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Spinodal decomposition and dislocation lines in thin films and bulk materials
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Phase separation of alloys around dislocation lines due to edge- and screw-type dislocations is studied using
a continuum model. The dependence of the lattice constant, bulk modulus, and shear modulus on composition
is shown to determine the distribution of the alloy components in the stress fields of the dislocations. Numeri-
cal simulation results are also presented for single dislocation lines, arrays of dislocations, and random distri-
butions of dislocations in bulk mixtures in a context relevant to quench-work-age thermomechanical treatment
of alloys. The effects of dislocations on the phase separation occurring at the surface of growing films is also
discussed, showing that misfit dislocations can create a compositionally patterned layer. The equilibrium
position of misfit dislocations is also calculated for compositionally modulated overlayers, and it is shown that
the critical thickness for the introduction of dislocations is reduced due to the composition modulation.
[S0163-182698)01037-9

[. INTRODUCTION odal decompositiofi=® To our knowledge, the role played by
immobile dislocations in the spinodal decomposition process
It is well known that the strength of real solids is orders ofand the spatial distribution of the decomposed products
magnitude less than the values predicted for perfect crystalaround the dislocation lines is still an open question.
This is because the strength of a solid material is related to Of practical importance is the role played by dislocations
the density of dislocations, which can vary widely due to theduring the growth of thin films by deposition techniqdés.
preparation of the specimen. The simplest kinds of dislocaThere, a thin layer of material is deposited on a substrate of
tions are known as edge- and screw-type dislocations, andifferent lattice constant. The strain in the overlayer due to
their presence creates strong elastic deformations of the crythe lattice mismatch is eventually relieved by the introduc-
tal in the vicinity of the dislocations and extending to largetion of misfit dislocations at a critical film thickne$s?the
distances. Elastic deformations can also occur in alloys duim is then believed to contain arrays of edge dislocations at
to the dependence of the lattice constant or the elastic moduihe film/substrate interface for which there is extensive ex-
on the local concentration of the alloy components. Henceperimental evidence. In the case of afloy grown by
an interesting coupling arises between the elastic fields dumolecular-beam epitaxy, both alloy components are simulta-
to concentration inhomogeneities and the stress fields of theeously deposited on the substrate, which can lead to the
dislocations. This coupling between the composition of thedecomposition of the alloy and the formation of ordered
alloy and the position of the dislocations was first phases® The effects of the dislocation array introduced at
consideredlin the context of crystal hardening by the addi- the critical thickness on this surface phase separation is stud-
tion of solute atoms, the later being regarded as elastic inclued in the present work.
sions in the matrix. The formation of clouds of solute par- In this paper, we first present a continuum theory that
ticles aroundthe dislocations was predicted, as well as theirdescribes a binary alloy, phase separating by spinodal de-
effect on dislocation motion. Latérthe nucleation of the composition around edge- and screw-type dislocations. The
precipitatesaroundthe dislocation lines was studied from a dislocations are immobile; their role is to create a constant
free-energy approach. A different perspectiten the nucle-  elastic deformation of the crystal that couples with the con-
ation problem showed an increased nucleation rate of prezentration fluctuations. We consider the cases of single dis-
cipitateson dislocations. locations, regular arrays of dislocations and random distribu-
The studies described above focus on alloys quenched itions of dislocations. A Ginzburg-Landau free energy is used
the metastable region of the binary alloy phase diagrano describe the thermodynamics of the alloy, while the de-
where the phase separation proceeds by nucleation aridrmation of the solid is considered within linear elasticity
growth of precipitates. However, for an alloy quenched in-theory. Since the diffusion of material is much slower than
side the spinodal region of the phase diagram, the phadattice rearrangements, mechanical equilibrium is assumed to
segregation proceeds through spinodal decomposition. THee satisfied at all times, allowing us to eliminate the displace-
interplay of spinodal decomposition and dislocations was exment vector in favor of the concentration variable. In Sec. Il,
plored by Cahn,with interest on the effects of the decom- we present the model in more detail. In Sec. lll, we discuss
position on the dislocation motion and hardening. Experi-the results of numerical integration of our model. Section IV
ments on moving dislocations in spinodal alloys have beefiocuses on the growing film, presenting the derivation of the
presented in the literatufeThe effects of thermomechanical dynamical equations describing the time evolution of the sur-
treatment on the properties of decomposing alloys havéace phase separation as well as numerical integration of
shown the important coupling between dislocations and dethese equations. We include as well a discussion of the equi-
composition, and the possibility of enhanced kinetics of spindibrium position of misfit dislocations at the interface of a
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substrate and a compositionally modulated overlayer, and we
calculate the critical thickness for the introduction of misfit
dislocations in these films. Section V describes our conclu-
sions.

Il. MODEL FOR BULK SYSTEMS

The extent of the phase separation is described by a local,
continuous order parametei(r), proportional to the local
difference in the concentration of the two species at position
r. Its energetics are given by the Ginzburg-Landau free-
energy functional

_ U Y, Sl
]:GL{lr//} dr 2 lﬁ +4l,b + 2|V¢| ’ (1)

with the coefficientr’ proportional toT.—T, T. being the
critical temperature of the binary alloy. The displacement
vector u(r), represents the elastic deformations around the
local equilibrium position, ands;;=(V;u;+V;u;)/2 is the
strain tensor. The elastic energy for an isotropic medium
readsd*

1
Felip,u}= f dr[EK(V u)?
FIG. 1. The top figure shows representative points of a solid
containing an edge dislocation. The dislocation can be viewed as
the addition of an extra half plane of atoms in the upper half of the
figure, corresponding to a Burgers’ vector in the positivdirec-
tion. The bottom figure shows the displacements of representative

2
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with the last term added to describe the dependence of t
lattice constant on composition. The lattice constant depen
on ¢ through the relation &= —ay/3K, implying that for
a>0 the lattice constant is smaller fa¥>0. The depen-

&

ints around a screw dislocation with Burgers’ vector in the posi-
z direction. If one starts at a particular point and rotates coun-
terclockwise by 360°, the final point will be one Bergers’ vector
above the starting point.

dence of the lattice constant on composition is often written

in terms of the solute expansion coefficientas a=a(1
+ n4), leading toa™ *9al 9= n= — a/3K. The bulk modu-
lus K and the shear modulud depend on composition as
K=Ky+K ¢ andM=My+ M, ¢, with K; andM ; assumed
to be small quantities.

