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Spinodal decomposition and dislocation lines in thin films and bulk materials

François Léonard and Rashmi C. Desai
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 9 February 1998!

Phase separation of alloys around dislocation lines due to edge- and screw-type dislocations is studied using
a continuum model. The dependence of the lattice constant, bulk modulus, and shear modulus on composition
is shown to determine the distribution of the alloy components in the stress fields of the dislocations. Numeri-
cal simulation results are also presented for single dislocation lines, arrays of dislocations, and random distri-
butions of dislocations in bulk mixtures in a context relevant to quench-work-age thermomechanical treatment
of alloys. The effects of dislocations on the phase separation occurring at the surface of growing films is also
discussed, showing that misfit dislocations can create a compositionally patterned layer. The equilibrium
position of misfit dislocations is also calculated for compositionally modulated overlayers, and it is shown that
the critical thickness for the introduction of dislocations is reduced due to the composition modulation.
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I. INTRODUCTION

It is well known that the strength of real solids is orders
magnitude less than the values predicted for perfect crys
This is because the strength of a solid material is relate
the density of dislocations, which can vary widely due to t
preparation of the specimen. The simplest kinds of dislo
tions are known as edge- and screw-type dislocations,
their presence creates strong elastic deformations of the c
tal in the vicinity of the dislocations and extending to lar
distances. Elastic deformations can also occur in alloys
to the dependence of the lattice constant or the elastic mo
on the local concentration of the alloy components. Hen
an interesting coupling arises between the elastic fields
to concentration inhomogeneities and the stress fields of
dislocations. This coupling between the composition of
alloy and the position of the dislocations was fir
considered1 in the context of crystal hardening by the add
tion of solute atoms, the later being regarded as elastic in
sions in the matrix. The formation of clouds of solute pa
ticles around the dislocations was predicted, as well as th
effect on dislocation motion. Later,2 the nucleation of the
precipitatesaround the dislocation lines was studied from
free-energy approach. A different perspective3,4 on the nucle-
ation problem showed an increased nucleation rate of
cipitateson dislocations.

The studies described above focus on alloys quenche
the metastable region of the binary alloy phase diagr
where the phase separation proceeds by nucleation
growth of precipitates. However, for an alloy quenched
side the spinodal region of the phase diagram, the ph
segregation proceeds through spinodal decomposition.
interplay of spinodal decomposition and dislocations was
plored by Cahn,5 with interest on the effects of the decom
position on the dislocation motion and hardening. Expe
ments on moving dislocations in spinodal alloys have b
presented in the literature.6 The effects of thermomechanica
treatment on the properties of decomposing alloys h
shown the important coupling between dislocations and
composition, and the possibility of enhanced kinetics of sp
PRB 580163-1829/98/58~13!/8277~12!/$15.00
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odal decomposition.7–9 To our knowledge, the role played b
immobile dislocations in the spinodal decomposition proc
and the spatial distribution of the decomposed produ
around the dislocation lines is still an open question.

Of practical importance is the role played by dislocatio
during the growth of thin films by deposition techniques10

There, a thin layer of material is deposited on a substrate
different lattice constant. The strain in the overlayer due
the lattice mismatch is eventually relieved by the introdu
tion of misfit dislocations at a critical film thickness;11,12 the
film is then believed to contain arrays of edge dislocations
the film/substrate interface for which there is extensive
perimental evidence. In the case of analloy grown by
molecular-beam epitaxy, both alloy components are simu
neously deposited on the substrate, which can lead to
decomposition of the alloy and the formation of order
phases.13 The effects of the dislocation array introduced
the critical thickness on this surface phase separation is s
ied in the present work.

