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Theoretical temperature-electric-field phase diagram for betaine calcium chloride dihydrate
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Theoretical phase diagrams for betaine calcium chloride dihydrate in the presence of an external electric
field are calculated. A phenomenological approach applied earlier by the present adithings.: Condens.
Matter 10, 1803(1998] for the construction of the temperature-pressure phase diagram, which is in agreement
with the experimental diagram, is used. Expressions for thermodynamic potentials of different phases and for
boundaries between these phases are given in an explicit or parametric form. The theoretical temperature-
electric-field phase diagram is plotted and is compared with the experimental diagram.
[S0163-18208)00438-X]

[. INTRODUCTION proach and considering the effect of an electric figgl.
First we construct the phase diagram in dimensionless coef-

BCCD, (CHjg)3sNCH,COO-CaCl-2H,0, is well known ficientsD and A of thermodynamic potentialésee below.
for its sequence of incommensurdt€) and many commen- Assuming a linear dependence DfandA on T andP, we
surate Cpy) phases. The experimental temperaturethen construct th&-E phase diagram @&=0 and compare
(T)-electric-field €,) phase diagram was determined re-it with the experimental diagrah(Fig. 1).
cently at different values of pressur@ from dielectric
measurements It is shown schematically in Fig. 1 foP Il. THERMODYNAMIC POTENTIALS

=0. The main specific feature of this diagram is that the Expressions for thermodynamic potentials of all possible

regions of existence of commensurate phases, which havepf'hases in BCCD have been derived in Ref. 8. Here we use
spontaneous polarizatioR, (along the field directionin-  he same notations as in Ref. 8. The potential of@Ghand
crease a&, grows. Thes&,, phases wittP,#0 are char- ¢ phases has the form

acterized by the dimensionless wave numberq,,,=m/I
=2/7,2/9,2/11,0/1; theCy, phase is the low-temperature ‘I’c=aP§+ %BP?,— P,Ey, (2.0
phase withg=0. ) o
Several research groups have investigated the influence $fh€re Py is a homogeneous component of a polarization
EY in BQCD and in partially and fully deuterated _BC@D7. vector, prov!dtoeld thedext(tar}al field is assumed to be homoge-
Dielectric*®and pyroelectrit* methods and elastic neutron "N€0US, I.€., InGependen _ _ o
scattering~ were used and similar results for the extension FOr the IC phase we use a single harmonic approximation:
of the polarC,,,, phases were obtained. It was also observed _ *
that the fieldE, can induce newC,,, phases with large Py(2)=p+v2p cosqc™z+y), 22
values. The experimental-E phase diagram was con- where the amplitude, phasey, and wave numbeq are
structed in Ref. 6 for the values 0, 2, and 4 kVchof the  independent ofz, while p is induced by the external field

field E, . Ey. Then the potential of the IC phase has the form

If the standard settingbc for the space grourﬁ)%ﬁ is
used, then the space groups &emafor the C phase and Q= a(q)p?+ Bp*+ap?®+ § pp*+4Bp°p*—pE,,
Pn2,a (Cgv) for the Cy;; phase. The possible space groups (2.3

of otherC,,, phases are tabulated in Ref. 8. The wave vectO(Nhere
of the IC phase ik,=qc*. Note, that forE,#0 the sym-
metry of the initialC andCy; phases becomes identical, so 30

that both phases merge into o@ephase. a0 L rors i ™,

The main idea of the phenomenological approach as diS@ -“w ! A
cussed in Ref. 8 is the following. Two different approaches 3 0 " .75 27 4 o
for the descri_ption of the IC pha_se transi_tions are applied byd o} *'«;CIIL.,., -,_....\._} S s s ,,,_.\
us. One provides thermodynamic potentials for@and IC M ol s feld .
phases, the other gives the potentials for@hg and the IC FE- % _~ o
phases. Both approaches have to provide precisely the sam -20p "-.;; R k i
expressions for the IC phase potential. Thus the thermody- .
namic potentials for all possible phases are obtained with 50 100 T(K)

self-consistent coefficients.
The aim of this paper is to construct theoretical phase FIG. 1. ExperimentalT-E, phase diagram for BCCD from
diagrams for BCCD, starting from the phenomenological apRef. 1.
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a(q)=a—

and it is necessary to assurge>0, x>0, and also5>0.
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59°+ kq* (2.9

The form of the potentials of th€,,,;; phases depends on th€l value considered, i.e., whetheror | is even(+) or odd

(-):

~ 2
D p, = a(Om_p,)RP+ BR*—ayR?'cos 2¢—bsu,R'cos| ¢+ csuz,— by P,R'sin | o+, Pi+ aPy+ §ﬂP;‘,

+4BR?P;—PE,,

(2.9

- 2
O =a(Um_p )RZ+ BR*—ayR?cos 2¢—bguy,R'sin | o+ cous, + aP; + gﬂP§+4ﬁR2P§— P,E,, (2.6

~ 2
Do 1 =a(Om, ) )R*+ BR*—ayR?'cos 2¢—b,PyR'cosl o —byuy R'sin | o+ c,ul,+ aPj+ §ﬂp;‘+ 4BR?P;—P\E, .

