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Properties of random tilings in three dimensions
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Three-dimensional icosahedral random tilings with rhombohedral cells are studied in the semientropic
model. We introduce a global energy measure defined by the variance of the quasilattice points in orthogonal
space and justify its physical basis. The internal energy, the specific heat, the configuration entropy, and the
sheet magnetization„as defined by Dotera and Steinhardt@Phys. Rev. Lett.72, 1670~1994!#… are calculated.
Since the model has mean-field character, no phase transition occurs in contrast to matching-rule models. The
self-diffusion coefficients closely follow an Arrhenius law, but show plateaus at intermediate temperature
ranges, because there is a correlation between the temperature behavior of the self-diffusion coefficient and the
frequency of vertices which are able to flip~simpletons!. We demonstrate that the radial distribution function
and the radial structure factor depend only slightly on the random tiling configuration. Isotropic interactions
lead to an energetical equidistribution of all configurations of a canonical random tiling ensemble and do not
enforce matching rules.@S0163-1829~98!02937-3#
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I. INTRODUCTION

The stability of quasicrystals has been a riddle since th
discovery in 1982. Do they form stable or metastable sta
Are they stable only at high temperatures? Is the stability
to energetic or due to entropic reasons? The random ti
model of quasicrystals is an abstraction which deals w
rigid tiles, thereby neglecting thermal fluctuations and
phonon degrees of freedom. The only dynamic process is
local rearrangement of tiles, called ‘‘flips,’’ ‘‘umklapps,’
‘‘zipper’’ moves, depending on the type of tiles and symm
tries. The random tiling model has been proposed by El1

and has been studied intensively in recent years. The
author dealing with random rhombohedral tilings in thr
dimensions was Tang2 who was interested in diffuse scatte
ing and phason elastic constants. Strandburg3 calculated the
configurational entropy. The state of the art of random tilin
was reviewed by Henley.4 Ebinger5 studied random tilings a
infinite temperatures. Dotera and Steinhardt6 introduced the
concept of sheet magnetization as an order parameter to
scribe the randomness. Interest in random tilings was
newed by Kalugin and Katz7 through the new process of fli
diffusion. This property has been studied by Jaric´ and
So”rensen8,9 at infinite temperature, and by Joseph10 and
Gähler11 at finite temperatures. Meanwhile for the energe
interaction of the tiles many different sets of matching ru
exist.

In the present work we first deal with quantities that allo
to characterize a random tiling~Secs. II and III!. The har-
monic energy measure is then introduced in Sec. IV a
compared with other energy measures. In Sec. V we sho
describe the construction of random tilings. The possibi
of a random tiling equilibrium phase transition and how
can be detected is studied in Sec. VI. Results for the spe
harmonic energy measure are presented in Sec. VIII.
thermodynamic functions, the possiblility of a phase tran
tion and self-diffusion are treated in Sec. VIII A, followed b
the structure functions and vertex statistics in Sec. VIII
Conclusions are drawn in Sec. IX.
PRB 580163-1829/98/58~13!/8338~9!/$15.00
ir
s?
e
g
h
e
he

-
r
st

s

e-
e-

c
s

d
ly
y

ial
e

i-

.

II. DEFINITIONS

Quasicrystals are described as cuts through high
dimensional periodic crystals. The additional dimensions
addressed as orthogonal spaceE'. Quasilattice pointsx in
the physical spaceEi can uniquely be lifted to the higher
dimensional spaceX5P i

21x and then be projected onto th
orthogonal space byy5P'(X) (P i1P'5 id in a proper
normalization!. The infinitely extended quasilattice thus
contracted into a finite volume called ‘‘acceptance domai
or ‘‘atomic hypersurface.’’ The whole procedure of liftin
and projecting into the orthogonal space is called ‘‘dualiz
tion’’ y5P'sP i

21x of the quasilattice. The higher
dimensional embedding generates new degrees of freedo
addition to the ordinary phonons in periodic crystals, deno
‘‘phasons.’’

The icosahedral quasilattice lifted into higher-dimensio
space forms a three-dimensional hypersurface, called ‘
Bruijn-hypersurface’’ or ‘‘Weiringia roof.’’12 The hypersur-
face fluctuates around an average hyperplaneh(x)5h0
1«globalx. The constant quantity

«global:5¹ i ^ h~x!5const

is called ‘‘global phason strain’’ and describes the deviat
of the slope of the average hyperplaneh(x) from the slope of
the physical space. In the case of exact icosahedral symm
the average hyperplane is running parallel to the phys
space and thus«global50.

