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Properties of random tilings in three dimensions
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Three-dimensional icosahedral random tilings with rhombohedral cells are studied in the semientropic
model. We introduce a global energy measure defined by the variance of the quasilattice points in orthogonal
space and justify its physical basis. The internal energy, the specific heat, the configuration entropy, and the
sheet magnetizatiotas defined by Dotera and SteinhafBhys. Rev. Lett72, 1670(1994]) are calculated.

Since the model has mean-field character, no phase transition occurs in contrast to matching-rule models. The
self-diffusion coefficients closely follow an Arrhenius law, but show plateaus at intermediate temperature
ranges, because there is a correlation between the temperature behavior of the self-diffusion coefficient and the
frequency of vertices which are able to fligimpleton$. We demonstrate that the radial distribution function

and the radial structure factor depend only slightly on the random tiling configuration. Isotropic interactions
lead to an energetical equidistribution of all configurations of a canonical random tiling ensemble and do not
enforce matching rule$S0163-18208)02937-3

I. INTRODUCTION Il. DEFINITIONS

The stability of quasicrystals has been a riddle since thei Quasicrystals are described as cuts through higher-

di i1 1982. Do thev f tabl tastable stat imensional periodic crystals. The additional dimensions are
ISCOVETY In - DO they form stable or metastablé staleSyqqegseq as orthogonal spdte Quasilattice pointx in

Are they stable only at high temperatures? Is the stability dug, . physical spacE” can uniquely be lifted to the higher-

to energetic or due to entropic reasons? The random t”in%ﬁmensional spack =117 x and then be projected onto the

model of quasicrystals is an abstraction which deals Wiﬂbrthogonal space by—”H (X) (IIj+1I1,=id in a proper
=II, =

rigid tiles, thereby neglecting thermal fluctuations and thenormalizatior). The infinitely extended quasilattice thus is

phonon degrees of freedqm. The only“dynamlc Process Is th@ontracted into a finite volume called “acceptance domain”
local rearrangement of tiles, called “flips,” “umklapps,

- . d di the t f til d or “atomic hypersurface.” The whole procedure of lifting
¢ rz'lezp?rrhemg:]edsc;metﬁ'enn IT]g doer: haes Bt/)g?er? rloesozg d Eynglns:and projecting into the orthogonal space is called “dualiza-
1€S. Hing prop y tion” y=1'[LOHH_1x of the quasilattice. The higher-

and has been studied intensively in recent years. The firsé. 4 . .
imensional embedding generates new degrees of freedom in

author dealing with random rhombohedral tilings in three_ - i ; S
dimensions was TaRgvho was interested in diffuse scatter- adgltlon to the ordinary phonons in periodic crystals, denoted
“phasons.”

ing and phason elastic constants. Strandbuoaiculated the . Do . . L .
configurational entropy. The state of the art of random tilings The icosahedral quasilattice lifted into higher-dimensional

was reviewed by Henle$Ebinger studied random tilings at Epag_:e rl;orms afthre,(’a—dlrp\(lavngpna}l hyp?rlszu_rrfﬁceﬁ called “de-
infinite temperatures. Dotera and Steinh&idtroduced the f ruun]:l ypersurtace O:j einngia roo h el ype_rshur-
concept of sheet magnetization as an order parameter to déce uctuates around an average nyperp ) =ho
scribe the randomness. Interest in random tilings was re- €globalX- The constant quantity
newed by Kalugin and Kafzhrough the new process of flip

diffusion. This property has been studied by Jasind
Strenseft® at infinite temperature, and by Josébland s called “global phason strain” and describes the deviation
Gahler'! at finite temperatures. Meanwhile for the energeticof the slope of the average hyperplar) from the slope of
interaction of the tiles many different sets of matching rulesthe physical space. In the case of exact icosahedral symmetry

€global- = VH® h(x)=const

exist. . . - the average hyperplane is running parallel to the physical
In the present work we first deal with quantities that allow space and thusgjopar— 0.
to characterize a random tilingsecs. Il and Il). The har- Long-wavelength deviations from the hypersurface are

monic energy measure is then introduced in Sec. IV an@enoted as “phason fluctuations” and are described in a con-
compared with other energy measures. In Sec. V we shorthinyum picture by a phason strain tensor

describe the construction of random tilings. The possibility

of a random tiling equilibrium phase transition and how it e(x): =V @h(x).

can be detected is studied in Sec. VI. Results for the special

harmonic energy measure are presented in Sec. VIII. ThAccording to Henley? the fluctuations are governed by a
thermodynamic functions, the possiblility of a phase transifree energy depending quadratically on the phason strain:
tion and self-diffusion are treated in Sec. VIII A, followed by
the structure functions and vertex statistics in Sec. VIl B. _ 3 T
Conclusions are drawn in Sec. IX. F_f d*x tracde (x)@ £(X) ).
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3. Sheet magnetization