2.7

Here R and ¢ are polar coordinates of a two-componentwhere

order parameter. We assume that only one external f6yce

iS nonzero.

[ll. PARTIALLY MINIMIZED POTENTIALS

We now minimize the potentials given in the previous
section with respect to those variables, for which the explicit

ah ="ay+b2/8cs—b2/8cy,
ay = ay — bg/8es, (3.6

ay=ajy—bj/8c,

expressions can be obtained, and thus partially simplify thestor @, , , @, , , and®y, , , respectively. The expres-

potentials. Minimizing potential Eq.2.3) with Eq. (2.4) of
the IC phase with respect g we obtain the equilibrium
values ofq:

(3.1

q%=62k= qé, o= 6%l4k= qu,

where the notationy is introduced, which will be used in
the following. Substituting Eq.3.1) into Egs.(2.3) and(2.4),
we get
a(go)=a—ap. 3.2
Minimizing the potentialg2.5—(2.7) of the C,,;, phases
with respect to the variables,, and P, in Eq. (2.5), u,y in
Eq. (2.6, anduy, in Eq. (2.7) we obtain

P,=(by/2c,)R'sin | ¢,

(3.3
uy,= (ba/2c,)R'sin | .

U,,= (bs/2c5)R'cosl ¢,
U,y=(bg/2c)R'sin | ¢,
Substituting Eq(3.3) into Eqgs.(2.5—(2.7), we get
@, =a(Gn_j,)R*+ BR*~ayR?cos 29+ aP;
2 4 2p2
+ 3 BPy+ABR?PI-PE,, (3.4)
@ 1 =aldm, 1 )R*+ SR~ ayR%cos 2¢
2
—b,P,R'cosl o+ aP]+ §ﬁP§+4ﬂR2P§

- PyEy’

(3.9

sions for the potentials of th@, n, andC,, , phases are
joined in one because of their similar form.

Minimizing the potentialg3.4) with respect top, we ob-
tain for two possible phases andc, of eachC,,, phase the
solutions

cos2p=1, cos2p=-1 (3.7

for ¢, andc,, respectively. The phases andc, are stable
at a;>0 and a5 <0, respectively. Minimizing potential
(3.5 with respect top, we obtain for phase; the solution

(3.8

At E,=0 phasec, is stable atay>0, so that we assume
a3 >0 to be valid in this case. The solution for phaseis
more complicated and we do not use it in the present context.
The point is that aICm+ i phases that have been observed
in experiment are polarR,#0). This is established beyond
doubt for the phases wit/I =2/7, 2/9, 2/11, 2/13see Ref.
1), and 4/15(see Refs. 3 and)4&nd is also evident for 6/23
(see Refs. 3 and 10As a consequence, we shall only con-
sider phase, of theC,, , phases.

By using Egs.(3.7) and(3.8), solutions(3.3) for P; and
uj; take the form

sinle=0, cosle=b,/|b,|.

C1: Up=*(bg/2c5)R!, P,=0,

Cp: Py=+(by/2c))R', u,=0;

| (3.9
Ci: Ugy=0, Cy: Uy=*(bg/2¢e)R’;

Ci: Uy,=0
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for Co_s,» Cm_n_, andCy,_,_ phases, respectively. The In addition, in Ref. 6|ay|R? and|b,|R' have been approxi-

signs = relate to different domains. In all casBs+0 (see mated by a/R* and b.¢R?*, respectively. A constanP
below). Substituting Eq(3.7) into Eqg. (3.4), and Eg.(3.8)  induced byE and the interaction energy & with E have

into Eq. (3.5), we arrive at the expression also been neglected when deriving the potential of the IC
phase(see above Moreover, besides the usual temperature
® 1 = Uyt R2+ BR*— | @y |[R? — [, PyR' + aPJ dependence aof also the coefficiens [Eq. (3.1)] depends on
5 T but with an even strongeF dependencésee Fig. 2a)],
+ = 8P4+ 4BR?P2—P,E,, (3.10  Which has not been taken into account in Ref. 6.
37 ooy Nevertheless, the theoreticdl-E phase diagram con-