A dislocation is described by a vectar parallel to the
dislocation line, and by the Burgers vectothat satisfies

% du=—b.

The contour of integration in E@3) encloses the dislocation
line and is traversed in a direction consistent with the right
hand rule for the vecton.

)

Since the local repositioning of atoms is much faster than
their diffusion, we assume that mechanical equilibrium is
satisfied at all times, such that the displacement vector in-

stantaneously adjusts to a given spatial distributiogr.oThe

differential equations for mechanical equilibrium in the pres-

ence of a dislocation and with compositional stresses are

(4)

where the vectog is a two-dimensional vector perpendicular
to n with origin at the dislocation line. Solution of these
equations givesl as a function ofy, which can be used to
rewrite the elastic free energy, E(R), as a function ofy
only.

MV2u+(K+M/3)VV.-u+aViy=Mnxbs(é),

We now derive the effective free energy for edge and
screw dislocations, doing so separately for the contributions
from «, Ky, andM.

A. Edge dislocation

We consider an edge dislocation in the upper half of the
Xy plane corresponding to the addition of an extra half plane
of atoms whose edgghe dislocation linglies on thez axis
(see Fig. 1L The vectorn is constant along the dislocation

line and is equal to- z while the Burgers vector is in the

direction,b=bx. The mechanical equilibrium equations are
‘then

MV2u+(K+M/3)VV-u+aVy=—Mbys(x)s(y).
(5

The vectoru can be separated in two parts=u?+u?,
where u® is the solution in the absence of compositional
stresses and” is the solution in the absence of the disloca-
tion. The vectoru? and the effective free energy in the ab-
sence olu? have been calculated in prior wotkBecause of
symmetry,u’= (ug,uj,0) with u§ andu independent oz,

and the strains and stresses due to the dislocation are entirely
in the plane perpendicular to the dislocation line. We there-
fore consider the order parameter to also be a two-
dimensional field in thexy plane.
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1. Composition-dependent lattice constant dependence of the interaction energy between the order pa-

rameter and the dislocation line is in agreement with previ-

loy is elastically sensitive to local variations in the lattice ©US WOrk in the context of elastic inclusions in al';gafﬁx-

constant only. Solution of Eq(5) gives the displacement ~ W€ now make the transformations=(r/c)™T, ¢

vector as =(u/r)Y2y and B,,= (u/cr?)¥2g! to obtain the dimension-
less free energy

In this case@#0 andK;=M,;=0, implying that the al-

y Xy a
Uy=7— arctar(— +Do5——|— = ViV 2%y, () 2 ¢t |Ve|?
CmTIX ey Co A= | o ‘%+%+| f' Bt )
Xy
b MO > > X2 o ) (13)
W= on C—Olog Xty +D°X2+y2 - C_oVyV 4 with the understanding that andy are the rescaled spatial

(7)  coordinates.

_ _ For an array of parallel edge dislocations with spadaing
where_ZCO—K0+4MO/_3, Do=(Ko+ M0/3)/(K0JT4M0/3) _lying in the same slip plane, the rescaled interaction energy
and V™ ¢ denotes the inverse Laplacian. The first terms INdensity generalizes to

these equations correspond to the usual lattice distortions due

to the dislocation, while the second terms are due to the * y
compositional variations. From these expressions for the dis- fi=—B. L (14)
placements, we can calculate the compression and the shear n=== (X—nd)“+y

strains in the solid: ) ) o
A rough estimate of the magnitude of the contributions

b 2Mg y o due to the edge dislocations can be obtained as follows. Us-
V-ou=-— 27 Calvzeuz] C—l// (8)  ing the regular solution model, the valuesrof u andc can
0 \X"ty 0 be expressed in terms of the critical temperaflifeand the
and number densityN, ,*® which allows us to express the res-
caled interaction parameter as B,~[kg(T,
b x(x*-y?) «a —T)N, ] XT/T)YAK/5)(Aala)(My/Cp). Order of mag-
Hxy=o5 o O x2+y?)?  Co xVyi. (9 nitude values for the elastic constants aré'18m~2 while

the ratioAa/a is of the order of 0.02. Typical aging of the
The compression and the shear strain contain contributionalloy well within the miscibility gap would correspond to
from the dislocation and from the composition inhomogene~values ofT=T_./2, which yieldsg, of order 1 forT. around
ities. The effective elastic free energy density can be writterb00 K.

as a sum of three termé=f ,+ f4+f,, wheref , is a func-

tion of ¢ only, f4 is the energy of the dislocation and is 2. Composition dependent bulk modulus

independen@ _of,b, _andf| is the interac?ion energy _betwegn For a composition dependent bulk modulus oni;
the composition field and the stress field of the dislocation.. g M,=0, a=0, the displacement vector and the free en-