The frequency of the simpleton is 23.61% in the ideal
rhombohedra tiling. The simpletons are arranged in two-
dimensional layers perpendicular to the twofold symmetry
axis. Due to the two possibilities to pack the rhombohedra
into the simpleton there are two positions for the internal
) . lattice point. The positions may be called “up” and “down”
FIG. 1. Simpleton flip. and attributed a spin valug= =19 In the ideal rhombohe-
dra tiling all the spins in a certain layer carry the valug or

1
X= $<ND>

The present work deals with the three-dimensional Ammann=1 which permits the definition of a sheet magnetization of

Kramer-Penrose tiling and its randomizations. This tilingvalue 1 using a proper normalization. In a random tiling the

consists of two different elementary cells, the “oblate” and sheets also exist, but the magnetization is reduced since the

“prolate” rhombohedron. Both of them appear in ten differ- spins in one layer are not all aligned. The susceptibility is

ent orientations. The six rationally linearly independentgiven by

unit edge vectors t, may be defined ast,

= (2I5)(coma,sima,}) («=0,...,4) andts=(0,0,1). M2 M2

The atomic hypersurface is a rhombic triacontahedron of NZD Np '

icosahedral symmetry. The tiling exhibits, among others, a

vertex representing lattice points where two prolate and twd\p is the number of the dodecahedra and therefore the num-

oblate rhombohedra meet. It is denoted “simpleton vertex.”ber of the “spins™ in the patch. This equation replaces the

The surface of the cells which touch this vertex is a rhombidnore cumbersome definition used in Ref. 6.

dodecahedron. Two possibilities exist how to fill the dodeca-

hedron with tiles. The exchange of one configuration by the IV. ENERGY MEASURES

other is a “flip.” The lattice point jumps a distance which is "

0.650 of the edge length of the rhombohedfzg. 1). Any A. Models of stability

nonordered space filling arrangement of rhombohedra with- Several models currently exist that try to explain the sta-

out gaps or overlaps is called a “random tiling.” bility of quasicrystals. In the deterministic energy model the
internal energyJ represents the thermodynamically stabiliz-

ing factor. Microscopic forces lead to matching rdfesr

IIl. RANDOM TILING CHARACTERIZATION overlapping cluster energi®s™® that favor an ideal quasi-
crystalline tiling. In the nondeterministic entropic model sta-
1. Variance bilized by the entropys no matching rules exist but the cells

oOf the tiling do not leave any gaps and do not overlap. This is
the random tiling model. In between is the semientropic
model which is described by a free energy with contributions
from internal energy and entropy:

A random tiling is characterized by the mean square d
viation of the point distribution from the center of mass in
orthogonal space. The variance is defined by

1 N
Q= lim NE

N—oo V]

N 2

1

F(T=U(T)-TYT). (2)
y;——Z Yi
N i=1

The purely energetic model can be regarded as a low-
(1)  temperature limit, the purely entropic model as a high-
temperature limit of the semientropic model.

1 N
= lim — —y|?
im & 2% 1%, Yol*

N— o

j=1

N is the number of quasilattice sites apglis the average of
the position vectory; of all dual quasilattice sites. The big- B. Properties of energy measures
ger the phason fluctuations are the larger is the disorder and
therefore the random tiling paramet@r. The value in the
pure entropic random tiling ensembl&-G) amounts to
1.73+0.01°

The ideal quasilattice without any violation of matching
rules represents the ground state of the energy model, taken
atT=0. At finite temperatures thermally activated flips exist,
mediating the transition between neighboring states. The
transition probability is given by the Boltzmann factor,

2. Vertex frequency which depends on the energy measure chosen.

The lattice points of a quasicrystal are characterized by Here we deal with the canonical random tiling ensemble.
their local environment. The number of rhombohedra adjaAll configurations of the ensemble have the same volume
cent to a lattice point in an icosahedral quasilattice variegnd the same number of vertices due to a constant average
from 4 to 20, the number of edges from 4 to 12. There are 24lope of the de Bruijn hypersurface. The internal energy
“canonical” or “allowed” vertices?? but 5450 vertices may U(T) is the ensemble averagé=(E) of the instantaneous
occur in a random tiling. In the three-dimensional rhombo-energyE. The specific hea€,(T) is derived from the vari-
hedra tiling flips are possible which only change the fre-ance of the occupied energy levels by the fluctuation-
quency of vertices without introducing forbidden ones. Thisdissipation theorem
is in contrast to the Penrose tiling in two dimensions. If the U
degree of randomization has reached a certain level the num- ((5E)2>=<E2>—<E)Z= kBTZC\,z kBT2

ber of forbidden vertices is going to rise rapidly. aT”
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The temperature dependence of the entropy dersity) distances of the dual quasilattice sites from their center of
(precisely: entropy per quasilattice site where large lettersnass. Up to a factoN it is equal to the variance in the
indicate total quantities, and small letters denote a quantitprthogonal spacésee Sec. Il L The precise definition of
per vertex. For periodic approximants with rhombohedralthe energy of the configuratiosm is

cells the number of cells and vertices is identidgsligiven by

the thermodynamical integration of the specific heatper

vertex: E“W=C

N

> |y

=1

N
1
IR

cy(T") N
s(T)=sV(T)+f dT’ = +5sg. (3) _le

1 N 2
(0)_ — (0)

The volume contributiors,(T) vanishes in our case. The The index 0O denotes the ideal reference configuratidis
ground state entropy isy:=s(T=0), and atfT—« we are  an arbitrary normalization constant.

