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Recent literature on delocalization in non-Hermitian systems has stressed criteria based on sensitivity of
eigenvalues to boundary conditions and the existence of a nonzero current. We emphasize here that delocal-
ization also shows up clearly in eigenfunctions, provided one studies the product of left and right eigenfunc-
tions, as required on physical grounds, amad simply the squared modulii of the eigenfunctions themselves.

We also discuss the right and left eigenfunctions of the ground state in the delocalized regime and suggest that
the behavior of these functions, when considered separately, may be viewed as “intermediate” between
localized and delocalizediIS0163-18208)03937-X

I. INTRODUCTION t — _
. . . . . Hxx’ == _(eg‘sx,x’+1+e795x,x’—1)+vx5x,x' ’ (2)
A delocalization phenomenon in a particularly simple 2
class of non-Hermitian random system has attracted consigy, ..oy andx’ here are site indiced/. is a random poten-
erable attention recentfy’* Among the more recent work is . — . o .
jial, andg=ga/A with a denoting the lattice spacing. For

a report by Silvestrov, based on an analysis of eigenfunct-. - - .
implicity, we focus on the one-dimensional case throughout

tions, which claims that the phenomenon studied was not". iodic bound dit : d
actually delocalization, but “localization of a very unusual IS Paper. Periodic boundary conditions are imposed except

kind.” Although Silvestrov subsequently revised his views,Where stated otherwise. The above Hamiltonian reduces to

he still maintains that “the transition from real to complex (€ Anderson localization problem fge=0; in this case, it is

spectra in one-dimensiondlLD) disordered systems with widely believed that all eigenfunctions are localized in one

(an) imaginary vector potential is not a delocalization 2"d two dimensions. _
transition.”? In this paper, we review some basic facts of W€ showed” that eigenvalues become complex pair by

the non-Hermitian delocalizatiai$ec. 1) and then take issue pair onceg is incrgased beyonq a threshold vagregc, gnd
with Silvestrov’s interpretation. We stress in Sec. |1l that thethat the states with complex eigenvalues are delocalized. To

criteria for delocalization used in Refs. 1 and 2 are entirelySNoW the delocalization, we presented two pieces of evi-
consistent with a conventional one based on eigenfunction§€Nce. First, we numerically demonstrated that the states
provided one studies the correct physical quantity, namelyVith complex eigenvalues carry a current. The current car-
the product of the left and right eigenfunctions associated€d by thenth eigenstate is defined by,= de,(9)/d(ig),

with a given state. In Sec. IV, we comment on the interesting*"’heresn is the elgenyalue. This is the standard definition of
results of Silvestrov for left and right eigenfunctions consid-the current, becausg in Egs. (1) and (2) plays the role of
ered separately for large asymmetry parameter. We show fdfaginary _vector potential. The current was clearly nonzero
the ground state that the results are related to earlier resuitgr States in the bubble of complex eigenvalues in the band
obtained for charge-density wavesd population biology? ~ center[see Fig. 13 of Ref. 2 and Fig(t3 below, indicating

From this viewpoint, we argue that the behavior of the leftthe delocalization of the states. o
and the right eigenfunctions is “intermediate” between lo- As a second indication of delocalization, we showed that

calized and delocalized behavior. the delocalized states have complex eigenvalues for systems
with periodic boundaries, but that all eigenvalues remain real
when the same system has open boundary conditions. This
sensitivity to boundary conditions is another indication that
the corresponding wave functions are delocalized. We con-
Let us first review some basic facts about non-Hermitiarfirmed these two signatures of delocalization in a sufficiently
delocalization. A typical example of the systems in questiorStrong imaginary vector potential with numerical work and