We find that ergy are calculated to first order ity .** The new interaction
2 term in the energy is
fo=—5=~ 2 (10
2Co 1 vy [ BKME [y 2

d fi=5Kap(V-u0)?=2| 5| ——2y|

an 2 2m) C§ T\ xP+y?
(15
b 2Mj y
f, a5 Co djx2+y2' (11)  whereu® is the zeroth-order displacement obtained by set-

ting =0 in Egs.(6) and(7). Hence the rescaled interaction
With these expressions, the total free-energy functional beenergy isf, = By ¢[y/(x?+y?)]? with the dimensionless pa-

comes(to within a constant coming frorf) rameter B = 2 (b/27)?(K;M3/C3)(u/rc?)¥2. Compared to
the contribution from3, in the previous section, the spatial
B ro u,c 5 y field around the dislocation has a shorter range, varying as
f{'ﬁ}_f drl — 5"+ 29+ 5[V _ﬂa‘/’szyz ’ 1/R?. Also, since the bulk modulus is sensitive to the abso-

(12) lute value of the compression, the regions of maximum ab-
solute value of the compression will be favored ¢y 0.

with r=r’+ a?/Cq and B,,= a(b/27) (2M4/Cy). Hence f,

simply renormalizes the coefficient af?>. The interesting 3. Composition-dependent shear modulus

effect comes fronf, : it introduces a coupling between the

local composition fluctuationyy and its spatial position,

which varies as R. For example, ifa>0, thenB’>0 and

the energy is minimized fots positive in the regiony>0. b \2 1(Mg/CoDo)2y2+x2

This is because the alloy is compressed in this refgse fIZZMng(_) $1 0 -0

Eq. (8)] that is preferred by smaller atomg%0). TheR™ ! 2m

In the caseM ;#0, K;=0, anda=0, the corrections to
the energy come from the shear part of the elastic energy:

(X2 + y2)2 (16)
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Again, the interaction decreases aR2Around the disloca- 100
tion line, with the regions where shear energy is a maximum
preferred by ¢<0 if M,;>0. In dimensionless formf,

= Bm [ 5(Mo/CoDg)2y?+x2]/(x?+y?)? with Bwm
=2M,D5(b/27)?(ulrc?)*?2

B. Screw dislocation

The screw dislocation is oriented in tlzedirection with

vectorsn=—z andb=bz, as shown in Fig. 1. The displace- eo: m el m 60
mentu has only one component, that depends on the co-
ordinatesx andy only. This means that the stress and strain
fields are pure shears, implying that the alloy constituents
will be sensitive to the elastic fields of the dislocation only if
the shear modulus is composition dependent. For the screv

dislocation, the mechanical equilibrium equations reduce to #

V2u,=0, 17

with solution

70

. (18 %

b y
u,= Zarcta X

The interaction free-energy density is

b)2 1 sol

M
-5 L (19
Xc+y

fi= 5

2

which decreases asR7 and favorsM ;<0 near the dislo-
cation. In a rescaled formf,=pBsd/(x>+y?) with Bg
=(M4/2)(b/27)%(u/rc?)Y2. The results for screiandedge ™% a0 w0 0 80 160
dislocations show that when the elastic constants of the alloy ,
elements are different, the interaction energy between the FIG. 2. Grey scale plot of the order parameter near the disloca-

order parameter and the dislocation line variesRag, in tion (.Ieft .panels and for th? Wh.°|e Sy?te"T'ghF panels. The dis )
: . . location is of edge type with dislocation line into the plane and in
agreement with previous calculatiotts. .
the center of the figures. The top row corresponds to the case where

the lattice constant of the alloy depends @nand provides the
lll. NUMERICAL RESULTS coupling with the stress field of the dislocation. The middle row is

. for the case when the bulk modulus is composition dependent, and
Suppose we initially prepare the system at temperaturt e bottom row is for a composition-dependent shear modulus. In

above the critical point where the alloy components are ho: . ! i
L . - —th her fi lack is the | I
mogeneously distributed in the solid. As the system |st ese and other figures, black is the largest positive valug afd

. . . .. . white the most negative value. The spacing between the gray shades
guenched below the critical point, spinodal decomposition i g pacing gray

- . - Scorresponds to a change in the order parameter values of 0.35. Time
triggered by a long-wavelength instability of the homoge-is ._ 3900.

neous state. The dynamics of the spinodal decomposition are

described by an equation for the time vari_ation of the Ordelihe initial state consisted of a random distributionfoin the
parameter that conserves the volume fraction of the two Sp‘?ﬁterval[—o 1,0.1. The size of the system is large enough

cies: that, for single dislocation systems, the immediate neighbor-
i SF hood of the dislocation is not affected by the periodic bound-
E=—V~J¢=V2M¢=AV26—, (20)  ary conditions. The single dislocations were located in the
¢ center of the system, while the array of dislocations was
where in this equation],, is a current,u, is the chemical located on the ling/=0.
potential andA is a kinetic coefficient. With the time rescal-

ing 7=(Ar?/c)t, the full dynamical equation is A. Single edge dislocation
ad af, The top row in Fig. 2 shows the order parameter for the
EIVZ — ¢+ ¢*—Vip+ 96| (21)  full system and for the region around the dislocation in the

case when the coupling between the concentration and the
The numerical simulations were carried out by discretizingdislocation stress field arises due to the dependence of the
the above equation using an Euler scheme with mesh sizattice constant orp. The coupling constang,=2 in this
Ax=Ay=1.25 and time step 7=0.1. The systems were of simulation. Since the dislocation creates a compression of
size 12&xx 128Ax with periodic boundary conditions and the lattice constant foy>0 and a dilatation foy<O0, the
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smaller atoms accumulate preferentially above the disloca: s -
tion line while larger atoms accumulate below the disloca-