in the limit of the pure random tiling model with the con-  This energy measure is called tharmonic energy mea-
figuration entropys(T=w=)=:s,,. The temperature varia- sure The variance for the ideal reference configuration 0 is
tions ofu, s, andc, depend on the energy measure, but notsmaller than the variances for the overwhelming majority of
S, . If one is interested only in the configuration entrapy, the random tiling configurationa. But there is a tiny mi-
then the specific choice of the energy measure has no physiority of configurations with a variance smaller than the
cal relevance if the first three of the following four condi- value of the ideal tiling. Their atomic hypersurfaces are

4

tions are fulfilled. closer to a sphere than the triacontahedron. Such configura-
(1) The energy of any configuration is unique. tions may play a role at very low temperatures. To avoid
(2) The quasiperiodic reference tiling is a ground state. energies less than the energy of the ideal tiling we have taken
(3) The energy measure is limited from above. the absolute value in E¢4). For zero global phason strain in
(4) The entropy of the ground state vanishes or is easy tan ideal tiling this energy measure is not degenerate and thus

calculate. the second condition is obeyed. But for periodic approxi-

The first condition requires an exact law to determine themants theN possibilities (N: number of lattice poinisto
energy of any microstate. The energy of a fixed microstatehose the origin of the unit cell yield a ground state entropy
must not depend on how it is generated. Two configurations,=In N/N per lattice point. It is obvious that vanishes in
that differ only by a rigid translation have to be energeticallythe thermodynamic limit. Strandbutbas introduced a simi-
identical. lar energy measure called tiggadratic energy measure

Especially global energy measures are endangered to vio-
late the second condition and to render the quasiperiodic N
reference state unstable &t=0 (see below for the “qua- E(“)IZ |y1(a)_MTria|2- 6)
dratic energy measurg.’ The third condition is a require- 1=
ment for the integrability oty (T)/T as a function ofT. If  But it was taken relative td,, the initial center of mass
the energy measure is not limited, uncontrolled fluctuationsf the triacontahedron in the orthogonal space and not rela-
of the energy in the high-temperature limit may exist. If theytive to the instantanous center of mass and therefore does not
vary stronger than quadratic wifh then fulfil the criterium of finiteness of the energy meastard
condition. Actually M 1,;,=0 was set to zero. Without fixed

((5E)?) boundaries of the system the whole distribution of the dual

T2 quasilattice points in the orthogonal space may drift and

therefore yield a systematic contribution to the energy and is

diverges and with ity asT— . therefore unphysical. In the harmonic energy model this

The fourth condition is recommended for practical pur-problem has been resolved since now the energy is based on
poses. The ground state entragyrepresents the number of the difference to the center of mass.
states energetically equivalent to the quasiperiodic ground An example of a locally defined energy measure is the
state. Since it is often complicated to calculate the groun@ne that counts the violations of the alternation condition.
state entropy it is useful to choose an energy measure whefiéhis condition requires that along a stack of rhombohedra
Sp vanishes or is easy to deduce. An example of a complitwo rhombohedra of the same type and orientation do not
cated case of nonvanishing contributisp has been pre- occur subsequently. This energy measure was used by Dot-
sented by Baake and Josépfor a two-dimensional octago- era and SteinharBitand Galer!! Other examples are the
nal quasicrystal. The locally defined energy measure is 0 fofsimple energy model” which assigns the same energy to
the canonical vertices but positive for forbidden vertices andeach forbidden vertex, the “cluster energy model” which
depends on the vertex type. Unfortunately there exist conmaximizes the frequency of certain favorite vertices and the
figurations which are not quasiperiodic, although they do not'Tu binger mean-field model.” All three were used by Jo-
exhibit forbidden vertices. As a consequence 44% of the toseph in Ref. 10.
tal entropy are contributed by the ground state. The harmonic energy measure provides an excellent
An example for a globally defined energy measure withmodel for a quasicrystal, due to the following reasoning: the
an easily calculable ground state entropy is the ansatz of energy difference of a single jump is
harmonic oscillator potential in the orthogonal space as ap-
plied in this work. The energy is the sum of the squared AE=E(®*V—E@=CN(|Q«"V-QO]|-]|Q®-O)),
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If the temperature is not too low then the differences arequency does not change at all. The frequency of distances

positive and we get between vertices in neighboring rhombohedra may change.
(@t D) @) Since all distances between nearest neighbor vertices or at-
AE=CN|Q —Q9. oms and also most of the distances between next-nearest

neighbors belong to the first class, the radial distribution
function is nearly unchanged for the short distances. Since
pair interactions are strong between nearest neighbors a
1 A change in potential energy is also expected to be small. Fur-
ylord) (Cﬁq)=ﬁ(y{<““)—y(k“)) =3 thermore, the potential is weak at larger distances, where the

changes of the radial distribution function are stronger.