where we join the potentials for al,,, phases in one ex- structed in Ref. 6 has some similarity with tfieE diagram

pression, thus lowering the number of expressions to be cor®S Presented here in Fig. 3. Unfortunately, no information

sidered. We have to bear in mind that the coefficiesit:0 can be found in Ref. 6 on the construction of the diagram. If
only fo.r C. , phases, whie forC,, , andC, the phase sequence Bt=0 and the temperature intervals
+ = -+ - =

were taken from the experiment, then a specific choice of the
phased,=0. potentials will only affect the form of the boundaries be-
tween neighboring phases. It is just the form of the phase
IV. SET OF EQUATIONS boundaries that makes the difference between Fig. 12 in Ref.
6 and Fig. 3.

Minimizing now potentialg4.1), (4.2), and(4.3) with re-
spect to the corresponding variables, we obtain the set of
equations that determines equilibrium values of these vari-
gbles:

In the previous section we have patrtially simplified the
expressions for the thermodynamic potentials: Exjl) of
the C=Cy; phase, Eqs(2.3) and(3.2) of the IC phase, and
Eq. (3.10 of the C,,, phases. It is convenient to introduce
dimensionless variables and coefficients which bring thes
potentials into the following form: 8
dpclIPo=—2(A—D?)Py+ s P3—E=0, (4.5

2\ p2 2 4 3
¢c=—(A=D?)Pg+ 2 PG—PoE, (4.2
8
) a¢.C/aP=—2(A—D2)P+§P3+8PR2—E=0,
¢,C:—ARZ+R4—(A—D2)P2+§P4+4R2P2—PE, (4.6)
(4.2 2 2
I IR=2R(— A+ 2R?+4P?)=0, (4.7)
2
=—AR*+R}—(A—D?)P?+ = P} +4R?P?— P|E
P = —ARHRI P+ gPiraRiPI— Ry I /IR =2R | — A+ 2R?+4P2+{ (D — 2>
+{(D— ) ?RE~ (2A) IR - (2B) R, |
(4.3 —I(2A|R|2)'1—5(ZB|R.2)”“P|”=O,
where 4.9

P = ®,, E,—EE,,
C,IC,m/I C,IC,m/I*¥0 y 0 ¢9¢>m,|/aP|=—2(A—D2)P|+ g P|3+8P|R|2_E

Py,pvP,R,Py—(Po,P,R,R|1P|v)Roa (4 4) _{(ZB|R|2)I/2_1R|2}:O (49)
K , K , K 5 _ap—a By solving this set of equationg.5)—(4.8) together with
‘I’o=ﬁ, Eo:E: RO:E’ D=5 A=——, the equations for the boundaries between different phases,
we can construct the phase diagram inEhé\ plane at fixed
K[|yl 1U(1-1) « bg U(1-2) values ofE and give values of the parameteks and B,
Alz—(—) , IE_<_> while the value ofq,,, is known in every case. Only one
2B\ « 2B\ kB paramete®, for m_/I, andm_/l_ and two parameters,

for C, IC, andC,,, phases, respectively. andB, for m. /l_ describe eaclC,, phase and have to be

A somewhat different phenomenological approach for thechosen in such a way as to provide the best agreement be-
description of theC, IC, C,,, phase transition sequence in an tween theoretical and experimental phase diagrams.
applied electric fielde was used earlier in Ref. 6. The as-
sumptionP,(z) =R cosqzis made by the authors of Ref. 6 V. C-IC BOUNDARY
when deriving potentials of th€ hases, which is not . . .
consistent Wi?h F'zhe requirement Trlwla? the polarization has to we co_nS|der the set of equatiols5—(4.7) together VY'th
be independent of the coordinates in thg, phases. Under an equation for the boundary betwe€nand IC phases:
such an assumption the improper polarization, the polariza- bo=dic, (5.1)
tion induced by the external electric fiel] and the interac-
tion of these constant componentshofvith E are neglected. where ¢ and ¢, are taken from Eq94.1) and(4.2).
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FIG. 2. D-A phase diagram for different values Bf (in units of 10°%). (@) E=0, (b) E=5, (c) E=10, (d) E=20, (e) E=30, (f) E
=40, (g) E=50 (see text