tion line. Becauses,>0, the smaller atoms are represented

by positive values ofp (black in the figurg and the larger

atoms correspond to negative valuesgofwhite in the fig- 80
ure). For A- and B-type atoms in a binary alloy, a three-
dimensional view of the system would show tubeg\efand
B-type atoms above and below the dislocation line, parallel
to the dislocation. These tubes are analogous to the solut
atmospheres predicted by CottreNVe note that the extent

of the distribution around the dislocatiqabout 15 dimen- 100 160
sionless unitsis much larger than the thickness of interfaces
between order parameter domains for the valug péised in
our simulations. Sinceg3, depends on the temperature as
(T.—T) "%, the proximity to the critical point determines g 80
whether the anisotropic segregation will be observable ex-
perimentally.
The middle panels in Fig. 2 are gray scale plots of the
order parameter when the bulk modulus is composition de-

pendent Bx=2). The regions wher¢V-u| is maximum, %o 80 100 0 80 160

just above and below the dislocation line, are favored by the FIG. 3. Tob row: arev scale plot of the order parameter phase

component with the smallest bulk modulus, in this cése - S 1op - grey scale plof 1€ order param pha

<0. As compared to the top panels in Fig. 2, the size of theseparatlng around a screw dlslocat!on with d!slocatlon line coming
) . . . o . out of the plane of the figure. As discussed in the text, the differ-

segregation region around the dislocation line is smalle

. . . o Ence in the shear moduli of the two alloy components is responsible
since the interaction energy decays aB°lihstead of IR. for the preferential segregation of one of the components near the

Also, there is no order parameter interface near the dislocagis|ocation line. Bottom row: complete phase separation of the alloy
tion as in the top panels of Fig. 2; the immediate neighboromponents when an infinite array of edge dislocations lies or the
hood of the dislocation is composed primarily of one com-axis. The spacing between the dislocations i4x%,0and the time is

ponent. 7=3000. The spacing between the gray shades corresponds to a
The bottom panels in Fig. 2 show the distribution of thechange in the order parameter values of 0.35.

alloy constituents when the composition-dependent shear ) ) ,
modulus provides the coupling with the dislocation. The pathree-dimensional view would show a tube of one compo-
rameter3y =2 and the ratioM,/(CoDo) = 1/2, correspond- Nent wrapping the dislocation line.
ing to a Poisson ratio of 1/4. With this choice for the param-
eters, the term proportional t& in the numerator of Eq16)
is much smaller than the terx?, and this creates the pre-  The effects of an array of parallel edge dislocations on the
ferred segregation in the direction in Fig. 2. phase separation are shown in the lower panels of Fig. 3. In
In general, the lattice constant, the bulk modulus and thé¢his figure, the Burgers vectors of the dislocations are of
shear modulus all depend on the order parameter, and tlegual magnitude and oriented in the positivéhorizonta)
three effects discussed above are present. However, the ratidsection. The spacing between the center of the disloca-
Bk !B, andBy /B, are roughly of ordeK /Ky andM; /M,  tion lines is 1@ x. Again, the smaller atoms are attracted to
respectively, which are assumed to be small quantities in thithe region above the dislocation line because of the elastic
work, implying that the effects due to the dependence of theompression there. The presence of the dislocation line pro-
lattice constant on composition should be dominant. vides a location of choice for the interface between the sepa-
rating components, leading to a rapid separation of the two
componentgcompare with Fig. 2 plotted at the same time
B. Single screw dislocation In fact, the density of dislocation lines along the array is an
In the case of a pure screw dislocation, the interactiodMPortant parameter determining the rapidity of the spinodal
energy is given by Eq19). Simulation results are presented décomposition, as shown in Fig. 4, where we plot the first
in the top row of Fig. 3 forBs=2, showing the isotropic Mmoment of the structure factork(7)=/kk,7)dk/
segregation of one of the components around the dislocatiod (K, 7)dk. The structure factor is defined aS(k,7)
Because the lattice deformation due to the dislocation is & (#(K,7)#(—k,7)). The dominant length scale in the sys-
pure shear and is more pronounced near the dislocation liné€m, R(7) ~1/k(r), represents the size of the phase separat-
the component of the binary alloy with the lowest shearind domains. As can be seen in the figure, the closer the
modulus <0 in the simulationsis attracted to the vicinity SPacing between dislocatiorisigher density the faster the
of the dislocation line. Here, because the deformation is &€composition of the alloy.
pure shear, the effect of the composition-dependent shear
modulus is the only observable effect, with the paramgter
roughly of orderM,/r'2 Sincer is proportional toT, It is clear from the discussion above that the presence of a
—T, Bgcan be made arbitrarily large by approaching A  dislocation affects the phase separation in the vicinity of the

o8

70
70 80 90 0 80 160

C. Array of edge dislocations

D. Random distribution of dislocations
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FIG. 4. Wave number as a function of time for an array of edge
dislocations along the axis. The decomposition is accelerated as
the density of dislocations increases.

dislocation. In the case of the array of edge dislocations, the © *
array provides a preferred location for the interface betweer
the two coexisting phases. Because the dislocation lines wer
equally spaced and their Burgers’' vectors were the same
(sign and magnitude there is a cooperative effect of the »
dislocations on the spinodal decomposition. We now turn tos, .° °©
the case of a random spatial distribution of parallel disloca- Y-
tion lines with a random orientation of their Burgers’ vector ‘

in the x or —x direction for edge dislocations. The systems
are two dimensional as before, and the density of disloca-
tions is measured as the number of dislocations foef. > %

Figure 5 shows a black and white plot of the order parameter . . . )

for a system with edge dislocations evolving fram 100 to F_IG. 5. Phgse separating alloys at different times of their dy-
7=3000. The dislocations are represented by gray dots ad&ammal evolution. Panels from top to bottom correspond to the

have two possible orientations for the Burgers’ vector. The'™meS 7= 100, 500, and 3000. The alloy on the left has an areal

: . i i . b
panels on the left represent an alloy with a density of olislo-OIenSIty of dislocations of 0.01area measured in units afx”)

cations of 0.01, while the pictures on the right are for awhile the alloy on the right is dislocation-free. The dislocations are

. . . . . . represented by grey dots and the regions whired (4<<0) are
dislocation-free solid. It is obvious from these pictures tha'iNhite (black. Both alloys were started with the same initial condi-

the overall morphology of the phase separation pattern ig, .
affected by the uncooperative stress fields of the dislocations.