A=2.753 is the jump distance in units of the rhombohedra

edge length. Sincél is large even for rather small samples
the shift may be neglected. Thus the energy difference
caused by a single jump reads A. Monte Carlo method

_ atl)_ [ _ Simpleton flips directed in their frequency by the Monte
AB=COK™ =9~ 2Yem) - Ay =2C(Yok— Yem) - AY. Carlo method allow the generation of equilibrium configura-
Yek is the midpoint of the connection between the inital andtions at a given temperature. The randomization of the quasi-
final vertex position andy the respective difference vector. lattice is realized by a sequence of such flips which usually
The - represents the scalar productff and the site vector are associated with a change in energy. The flips play the
Yek—Yem- Physically this means that if a vertex jumpis  role of elementary transition paths between different states of
wardsthe center of mass, its energyrisgative The jump is & system in contact with a heat bath.
always accepted, and the randomness is reduced. The sameWe are assuming that the method is ergddilthough
happens for a tangential jump, where the energy difference iis has not yet been proven, there is no hint up to now of the
zero. But if it jumpsaway from the origin, the energyn-  opposite. The method has already been used extensively to
creases the disorder also increases, and the jump is onlgenerate and study equilibrium random tiling quasicrystals.
accepted within the Boltzmann factor. Thus this energyit is the only one known that produces equilibrium en-
model favors an ordered quasicrystal, but zero energy modegmbles.
are allowed. The jump energies are distributed continuously A simpleton flip does not generate or destroy tiles, it only
and increase with the distance from the center of mass of thegarranges them. Therefore the frequency of both types of
acceptance domain. In a local energy model the energy dithombohedra in the tiling is remaining constant. The average
ferences are independent of the position and have one fixe@fientation of the hypersurface and the global phason strain

The shift of the center of magé® = 1NN y{*) for a jump
of vertexk is

V. CONSTRUCTION OF RANDOM TILINGS

value if the matching rule is violated. are not changed.
During the Monte Carlo simulation lattice points are se-
C. Pair interactions lected at random. If a simpleton vertex is hit, the energy of

_ ) _ the original and the flipped configuration are compared. If
All energy measures discussed in Sec. IV B contain a cefg,q energy decreases, the flip is always carried out. If
tain kind of arbitrariness since they do not depend on interyt increases. it is performed with a probability of

atomic interactions but on the assignment of an energy PeNsxp(— AE/KST).

alty to randomized lattice configurations. Here we present

test interactions which are motivated by pairwise interactions

between atoms sitting on certain sites of the quasilattice B. Boundary conditions

(called “decoration’). We test whether the energetic equid-  Quasicrystals do not permit periodic boundary conditions.
istribution postulated in the random tiling model is justifi- Hence one has to work with a finite patch of a quasicrystal.
cable. o _ Then there are two possibilities to deal with the surface:
The potential interactions used are the 12-6 Lennardgijther keep it fixed(fixed boundarigsor identify opposite
Jones potential modified by a cutoff function to guarantee &jdes(periodic approximanis
smooth behavior at the cutoff radius, & 4 in units of rhom- In the case of fixed boundaries the surface lattice points
bohedra edggsThe potential energy can be directly cal-  are not allowed to move whereas in approximants all surface
culated from the radial distribution function in the case 0f|attice points are mob”e_ Therefore the Configuration entropy
pair interactions (r): per lattice point with fixed boundaries is smaller than the
entropy of approximants. The configuration entropy of the
©6) approximant, on the other hand, differs only slightly from the
value of the ideal tiling. The frequency of vertices also is not
much different between an ideal quasicrystal and an approx-
The results of the test are presented in Sec. VIII B 1. Itimant tiling. The frequency of the simpleton, however, in
turns out that different random tiling samples do not show gatches with fixed boundaries may grow to up to 30% of the
significant difference in their internal energy The reason is  bulk vertices. For a discussion of the entropy dependence on
the following: The distances between the vertices or atomsyoundary conditions see Ref. 18.
if the quasicrystal is decorated, can be subdivided into two Periodic approximants show matching rule violations al-
classes. The distances within a rhombohedron, on its facesgady in the ground state. They exhibit a periodic superstruc-
and along its edges are only permuted, therefore their freture and for very small samples a remarkable deviation of the

u= ZCO 47r2g(r)v(r).
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vertex frequencies. The intrinsic global phason strain 5
changes the flip diffusion properties at low temperatures as i ss784
the ground state phasons generate zero energy modes. The = [ {5336 .
sheet magnetizatiofsee Sec. Il Bin the case of a cubic 160 - 2547460 . 1
approximant is useful only for the three twofold directions 14+ . 136 L
parallel to the cubic cell axis. The acceptance region is no 4, | :
longer homogeneously filled but has a lattice structure. g il Q{}
2