Long-wavelength deviations from the hypersurface
denoted as ‘‘phason fluctuations’’ and are described in a c
tinuum picture by a phason strain tensor

«~x!:5¹ i ^ h~x!.

According to Henley13 the fluctuations are governed by
free energy depending quadratically on the phason strain

F5E d3x trace„«~x! ^ «~x!T
….
8338 © 1998 The American Physical Society
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The present work deals with the three-dimensional Amma
Kramer-Penrose tiling and its randomizations. This tili
consists of two different elementary cells, the ‘‘oblate’’ an
‘‘prolate’’ rhombohedron. Both of them appear in ten diffe
ent orientations. The six rationally linearly independe
unit edge vectors ta may be defined as ta

5(2/A5)(cos2
5pa,sin2

5pa,1
2) (a50, . . . ,4) andt55(0,0,1).

The atomic hypersurface is a rhombic triacontahedron
icosahedral symmetry. The tiling exhibits, among others
vertex representing lattice points where two prolate and
oblate rhombohedra meet. It is denoted ‘‘simpleton verte
The surface of the cells which touch this vertex is a rhom
dodecahedron. Two possibilities exist how to fill the dode
hedron with tiles. The exchange of one configuration by
other is a ‘‘flip.’’ The lattice point jumps a distance which
0.650 of the edge length of the rhombohedra~Fig. 1!. Any
nonordered space filling arrangement of rhombohedra w
out gaps or overlaps is called a ‘‘random tiling.’’

III. RANDOM TILING CHARACTERIZATION

1. Variance

A random tiling is characterized by the mean square
viation of the point distribution from the center of mass
orthogonal space. The variance is defined by

V5 lim
N→`

1

N (
j 51

N Uyj2
1

N (
i 51

N

yiU2

5 lim
N→`

1

N (
j 51

N

uyj2y0u2.

~1!

N is the number of quasilattice sites andy0 is the average of
the position vectorsyi of all dual quasilattice sites. The big
ger the phason fluctuations are the larger is the disorder
therefore the random tiling parameterV. The value in the
pure entropic random tiling ensemble (T→`) amounts to
1.7360.01.2

2. Vertex frequency

The lattice points of a quasicrystal are characterized
their local environment. The number of rhombohedra ad
cent to a lattice point in an icosahedral quasilattice va
from 4 to 20, the number of edges from 4 to 12. There are
‘‘canonical’’ or ‘‘allowed’’ vertices,22 but 5450 vertices may
occur in a random tiling. In the three-dimensional rhomb
hedra tiling flips are possible which only change the f
quency of vertices without introducing forbidden ones. T
is in contrast to the Penrose tiling in two dimensions. If t
degree of randomization has reached a certain level the n
ber of forbidden vertices is going to rise rapidly.

FIG. 1. Simpleton flip.
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3. Sheet magnetization

The frequency of the simpleton is 23.61% in the ide
rhombohedra tiling. The simpletons are arranged in tw
dimensional layers perpendicular to the twofold symme
axis. Due to the two possibilities to pack the rhombohe
into the simpleton there are two positions for the intern
lattice point. The positions may be called ‘‘up’’ and ‘‘down’
and attributed a spin valueS561.6 In the ideal rhombohe-
dra tiling all the spins in a certain layer carry the value11 or
–1 which permits the definition of a sheet magnetization
value 1 using a proper normalization. In a random tiling t
sheets also exist, but the magnetization is reduced since
spins in one layer are not all aligned. The susceptibility
given by

x5
1

T
^ND&S K M2

ND
2 L 2 K M

ND
L 2D .

ND is the number of the dodecahedra and therefore the n
ber of the ‘‘spins’’ in the patch. This equation replaces t
more cumbersome definition used in Ref. 6.

IV. ENERGY MEASURES

A. Models of stability

Several models currently exist that try to explain the s
bility of quasicrystals. In the deterministic energy model t
internal energyU represents the thermodynamically stabili
ing factor. Microscopic forces lead to matching rules12 or
overlapping cluster energies14,15 that favor an ideal quasi
crystalline tiling. In the nondeterministic entropic model st
bilized by the entropyS no matching rules exist but the cel
of the tiling do not leave any gaps and do not overlap. Thi
the random tiling model. In between is the semientro
model which is described by a free energy with contributio
from internal energy and entropy:

F~T!5U~T!2TS~T!. ~2!

The purely energetic model can be regarded as a l
temperature limit, the purely entropic model as a hig
temperature limit of the semientropic model.

B. Properties of energy measures

The ideal quasilattice without any violation of matchin
rules represents the ground state of the energy model, ta
at T50. At finite temperatures thermally activated flips exi
mediating the transition between neighboring states. T
transition probability is given by the Boltzmann facto
which depends on the energy measure chosen.