Because a positivénegative edge dislocation produces a strated in the inset to Fig. 6, where we plot the wavenumber
stress field that favors larger atoms abdbelow it, the a5 3 function of dislocation density for two times=500
dislocations tend to be located at the interface between phaggd = 3000 for the random distribution of dislocatioard
separating domains at early times. Since we have chosen g the linear array of equally spaced dislocations studied in
Burgers’ vector of the dislocations to be oriented in the  the previous section. This plot shows that the dependence of
direction, the formation of interfaces primarily on disloca- k on the density is the same for these two times.

tions creates an anisotropy in thedirection that creates The acceleration of spinodal decomposition in the pres-
elongated domains. As time proceeds, the phase separationgace of dislocations has been discussed in the experimental
strong enough to drive the interfaces through the dislocatiofiterature as stated in the Introduction. In recent studies of the
network thereby increasing the domain size as a function ofhermomechanical treatment of CuNiCr alldy, was re-
time. Even when this happens, the interface can remaiported that spinodal decomposition was accelerated in
pinned to a dislocation, and the interface between domains isamples that were deformed prior to aging as compared to
rough as compared to the dislocation-free case. We havendeformed samples. The deformation before aging intro-
monitored the time evolution of the first momek(tr) of the  duces a large number of dislocations in the sample indicating
structure factor as a function of the density of dislocations, ashe direct correspondence between the density of dislocations
shown in Fig. 6. It can be seen that the phase separation is Bnd the enhanced decomposition, in agreement with the re-
fact faster when the density of dislocations increases. Theults of the present study. It was postulated that the faster
shape of thé(r) curves shows however that the accelerationspinodal decomposition is due to an increase in the diffu-
of the phase separation occurs at early times and that th&onal flux due to the large density of dislocations; our work
subsequent time evolution proceeds very similarly to theclearly shows that the diffusion potential is modified by the
phase separation without dislocations. This is further demorpresence of dislocations and that the contributions to the lo-
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FIG. 6. Time evolution of the wave number for various values
of the density of dislocationgneasured petx?). The curves from
top to bottom are for dislocation densities of 0, 0.01, 0.05, and 0.1. °
The inset showsk at times =500 (top curve$ and at7=3000
(bottom curvegfor the systems with a random distribution of dis-
locations(solid squaresand for the system with an array of dislo-
cations(open squargs

FIG. 7. Equilibrium distribution of the order parameter when the
alloy is outside of the two-phase region of the coherent alloy. The
black dots represent edge dislocations. In the absence of disloca-
tions, the system would be homogeneous and the figure would be

. . . . .entirely of the same gray shade. The maximum absolute value of
cal chemical potential due to the dislocations produce a rap@e order parameter is 0.1.

segregation of the alloy components. Furthermore, the time
dependence dt was also s_tud|e7dand agrees with our find- - moqulated. We then turn our attention to a growth process
ings that at a given timé& is smaller when the dislocation \yhere the appearance of arrays of misfit dislocations can be
density is higher and that the differences in the time evoluyseq to compositionally pattern a growing film.
tion of k occur at th(_a early times of the aging process. Also, Onpe of the possible mechanism to relieve the strain in
the rate of coarsening was found not to be affected by thehismatched systems is the bending of dislocation lines into
dislocations at later times, in agreement with our numericaihe supstrate/film interface. If the overlayer is modulated
simulations. An alternate explanation for the acceleration ofyitp, = Acogq(x—xo)], then the question we ask is what is
spinodal decomposition in cold-worked alloys is as follows: e equilibrium position of the dislocation when it is bent
cold work can increase the concentration of vacancies abovigtg the interface? This can happen, for example, when a
the equilibrium concentration, and hence, increase the diffubinary alloy is deposited directly onto a mismatched sub-
sion coefficient. This increase in _the diffusion coefﬂmen_tstrate, since the phase separation will occur at the onset of
would accelerate the decomposition of the alloy. Experithe deposition and the introduction of the misfit dislocations
ments can be performed to distinguish between these tW@jj| occur later (at the critical thickness for exampleNe-
scenarios by measuring the rate of coarsening as a functigjlecting the fact that the actual solution of the mechanical
of the dislocation density. . equilibrium equations would require that the growing surface
We conclude this section by noting that the preferred segpe free, the energy to be minimized is the interaction energy
regation of the two components in the stress field of theyetween the order parameter and the stress field of the dis-
dislocations also occurs for alloys outside of the two-phasgycation, thef, of the previous sections. For a film under
region of the phase_gllagram. T_hls is illustrated in Fig. 7.tansile strain growing in they direction, and with an edge
which shows the equilibrium profile of the alloy components yigiocation with Burgers’ vector in the direction and lo-

in a random distribution of edge dislocations. In the absence,iaq at,y)=(0,0) the total energy per unit length is given
of the dislocations, the alloy would be perfectly homoge-py [see Eds(ll) and (12)]

neous and Fig. 7 would be entirely gray. Because the dislo-

cations introduce a stress field,waeakinhomogeneity ap- w h

pears in the order parameter distribution. The weakness in F= —,B;Af j cog g(X—Xo)]
this segregation is due to the fact that the elastic energy —=J0

relieved is in competition with the entropic contributions that,,hare we have considered only the lattice constant to depend
tend to homogenize the system. on ¢. Evaluation of the integral leads to

y
x2+y?