VI. RANDOM TILING TRANSITION AND STRUCTURE 08¢ f‘fsl(

FUNCTIONS 06 1 £

. " . 04 r
Signals for a phase transition can be obtained from ther- Pl

modynamic functions likeu, cy, ands. In a plot of the 0zt o
specific heat,, vs temperaturd for different sample sizes O “f’ 10 100 1000 10000
cy should diverge in the case of a second order phase tran- T

sition.
FIG. 2. Internal energy for the harmonic energy model. The

. sizes of the samples are indicated by the number of quasilattice
The Binder order parameter

points.
The Binder order paramet@B™)(T) for a given sample
sizeN and temperatur@ is defined by gaps between the sizes have been carried out with fivefold
approximants with 890 and 1440 lattice points. The influence
MM (T) of the boundary condition has been analyzed with finite

BV(T):=1— patches containing 4403 lattice points and 3507 cells. The

3MMN(T))?’ ; A " ;

influence of the initial conditions has been checked by using
whereM®(T) andM{V(T) are the second and fourth mo- ideal quasicrystals or nonequilibrium random tiling samples
ment as starting points. Both samples types lead to the same en-
semble averages if equilibrated correctly.

MM(T) = f du(p() (T

VIIl. RESULTS
of the probabilityp(w) of a microstate of the sheet magne- A. Thermodynamic functions
tization u belonging to a macrostate with sheet magnetiza- B
tion M. The Binder order paramet&™N)(T) is plotted as a 1. Internal energy, specific heat, entropy
function of T and yields a set of curves parametrizediby The internal energy grows monotonously, and a clear

A unigque intersection point of the curves points to a secon@aturation becomes visibl€ig. 2). The saturation value de-
order phase transition and yields the transition temperaturepends on the size of the sample. The limit value can be
derived from limits of the varianceQ(T=)=1.73+0.01
VII. SIMULATION PROCESS AND MODELS STUDIED (Ref. 2 leads tou between 1.97 and 2.05. The specific heat

Thermodynamical quantities are sampled by storin theirc’hows an anomaly typical for few-level systems. It has an
y ical q np y 9 additional bump above the maximu(fig. 3). Such a behav-
values at regular intervals of lengfit during the simulation.

Data of microconfiqurations are stored every 1080 ior is known for example for three-level systems with suffi-
guratio ) - y r ciently separated levels. We have mapped the distribution of
Monte Carlo step. An initial configuratiofe.g., an ideal

Ammann-Kramer-Penrose approximanias _equilibrated the energy levels fol =« assuming equidistribution of the
over a typical thermalization time of $@o 10* steps before

the real simulation was started. The thermalization time was 0%22 [
chosen according to the saturation behavior of the energy, o007 | -
for example. At low temperatures longer equilibration and ~ 0.065 m‘}
simulation times and sampling intervals were used. The %% é&ﬁﬁ%
length At was checked by the decay of the autocorrelation 0.05 | s, e
functions. For high temperatureg was set typically about 00451 X ’62&
50 Monte Carlo moves per lattice point, while for lower \50%2‘5‘: i em 43784
temperatures 200 moves were taken due to temporal correla: g3 | -+ A * 2440
tions. The entire duration of a simulation run at given tem- o025} » * - . o
perature typically has been about 250080 to 30000 At o%?g =t ff b
simulation steps. 00117, .5 ey
0.005 | x&g P )
A. System sizes and interaction types e 1 10 100 1000 10000

For the simulations we have prepared cubic approximants T

with 136, 576, 2440, 10336, and 43784 points. These corre- FIG. 3. Specific heat of the harmonic energy model. The sizes of
spond to generation=3 to 7. Further simulations to fill the the samples are indicated by the number of quasilattice points.



PRB 58 PROPERTIES OF RANDOM TILINGS IN THREE DIMENSIONS 8343
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02| ; M«w % < ] s |
0.18 1 DR %
] + % « x x
0.16 | gt > o XX
g K L x % . x X
014 | P | o8 5 e o
= i E v
So12¢ : ﬁif 8 = E‘;‘*xwxw**
01| A . 04| -
B « 43784 s s a
0.08 - 5 o 10336 1 flwm o o000
? S 2ddo = 43784 .,
0.06 | 3 : o 10336 " .. . s .
A 5 oz | 10k
0.04 | .- & X « 576
0.02 | J’" . 136
Y . . . ‘ 0 : - s .
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000

FIG. 4. Configurational entropy of the harmonic energy model.