In this paper, we first present a continuum theory th
describes a binary alloy, phase separating by spinodal
composition around edge- and screw-type dislocations.
dislocations are immobile; their role is to create a const
elastic deformation of the crystal that couples with the co
centration fluctuations. We consider the cases of single
locations, regular arrays of dislocations and random distri
tions of dislocations. A Ginzburg-Landau free energy is us
to describe the thermodynamics of the alloy, while the d
formation of the solid is considered within linear elastici
theory. Since the diffusion of material is much slower th
lattice rearrangements, mechanical equilibrium is assume
be satisfied at all times, allowing us to eliminate the displa
ment vector in favor of the concentration variable. In Sec.
we present the model in more detail. In Sec. III, we discu
the results of numerical integration of our model. Section
focuses on the growing film, presenting the derivation of
dynamical equations describing the time evolution of the s
face phase separation as well as numerical integration
these equations. We include as well a discussion of the e
librium position of misfit dislocations at the interface of
8277 © 1998 The American Physical Society
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8278 PRB 58FRANÇOIS LÉONARD AND RASHMI C. DESAI
substrate and a compositionally modulated overlayer, and
calculate the critical thickness for the introduction of mis
dislocations in these films. Section V describes our conc
sions.

II. MODEL FOR BULK SYSTEMS

The extent of the phase separation is described by a lo
continuous order parameterc(r ), proportional to the local
difference in the concentration of the two species at posi
r . Its energetics are given by the Ginzburg-Landau fr
energy functional

FGL$c%5E dr F2
r 8

2
c21

u

4
c41

c

2
u¹cu2G , ~1!

with the coefficientr 8 proportional toTc2T, Tc being the
critical temperature of the binary alloy. The displaceme
vector u(r ), represents the elastic deformations around
local equilibrium position, andm i j 5(¹ iuj1¹ jui)/2 is the
strain tensor. The elastic energy for an isotropic medi
reads14

Fel$c,u%5E dr F1

2
K~¹•u!2

1M(
i , j

S m i j 2
d i j

3
¹•uD 2

1ac¹•uG , ~2!

with the last term added to describe the dependence of
lattice constant on composition. The lattice constant depe
on c through the relation lna52ac/3K, implying that for
a.0 the lattice constant is smaller forc.0. The depen-
dence of the lattice constant on composition is often writ
in terms of the solute expansion coefficienth as a5ā(1
1hc), leading toa21]a/]c5h52a/3K. The bulk modu-
lus K and the shear modulusM depend on composition a
K5K01K1c andM5M01M1c, with K1 andM1 assumed
to be small quantities.

A dislocation is described by a vectorn, parallel to the
dislocation line, and by the Burgers vectorb that satisfies

R du52b. ~3!

The contour of integration in Eq.~3! encloses the dislocatio
line and is traversed in a direction consistent with the rig
hand rule for the vectorn.

Since the local repositioning of atoms is much faster th
their diffusion, we assume that mechanical equilibrium
satisfied at all times, such that the displacement vector
stantaneously adjusts to a given spatial distribution ofc. The
differential equations for mechanical equilibrium in the pre
ence of a dislocation and with compositional stresses ar

M¹2u1~K1M /3!¹¹•u1a“c5Mn3bd~j!, ~4!

where the vectorj is a two-dimensional vector perpendicul
to n with origin at the dislocation line. Solution of thes
equations givesu as a function ofc, which can be used to
rewrite the elastic free energy, Eq.~2!, as a function ofc
only.
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We now derive the effective free energy for edge a
screw dislocations, doing so separately for the contributi
from a, K1 , andM1 .

A. Edge dislocation

We consider an edge dislocation in the upper half of
xy plane corresponding to the addition of an extra half pla
of atoms whose edge~the dislocation line! lies on thez axis
~see Fig. 1!. The vectorn is constant along the dislocatio
line and is equal to2 ẑ while the Burgers vector is in thex
direction,b5bx̂. The mechanical equilibrium equations a
then

M¹2u1~K1M /3!¹¹•u1a“c52Mbŷd~x!d~y!.
~5!

The vectoru can be separated in two parts,u5ud1uc,
where ud is the solution in the absence of composition
stresses anduc is the solution in the absence of the disloc
tion. The vectoruc and the effective free energy in the a
sence ofud have been calculated in prior work.13 Because of
symmetry,ud5(ux

d ,uy
d,0) with ux

d anduy
d independent ofz,

and the strains and stresses due to the dislocation are en
in the plane perpendicular to the dislocation line. We the
fore consider the order parameterc to also be a two-
dimensional field in thexy plane.