dydx (22

_e_qh
IV. GROWING THIN FILM F= _ﬁ;A( 3 )COE(qu), (23
In this section we discuss the application of the results of
the previous section to thin films. We first briefly discuss theimplying that, for3.,, the minimum is when cogk)=1, or
equilibrium position of misfit dislocations at the interface xo=0,27/q, . . ., independently of the value of the modula-
between a substrate and a thin film that is compositionallfion wavelength or of the film thicknegsince the prefactor
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in F never changes sign gsor h is varied. If the overlayer ' ' ‘ '

is viewed as being made of alternating stripes of the alloy 1.0 | 0.1% misfit
constituents, then the equilibrium position of the dislocation 3
line is at the center of a stripe with the smallest lattice con-
stant(note that because the energy is always negative, a dis __
location line perpendicular to the modulation will always &
have a smaller energy than a dislocation line parallel to thex < 0.6 |-
composition modulation There exists the possibility that .~
dislocations that do not bend into the interface to relieve the

.......... 1% misfit

08| ™

misfit strain extend to the surface and have a dislocation line 041 ]
that is perpendicular to the surface. In such a case, the fre
energy per unit length of the dislocatiqedge type with 02t |
Burgers’ vectorb=x and located at the origjrin the pres- ! ! |
ence of a composition modulation in taedirection is 0 100 200 300
2mBIA modulation wavelength (nm)
- q sin(qz), (24) FIG. 8. The graph shows the ratio of the critical thickness for

the introduction of misfit dislocations for a compositionally modu-
implying that the equilibrium location of the dislocation is at lated film to the critical thickness for a homogeneous film, as a
the interface between the compositional domains. function of the wavelength of the composition modulation. The
We can estimate, using energy minimization arguménts, material parameters ane=0.25 ando=0.5 nm.
the critical thickness of the compositionally modulated grow-
ing film when the introduction of the misfit dislocations will corresponding to a homogeneous overlayer of effective mis-
occur. Our goal is to show that the composition modulatiorfit whose absolute value ig|+R. This is because, in this
can decrease the critical thickness by considering the intrdimit of small k, the system looks like a single component
duction of the first misfit dislocation. The energy per unitfilm of the alloy element with the smallest lattice constant,
length of one misfit dislocation located at its equilibrium effectively making the misfit more negative. If the above
position is analysis is repeated for a film under compression, the right-
hand side of Eq(22) changes sigifsince the Burgers’ vector

M b? 4h 1+v of the dislocations changes sjgand the equilibrium loca-
&= 4m(1—v) In o —2Mle|b Tt tion of the dislocation is in the center of a stripe with the
largest lattice constant. In the limk— 0, this makes the
, 1-e 9N effective misfit larger. Hence, because the dislocation posi-
— Bl A ' (29 tions itself to effectively i he misfi h
a q y increase the misfit, we can say that

the physical mechanism for the preferred location of the dis-
wheree is the misfit between the film and the substrate, andocation is the additional reduction in the strain energy of the
v is the Poisson ratio. The first two terms are the energyverlayer.
contributions for a dislocation in a homogeneous fiim, The parameteR depends on the amplitude of the compo-
while the last term in this equation accounts for the composition modulationA and the misfit between the overlayer
sition modulation and is the new effect of interest here. Becomponentsy= — «/3K; an estimate for real systems gives
cause this term is always negative, the energy of the disloR~0.1A7, which is at least a factor of 10 smaller th&n
cation is reduced by its presence, implying that therigure 8 shows the ratio of the critical thickness wHen
introduction of the dislocation will occur earlier. We now =0.003 to the critical thickness whdéa=0 as a function of
make the rescaling* =h/b, k=qb and define the param- the wavelength of the composition modulation. The value of
eters S is 0.03 corresponding to a Poisson ratio of 1/4 and the
Burger’s vector has length 0.5 nm. We show the curves for
|BLA1—v values of the substrate/film misfit of 1% and 0.1%. As can be
oMbl 1+ seen in the figure, a significant decrease of the critical thick-
ness occurs as the wavelength of the composition modulation
and obtain the zero energy equation for the critical thicknessincreases; this decrease is more pronounced for the 0.1%
misfit since the critical thickness in the absence of the com-
1—e K position modulation R=0) is much larger compared to the
—x |70 27 1% misfit.
The calculation above considered the effects of the com-
In the limit where the modulation wavelength is very small, position modulation on the behavior of the dislocations,
k— o, the last term vanishes and we recover the equation fogiven the initial form of the composition modulation. In a
the critical thickness of a homogeneous overlayer. The opsimilar way, we now discuss the effects of a given distribu-
posite limit of very large modulation wavelength—0, tion of misfit dislocations on the compositional ordering.
gives the equation This idea of using the dislocation stress field to order struc-
tures has been exploited to grow microwires in electronic
(le]+R)h* —SIn(4h*)=0, (28) devices’ (the process involves the introduction of metallic