It follows from Eg.(4.7) that which can be evidently resolved with respectDd and A.
Substituting Eqgs(5.2) and (5.3) into Eq. (5.1), we arrive at

R2=A/2— 2P2, (5. e equation

-2 2 2p2 2
From Egs.(4.5 and (4.6), excludingR? according to Eq. (24P Pg) ~“(P—Pg)[320P“P5(P+ Pg)

(5.2, we obtain the expressions +48P Py(5P— Po)E— 9E2]=0. (5.4)
4 E 20 E W ider the first rod® = P, of this equation. Substi-
nN2_Tp2_ B 2_p2, = _ We consider irst r Po is equation. Su
A-D 3 Po 2Py’ A+D 3 P 2P’ 5.3 tuting it into Eq.(5.3), we obtain the relation
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where the values oPy, P, andR in this point are also
given.

The line of first-order phase transitions, unlike the line of
second-order phase transitions, has a parametric representa-
tion: it is given by Eq.(5.4) in square brackets. In order to
plot this line in theD-A plane at constarE# 0, we select a
value of P and obtain the corresponding value Bf from
Eq. (5.4). The values oD andA are then obtained from Eq.
(5.3). The C-IC boundary plotted point by point and also by
using formulag5.5—(5.7) is shown in Fig. 2. It is given for
several values of the field. It is also possible to obtain the
explicit expression for the first-orde2-IC phase transition
line, which is asymptotically valid at large values Afand
D, i.e., far from them point in the form

FIG. 2. (Continued.

2
D2=§A+A‘1’2E. (5.5

A=cD?—\2(c—1)E/D, c=(1—2/3) 1~5.45
This is the explicit expression for th@-1C boundary at con- (5.8
stantE#0. This boundary is a line of second-order phase
transitions, since on this boundaRe 0, which follows from

i ) It can also be regarded as the expansion of a more precise
Egs.(5.2 and(5.3) at P=Py. The line(5.5 asymptotically

X expression in a power series i with taking into account
approaches th€;IC4boundaryA=0 at E=0 according to only the first term linear ife. The explicit expression for the
the relationA=E*/D". C-IC boundary atE=0 follows from Eq.(5.8): A=cD?.

The line of second-order phase transitions, as determinegviden“y this can also be obtained from E6&3) and(5.4).
by Eg. (5.5, terminates in the tricritical pointt point),

where it changes to a line of first-order phase transitions. In

order to find the coordinates of thepoint, we substitute the VI. IC- C,;; BOUNDARIES

root P= P into the square brackets of E(.4). As a result

we obtain by using Eq(5.3 We consider the set of equatio@6)—(4.9) together with
an equation for the boundary between the IC abg,
phases:

A=(3E/10%% D?=4A,, Pi=P?=1%iA,, R=0,
(5.6)
dic= b (6.9
where the values oP,, P, andR in this point are also
presented. _

We also find the coordinates of the point at which theWhered,c and ¢y, are determined by Eq#4.2) and (4.3).
tangent to theC-IC boundary is parallel to tha axis in the ~Comparing potentialgd.2) and(4.3), it becomes evident that
D-A plane. We call it then point. Taking the full derivative they differ by the terms in curly brackets. These terms are
of Eq. (5.1) with respect taA, and using Eqs4.5—(4.7) and c_omparatwely smal(see .below and we use this fact to de-
the conditiond D/dA=0, which determines the point, we Ve the ICLCyy; boundaries.

arrive atP2=R2+ P2, It follows from here and from Egs. _ Solutions of Egs.(4.6) and (4.7 for P and R can be
(5.2) and (5.4), that obtained in the form of power series in the fiéld Solutions

of Egs. (4.8) and (4.9) can be obtained assuming that the
- 1 terms in curly brackets are small, and hefeP andR;-R
Amzz(SE/14)2’3, D2— 5.7 are small quantities. Using these solutions we find from Eq.

m_2_5'6"“’ (6.1 the expression for the IG,,, boundary in the form
E} kV/em
30
. (A / ) 4/%%” [C C
10
15 Ic

0 — - .