FIG. 1. The top figure shows representative points of a so
containing an edge dislocation. The dislocation can be viewed
the addition of an extra half plane of atoms in the upper half of
figure, corresponding to a Burgers’ vector in the positivex direc-
tion. The bottom figure shows the displacements of representa
points around a screw dislocation with Burgers’ vector in the po
tive z direction. If one starts at a particular point and rotates co
terclockwise by 360°, the final point will be one Bergers’ vect
above the starting point.
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1. Composition-dependent lattice constant

In this case,aÞ0 andK15M150, implying that the al-
loy is elastically sensitive to local variations in the latti
constant only. Solution of Eq.~5! gives the displacemen
vector as

ux5
b

2pFarctanS y

xD1D0

xy

x21y2G2
a

C0
¹x¹

22c, ~6!

uy52
b

2pS M0

C0
logAx21y21D0

x2

x21y2D 2
a

C0
¹y¹

22c,

~7!

where C05K014M0/3, D05(K01M0/3)/(K014M0/3)
and ¹22 denotes the inverse Laplacian. The first terms
these equations correspond to the usual lattice distortions
to the dislocation, while the second terms are due to
compositional variations. From these expressions for the
placements, we can calculate the compression and the s
strains in the solid:

¹•u52
b

2p

2M0

C0
S y

x21y2D 2
a

C0
c ~8!

and

mxy5
b

2p
D0

x~x22y2!

~x21y2!2
2

a

C0
¹x¹yc. ~9!

The compression and the shear strain contain contribut
from the dislocation and from the composition inhomoge
ities. The effective elastic free energy density can be writ
as a sum of three terms,f 5 f c1 f d1 f I , wheref c is a func-
tion of c only, f d is the energy of the dislocation and
independent ofc, and f I is the interaction energy betwee
the composition field and the stress field of the dislocati
We find that

f c52
a2

2C0
c2 ~10!

and

f I52a
b

2p

2M0

C0
c

y

x21y2
. ~11!

With these expressions, the total free-energy functional
comes~to within a constant coming fromf d)

F$c%5E drF2
r

2
c21

u

4
c41

c

2
u¹cu22ba8c

y

x21y2G ,

~12!

with r 5r 81a2/C0 andba85a(b/2p)(2M0 /C0). Hence,f c

simply renormalizes the coefficient ofc2. The interesting
effect comes fromf I : it introduces a coupling between th
local composition fluctuationc and its spatial position
which varies as 1/R. For example, ifa.0, thenb8.0 and
the energy is minimized forc positive in the regiony.0.
This is because the alloy is compressed in this region@see
Eq. ~8!# that is preferred by smaller atoms (c.0). TheR21
n
ue
e
s-
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-
n
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dependence of the interaction energy between the order
rameter and the dislocation line is in agreement with pre
ous work in the context of elastic inclusions in a matrix.15

We now make the transformationsx5(r /c)1/2r , f
5(u/r )1/2c andba5(u/cr2)1/2ba8 to obtain the dimension-
less free energy

F$c%5E dxF2
f2

2
1

f4

4
1

u¹fu2

2
2baf

y

x21y2G ,

~13!

with the understanding thatx and y are the rescaled spatia
coordinates.

For an array of parallel edge dislocations with spacingd
lying in the same slip plane, the rescaled interaction ene
density generalizes to

f I52baf (
n52`

`
y

~x2nd!21y2
. ~14!

A rough estimate of the magnitude of the contributio
due to the edge dislocations can be obtained as follows.
ing the regular solution model, the values ofr , u andc can
be expressed in terms of the critical temperatureTc and the
number densityNv ,16 which allows us to express the re
caled interaction parameter as ba'@kB(Tc
2T)Nv#21(T/Tc)

1/2(K0/5)(Da/a)(M0 /C0). Order of mag-
nitude values for the elastic constants are 1011 Nm22 while
the ratioDa/a is of the order of 0.02. Typical aging of th
alloy well within the miscibility gap would correspond t
values ofT5Tc/2, which yieldsba of order 1 forTc around
500 K.