T

T

FIG. 5. Sheet magnetization of the harmonic energy model. The

The sizes of the samples are indicated by the number of quasilattictizes of the samples are indicated by the number of quasilattice
points. points.

occupancy. No indication of discrete energy levels wadions, it is not clear whether the internal energy saturates
found, only an asymmetry of the distribution with a smallersince the energy measure is again unlimited. The decay of
slope at higher energies could be observed. There are othtre specific heat is slower which is also a consequence of the
energy measur&swhich exhibit no visible asymmetry in the energy measure. The entropy at very large temperatures ap-
energy distribution and no bump in the specific heat. Theroaches.,~0.2621-0.015.
asymmetry, however, is in our opinion not a clear explana-
tion for the bump. 2. Simpleton magnetization, simpleton susceptibility, Binder

The value of the maximum dfy, is not significantly de- order parameter

pendent on sample size. The ground state entropy vanishes The temperature dependence of the energy fluctuations
for largeN. The increase is.. is caused only by the growing and the specific heat do not clearly rule out a phase transi-
width of maximum ofcy (Fig. 4). The entropy values at tion, even if there is not a divergence of the maximuncpf
T=co are listed in Table I. Since no divergence occurs WithThe reason may be that the intrinsic divergence of the spe-
increasing sample size, we conclude that there is no secongfic heat with sample size, if any, is very weak. For further
order phase transition. insight we calculated the sheet magnetizatibrand the sus-
Further simulations with fixed boundaries and the cubicceptibility y since the latter may show a much more pro-
energy measure show that the internal energy also saturatggunced divergence behavior.
although the energy measure is unlimit€the cubic energy The magnetization saturates at highand the minimum
measure is defined as the quadratic energy me@gar€5)],  value decreases with sia€ig. 5. At higher temperatures
except that the exponent 2 is replaced byThe entropy at  petweenT=3 and 10 it increases again. We attribute this
very large temperature approaches.~0.1194:0.015, pehavior to the finite size of the samples. The value of the
lower than the value for periodic boundary conditions. Themaximum of the susceptibility grows almost linearly with
reason for both observations are the fixed boundaries whicthe generatiom and moves to lowef (Fig. 6). It is not

reduce the number of available configurations. If the quagertain that the relation,.(n)=(n—ny) is valid for n>7. If
dratic energy measure is used with periodic boundary condi-

TABLE I. Some thermodynamic parameters for the harmonic L
interaction model with periodic boundary conditions. The first col- 4
umn provides the generation for cubic approximants, the second 08 | .
column the number of lattice points, and the following columns list . %
the entropys., and the varianc&(T=o). The rows “890” and -%J
“1440” denote pentagonal approximants. _ 06 DD &
i~ "o A = 43784
n Size Sw Q(T=x) o4l . °F T 1036 ]
a e x 576
3 136 0.1816878 1.4750.015 Lo xS ©o1%
4 576 0.2032964 1.560.01 ozt I el 1
890 0.2086351 1.660.02 %J e
1440 0.2076728 1.6150.02 0 it e e 15T S e .
5 2440 0.2114427 1.6350.01 01 1 10 100 1000 10000
6 10336 0.2349887 1.6750.01 T
7 43784 0.2367582 1.7600.01 FIG. 6. Susceptibility of the sheet magnetization of the har-
o Limit 0.24+0.01 1.73-0.01 monic energy model. The sizes of the samples are indicated by the

number of quasilattice points.
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0.67

0.668 | = 43784
= 210336
e « 2440
o « 576
90.666 | - 136
©
Qo
<
T
S0.664 |
[
©
£
m -

0.662 | -

0.66 . . L Y - . . .

0 0.2 0.4 0.6 0.8 1 0 1 2 3 4

T T

FIG. 7. Binder order parameter for the sheet magnetization of FIG. 8. Self-diffusion coefficient of the harmonic energy model.
the harmonic energy model. The sizes of the samples are indicatethe sizes of the samples are indicated by the number of quasilattice
by the number of quasilattice points and the generation parametegoints.

n.
change of the slope in case of the energy measure with the

yes, this would be a slow divergendenore precisely: a_lternation condition which_turns. outto be a phgs_e_ transition
Ymay(N) is about proportional to3/N whereN is the number since pther response fupctlons I|k¢ the susceptibility and the
of E’;\ttice cells andr= (54 1)/2]. specific heat definitely yielded a divergence at the same tem-
perature.
Last, there is an explanation which comes from the fact
that the number of flippable lattice poirtsumber of simple-