II. NON-HERMITIAN DELOCALIZATION: EIGENVALUES
AND CURRENT

is the one-particle Hamiltonian analytic calculations on localized impurities.
This delocalization phenomenon is equivalent to flux-line
(p+ig)? depinning in type-Il superconductors with extended defects.
:T+V(X)' () Suppose that a superconductor has columnar defects ran-

domly located but mutually parallel and that an external
where p is the momentum operatorifd/dx, g is a non- magnetic field forces a flux line into the superconductor. The
Hermitian field constant in time and space, avigk) is a  flux line tends to be pinned by a columnar defémt a col-
random potential. Its lattice version is given by the matrix lection of them when the external field is parallel to the
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H. I sic relation between left and right eigenvectors. We then il-
//-ﬁ\ lustrate the delocalization of their product with numerical
9©= examples from our own extensive 1000-site-lattice computa-
A ——— Hj tions.
T — 1]
L__) A. Left and right eigenfunctions
\J——\\ We work for concreteness with the continuum Hamil-
— - / tonian(1), but the results also apply to lattice non-Hermitian
v models like Eg.(2). Suppose we have computed a set
X {$R(x;0)} of right eigenfunctions of(g) which satisfy
FIG. 1. Vortex-line system characterized by a one-dimensional H(g)In;9)=en(9)|n;0), 3)

periodic non-Hermitian transfer matrix. A magnetic fi¢lg forces

a flux line into a cylindrical shell of type-Il superconductor with
columngr Qefects. The current thr.eadin.g the cylinder generates the ¢E(x;g)—>|n;g>- (4)
magnetic-field componeni, , which tries to tilt the flux line.

When this flux-line system is mapped onto a ring of the non-Although left eigenvectors need not be simply related to
Hermitian systemH, becomes proportional to the non-Hermitian right eigenvectors in general, there is a particularly simple
field g. Below a certain strength of, (or g), the flux line is pinned  relation for the Hamiltonian(1), which arises due to the
by a columnar defect and forced to run parallel to the defgbs  symmetry

transverse Meissner effe@®ef. 24], except for its slight deflection

from the pinning center near the top and the bottom of the cylinder HY(g)=H(—9), (5)
(Ref. 2. For large enougli, , however, the flux line is depinned
and wraps around the cylinder as is shown here as a helix. Thi
gives rise to a nonzero current that circulates around the ring of th
corresponding non-Hermitian system.

where we adopt the Dirac bra-ket notation,

here t denotes the usual Hermitian conjugate. Indeed, as
ghown below, left eigenvectors can be obtained from right
eigenvectors by complex conjugation and lettong — g,

Loy _ tRey. *

defects. When the field is tilted away from the axis of the $n(X0)= (X —0)%, ©
defects, we expect flux-line depinning at a certain tilt angleor in Dirac notation,
(Fig. 1); see Refs. 21-23 for experiments. L +

The physics of vortex matter can be mapped onto quan- ¢a(x;9)—(n;g|=[n;—g)", (7)
tum systems with one less dimension by the inverse of th
Feynman path-integral mappifg;that is, we regard the
Boltzmann weight of the flux line as an exponentiated actio
qf th_e world line of a quantum particle and make the Identl'manipulations which parallel closely those of conventional
fication T, whereT is the temperature of the vortex sys-

; . I uantum mechanics. To see thatg| is in fact a left eigen-
tem. This procedure gives Hamiltonians of the above type?unction we calculate Hatg| 9
The component of the external magnetic field perpendicular '

@here t again denotes conventional Hermitian conjugation.
Our convention that the left eigenvector;g| is defined to
be the Hermitian conjugate ¢fi; —g), not of |n;g), allows

to the columns is proportional to the non-Hermitian figld (n;glH(9)=(H(g)T|n;—g))’
Depinning of the flux line by tilting the field beyond a certain ;
strength ofg leads to a nonzero current in the corresponding =(H(—9)[n;—g))

uantum staté.
q =(n;glen(—9)*. (®)
Evidently, (n;g| will indeed be a left eigenfunction with the

III. NON-HERMITIAN DELOCALIZATION: sameeigenvalue agn;g), provided

WAVE FUNCTIONS

Delocalization of the eigenfunctions themselves was not en(—0)" =en(9)- ©
studied directly in Refs. 1 and 2. The main purpose of the
present paper is to address this issue.