2. Composition dependent bulk modulus

For a composition dependent bulk modulus only,K1
Þ0, M150, a50, the displacement vector and the free e
ergy are calculated to first order inK1 .13 The new interaction
term in the energy is

f I5
1

2
K1c~¹•u0!252S b

2p D 2 K1M0
2

C0
2

cS y

x21y2D 2

,

~15!

whereu0 is the zeroth-order displacement obtained by s
ting a50 in Eqs.~6! and~7!. Hence the rescaled interactio
energy isf I5bKf@y/(x21y2)#2 with the dimensionless pa
rameterbK52(b/2p)2(K1M0

2/C0
2)(u/rc2)1/2. Compared to

the contribution fromba in the previous section, the spatia
field around the dislocation has a shorter range, varying
1/R2. Also, since the bulk modulus is sensitive to the ab
lute value of the compression, the regions of maximum
solute value of the compression will be favored byf,0.

3. Composition-dependent shear modulus

In the caseM1Þ0, K150, anda50, the corrections to
the energy come from the shear part of the elastic energ

f I52M1D0
2S b

2p D 2

c
1
3 ~M0 /C0D0!2y21x2

~x21y2!2
. ~16!
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Again, the interaction decreases as 1/R2 around the disloca-
tion line, with the regions where shear energy is a maxim
preferred byc,0 if M1.0. In dimensionless form,f I

5bMf@ 1
3 (M0 /C0D0)2y21x2#/(x21y2)2 with bM

52M1D0
2(b/2p)2(u/rc2)1/2.

B. Screw dislocation

The screw dislocation is oriented in thez direction with
vectorsn52 ẑ andb5bẑ, as shown in Fig. 1. The displace
mentu has only one componentuz that depends on the co
ordinatesx andy only. This means that the stress and str
fields are pure shears, implying that the alloy constitue
will be sensitive to the elastic fields of the dislocation only
the shear modulus is composition dependent. For the sc
dislocation, the mechanical equilibrium equations reduce

¹2uz50, ~17!

with solution

uz5
b

2p
arctanS y

xD . ~18!

The interaction free-energy density is

f I5
M1

2 S b

2p D 2

c
1

x21y2
, ~19!

which decreases as 1/R2 and favorsM1c,0 near the dislo-
cation. In a rescaled form,f I5bSf/(x21y2) with bS
5(M1/2)(b/2p)2(u/rc2)1/2. The results for screwand edge
dislocations show that when the elastic constants of the a
elements are different, the interaction energy between
order parameter and the dislocation line varies asR22, in
agreement with previous calculations.15

III. NUMERICAL RESULTS

Suppose we initially prepare the system at a tempera
above the critical point where the alloy components are
mogeneously distributed in the solid. As the system
quenched below the critical point, spinodal decomposition
triggered by a long-wavelength instability of the homog
neous state. The dynamics of the spinodal decomposition
described by an equation for the time variation of the or
parameter that conserves the volume fraction of the two s
cies:

]f

]t
52¹•Jf5¹2mf5L¹2

dF
df

, ~20!

where in this equation,Jf is a current,mf is the chemical
potential andL is a kinetic coefficient. With the time resca
ing t5(Lr 2/c)t, the full dynamical equation is

]f

]t
5¹2F2f1f32¹2f1

] f I

]f G . ~21!

The numerical simulations were carried out by discretiz
the above equation using an Euler scheme with mesh
Dx5Dy51.25 and time stepDt50.1. The systems were o
size 128Dx3128Dx with periodic boundary conditions an
n
ts
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the initial state consisted of a random distribution off in the
interval @20.1,0.1#. The size of the system is large enoug
that, for single dislocation systems, the immediate neighb
hood of the dislocation is not affected by the periodic boun
ary conditions. The single dislocations were located in
center of the system, while the array of dislocations w
located on the liney50.