The Binder order parameter clearly shows that there is n
intersection pointFig. 7) and therefore no phase transition at

ks )
finite temperatures takes place. The trenB@f(T) changes tons changes with temperature. We can distinguish four
atn=>5, similar to the magnetization behavior. For matChmgrgnges

rules energy models a phase transition between the locke (1) The number of simpletons is about 23% in the range
phase, where the matching rules are obeyed, and the u§-<.|_<1
locked phase, which is a random tiling, have been predicte \(2)~In.the range ET=10 we find a nearly logarithmic

by Henley and confirmed by Dotera and Steinhardnd decrease of the number of simpletons. The plateald (af)

Géhler!! From the standpoint of this phase transition typeis clearly seen here
the harmonic energy model is neither locked nor unlocked. (3 In the range 1&T=100 the approach of the fre-

The mean value of the Hamiltonian does not correspond to a . .
spontaneous symmetry breaking, rather it is set bypan ngxduency of the simpleton 1o a constant value leads to an in-
ternal field” —V|y; —y|* [see also Eq1)]. An analogy is Cre(i?igg\tg?rielg(?(gl\t/r?esﬁrrfb(r-?f.sim letons is constant at
a ferromagnet which is kept in a constant magnetic field. - P

. . ~17.5%.
Because of the field, there is never a sharp symmetry break- _ . .
ing or a sharp qualitative change in the state; if it is cooled In the approximants the behavior DI(T) is obscured to

down from high temperature, there is always some magnet'—om: q dr(iagre_(le_hby z;ro q insgiﬁnloiiz ;ﬁgﬁggs tl?]’q %‘:{;ﬁ'gt
zation, and aff=0 a particular state determined by the ap-I c;u raizes. bu?ii ?es?s the plateau for small sam ple sizes
plied field is reached. arger sizes, PP P P :

Within the framework of the random tiling model we
have studied only flip diffusion. No other diffusion mecha-
nism, in particular vacancy diffusion, can be introduced in

The mean square displacemét(t) —r(0))?) grows lin-  this way. The latter mechanism is expected to be the domi-
early with timet, indicating a normal diffusion behavior and nant diffusion process at least above 600 °C. This would
allowing the calculation of the diffusion coefficielli. At  mean that quasicrystals behave like crystalline metals and
temperatures lower thaf~1 the extrapolation is difficult alloys. But there are experimental indications that the new
due to large fluctuationsD becomes unmeasurably small mechanism plays a role below 600 °C temperattirsince
below T=0.5. The diffusion coefficient forms a plateau at there is a sharp kink at about 400 °C and a smaller slope of
T~1 for n=4,5,6 in the Arrhenius plofFig. 8). There may the Arrhenius law at low temperatures.
be several reasons for this behavior. Since we have no possibility to relate the experimental

First, there are energy barriers between different tilingtemperature scale and the scale of the Monte Carlo simula-
configurations due to the harmonic energy measure, which aions we do not know where or if the plateau observed in our
low temperatures lower the mobility of lattice points for flips simulations is found in nature. We do not know either if the
of higher energy. In the range of the plateau the probabilityreduction of the number of flippable vertices plays a role in
for a flip only occasionally suffices to overcome the barriersexperiment. If we identify our low temperature part with the
which play no role at high temperatures. low temperature part of experiment, the plateau and the in-

Second, a phase transition may occur which changes thereased diffusion constant at high temperatures are hidden by
slope in the Arrhenius plot. ®der has also observed a the vacancy diffusion. But if we identify our high tempera-

3. Self-diffusion coefficient
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the ideal quasicrystal for a large class of Lennard-Jones-like
0.3 ; . . . potentials, whereas the fluctuations within the random tiling

025 L i ensemble are of the order of 0.1%. Therefore simple pair
' potentials obviously favor energetical equidistribution, i.e.,
_02rf 7 the random tiling model.
s 015 f 7
:o: 01 L 2. Variance, vertex statistics
= 0.05 The alteration of the variance is roughly linear with re-
' N AR spect to the internal energy. This is obvious if one com-
or T T PR pares their definition in Eqg1) and (4). Their temperature
-0.05 L . L L : variation is therefore also similar.
1 2 3 4 5 6 The change in the statistics of the vertices with tempera-
radius ture is much more important as we have seen in the discus-

_ _ ) sion of the diffusion behavior in Sec. VIII A 3. The changes
quasilattice points for an approximant of size-5. The peaks rep-  gymmed up as follows.

resent the values for the ideal tiling; the crosses denote the differ- (1) The simpleton vertex 1452 decreases from 23.61%
ence for the random tiling ak=c°. to 17.5%.