Here we deal with the canonical random tiling ensemb
All configurations of the ensemble have the same volu
and the same number of vertices due to a constant ave
slope of the de Bruijn hypersurface. The internal ene
U(T) is the ensemble averageU5^E& of the instantaneous
energyE. The specific heatCV(T) is derived from the vari-
ance of the occupied energy levels by the fluctuatio
dissipation theorem

^~dE!2&5^E2&2^E&25kBT2CV5kBT2
]U

]T
.
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The temperature dependence of the entropy densitys(T)
~precisely: entropy per quasilattice site where large let
indicate total quantities, and small letters denote a quan
per vertex. For periodic approximants with rhombohed
cells the number of cells and vertices is identical! is given by
the thermodynamical integration of the specific heatcV per
vertex:

s~T!5sV~T!1E
0

T

dT8
cV~T8!

T8
1s0 . ~3!

The volume contributionsV(T) vanishes in our case. Th
ground state entropy iss0 :5s(T50), and atT→` we are
in the limit of the pure random tiling model with the con
figuration entropys(T5`)5:s` . The temperature varia
tions of u, s, andcV depend on the energy measure, but n
s` . If one is interested only in the configuration entropys` ,
then the specific choice of the energy measure has no ph
cal relevance if the first three of the following four cond
tions are fulfilled.

~1! The energy of any configuration is unique.
~2! The quasiperiodic reference tiling is a ground state
~3! The energy measure is limited from above.
~4! The entropy of the ground state vanishes or is eas

calculate.
The first condition requires an exact law to determine

energy of any microstate. The energy of a fixed microst
must not depend on how it is generated. Two configurati
that differ only by a rigid translation have to be energetica
identical.

Especially global energy measures are endangered to
late the second condition and to render the quasiperio
reference state unstable atT50 ~see below for the ‘‘qua-
dratic energy measure’’!. The third condition is a require
ment for the integrability ofcV(T)/T as a function ofT. If
the energy measure is not limited, uncontrolled fluctuatio
of the energy in the high-temperature limit may exist. If th
vary stronger than quadratic withT then

^~dE!2&

T2

diverges and with itcV asT→`.
The fourth condition is recommended for practical pu

poses. The ground state entropys0 represents the number o
states energetically equivalent to the quasiperiodic gro
state. Since it is often complicated to calculate the grou
state entropy it is useful to choose an energy measure w
s0 vanishes or is easy to deduce. An example of a com
cated case of nonvanishing contributions0 has been pre-
sented by Baake and Joseph16 for a two-dimensional octago
nal quasicrystal. The locally defined energy measure is 0
the canonical vertices but positive for forbidden vertices a
depends on the vertex type. Unfortunately there exist c
figurations which are not quasiperiodic, although they do
exhibit forbidden vertices. As a consequence 44% of the
tal entropy are contributed by the ground state.

An example for a globally defined energy measure w
an easily calculable ground state entropy is the ansatz
harmonic oscillator potential in the orthogonal space as
plied in this work. The energy is the sum of the squar
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distances of the dual quasilattice sites from their center
mass. Up to a factorN it is equal to the variance in the
orthogonal space~see Sec. III 1!. The precise definition of
the energy of the configurationa is

E~a!5CZ(
j 51

N Uyj
~a!2

1

N (
i 51

N

yi
~a!U2

2(
j 51

N Uyj
~0!2

1

N (
i 51

N

yi
~0!U2Z. ~4!

The index 0 denotes the ideal reference configuration,C is
an arbitrary normalization constant.

This energy measure is called theharmonic energy mea
sure. The variance for the ideal reference configuration 0
smaller than the variances for the overwhelming majority
the random tiling configurationsa. But there is a tiny mi-
nority of configurations with a variance smaller than t
value of the ideal tiling. Their atomic hypersurfaces a
closer to a sphere than the triacontahedron. Such config
tions may play a role at very low temperatures. To avo
energies less than the energy of the ideal tiling we have ta
the absolute value in Eq.~4!. For zero global phason strain i
an ideal tiling this energy measure is not degenerate and
the second condition is obeyed. But for periodic appro
mants theN possibilities (N: number of lattice points! to
chose the origin of the unit cell yield a ground state entro
s05 ln N/N per lattice point. It is obvious thats0 vanishes in
the thermodynamic limit. Strandburg3 has introduced a simi-
lar energy measure called thequadratic energy measure

E~a!5(
j 51

N

uyj
~a!2MTriau2. ~5!