0 e 100 130 T(K)

FIG. 3. Theoreticall-E phase diagram for BCCD.
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E? -1 HereB,; occurs in a combination witk, which is the reason
(D—Q%M)ZZ[N(A— m” to give the second inequality separately in E6.3). The
second inequality in Eq6.4), which restricts the value &,
E? =1 is the condition of the validity of the expansion®fandR in
+|Bi|A- (A+D?)? } 2(A+D?) powers ofE (see above The expansion is in fact performed
in terms of the quantity on the left side of the inequality.
5 E? o A It follows from Eq. (6.2 that the boundaries between the
X 1+§m +(BiA) 8(A+D?)" IC phase and th€,,, , andC,, , phases B =0) are

6.2 shifted by the fieldE insignificantly, proportionally toE?2.
' The shift of the boundaries between the IC phase and the
The expressions in square brackets in B2 are not Cp, 4 phases B;#0) is proportional toE and depends
expanded in a power seriesinto prevent the appearance of also on the value of the coefficieBj. This shift occurs to
A in the denominators and thus to get the false impressiothe side of the IC phase so that the area of existence of the
that the expansion is invalid at smal values. In the last Cm, n_ phases increases with

summand of Eq(6.2) the bulky terms proportional t&” are The four inequalitieg6.3) and (6.4) determine the range
dropped because they are not used here. In the first and sgg validity of formula (6.2). Actually, when plotting the
ond summand the terms proportional E are taken into  poundary in theD-A phase diagram, we can use the simpli-
account mainly in order to demonstrate the conditions afieq expression for the 1@G,,, boundaries, where the terms

which Eq.(6.2) is valid. _ o proportional toE? are omitted:
The condition of weak anisotropy implies that the terms

in the curly brackets are small as compared to the first term

. - 1
AR? in Eq. (4.3. In the case oE=0 the condition of weak (D—2,)2=(AA) "1+ = (B/A) 2
anisotropy, as it follows from Eq6.2), has the form of two ! ! g A+D?
inequalities: 1
+5(BA)2T : 6.
(AA) IATI<1, (BA) Y 8(A+D?)] 1<1. (6.3 > (BA B2 6.5

The first of these inequalities is the condition of weaknote that the denominator i&/(A+D?) is a small quantity
intrinsic anisotropy, caused by the smaliness of the termhat amplifies the influence of the field, as compared to
|y |R?" with respect to the terna(gmi)R? in Eq. (3.10.  other external forcefsee Eqs(2.5—(2.7)].

The second inequality in E46.3) is connected with the term The ICC,, boundaries plotted by using formul®.5
Ib,|PyR'" in potential(3.10. The role of this term manifests are shown in Fig. 2. The sante values have been used as
itself twice: P, consists of the spontaneo(isiprope) polar-  for the plot of theC-1C boundary. The choice of the param-
ization P4 and the polarizatioPg induced by the fieldE. If etersA, for the C,,, phases and d8, for theC,, ,, phases
Ps is eliminated from the potential &=0, the coefficient 5 jiscussed in Sec. IX. T

a’ is renormalized, i.e., the termd/8(a+4BR?) is added

to it. This additional term must be also comparatively small,

as is just expressed by the second inequality in @Bg). VIl Crp-Crri BOUNDARIES

[Compare with the argument in Ref. 8, where the second
inequality in Eqg.(6.3) was not considered, since the coeffi-
cientb, has no independent meaningeat 0 and the renor-
malized coefficieniay, was considered as an entity without
dividing it into parts]

Pe and hence the terrtb,|PeR' in potential (3.10 is b = bmrne
induced by the fieldE. This term has to be small as com-

pared to the terma(q,)R? in Eq. (3.10. This condition is  Wheré ¢m and ¢y, are taken from Eq(4.3). Using the
determined by the first inequality in same method and under the same approximations as in the

previous section, when the inequalitié&.3) and (6.4) are
(BA) 2 IA"YA+D?) lE<1, E?%(A+D?) 3<1. valid, we obtain the expression for t@&,,-C,+ bound-
(6.4  aries in the form

We consider the set of equatio%8) and (4.9 together
with the equation for the boundaries between diffel@py}
andC,,,+ phases:

(7.9

_1 ) ) 1 ) ) _1( ( E2 ) |-1 ( EZ ) 1"—1
D_E(Qm/|+qm’/|')_E(qm/|+qm7/|f) A A—(AJF—Dz)z —[Ar A—m

|

+[(BA) 72— (B;.A)' 2]

E

2(A+D?) 1

B,

5 E?
T3 AD23

E2 112—1 E2 1"/2—1
A= (A+ 02)2” _{B"(A_ (A+ DZ)ZH

) (7.2

A
8(A+D?)
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When plotting the boundaries in th&-A phase diagram, we can actually use the simplified expression
— 1 2 2 1 2 2 -1
D= 3 (qm/| +qm//|r)_ E(qmll _qm//lf)