S=[8w(1+v)]"! and R=

. (26

le|h* —SIn(4h*)+R
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alloy
first layer
hﬂ
disloca@f d
1 1 11
substrate
v M ‘ ‘

impurities at the surface of a thin film as it is growing; the
impurities aggregate along the misfit dislocations and form

the wires, and to align islands on top of growing layéfs. \
The process we have in mind is the followifgee Fig. %

deposit a mismatched single-component film on a substrate

until the critical thickness is reachéfbr example Si on Ge

and then deposit simultaneously the two-components of a

compound(GaAs for example We assume that the average

FIG. 9. Sketch of the film grown by the process discussed in the
text. The first deposited layer is mismatched to the substrate and is
grown until the critical thickness for the formation of an array of
misfit dislocations is reached. The alloy layer is then grown by
simultaneous deposition of the alloy constituents.

lattice constant and the elastic moduli of the compound are
perfectly matched to the first deposited layer and that the
diffusion of atoms occurs at the surface only. Tldémen-
sionles$ distance between the growing surface and the array
of edge dislocations ie=hy+v 7, with v the dimensionless FIG. 10. Time evolution of the order parameter at the surface of
speed at which the film is growing and the constagtep-  a growing film in the weak segregation regirtieft column and in
resenting the critical thickness for the first deposited layerthe strong segregation reginiéght column. The spacing between
The results from the calculations above for an array of edgée misfit dislocations isl=10. For the left column, the growth
dislocations in a bulk material cannot be carried over directly/€locity is v=0.24 and the times from top to bottom are
because of the free surface of the thin film. However, ag- 100, 500, and 10 000. The right panels correspond to a growth
shown in the Appendix, proper consideration of the bound€locity v=0.01 and times=100, 1000, and 10 000 from top to
ary conditions at the free surface leads to the approximatg°ttom-

dimensionless free-energy functional for the binary alloy at

e

3

the surface For values ofv close to 1/4, the pattern amplitude is small
(weak segregation regimehile far below 1/4 the amplitude
> Pt |V<;S|2 of the order parameter modulation is at its maxim{gtnong
Ry = f dx| — 7+ 4 2 segregation regimeAs time increases the value of the term

due to the dislocations decreases on account of the exponen-
tial factor exp2mv7/d), implying that the long time behav-

ior of the system is the same as wher 0. At very early
times, we take exp{2mv7/d)~1 and solve the linear dy-
namical equation to obtain the time dependence of the order

1 27 2
+y¢aex _Fh co TX .

The dynamical equation is then

(29

i parameter(with the expansiong==,¢C0HIX) as ¢q(7)
Ezvz — ¢+ 3 -V2¢ = ¢q(0)(1+ Q1)+ y0°784 2mya With Q=0?—g*~v. The
modeq=27/d grows the fastest because of the tepurt

o 20 that is always present, even wheg(0) is made vanishingly
+ yex;{ —gqv 7') cos(Fx) v, (30)  small. The mode corresponding to the spacing of the dislo-
cations will therefore always dominate at early times, even

wherey= y'/dexp(-2why/d). The last term in this equation when the dispersion relatiod (q=2/d) is negative.

accounts for the constant deposition of material that tends to We have simulated the above dynamical equation as in

mix the surface layer. the previous sections. The surface is represented by a two-
For y=0,'% a linear stability analysis of E¢30) shows dimensional square plane with periodic boundary conditions

that the homogeneous alloy is unstable # 1/4; the com- and the constany=0.02 in all of the simulations corre-

petition between the decomposition and the constant depossponding to order of magnitude estimates with

tion of material leads to the formation of lamellar patterns.n,=500 A, d=200 A andT.=1000 K. Figure 10 shows
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snapshots of the surface layer at different times of the nu¢largep atoms segregate to regions of compressteasile
merical simulations in the weak and strong segregation restress above and below edge dislocations, the atoms with the
gimes. For the weak segregation reginee=(0.24), the ini- smallest bulk and shear moduli segregate around edge dislo-
tial modulation due to the dislocation array persists until acations, and the species with the smallest shear modulus
time 7~300, after which the long-time behavior takes over.wrap screw dislocations. The presence of an array of edge
The decay of the initial modulation proceeds by a decreasdislocations favors strongly the phase separation of the alloy
of its amplitude[due to the factor expf2mv#/d)] until it is components by introducing a location of choice for the inter-
comparable to the amplitude of the other modes. The initiaface between the components. For a random distribution of
modulation will persist on a time scale that depends on thelislocations, the spinodal decomposition accelerates as the
strength of the initial fluctuations i (the strength of the density of dislocations increases since the atoms can easily
beam fluctuations in a real experimgnthe value ofy,  diffuse in the stress field of the dislocations to phase sepa-
which determines the amplitude of the initial modulation, rate.
and on the value of 2v/d, which is responsible for the The equilibrium location of strain-relieving edge disloca-
decay of the initial modulated state. The behavior of thetions at the interface between a homogeneous substrate and a
system in the strong segregation regime is quite different, asompositionally patterned overlayer was shown to be in the
shown in the right panels of Fig. 10. The system quicklycenter of a stripe of the alloy element with the smallé&sty-
orders in the lamellar pattern with modulatiqe=27/d due  €s) lattice constant for films under tensileompressive
to the dislocations. As opposed to the weak segregation restrain, while edge dislocations that extend from the substrate
gime, the amplitude of the modulation stays constanto the growth surface run at the interface between two
throughout the dynamical evolution. At a time=500, the  stripes. It was demonstrated that the critical thickness for the
crossover to the long-time steady state begins: the lamelld@gtroduction of misfit dislocations in a compositionally
become unstable to fluctuations, breakup, and join withimodulated overlayer can be drastically reduced as compared
neighboring stripes. This mechanism has the effect of into the homogeneous overlayer, and the reduction increases
creasing the wavelength of the modulation towards thevith the increase of the composition modulation wavelength.
steady-state value. We also described a crystal growth process, where a first
Experiments related to the deposition process describel@yer is deposited on a mismatched substrate until its thick-
above have been report&tin these experiments, a layer of ness exceeds the critical thickness for the introduction of
GaAs was deposited on a Si substrate prior to the depositiomisfit dislocations. The constituents of an alloy are then si-
of InGaAs. Both spinodal decomposition of the InGaAs andmultaneously deposited on the layer containing the misfit
misfit dislocations at the GaAs/Si interface were observeddislocations. The stress field of the misfit dislocations was
while the InGaAs/GaAs interface remained coherent. It wadound to decay exponentially with the critical thickness of
found that the spinodal decomposition occurred along théhe first layer and with the thickness of the alloy layer. To a
[110] direction, in contrast to experiments where the decomf{irst approximation, the stress field is periodic with a wave-
posing alloy is deposited directly on the substrate and whertength corresponding to the spacing between the misfit dis-
the decomposition occurs along the00] and[010] direc-  locations. At early times of the deposition process, a per-
tions. The difference between these experimental resulf€ctly ordered composition pattern arises due to the misfit
could be due to the presence of the array of misfit dislocadislocations. For values of the dimensionless deposition rate
tions at the GaAs/Si interface that influences the decomposi»> 1/4, the amplitude of the modulation decays to zero and
tion. the layer is then homogeneously mixed. ko« 1/4, two
regimes exist: when is close to 1/4, the initial composition
modulation decays in amplitude until it becomes comparable
V. CONCLUSION to the other modes; far far from 1/4, the initial modulation