But it was taken relative toMTria , the initial center of mass
of the triacontahedron in the orthogonal space and not r
tive to the instantanous center of mass and therefore doe
fulfil the criterium of finiteness of the energy measure~third
condition!. Actually MTria50 was set to zero. Without fixed
boundaries of the system the whole distribution of the d
quasilattice points in the orthogonal space may drift a
therefore yield a systematic contribution to the energy an
therefore unphysical. In the harmonic energy model t
problem has been resolved since now the energy is base
the difference to the center of mass.

An example of a locally defined energy measure is
one that counts the violations of the alternation conditio
This condition requires that along a stack of rhombohe
two rhombohedra of the same type and orientation do
occur subsequently. This energy measure was used by
era and Steinhardt6 and Gähler.11 Other examples are th
‘‘simple energy model’’ which assigns the same energy
each forbidden vertex, the ‘‘cluster energy model’’ whic
maximizes the frequency of certain favorite vertices and
‘‘Tü binger mean-field model.’’ All three were used by J
seph in Ref. 10.

The harmonic energy measure provides an excel
model for a quasicrystal, due to the following reasoning:
energy difference of a single jump is

DE5E~a11!2E~a!5CN~ uV~a11!2V~0!u2uV~a!2V~0!u!.
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If the temperature is not too low then the differences
positive and we get

DE5CNuV~a11!2V~a!u.

The shift of the center of massycm
(a)51/N( i 51

N yi
(a) for a jump

of vertexk is

ycm
~a11!2ycm

~a!5
1

N
~yk

~a11!2yk
~a!!5

D

N
.

D52.753 is the jump distance in units of the rhombohe
edge length. SinceN is large even for rather small sample
the shift may be neglected. Thus the energy differe
caused by a single jump reads

DE5C~yk
~a11!2yk

~a!22ycm!–Dy52C~yck2ycm!–Dy.

yck is the midpoint of the connection between the inital a
final vertex position andDy the respective difference vecto
The – represents the scalar product ofDy and the site vector
yck2ycm . Physically this means that if a vertex jumpsto-
wardsthe center of mass, its energy isnegative. The jump is
always accepted, and the randomness is reduced. The
happens for a tangential jump, where the energy differenc
zero. But if it jumpsaway from the origin, the energyin-
creases, the disorder also increases, and the jump is o
accepted within the Boltzmann factor. Thus this ene
model favors an ordered quasicrystal, but zero energy mo
are allowed. The jump energies are distributed continuou
and increase with the distance from the center of mass o
acceptance domain. In a local energy model the energy
ferences are independent of the position and have one fi
value if the matching rule is violated.

C. Pair interactions

All energy measures discussed in Sec. IV B contain a c
tain kind of arbitrariness since they do not depend on in
atomic interactions but on the assignment of an energy p
alty to randomized lattice configurations. Here we pres
test interactions which are motivated by pairwise interacti
between atoms sitting on certain sites of the quasilat
~called ‘‘decoration’’!. We test whether the energetic equi
istribution postulated in the random tiling model is justi
cable.

The potential interactions used are the 12-6 Lenna
Jones potential modified by a cutoff function to guarante
smooth behavior at the cutoff radius (r c54 in units of rhom-
bohedra edges!. The potential energyu can be directly cal-
culated from the radial distribution function in the case
pair interactionsv(r ):

u5(
r 50

r c

4pr 2g~r !v~r !. ~6!

The results of the test are presented in Sec. VIII B 1
turns out that different random tiling samples do not show
significant difference in their internal energyu. The reason is
the following: The distances between the vertices or ato
if the quasicrystal is decorated, can be subdivided into
classes. The distances within a rhombohedron, on its fa
and along its edges are only permuted, therefore their
e
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quency does not change at all. The frequency of distan
between vertices in neighboring rhombohedra may chan
Since all distances between nearest neighbor vertices o
oms and also most of the distances between next-nea
neighbors belong to the first class, the radial distribut
function is nearly unchanged for the short distances. Si
pair interactions are strong between nearest neighbo
change in potential energy is also expected to be small. F
thermore, the potential is weak at larger distances, where
changes of the radial distribution function are stronger.

V. CONSTRUCTION OF RANDOM TILINGS

A. Monte Carlo method

Simpleton flips directed in their frequency by the Mon
Carlo method allow the generation of equilibrium configur
tions at a given temperature. The randomization of the qu
lattice is realized by a sequence of such flips which usu
are associated with a change in energy. The flips play
role of elementary transition paths between different state
a system in contact with a heat bath.

We are assuming that the method is ergodic.17 Although
this has not yet been proven, there is no hint up to now of
opposite. The method has already been used extensive
generate and study equilibrium random tiling quasicrysta
It is the only one known that produces equilibrium e
sembles.