X{(AA) "= (ALA) "1+ 1[(BA)2 1 (B,A) 2 HE(A+D?) 1+ F[(BA) "2 (B|/A) T2JA(A+D?) Y
(7.3

instead of Eq(7.2), where terms proportional t2 are ne-  vanishes at the Curie poifft=0, while § determines the
glected, as was done in E¢.5 in comparison with Eq. square of the equilibrium wave numbésee Eq.(3.1)],
(6.2. Note that the boundaries ICsy, IC-Cn» [Eq.  which is also small. Hence the dependence of these coeffi-
(6.5], andC,-C.v;1» [Eq. (7.3)] intersect at a single point, cients onT and P is essentialsee also Ref. 9 The other
as they should. The same is valid for the boundariegoefficientsk,B, a4 ,b, have in general normal magnitudes.
Cm//|/'Cm/| s Cm/|'Cm///|//, and Cm/“/'cm//“n as well. The It is therefore possible to negleCt their dependenCQ' @md
boundaries between differe@,,, phases, plotted according P, regarding them as constants. The dependencanid o
to Eq. (7.3), are given in Fig. 2. The choice of the coeffi- on T andP is supposed to be linear:
cientsA,B, A, B is discussed below in Sec. IX.
In the following, some notes about tke C,,, boundaries o(T,P)=6i+67(T—T;)— 6pP,
are made. AE=0 eachC,,, phase borders thé phase at a
point with the coordinate&=0,D=gq?,. It can border the
Con phase along a line that usually differs insignificantly _
from the Cy1-IC boundary. = ar(Ti=0),
At E#0 and at small values &k the C,,, phase borders where ® is the Curie temperature &=0 andT; is the
the C phase also at one poifthe same as foE=0). This  temperature of th€-IC phase transition @ =0.
point lies on the line of second-order phase transitionic. It follows from Eq. (8.1) and from Eqs.(3.1) and (3.2,
Its coordinates arB =q?2,, andA is determined by Eq5.5).  that
This is valid for values of that satisfyD,<q?, [see Eq.
(5.6)], i.e., if the point is on the right of thepoint. At higher
fieldsE, whenqﬁq,l< D;, theC,,, phase borders th€ phase
along a line that is the shorter the nearer it lies tottpeint. 8.2
At large values ofA(E+#0) theC,,, phase borders theé = | _ ﬁ:K 4
phase also along a line. At higher values of the figldhe 1= @olT=T; P=0= 7, =K
two boundaries of th€,,,;, phase with theC phase(at small
A and at larged) can merge into a single boundary including
the m point. Consequently, th€,,, phase borders the IC 5t
phase at the right and the phase at the left side. At still Qo1 =0f — 2—(Ti—Tm,|), (8.3
higher values of the field th€,,, phase disappears due to K
the shift of theC-IC boundary toward the right with increas- whereT,,, is an average temperature of g, phase under
ing E (see Fig. 2 the condition, that this phase exists in a narrow temperature
We suppose that th€-C,,; boundary does not signifi- interval. It also follows from Eqs(8.1) and(3.1), that
cantly differ from theC-IC boundary and when constructing
the D-A diagram we neglected this difference. Therefore we

A2 —_ A2
do not derive expressions for ti@& C.,, boundaries here. oTd0 T=T, P=0 2k’ ap o T=T,,P=0

a(T,P)Zai-l-aT(T—Ti)—apP, (81)

o
QiZEan:Ti P=0= i

From Egs.(8.1) and(3.1) we find

St 4 Sp

=—5.

(8.9
VIIl. ESTIMATE OF COEFFICIENTS

OF THERMODYNAMIC POTENTIALS For the dielectric permittivityy=dP,/dE, in the C
phase and for the spontaneous polarizatignin the Cgq)q

In order to construct thd-E phase diagram from the phase aE,=0, we obtain from Eq(2.1) the expressions
D-A diagram it is necessary to have information on the mag-

nitude of some coefficients of the thermodynamic potentials. x *=2a, x Yp_o=2a¢(T—-0), P§=3( —a)l4p,

They can be estimated by a comparison of the theoretical and (8.5)

the experimentall-E phase diagrams, since the latter con- P§|T=TC'p=o=3aT(®—Tc)/4,3,

tains a large amount of information. It is also possible for the ] o

evaluation of the coefficients to use additional experimentayvhere T is the temperature of the transition into ti&,

data. We begin by following this second path and give somé@hase. _ -

formulas. For the jump of the specific heat AC
Two coefficients of the thermodynamic potential are=—Td°®ic/dT|r_1 p—o at E,=0 we obtain from Eq.