Silvestrov computed the right eigenfunctions associate
with the model(2) for a 300-site lattice in the region of (m;g| H(g) |n;g) (10)
complex eigenvalues and found that their squared moduli ]
have a sparse set of well-separated peaks, quite differed obtain
from a conventional delocalized stéfeHowever, as shown N .
in Ref. 2, and eventually acknowledged by Silvesitdit,is [em(—9)* —en(9) XM;g[n;g)=0. (12)
the product of left and right eigenvectors which determinesquation (9) follows by setting m=n, provided

the probability distribution for a tilted vortex line interacting (n;g | n;g)#0. More generally, Eq(11) can be used to

with quumnar defects deep Wlthln the sample. It is this prOdshOW that, with proper normalization, the right and left
uct which clearly delocalizes in the conventional sense whegigenfunctions form a biorthogonal set,

the eigenvalues become complex. In the hope of avoiding
further confusion, we first summarize in this section the ba- (m;g|n;g)= Smn- (12

To prove Eq.(9), we letH(g) act to the right and the left
(ip the matrix element
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This set has the usual completeness relation [ ' ' ' ' ' '
05" 1
> Ing)(nigl=1. (13)
3 g‘) 0 I — -
Equation(9) reduces to the usual Hermitian constraint of real E I
eigenvalues wheg=0. i
Once the eigenvectors are properly normalized, the 051 .
imaginary-time particle propagator is given by I . . . . . . .

G(n)=2 [mg)(n;gle”en @, (14 ® Re#
n 0.003p T T

or, in the coordinate representation, 0.002 _th//\ i
0001 | ]

G(x,x";7)=2, dR(X)p-(x")e en(@7h, (15) heooe

~ o — e
The density distribution of a particle in the ground state 0.001F | ]
(which dominates as— ) is hence the product of left and i \/ )
right eigenfunctionsggdx) ¢a(x). As was shown in Ref. 2, 0002 _
this product gives the probability distribution of a flux line -0.003>~ 2 ) (') 1 2 3
far from the sample boundaries in the imaginary-time direc- ®) Re €
tion (the top and the bottom edges of the cylinder in Fig. 1
The square modulii¢ﬁ(x)|2 andlgbh(x)lz areirrelevantfor FIG. 2. The complex energy spectrum and the current distribu-
the bulk properties. tion of the Hamiltonian(2) on a 1000-site lattice. Each eigenvalue

is marked by a tiny cross ife). Each pair of complex conjugate
eigenvalues iria) has the current shown i), with the reals part of
the opposite sigritiny crossep and the identical imaginary parts
We now illustrate the different behaviors ¢dX(x)|?,  (the dashed line The parameters in Eq2) are set ta=2 andg

|p-(x)|%, and ¢5(x) R(x) with numerical results, empha- =0.4 with eachV, chosen randomly from the range 1.5,1.5.

sizing that the producty; ¢ is clearly delocalized in the
conventional sense when eigenvalues become complex.
consider a particular realization of the random Hamiltonian;

(2) on a 1000-site lattice. The parameters are sétt@ and ized for large enougl. This is a mathematical expression of
— the transverse Meissner effect, or the rigidity of the pinned

g=0.4 with the value oV, at each site chosen randomly flux line agai . . C e
B gainst the tilt of the applied magnetic field; see
from the range —1.5,1.5. These values are the same 8Spefs. 2 and 24 for details.