A. Single edge dislocation

The top row in Fig. 2 shows the order parameter for t
full system and for the region around the dislocation in t
case when the coupling between the concentration and
dislocation stress field arises due to the dependence of
lattice constant onf. The coupling constantba52 in this
simulation. Since the dislocation creates a compression
the lattice constant fory.0 and a dilatation fory,0, the

FIG. 2. Grey scale plot of the order parameter near the dislo
tion ~left panels! and for the whole system~right panels!. The dis-
location is of edge type with dislocation line into the plane and
the center of the figures. The top row corresponds to the case w
the lattice constant of the alloy depends onf and provides the
coupling with the stress field of the dislocation. The middle row
for the case when the bulk modulus is composition dependent,
the bottom row is for a composition-dependent shear modulus
these and other figures, black is the largest positive value off and
white the most negative value. The spacing between the gray sh
corresponds to a change in the order parameter values of 0.35.
is t53000.
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PRB 58 8281SPINODAL DECOMPOSITION AND DISLOCATION . . .
smaller atoms accumulate preferentially above the dislo
tion line while larger atoms accumulate below the dislo
tion line. Becauseba.0, the smaller atoms are represent
by positive values off ~black in the figure! and the larger
atoms correspond to negative values off ~white in the fig-
ure!. For A- and B-type atoms in a binary alloy, a three
dimensional view of the system would show tubes ofA- and
B-type atoms above and below the dislocation line, para
to the dislocation. These tubes are analogous to the so
atmospheres predicted by Cottrell.1 We note that the exten
of the distribution around the dislocation~about 15 dimen-
sionless units! is much larger than the thickness of interfac
between order parameter domains for the value ofba used in
our simulations. Sinceba depends on the temperature
(Tc2T)21, the proximity to the critical point determine
whether the anisotropic segregation will be observable
perimentally.

The middle panels in Fig. 2 are gray scale plots of
order parameter when the bulk modulus is composition
pendent (bK52). The regions whereu¹•uu is maximum,
just above and below the dislocation line, are favored by
component with the smallest bulk modulus, in this casef
,0. As compared to the top panels in Fig. 2, the size of
segregation region around the dislocation line is sma
since the interaction energy decays as 1/R2 instead of 1/R.
Also, there is no order parameter interface near the dislo
tion as in the top panels of Fig. 2; the immediate neighb
hood of the dislocation is composed primarily of one co
ponent.

The bottom panels in Fig. 2 show the distribution of t
alloy constituents when the composition-dependent sh
modulus provides the coupling with the dislocation. The p
rameterbM52 and the ratioM0 /(C0D0)51/2, correspond-
ing to a Poisson ratio of 1/4. With this choice for the para
eters, the term proportional toy2 in the numerator of Eq.~16!
is much smaller than the termx2, and this creates the pre
ferred segregation in thex direction in Fig. 2.

In general, the lattice constant, the bulk modulus and
shear modulus all depend on the order parameter, and
three effects discussed above are present. However, the r
bK /ba andbM /ba are roughly of orderK1 /K0 andM1 /M0
respectively, which are assumed to be small quantities in
work, implying that the effects due to the dependence of
lattice constant on composition should be dominant.

B. Single screw dislocation

In the case of a pure screw dislocation, the interact
energy is given by Eq.~19!. Simulation results are presente
in the top row of Fig. 3 forbS52, showing the isotropic
segregation of one of the components around the disloca
Because the lattice deformation due to the dislocation
pure shear and is more pronounced near the dislocation
the component of the binary alloy with the lowest she
modulus (f,0 in the simulations! is attracted to the vicinity
of the dislocation line. Here, because the deformation i
pure shear, the effect of the composition-dependent s
modulus is the only observable effect, with the parameterbS
roughly of order M1 /r 1/2. Since r is proportional toTc
2T, bS can be made arbitrarily large by approachingTc . A
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three-dimensional view would show a tube of one comp
nent wrapping the dislocation line.

C. Array of edge dislocations

The effects of an array of parallel edge dislocations on
phase separation are shown in the lower panels of Fig. 3
this figure, the Burgers vectors of the dislocations are
equal magnitude and oriented in the positivex ~horizontal!
direction. The spacingd between the center of the disloca
tion lines is 10Dx. Again, the smaller atoms are attracted
the region above the dislocation line because of the ela
compression there. The presence of the dislocation line
vides a location of choice for the interface between the se
rating components, leading to a rapid separation of the
components~compare with Fig. 2 plotted at the same time!.
In fact, the density of dislocation lines along the array is
important parameter determining the rapidity of the spino
decomposition, as shown in Fig. 4, where we plot the fi
moment of the structure factork(t)5*kS(k,t)dk/
*S(k,t)dk. The structure factor is defined asS(k,t)
5^f(k,t)f(2k,t)&. The dominant length scale in the sy
tem,R(t);1/k(t), represents the size of the phase sepa
ing domains. As can be seen in the figure, the closer
spacing between dislocations~higher density! the faster the
decomposition of the alloy.