anomalously small: these awe and 6, see(2.4), sincea (2.3 and, by taking Eq(3.2) into account, the expression
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AC=(Ti/2B)(ar—qf &7)%. (8.6)

Taking the total derivative with respect B of the equa-
tion @= aq, which is valid atT=T,;(P), we obtain as the
result

dTi(P)
dpP

_a'P_qiz‘SP

= .
P=0 at—Q; 5T

(8.7
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B=7x10 P dyntcnP=8x10"° cnP kv 2
(8.16

Another estimate o8 can be obtained by using formula
(8.5 for Ps. Different values ofP¢ are found in the litera-
ture:

P=2.1,2.3, 2.4uCcm 2, (8.17
respectively, in Refs. 1, 14, and 15. Taking value3 ofEq.

Now we make use of experimental data. Some values8.8)], of ® and ot [Eq. (8.12], we find the estimate

which have been given in many papers, are

T,=164 K, T.,=46 K, q;=0.32,
(8.9

p=1.46 gcm3 M=264.2 gmol?,

wherep is the densityM is the molecular weight of BCCD.
Using formula(8.2) for g? and the value ofj; [Eq. (8.8)],
we obtain an estimate

q?= 6,/2k=0.10. (8.9

Using formula(8.4) we find from the temperature depen-

dence ofgq(T) given in Ref. 10 the estimate

S512k=7x10"4 K7L, (8.10

The magnitude ob/2« can be estimated also by using for-

mula (8.3 for q,,,=2/7, the average value df,;=126 K
(Refs. 10 and 1)1 the value ofT; [Eq. (8.8)], and the value
g;=0.33, which follows from the diagram af,(T) given in
Ref. 10. We obtain the same estimate as in BdL0.
Data of the dielectric constant are given in Ref. 12:
ep(T)—€,=CIl(T-Ty), C=1400K, T,=130K.
(8.11

Using formula(8.5) for y we get from Eq(8.11)
ar=2m/C=45x10 3Kl ©=T,=130 K.
(8.12

Using formula(8.1) for «;, and values from Eq8.8) of
T;, together with values of-; and ® from Eg. (8.12, we
obtain

a;=0.15. (8.13

We now have to find estimates fer and 3, which are
very important since they determine the valueEgf{see Eq.
(4.4)]. Using formula(8.2) for «;, the valueg8.8) of g; and
(8.13 of «;, we find

x=15. (8.149

For the jump of the specific heat the value

ACp=12.0 JmoltK1=0.66x10f dyncm 2K !
(8.19

is given in Ref. 13. The last value &C; is obtained by
using value§ Eq. (8.8)] of p and M. Using formula(8.6),
values ofT; andq; [Eq. (8.8)], of 61/2« [Eqg. (8.10], of at
[Eq. (8.12], and ofx [Eq. (8.14], we arrive at

B=8x10"8 7x10°8 6x108cnPkv?

(8.18

which are markedly inconsistent with E(R.16).
For E, [see Eq(4.4)], using values ok [Eq. (8.14] and
of B[Eq. (8.16 or Eq.(8.18], we obtain, respectively,

(8.19

Unfortunately no experimental data on the dependence of
Jo on P nearT=T, are known. Therefore no estimate of
dp 2k using Eq.(8.4) is possible. We might try to use Eq.
(8.7). The values

Eo=7X10°, 2x10°kvVcm™L

dT;

- =1
ap . 0.176 K MPa

=0.177,
0

(8.20

are given in tables in Refs. 16—18. However, as the estimates
given below will show, the terms in the numerator and de-
nominator of Eq(8.7) are close in magnitude and hence will
cancel. Therefore we cannot use E@3.7) and (8.20 for
estimates of the coefficients.

Now we consider the theoretical phase diagram con-
structed in Ref. 8, which gives good chances for estimates of
the coefficients. Using Eq$4.4), (8.1, (3.1), and(8.2) we
obtain

8 6
2 T _ P
D_qi 2K(TI T) 2KP,
(8.21
A= 2T _pq2 2T (T-T)+| 222 2% b
“ e i) K PP

The coordinates of thiepoint(T=T;, P=0) on theD-A
diagram were chosen in agreement with the vajye0.33
[Ref. 10, compare with Eq8.8)]. TheD andA coordinates
of thec point(T=T¢, P=0) allow us by using Eq(8.2]) to
obtain the estimates