used in Ref. 20 except that the system size is greater in our _. . L R R
calculation.(Note that the definition of differs by a factor Flgque 32) shows the fu_nctlon&bn(x) P ()], | 6n(X) o
and | ¢, (x)|* for a state slightly below the lower mobility

of 2.) The energy spectrum is shown in FigaR The states AN :
between the two mobility edges,~ = 2.34 have complex edge, while Fig. &) shows those for a state slightly above
d the edge.[We only plot the amplitude of the function

eigenvalues(and hence we would argue are delocalized = " R - , , _
while the other states are localized. Every delocalized state@n(X)¢n(X); the phase oscillates rapidly for delocalized
states away from the band eddesThe function

carries a complex current as is shown in Figb)2 The L s . L

imaginary part of the current determines the tilt angle of a¢n(X)¢n(x)| changes dramatically across the mobility

flux line.? edge, while the changes i®2(x)|? and|¢h(x)|? are less
Figure 3a) shows the functiongby(x) #R(x), |#R(x)|2, ~ noticeable. Lo

and|¢5(x)|? for the (localized ground state. All quantites ~ The delocalized nature @, (x) ¢,(x) appears even more

are normalized so that the summation oweyields unity. ~ dramatically deep inside the bubble of complex eigenvalues.

We stress, however, that the normalization only makegigure 4a) shows the same functions for an eigenstate with

localized states, 166th state, which roughly corresponds to the 50th state of

the 300-site system studied by SilvestfOun Fig. 4(a), the
¢§(x;g)oce9>"h¢n(x;0) function |¢h(x) ¢§(x)| is extended and approximately con-
stant, while|R(x)|? and |#5(x)|? exhibit a sparse set of
well-separated maxima. Following Silvestrov, we plot the
Liy- —gxih L)\ * logarithm of these functions in Fig.(d). The product of
g e T (x;0)) (16 oR(x) and ¢'(x) is remarkably constant and is extended in
for large enough systems, whegg(x;0) is the wave func- conventional sense. On the other hand, the ragged wandering
tion of the Hamiltonian withg=0. Note that Eq.(6) is  nature of INgR(x)| and If¢4h(x)| is consistent with the
obeyed.[The specificg dependence in Eq16) only holds  conjecturé® that these functions behave like random walks
for localized states, for which we can always chooseas a function of; this is the subject of the next section.

B. Delocalization of ¢p" R

Whn(x;0) to be reall Hence, the productb;(x;g) ¢n(x;g)
=|¢n(x;0)|? does not depend om until the state is delocal-

2
3

’

and



PRB 58 NON-HERMITIAN DELOCALIZATION AND EIGENFUNCTIONS 8387

05— ¢ —gx T~ "1 — 0.15 S
409 £="2.94682 — gl ¢l €=—201239

0.4F -Gy i ] ek 0.200376
X 0.1 gl } ]

N 0.05

0
i 35 (@)
10°
0.3 T T T T
[ —lgm i)  E=-235214
[ o 3 10
020 g’ D]
0.1t E
i 102}
oF . . 0 200 400 600 800 1000
® 0 200 400 600 800 1000 (®) X
X
FIG. 4. The functions|g(x)$R(x)| (thick solid lines,
0.3 ——— |#R(x)|? (dashed lings and|¢"(x)|? (dotted lines for the eigen-

£,=—2.31828+i 0.0103479 state in the delocalized regiméthe 166th state withe=

- |¢,'1x)¢f(x)| ! —2.012 39+i 0.200 376);(a) a linear plot andb) a semilogarith-
021 - |gf) P mic plot. The system is the same as the one used in Fig. 2.
----- ok ;

single vortex line, only theround statecontributes in the
limit of a very long cylinder. As discussed in Ref. 2 and
exploited in a very recent paper by Silvestfovthe (node-
les9 ground-state wave functiongg(x) and ¢g{x) (not
their moduli squared are proportional to the vortex-line
probability distribution at the boundaries where it enters and
FIG. 3. The functions|¢-(x)#R(x)| (thick solid lines, leaves the cylindefsee Fig. 1L