A simpleton flip does not generate or destroy tiles, it on
rearranges them. Therefore the frequency of both type
rhombohedra in the tiling is remaining constant. The aver
orientation of the hypersurface and the global phason st
are not changed.

During the Monte Carlo simulation lattice points are s
lected at random. If a simpleton vertex is hit, the energy
the original and the flipped configuration are compared
the energy decreases, the flip is always carried out
it increases, it is performed with a probability o
exp(2DE/kBT).

B. Boundary conditions

Quasicrystals do not permit periodic boundary conditio
Hence one has to work with a finite patch of a quasicrys
Then there are two possibilities to deal with the surfa
either keep it fixed~fixed boundaries! or identify opposite
sides~periodic approximants!.

In the case of fixed boundaries the surface lattice po
are not allowed to move whereas in approximants all surf
lattice points are mobile. Therefore the configuration entro
per lattice point with fixed boundaries is smaller than t
entropy of approximants. The configuration entropy of t
approximant, on the other hand, differs only slightly from t
value of the ideal tiling. The frequency of vertices also is n
much different between an ideal quasicrystal and an app
imant tiling. The frequency of the simpleton, however,
patches with fixed boundaries may grow to up to 30% of
bulk vertices. For a discussion of the entropy dependence
boundary conditions see Ref. 18.

Periodic approximants show matching rule violations
ready in the ground state. They exhibit a periodic superstr
ture and for very small samples a remarkable deviation of
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vertex frequencies. The intrinsic global phason str
changes the flip diffusion properties at low temperatures
the ground state phasons generate zero energy modes
sheet magnetization~see Sec. III 3! in the case of a cubic
approximant is useful only for the three twofold directio
parallel to the cubic cell axis. The acceptance region is
longer homogeneously filled but has a lattice structure.

VI. RANDOM TILING TRANSITION AND STRUCTURE
FUNCTIONS

Signals for a phase transition can be obtained from th
modynamic functions likeu, cV, and s. In a plot of the
specific heatcV vs temperatureT for different sample sizes
cV should diverge in the case of a second order phase t
sition.

The Binder order parameter

The Binder order parameter19 B(N)(T) for a given sample
sizeN and temperatureT is defined by

B~N!~T!:512
M4

~N!~T!

3„M2
~N!~T!…2

,

whereM2
(N)(T) andM4

(N)(T) are the second and fourth mo
ment

Mk
~N!~T!5E dm„p~m!~N!~T!…mk

of the probabilityp(m) of a microstate of the sheet magn
tization m belonging to a macrostate with sheet magneti
tion M . The Binder order parameterB(N)(T) is plotted as a
function of T and yields a set of curves parametrized byN.
A unique intersection point of the curves points to a seco
order phase transition and yields the transition temperatu

VII. SIMULATION PROCESS AND MODELS STUDIED

Thermodynamical quantities are sampled by storing th
values at regular intervals of lengthDt during the simulation.
Data of microconfigurations are stored every 1000•Dt
Monte Carlo step. An initial configuration~e.g., an ideal
Ammann-Kramer-Penrose approximant! was equilibrated
over a typical thermalization time of 103 to 104 steps before
the real simulation was started. The thermalization time w
chosen according to the saturation behavior of the ene
for example. At low temperatures longer equilibration a
simulation times and sampling intervals were used. T
length Dt was checked by the decay of the autocorrelat
functions. For high temperaturesDt was set typically abou
50 Monte Carlo moves per lattice point, while for low
temperatures 200 moves were taken due to temporal cor
tions. The entire duration of a simulation run at given te
perature typically has been about 25000•Dt to 30000•Dt
simulation steps.

A. System sizes and interaction types

For the simulations we have prepared cubic approxima
with 136, 576, 2440, 10336, and 43784 points. These co
spond to generationn53 to 7. Further simulations to fill the
n
s

The

o

r-

n-

-

d
e.

ir

s
y,

e
n

la-
-

ts
e-

gaps between the sizes have been carried out with five
approximants with 890 and 1440 lattice points. The influen
of the boundary condition has been analyzed with fin
patches containing 4403 lattice points and 3507 cells. T
influence of the initial conditions has been checked by us
ideal quasicrystals or nonequilibrium random tiling samp
as starting points. Both samples types lead to the same
semble averages if equilibrated correctly.