5112k=7TX10 4 K™, ar/k=2x10"4K™},
(8.22

where the first estimate agrees with E§.10. From Eq.
(8.22 and from the value ofr [Eq. (8.12] we obtain[com-
pare with Eq.(8.14)]:
Kk=25. (8.23
The coordinates of thd point in the experimental-P
diagram areT=T,, P=P4=360 MPa! The D andA coor-
dinates of thed point in theD-A phase diagrafnallow the
following estimates by using Ed8.21):
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Spl2k=3x10* MPa!, ap/k=6x10"° MPa L (C-IC, Cy5Cyse) do not exist, because they cannot be mea-
(8.24 sured by dielectric methods. The most essential difference
between Figs. 1 and 3 is a triple point in Fig. 3, where three
phase<C5, C,9, andC,; meet, while in Fig. 1 one more
phase, the nature of which is not establisligge, however,
Ref. 1 for a discussion borders at the same point. In gen-

Finally, from a comparison of the slope of tl@ phase
boundary neaif =T in the experimenta(Fig. 1) and the
theoretical phase diagran(iBig. 3) the estimate

Eo=6X10° kV cm™! (8.25 eral, hoyvever, the agreement with the experimefitaE
phase diagram appears acceptable.
can be derivedcompare with the estimates of E@.19]. In conclusion, we enumerate again all approximations and
For the construction of th&-E diagram in Fig. 3 the value assumptions made, when constructing the theorefical
of Eq. (8.25 is used'® and T-P phase diagrams. Only two coefficients of thermo-
dynamic potentials were assumed to depend linearly on tem-
IX. THEORETICAL D-A AND T-E PHASE DIAGRAMS perature; all other coefficients were considered as constant.

he di . ¢ Ei h The single-harmonic approximation was used for the IC
We now proceed to the discussion of Fig. 2, where gypa5amore exactly, the zeroth and the first harmonics were
sequence of field& was chosen for the presentation. The .qnsiderey If at least the second harmonic were taken into

H — — 6
selected values of the fiele=(0,5,10,20,30,40,503 10 account, the results can be improved, especially at higher
according to Eq94.4) and(8.25 correspond to values of the field strength<E.

field E,=(0,3,6,12,18,24,30§ 10° V/cm. On constructing
the boundaries we have chosen the following values of con
stants:

The weak-anisotropy condition was used for t@g
phases; both the intrinsic anisotropy and the anisotropy in-
duced by the external electric field were assumed to be weak.
This condition is the better fulfilled, the smaller are the con-
Aa=30, As=40, Ag=60, A7=70, ®.1 stantsA,;, B,, and 1f and the variable& andE. In Figs. 2
respectively, fol/m=1/4, 1/5, 1/6, and 1/7, and and 3 this condition is fairly well fulfilled.
The distinction between thé-1C andC,,,-C boundaries
B7=180, A;=0, Bg=160, Ag=0, By;=170, was not taken into account. However, this distinction can be
A0 B.e320. A=0 (92 important and should be considered in a more elaborate ap-
n== =1 v proach. More precise values of the constaitsand B, and
respectively, fol/m=2/7, 2/9, 2/11, and 4/15. These values also of the slope of thd axis with respect to th® axis
have been determined to obtain an optimum agreement behould improve the agreement and may be the object of fu-
tween experimental and theoreticatE phase diagrams. ture research.
Note that the values in Ed9.1) are correct up to the first Despite all of these approximations and assumptions we
digit, the values in E¢(9.2) up to the second digit, while the succeeded in calculating the theoretitaE phase diagram
valuesA; g 11 15are taken equal to zero, since a selection ofin fairly good agreement with the experimental data. The
specific values £ 0) of these coefficients would exceed the phenomenological approach used in this paper to construct
accuracy of the experimeht. the T-E phase diagram and tf#e P diagram in Ref. 8 has a
The position and inclination of th& axis in Fig. 2 are larger range of validity than demonstrated here for BCCD. It
also chosen for a good agreement with the experimental dagan be applied to any crystal with a Lifshitz point in the
[tan(TD)=0.035, see also Ref. 8, where t&D)=0.038. phase diagram, e.g., to thiourea.
We have transferred points of intersection between phase
boundaries and th€ axis at different values d&, from Fig.
2 to construct Fig. 3. Figure 3 is plotted at the same scale as
Fig. 1 for convenience of comparison. Note that in Fig. 1, One of the author¢D.G.S) gratefully acknowledges the
unlike Fig. 3, the boundaries between nonpolar phaseBnancial support by the Deutsche Forschungsgemeinschatft.
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