0 200 400 600 800 1000
X

©

|67(x)|? (dashed linels and| ¢-(x)|* (dotted line$ for the follow- There are then two cases to consider. For small and inter-
ing cases(@) the ground states(= —2.946 82);(b) an eigenstate mediate values of, the spectrum is either completely local-
just below the lower mobility edgédthe 72nd state withe= ized or only partially delocalized as in Fig(é. In this case

—2.352 14);(c) an eigenstate just above the lower mobility edgethe ground state is localized as in FigaB and hence a
(the 80th state witke=—2.318 28+i 0.010 347 9). The system is sjngle vortex line is pinned close to a preferred columnar
the same as the one used in Fig. 2. The serial number of each staigfect in the bulk of the superconductor cylinder. The right
represents the ascending order of the real part of the eigenvalue. 5 |eft eigenfunctions are shifted relative to their product.
IV. RANDOM-WALK BEHAVIOR OF EIGENFUNCTIONS This reflects the '_[en_dency of the localized vortex line to tear
away from the pinning center at the top and bottom of the
In this section, we turn our attention to the left and rightsample wheng is nonzero; see Fig. 18 of Ref. 2 for a
eigenfunctions considered separately for lagg®©ne of the  demonstration.
interesting results of SilVEStI’&Q/iS a random-walk-like be- The second more interesting case is for |a‘_]]ga;]02' such
havior hidden in the logarithms of the modulii of these that all states, including the ground state, are delocalized.
eigenfunctions. We first illustrate the random-walk behaviorysing the WKB approximation, Silvestr& argued for
with our more extensive numerical results and then showandom-walk behavior of the logarithm of the wave func-
that, at least for the ground state, Silvestrov's observation ifions in this case. For concreteness, we show some of our
related to earlier results obtained for charge-density waveshumerical results for the ground state of a 2000-site lattice.
and population biology? As a concluding remark, we argue (Silvestrov?° did not show numerical results for the ground
that the behavior of sample-to-sample fluctuations of the lefttate in this regimé. Figure §a) shows the ground-state
and right g.ro‘L‘J.nd—state .elg?nfunctlons considered Sepafateb{;antities¢;5(x), %RS(X), and ¢Iés(x) ¢§S(X) for g=1.54/a .
for largeg is “intermediate” between that expected for l0- g .- the values of the other parameters are the same as in
calized and delocalized states. the earlier figures. The produaﬁ'és(x)qsgs(x) is ape_roxi-
mately constant, while thénodeless eigenfunctionspg(x)
and ¢>§S(x) are quite different than in Fig.(8): They exhibit
What information is contained in the functiodﬁ(x) and  multiple sharp maxima which are rather well separated. In
#L(x) (considered separatgljor flux-line systems? For a view of these multiple maxima, one might question whether

A. Vortex-line distribution at boundaries
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0.015 ' ' tion. For the ground state, his result is in fact a special case
— g eix) g p

O ! Qf numeriqal, scaling, and renormalization—group.calcula—

00l ¢ ] tions applied previously to related problems in one-
® dimensional charge-density wavesnd population biology

in d dimensions?

] We start with the time-dependent Schimger equation

! for the continuum Hamiltoniaifl),

0.005F

s . J
0 500 1000 1500 2000 ﬁa—l//R(X,T):—HI,DR(X,T)
T

1

(9 2
= ﬁ( h = g) PR(X, 7) = V(X) PR(X, 7).
(17)

We assume uncorrelated finite-width randomness of the po-
tential,

V(X)V(x")=A28(x—x"), (18
0 500 1000 1500 2000 where the overbar denotes the random averageAargdthe
(b) X width of the random distribution.
. . - The d-dimensional generalization of E¢L7) was studied
FIG. 5. The functionsp-(x) ¢R(x) (think solid lineg, ¢R(x) . ; ¥ S
(dashed lings and ¢“(x) (dotted line$ for the delocalized ground in Refs. 3 and 12 via the “Cole-Hopf transformation,

