬁ’igt' This is at least
fluid. For orthorhombic symmetry this leads to a coefficientpartly becaL_jse these models overestimate the low tempera-
of linear expansion ture expans!onisee Se.c. VE : o
The rotational tension effect is negligible ik ssat all
(22)  temperatures, but the nonrotational effect is important; e.g.,
in VFF2 it contributes negatively about 45% of the total at

An isotropic bulk crystalline polymer, with Gneisen

~1 _
Apoly™ 3 (@at apt ac) = apreyss

and a Grmeisen function very low temperatures, falling to 35% above 100 K.
S+ S+ S
YaXa™ YbXbT YeXc VI. FINAL REMARKS
Ypoly™ Sy .S, .5 YReuss (23)
Xa™ Xpb™ Xc We have shown how a simple atomistic model of poly-

where they, are linear compressibilities,y)\zEizlsm. ethylene can throw light on the mechanisms of such complex

Thus the Reuss approximation gives,, as an average of processes as the anisotropic thermal expansion. Various sets
Yas vo, and y. weighted by the corr}ésponding adiabatic ©f potential parameters, obtained in different ways, lead to

linear compressibilities, and, as one third of the volu- the foIIo_wmg conclusions. L .
metric expansion coefficient of a single crystal. Tensions caused by vibrations with components away

In the Voigt approximation it is the strain that is assumedfrom the interaction directions are responsible for the nega-

to be uniform throughout the polycrystal, so that any isotro-ﬂve expansion along the polymer chains, and contribute sig-
ificantly to the expansion perpendicular to the chains. As-

pic volume change in the bulk produces an isotropic volumd'

change in each crystallite. This leads to a thermal expansionP¢iated torques are unimportant, except at low temperatures
coefficient which is an average af,,ay,a. weighted by where they have a marked effect on the anisotropy of expan-

(CT,+CL+CL), etc., and a Gimeisen function that is an sion in theab-plane. This anisotropy _results_fror_n a subtle
arithmetic average: interplay of thermal stress and elasticity and is highly model

dependent; it is only slightly affected by the decrease of set-

(24) ting angle with temperature and by other internal adjust-

ments within the unit cell. Fine integration grids near the
We note in passing that the expression foy,,~ used for  zone center give precise results at low temperatures, and
comparison with polycrystalline data in Ref. 28 is equal todemonstrate the importance of testing models against the
3Yvoigt - available experimental data in this region; it is also predicted

Figure 9 shows values Ofres{ T) and yy,ig(T) for BT that the anisotropy in theb plane at low temperatures will

and VFF4, together with estimated experimental values obe much smaller than that measured by x-ray diffraction at

Ypoly™ %( Yat Yot ¥e) = Yvoigt -
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higher temperatured:® behavior is approached closely only ture. This will be carried out using both the direct minimiza-
below 1 K. tion of the Helmholtz free energy with respect to external
This paper completes earlier wdrR investigating and internal degrees of freeddfhand the analytic methods
mechanisms of thermal expansion in simplified models ofor deriving crystal properties and investigating mechanisms
polymer crystals. The methods will now be applied to moreysed in the present work.
realistic models of specific materials, with the aim of under-
standing of how their macroscopic thermodynamic proper-
ties are related to crystal structure and bonding. This work
will include applications to other polymeric systems, includ-
ing those where long-range forces are relevant and where We thank the Royal Society and CONICET for support
there are more atoms in the unit cell; and also to other comfor a Joint Research Project with the University of Buenos
plex crystals, such as those possessing layered structures.Aes, and the Leverhulme Trust for support for J.A.O.B.
full quasiharmonic treatment will be used, so taking accounfThe work was also supported by EPSRC Grant Nos.
of the softening of crystal elasticity with increasing tempera-GR/K05979 and GR/L31340.
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