VIII. RESULTS

A. Thermodynamic functions

1. Internal energy, specific heat, entropy

The internal energy grows monotonously, and a cl
saturation becomes visible~Fig. 2!. The saturation value de
pends on the size of the sample. The limit value can
derived from limits of the variance:V(T5`)51.7360.01
~Ref. 2! leads tou between 1.97 and 2.05. The specific he
shows an anomaly typical for few-level systems. It has
additional bump above the maximum~Fig. 3!. Such a behav-
ior is known for example for three-level systems with suf
ciently separated levels. We have mapped the distributio
the energy levels forT5` assuming equidistribution of the

FIG. 2. Internal energy for the harmonic energy model. T
sizes of the samples are indicated by the number of quasila
points.

FIG. 3. Specific heat of the harmonic energy model. The size
the samples are indicated by the number of quasilattice points.
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occupancy. No indication of discrete energy levels w
found, only an asymmetry of the distribution with a smal
slope at higher energies could be observed. There are o
energy measures11 which exhibit no visible asymmetry in th
energy distribution and no bump in the specific heat. T
asymmetry, however, is in our opinion not a clear expla
tion for the bump.

The value of the maximum ofcV is not significantly de-
pendent on sample size. The ground state entropy vani
for largeN. The increase ins` is caused only by the growing
width of maximum ofcV ~Fig. 4!. The entropy values a
T5` are listed in Table I. Since no divergence occurs w
increasing sample size, we conclude that there is no sec
order phase transition.

Further simulations with fixed boundaries and the cu
energy measure show that the internal energy also satu
although the energy measure is unlimited.„The cubic energy
measure is defined as the quadratic energy measure@Eq. ~5!#,
except that the exponent 2 is replaced by 3.… The entropy at
very large temperature approachess`'0.119460.015,
lower than the value for periodic boundary conditions. T
reason for both observations are the fixed boundaries w
reduce the number of available configurations. If the q
dratic energy measure is used with periodic boundary co

FIG. 4. Configurational entropy of the harmonic energy mod
The sizes of the samples are indicated by the number of quasila
points.

TABLE I. Some thermodynamic parameters for the harmo
interaction model with periodic boundary conditions. The first c
umn provides the generation for cubic approximants, the sec
column the number of lattice points, and the following columns
the entropys` and the varianceV(T5`). The rows ‘‘890’’ and
‘‘1440’’ denote pentagonal approximants.

n Size s` V(T5`)

3 136 0.1816878 1.47560.015
4 576 0.2032964 1.5660.01

890 0.2086351 1.6060.02
1440 0.2076728 1.61560.02

5 2440 0.2114427 1.63560.01
6 10336 0.2349887 1.67560.01
7 43784 0.2367582 1.7060.01
` Limit 0.2460.01 1.7360.01
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tions, it is not clear whether the internal energy satura
since the energy measure is again unlimited. The deca
the specific heat is slower which is also a consequence o
energy measure. The entropy at very large temperatures
proachess`'0.262160.015.

2. Simpleton magnetization, simpleton susceptibility, Binder
order parameter

The temperature dependence of the energy fluctuat
and the specific heat do not clearly rule out a phase tra
tion, even if there is not a divergence of the maximum ofcV .
The reason may be that the intrinsic divergence of the s
cific heat with sample size, if any, is very weak. For furth
insight we calculated the sheet magnetizationM and the sus-
ceptibility x since the latter may show a much more pr
nounced divergence behavior.

The magnetization saturates at highT, and the minimum
value decreases with size~Fig. 5!. At higher temperatures
betweenT53 and 10 it increases again. We attribute th
behavior to the finite size of the samples. The value of
maximum of the susceptibility grows almost linearly wi
the generationn and moves to lowerT ~Fig. 6!. It is not
certain that the relationxmax(n)}(n2n0) is valid for n.7. If

l.
ice

c
-
d

t

FIG. 5. Sheet magnetization of the harmonic energy model.
sizes of the samples are indicated by the number of quasila
points.

FIG. 6. Susceptibility of the sheet magnetization of the h
monic energy model. The sizes of the samples are indicated by
number of quasilattice points.
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yes, this would be a slow divergence@more precisely:
xmax(N) is about proportional totA3 N whereN is the number
of lattice cells andt5(A511)/2].

The Binder order parameter clearly shows that there is
intersection point~Fig. 7! and therefore no phase transition
finite temperatures takes place. The trend ofB(N)(T) changes
at n55, similar to the magnetization behavior. For matchi
rules energy models a phase transition between the loc
phase, where the matching rules are obeyed, and the
locked phase, which is a random tiling, have been predic
by Henley4 and confirmed by Dotera and Steinhardt6 and
Gähler.11 From the standpoint of this phase transition ty
the harmonic energy model is neither locked nor unlock
The mean value of the Hamiltonian does not correspond
spontaneous symmetry breaking, rather it is set by an ‘‘
ternal field’’ 2V( i uyi2y0u2 @see also Eq.~1!#. An analogy is
a ferromagnet which is kept in a constant magnetic fie
Because of the field, there is never a sharp symmetry br
ing or a sharp qualitative change in the state; if it is coo
down from high temperature, there is always some magn
zation, and atT50 a particular state determined by the a
plied field is reached.