) . (2) Vertex 2 (561) increases from 23.61% to 29% &t
ture part with the low temperature part of experiment, We_ g and then decreases to 26%
would expect that the diffusion behavior in a temperature (3) Vertex 3 (670 decreases.from 23.61%
range lower than currently measured becomes increasinglyo, ’

more complicated. (4) The sum of fre ; -
e . . guencies of vertex 1 and vertex 2 is
The diffusion behavior may also be rather complex if theroughly constant.

guasicrystal _is a random tiling_a_nd a phase transitio_n to the (5) The forbidden verticegall togethef increase from 0%
perfect quasicrystal occurs at finite temperatures. This woulgi0 more then 40%

cause a second kink in the Arrhenius law. But if the transi- (6) The vertex with full icosahedral symmetry and 20 ad-
tion is at zero temperature as in our model, no change Irj'hcent prolate rhombohedtaertex 24, in Ref. 22 also called
slope should be observed ; ;

P ' twelvefold sitg¢ decreases in frequency from 1.2% close to

to less than

extinction.
B. Structure functions We note that the statistical error of the vertices statistic is
1. Radial density function, radial structure factor, largely independent of the sample size and alreadynfor
pair interaction energy =4 very small.

. Vertex 1 is the most important one since it is the only
_ Structure functions have been calculated for samples Qfgrtex that can be flipped. But the change of vertices 2 and 3
sizen=6, containing 10336 lattice points and for the binarys gi50 not negligable, since these two vertices are neigbors
decoration with 54120 atonfSThere are only small changes of vertex 1 and are generated or destroyed by a flip. Since the
in the partial rz_;1d|al density functiog(r) of the binary tiling.  {otg frequency of 1 and 2 is roughly constant, but the fre-
The largest differences of about 12% occur for bonds bequency of vertex 3 decreases with increasing temperature,

tween two large atoms, but they are the least significant onegjs further contributes to a reduction of the diffusion con-
for stability due to their small number. The energetically siant described in Sec. VIII A 3.

most important nearest-neighbor bonds change less in all
cases, since a large portion of them liwei¢hin the rhombo-
hedra and thus is only transferred to another place by a flip,
but the frequency itself does not change. The differences we Diffraction patternsBragg scattering without the diffuse
observe in nonequi”brium random t|||ngs are Somewhatpart characteristic for random tiling*lave been calculated
larger, but still very small. Figure 9 shows the radial distri- for a sample of size=>5, containing 2440 lattice points. The
bution function for the monatomic sampleertices occupied ~analysis has been carried out for several temperatures up to
only) of sizen=5. The maxima are the different atom shells, infinity for planes perpendicular to two-, three-, and fivefold
the crosses denote the Changes for a random t|||ng' at direction. The intensities are Only Weakly dependent on tem-
=w. It is obvious that the changes at small distances ar@erature. The reason is that acceptance domain acts as a fil-
small. tering function which changes only weakly with temperature.

The radial structure factdr(k), the Fourier-transform of The result is consistent with Tang’s observation of limited
g(r), shows a trend similar to the radial density function.Phason fluctuations in three dimensidns.

Due the smallness of the samples there are rather large finite
size effects which prevent quantitative comparison.

We further observe a very small dependence of the pair
energy functior{see Eq.6)] on size andl due to the rela- We have studied the properties of the semientropic ran-
tion between the pair energy and the pair distribution func-dom tiling model for the harmonic energy measure. The re-
tion. It is interesting to note that the potential energy of thesults are summarized as follows.
random tiling ensemble is dt=~ about 0.4% lower than for (1) The sheet magnetization decreases to a minimum with

3. Diffraction patterns

IX. CONCLUSIONS
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the temperature and slightly grows to a saturation value. Irtonfiguration. This is due to the rigidness of the cells. Pair
the thermodynamic limit it should vanish without an inter- interactions realize an equidistribution of all configura-
mediate minimum. The susceptibility diverges slowly, thetions—a possible realization of the pure entropic random til-
maximum shifts to smaller temperatures. The Binder ordefng model.
parameter does not exhibit a unique intersection point. This The behavior oty and y obviously depends strongly on
behavior indicates a phase transition already ao. the type of energy measure used. The alternation condition
(2) The self-diffusion coefficient displays a plateau in the seems to work much betﬂér_ maybe as consequence of its
central temperature range indicating energy barriers for cergoser similarity with Ising interaction models in comparison
tain flips due to the harmonic energy measure. On the othggith the harmonic energy measure. However, for the simple
hand there exist correlations between the temperature depegnergy modéf it was also not possible to decide if a phase

dence of the self-diffusion coefficient and the frequencies ofransition occurs, since no divergence of the specific heat
simpletons per lattice point. The Arrhenius plot is deviatingcould be observed.

strongly from that assumed by Kalugin and K&twhere

these authors are plotting a steep increase, we are observing

the plateau. This is due to the fact that there is only one

flippable vertex type in our model and its frequenmyst

decrease. The result is a reduction of the diffusion vehicles, a The authors are very indebted to FranZW&a and Dieter

possibility not taken into account by Kalugin and Katz. Joseph for helpful discussions. Chris Henley has contributed
(3) Radial structure functions depend only weakly on thethe example with the ferromagnet.
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