10°¢

state of a 2000-site latticéa) a linear plot andb) a semilogarith- d(x,7) g2
mic plot. All these functions are positive definite in this case. The YR(x,7) =ex;{ - T + Pt (19
normalization of pR(x) and ¢“(x) is different from the one in 2m

earlier figures; each is normalized so that its sum ovénot the  The Cole-Hopf transformation is just another name for the
sum of the squared modulusecomes unity. The parameter values \yKB method. The second term in the exponent of B
are the same as the ones used in Fig. 2 excepithdt5. is added in order to offset the ground-state endvgyich has

o ) ) ) ) no effect in the physics of flux line The equation ford is
it is appropriate to call such eigenfunctions “localizetf”

Figure 5b) shows the same ground-state quantities in a ET g 0® B ORD 1 /od\2
semilogarithmic plot. The wandering, ragged shape of —=———+V(X)+——2——(— (20
Ingf(x) and Ings(x) again indicates the random-walk be- T MK 2m gx? - 2m\ ox

havior. To see the relevance of each term in the long-distance limit,

The different shapes Oﬁ'gs(X) ¢QRS(X), ¢gRs(X), andqﬁ;s(x) we change the scale as part of a renormalization-group cal-
reflect the different optimization problems of the vortex-line culation, according to
configuration in the bulk, at the top and at the bottom of the

superconductor cylindésee Fig. 1 Since the string tension X=SX, (21
of the vortex line(the “mass” of the corresponding quantum

particle is missing outside the superconductor, the vortex r=s?7, (22)
line can take better advantage of the potential energy at the

top and bottom of the sample than in the bulk; hence the O =5, (23)

sharp maxima inpg(x) and ¢g{x). The multiple maxima _
indicate that the depinned vortex line can enter and exit thé/here the exponentsanda are determined below. Thus we

superconductor at a variety of preferred locations. ave
The optimization problems are also different at the top ~ ~
versus the bottom of the cylinder in Fig. 1. When the vortex @_ w19 @Jr z-a~ 1Ry (%
line enters the sample from below, it is the succession of gr > m X S (x)
defectscounterclockwisdo the entry point which are most
important. When exiting the sample, it is the defecisck- b 2D 1 [ 4d\?
wise to the exit point that matter most. Hence the peaks in +3272ﬁ§— Z”*Zﬁ = (24

pgdx) and inpF{x) appear at very different locations. Nev-

ertheless, the entry and exit probability distributions arethe rescaled random potential is defined By(X)
strongly correlated with each other, since their product iszsl’ZV(SNX) so that it satisfieW=A25(§(—;(’)

approximately constant. The first term of the right-hand side of E@Q4) is a drift
term and the second term is the random potential term. To
keep these two terms fixed in the long-distance ligait o,

In the following, let us reproduce Silvestrov's WKB re- we setz=1 anda=1/2. The third and the fourth terms are
sult for delocalized states in a more controlled approximathen irrelevant variables in a perturbative renormalization

B. Renormalization group for the ground state
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group like that constructed in Ref. 12. Thus a Gaussian fixed 1
point controls the physics of what turns out to be the regime n ¢gs(x) W'~ L)?
9>gc2-
Upon defining renormalized parameters by
m=s"2"2"2m, (25)
fies e, 26 @ >
s (26) 0 T
Dl
g=s""“g, (27 In @gs(x) W2~ L
and y
Zzszfa71/2A, (28)
we arrive at a Langevin-type equation in the long-distance ,
limit, ) / .
(‘9 : ‘9)@( )=V(x) 29 : )
—+ == |®(x,7)=V(x),
dr  mox In ¢gs(x) W2 .0
X

where we have dropped the “tilde” symbol from all quanti-

ties. Since the ground-state energy was already offset in Eq.