3. Self-diffusion coefficient

The mean square displacement^(r (t)2r (0))2& grows lin-
early with timet, indicating a normal diffusion behavior an
allowing the calculation of the diffusion coefficientD. At
temperatures lower thanT'1 the extrapolation is difficult
due to large fluctuations.D becomes unmeasurably sma
below T50.5. The diffusion coefficient forms a plateau
T'1 for n54,5,6 in the Arrhenius plot~Fig. 8!. There may
be several reasons for this behavior.

First, there are energy barriers between different til
configurations due to the harmonic energy measure, whic
low temperatures lower the mobility of lattice points for flip
of higher energy. In the range of the plateau the probab
for a flip only occasionally suffices to overcome the barri
which play no role at high temperatures.

Second, a phase transition may occur which changes
slope in the Arrhenius plot. Ga¨hler has also observed

FIG. 7. Binder order parameter for the sheet magnetization
the harmonic energy model. The sizes of the samples are indic
by the number of quasilattice points and the generation param
n.
o

ed
n-
d

.
a
-

.
k-
d
ti-
-

g
at

y
s

he

change of the slope in case of the energy measure with
alternation condition which turns out to be a phase transit
since other response functions like the susceptibility and
specific heat definitely yielded a divergence at the same t
perature.

Last, there is an explanation which comes from the f
that the number of flippable lattice points~number of simple-
tons! changes with temperature. We can distinguish fo
ranges.

~1! The number of simpletons is about 23% in the ran
0<T&1.

~2! In the range 1&T&10 we find a nearly logarithmic
decrease of the number of simpletons. The plateau ofD(T)
is clearly seen here.

~3! In the range 10&T&100 the approach of the fre
quency of the simpleton to a constant value leads to an
crease of the negative slope ofD(T).

~4! AboveT*100 the number of simpletons is constant
'17.5%.

In the approximants the behavior ofD(T) is obscured to
some degree by zero energy modes caused by peri
boundaries. These modes become less and less importa
larger sizes, but suppress the plateau for small sample s

Within the framework of the random tiling model w
have studied only flip diffusion. No other diffusion mech
nism, in particular vacancy diffusion, can be introduced
this way. The latter mechanism is expected to be the do
nant diffusion process at least above 600 °C. This wo
mean that quasicrystals behave like crystalline metals
alloys. But there are experimental indications that the n
mechanism plays a role below 600 °C temperature,21 since
there is a sharp kink at about 400 °C and a smaller slop
the Arrhenius law at low temperatures.

Since we have no possibility to relate the experimen
temperature scale and the scale of the Monte Carlo sim
tions we do not know where or if the plateau observed in
simulations is found in nature. We do not know either if t
reduction of the number of flippable vertices plays a role
experiment. If we identify our low temperature part with th
low temperature part of experiment, the plateau and the
creased diffusion constant at high temperatures are hidde
the vacancy diffusion. But if we identify our high temper

f
ted
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FIG. 8. Self-diffusion coefficient of the harmonic energy mod
The sizes of the samples are indicated by the number of quasila
points.
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ture part with the low temperature part of experiment,
would expect that the diffusion behavior in a temperat
range lower than currently measured becomes increasi
more complicated.

The diffusion behavior may also be rather complex if t
quasicrystal is a random tiling and a phase transition to
perfect quasicrystal occurs at finite temperatures. This wo
cause a second kink in the Arrhenius law. But if the tran
tion is at zero temperature as in our model, no change
slope should be observed.

B. Structure functions

1. Radial density function, radial structure factor,
pair interaction energy

Structure functions have been calculated for samples
sizen56, containing 10336 lattice points and for the bina
decoration with 54120 atoms.20 There are only small change
in the partial radial density functiong(r ) of the binary tiling.
The largest differences of about 12% occur for bonds
tween two large atoms, but they are the least significant o
for stability due to their small number. The energetica
most important nearest-neighbor bonds change less in
cases, since a large portion of them liveswithin the rhombo-
hedra and thus is only transferred to another place by a
but the frequency itself does not change. The differences
observe in nonequilibrium random tilings are somew
larger, but still very small. Figure 9 shows the radial dist
bution function for the monatomic sample~vertices occupied
only! of sizen55. The maxima are the different atom shel
the crosses denote the changes for a random tiling aT
5`. It is obvious that the changes at small distances
small.