We have considered the role played by dislocations irflecays by the breaking and merging of stripes. Hence, the

alloys undergoing spinodal decomposition. Effective con-most interesting practical situation for growing patterned

tinuous free-energy functionals were derived for bulk matefilms is the case where the growth velocity is large enough to

rials containing straight, immobile dislocations and for thin preclude the phase separation.

films with misfit dislocations. By assuming that mechanical

equilibrium is instantaneously satisfied, we showed that the ACKNOWLEDGMENTS
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For bulk systems, we presented results of numerical inte-yppENDIX A: DERIVATION OF THE EFFECTIVE FREE

grations of the dynamical equations describing the evolution ' cNERGY FUNCTIONAL FOR A GROWING THIN
of the system after a quench from a high temperature to a FILM

temperature inside the coexistence region of the phase dia-
gram. These results showed the segregation of the two com- We assume that the system is semi-infinite inyhdirec-
ponents in the stress field of the dislocations: the smalletion with a free surface at=h and an array of edge dislo-



PRB 58 SPINODAL DECOMPOSITION AND DISLOCATION ... 8287

cations of spacing with Burgers vectob= bx. The bound- We now introduce the stress functi@n that satisfies the

ary conditions require that the stresses vanisjras-«~ and mechanical equilibrium equatio*y= O_a’;d from which
thato,,= oyy=0,,=0 at the free surface. We are interestedthe sztresses can be calcylated apy= dyyV and oy, )
in lateral phase separation at the free surface, and therefore ~ %yx¥ - Separation of variables with the boundary condi-
take the order parameter gradient in yheirection to vanish. ions ¥ —0 asy— — and that the addition ofs does not
This ensures that the contributionsdg, and o, from spa- produce a shear stress, at the surface, gives the solution
tial variations in the order parameter are equal to zero. The

order parameter contribution tg,, also vanishes due to the ¥ =2M 2v L[( -1 (A4)
mechanical equilibrium condition. Since thexis is parallel - (1+v)(1—v) 242 y 1~ 12,

to the dislocation lines, the displacement vector is indepen-

dent ofz andu,=0, implying thato,,=0. The procedure to wherel; andl, are given by

cancelo,, and o, at the free surface is as followSfirst

introduce an image dislocation @t=2h (this cancelso,,) N e
and then add a stress function that will eliminate the result- In= o k™"e I(k)cogkx)dk. (AS)
ing oyy. The value ofo, to be eliminated after the image
dislocation is introduced is In this last expression (k) is given by
2M [ b ) 2v h w | h
Oyww=T7T—|5=]|| — = -
Wi+ vl 2a)| 1-veFa (x—nd)2+h? (k) f_m n:Z_m (x—nd)21h? cogkx)dx. (A6)
(x—nd)*h—h3 The expression fo¥ can then be used to compute the elastic

: (A1) free energy at the surface from E@):

n<= [(x—nd)?+h?]?

The terms in this expression are written in such a way that 0
the summation is well behaved. Evaluation of these sums]-‘el{,p}zj dr{(a’erﬁ'VfVZt//) E —
gives the expressions n=-» (Xx—nd)“+h

. (A7)

h -7 sinh2¢ (A2)  The new coefficientse” and 8" are given by

n="= (x—nd)2+h? 2d cost¢p—cosd

and , 8M-3K 2v(1-2v) b

a'=a—7ay (1—»)? 27 (A8)
(x—nd)*h—h® and
n==« [(x—nd)?+h?]?

8 ) ! 6MB 1-v—212 b

= (A9)

_ha? cosbcostf ¢ —sir? osinit ¢

_ha? T YBKHAM (1-,2 2@
d? [cogbcosH ¢+ sirPosinttp]?

(A3)
Neglecting terms as discussed above, the dimensionless elas-

tic functional integral can be written as
The angular variablegp and 0 are defined asp=(h/d) =

and 6= (x/d) . The hyperbolic functions can be approxi- 1 2 2

mated by sink~coshp~1/2exp) whend is not too small, fel{(ﬁ}:f dx 7'¢aexi{ - cos<?X) :
giving the ratio of the second sum to the first sum propor- (A10)
tional to (h/d)exp(—2¢). Hence, the second term in Eg.

(A1) can be neglected. with the constanty’ = (a’+ 8’)r ~*(u/c)*2
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