(19), we can eliminate the time derivative by moving onto a i
new set of coordinates ax,f) —[x,7—(m/g)x]. We thus
see that the solution is a random walk evolving into the © - X
direction: 0 Ly

m x FIG. 6. Schematic views of sample-to-sample fluctuaté(h.,)
O(x,7)=P(x)= _f V(x')dx'. (300  for various types of ground statéa) random-walk wave functions
g of the form(31); (b) a set of wave functions localized in a conven-
The stationary right eigenfunction in the long-distance limittional sense{c) wave functions which are extended in a conven-
is hence given by tional sense. Different curves in each graph indicate wave functions
of different samples.

m (x
¢§s(x)=ex;{ - —ﬁf V(x")dx'|, (3)  whereL, is the system size in the direction andgpq(x) is
9 either the right or the left eigenfunction of the ground state.
except a normalization factor. This is equivalent to the(We choose a hormalization such tlja&'és(bgsdx: 1.) Thex
ground-stateK=0) solution of Silvestrov’s calculatiorf§:>®>  dependence of this quantity should disappear owing to the
Equations(6) and (31) then give the left eigenfunction as  statistical translational invariance. As is shown below and in
Fig. 6, we would have

(32

L _ m [ ’ '
‘f’gs(x)_eXF{g_ﬁf V(x")dx (i) W(L,)=0O(L,) for the ground-state wave functions
(31) and(32);

Note that the random-walk behavior disappears for the (i) W(L,)=0O(L2) for a conventionalHermitian local-
product ¢g.phs, Which is just a constant in this approxima- ized ground state;

tion, consistent with the numerical result in Fig. 5 fgr (i) W(L,)=0(L?) for a conventional extended ground
>c2- state.
. From this point of view, the random-walk behavior ¢f
C. Sample-to-sample fluctuations and ¢~ may be viewed “intermediate” between localized
Silvestro?®?® referred to the above behavior gft and ~ and delocalized.
“ ; ST Y ; “ ; The firstL, dependence of the quantiy(L,) is derived
d"{;s as ‘“stochastic localization”(or simply as “localiza- X x

tion” in some sentences Although the behavior is quite €ither from the wave functio(81) or (32) as
different than the smooth delocalized behavior of their prod-
uct, it is not clear to us whether such states should be called
“localized” either.

To stress this point further, we follow Refs. 3 and 12 and
consider the sample-to-sample fluctuations of the logarithniNext, to calculat&V(L,) for a conventional localized ground
of the ground-state wave function at a fixed location, state, we assume its asymptotic form @éx)~exp(— «|x
—x¢) and that the value ok is approximately equal for all
W(L,)=In ¢gs(x)2—ln ¢gs(x)2, (33 samples but the localization centef is different from

W(Lx)mf dX' dX"V(x")V(X")=0(Ly). (39
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sample to sample; see Figl®. The random average in Eq. nitions based on ability of states with complex eigenvalues to
(33) then reduces to the average oxgr Thus we have carry a nonzero current and the sensitivity to boundary

conditions®?
K 2
— | [x—=x.|dx
5 xxdaxe

K2
W(Lx)N L_j |X_Xc|2dxc_
X

—0O(L2) The left and right eigenfunctions considered separately
X7 provide interesting information about the physics of an iso-
(35 lated vortex line at its entry and exit points. Similar conclu-
Finally, the logarithm of a conventional extended groundSions apply to ipterac_ting arrays of vortices: See Sec. VIl of
state should be approximately homogeneous in space for Aﬁef. 2 for a Q'SCUSS'.OH C.)f th|§ nqn—Herm[t|an '.“a”Y'bF’dy
samples and hence have little sample-to-sample quctuatioWOt.)Iem' An interesting myesUgaan of tilted m_tergctmg
as illustrated in Fig. ). This is the behavior O%SS%RS é?l:/tlecsetfoe\l/géhe entry and exit boundaries has been initiated by
wheng>gc. ’
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