The radial structure factorI (k), the Fourier-transform of
g(r ), shows a trend similar to the radial density functio
Due the smallness of the samples there are rather large
size effects which prevent quantitative comparison.

We further observe a very small dependence of the
energy function@see Eq.~6!# on size andT due to the rela-
tion between the pair energy and the pair distribution fu
tion. It is interesting to note that the potential energy of t
random tiling ensemble is atT5` about 0.4% lower than for

FIG. 9. Radial density function~RDF! of the rhombohedra
quasilattice points for an approximant of sizen55. The peaks rep-
resent the values for the ideal tiling; the crosses denote the di
ence for the random tiling atT5`.
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the ideal quasicrystal for a large class of Lennard-Jones-
potentials, whereas the fluctuations within the random til
ensemble are of the order of 0.1%. Therefore simple p
potentials obviously favor energetical equidistribution, i.
the random tiling model.

2. Variance, vertex statistics

The alteration of the variance is roughly linear with r
spect to the internal energyu. This is obvious if one com-
pares their definition in Eqs.~1! and ~4!. Their temperature
variation is therefore also similar.

The change in the statistics of the vertices with tempe
ture is much more important as we have seen in the dis
sion of the diffusion behavior in Sec. VIII A 3. The chang
of the vertex frequencies~notation as in Ref. 22! can be
summed up as follows.

~1! The simpleton vertex 1~452! decreases from 23.61%
to 17.5%.

~2! Vertex 2 ~561! increases from 23.61% to 29% atT
58 and then decreases to 26%.

~3! Vertex 3 ~670! decreases from 23.61% to less th
10%.

~4! The sum of frequencies of vertex 1 and vertex 2
roughly constant.

~5! The forbidden vertices~all together! increase from 0%
to more then 40%.

~6! The vertex with full icosahedral symmetry and 20 a
jacent prolate rhombohedra~vertex 24, in Ref. 22 also called
twelvefold site! decreases in frequency from 1.2% close
extinction.

We note that the statistical error of the vertices statistic
largely independent of the sample size and already fon
>4 very small.

Vertex 1 is the most important one since it is the on
vertex that can be flipped. But the change of vertices 2 an
is also not negligable, since these two vertices are neigb
of vertex 1 and are generated or destroyed by a flip. Since
total frequency of 1 and 2 is roughly constant, but the f
quency of vertex 3 decreases with increasing temperat
this further contributes to a reduction of the diffusion co
stant described in Sec. VIII A 3.

3. Diffraction patterns

Diffraction patterns~Bragg scattering without the diffus
part characteristic for random tilings! have been calculated
for a sample of sizen55, containing 2440 lattice points. Th
analysis has been carried out for several temperatures u
infinity for planes perpendicular to two-, three-, and fivefo
direction. The intensities are only weakly dependent on te
perature. The reason is that acceptance domain acts as
tering function which changes only weakly with temperatu
The result is consistent with Tang’s observation of limit
phason fluctuations in three dimensions.2

IX. CONCLUSIONS

We have studied the properties of the semientropic r
dom tiling model for the harmonic energy measure. The
sults are summarized as follows.

~1! The sheet magnetization decreases to a minimum w

r-
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the temperature and slightly grows to a saturation value
the thermodynamic limit it should vanish without an inte
mediate minimum. The susceptibility diverges slowly, t
maximum shifts to smaller temperatures. The Binder or
parameter does not exhibit a unique intersection point. T
behavior indicates a phase transition already atT50.

~2! The self-diffusion coefficient displays a plateau in t
central temperature range indicating energy barriers for
tain flips due to the harmonic energy measure. On the o
hand there exist correlations between the temperature de
dence of the self-diffusion coefficient and the frequencies
simpletons per lattice point. The Arrhenius plot is deviati
strongly from that assumed by Kalugin and Katz:7 where
these authors are plotting a steep increase, we are obse
the plateau. This is due to the fact that there is only o
flippable vertex type in our model and its frequencymust
decrease. The result is a reduction of the diffusion vehicle
possibility not taken into account by Kalugin and Katz.

~3! Radial structure functions depend only weakly on t
,
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configuration. This is due to the rigidness of the cells. P
interactions realize an equidistribution of all configur
tions—a possible realization of the pure entropic random
ing model.

The behavior ofcV andx obviously depends strongly o
the type of energy measure used. The alternation condi
seems to work much better11 — maybe as consequence of i
closer similarity with Ising interaction models in compariso
with the harmonic energy measure. However, for the sim
energy model10 it was also not possible to decide if a pha
transition occurs, since no divergence of the specific h
could be observed.
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