D. Random distribution of dislocations

It is clear from the discussion above that the presence
dislocation affects the phase separation in the vicinity of

FIG. 3. Top row: grey scale plot of the order parameter ph
separating around a screw dislocation with dislocation line com
out of the plane of the figure. As discussed in the text, the diff
ence in the shear moduli of the two alloy components is respons
for the preferential segregation of one of the components near
dislocation line. Bottom row: complete phase separation of the a
components when an infinite array of edge dislocations lies on thx
axis. The spacing between the dislocations is 10Dx, and the time is
t53000. The spacing between the gray shades corresponds
change in the order parameter values of 0.35.
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dislocation. In the case of the array of edge dislocations,
array provides a preferred location for the interface betw
the two coexisting phases. Because the dislocation lines w
equally spaced and their Burgers’ vectors were the sa
~sign and magnitude!, there is a cooperative effect of th
dislocations on the spinodal decomposition. We now turn
the case of a random spatial distribution of parallel dislo
tion lines with a random orientation of their Burgers’ vect
in the x̂ or 2x̂ direction for edge dislocations. The system
are two dimensional as before, and the density of dislo
tions is measured as the number of dislocations perDx2.
Figure 5 shows a black and white plot of the order param
for a system with edge dislocations evolving fromt5100 to
t53000. The dislocations are represented by gray dots
have two possible orientations for the Burgers’ vector. T
panels on the left represent an alloy with a density of dis
cations of 0.01, while the pictures on the right are for
dislocation-free solid. It is obvious from these pictures th
the overall morphology of the phase separation pattern
affected by the uncooperative stress fields of the dislocati
Because a positive~negative! edge dislocation produces
stress field that favors larger atoms above~below! it, the
dislocations tend to be located at the interface between p
separating domains at early times. Since we have chose
Burgers’ vector of the dislocations to be oriented in the6 x̂
direction, the formation of interfaces primarily on disloc
tions creates an anisotropy in thex direction that creates
elongated domains. As time proceeds, the phase separat
strong enough to drive the interfaces through the disloca
network thereby increasing the domain size as a function
time. Even when this happens, the interface can rem
pinned to a dislocation, and the interface between domain
rough as compared to the dislocation-free case. We h
monitored the time evolution of the first momentk(t) of the
structure factor as a function of the density of dislocations
shown in Fig. 6. It can be seen that the phase separation
fact faster when the density of dislocations increases.
shape of thek(t) curves shows however that the accelerat
of the phase separation occurs at early times and that
subsequent time evolution proceeds very similarly to
phase separation without dislocations. This is further dem

FIG. 4. Wave number as a function of time for an array of ed
dislocations along thex axis. The decomposition is accelerated
the density of dislocations increases.
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strated in the inset to Fig. 6, where we plot the wavenum
as a function of dislocation density for two times,t5500
andt53000 for the random distribution of dislocationsand
for the linear array of equally spaced dislocations studied
the previous section. This plot shows that the dependenc
k on the density is the same for these two times.

The acceleration of spinodal decomposition in the pr
ence of dislocations has been discussed in the experime
literature as stated in the Introduction. In recent studies of
thermomechanical treatment of CuNiCr alloys,7 it was re-
ported that spinodal decomposition was accelerated
samples that were deformed prior to aging as compare
undeformed samples. The deformation before aging in
duces a large number of dislocations in the sample indica
the direct correspondence between the density of dislocat
and the enhanced decomposition, in agreement with the
sults of the present study. It was postulated that the fa
spinodal decomposition is due to an increase in the di
sional flux due to the large density of dislocations; our wo
clearly shows that the diffusion potential is modified by t
presence of dislocations and that the contributions to the

e

FIG. 5. Phase separating alloys at different times of their
namical evolution. Panels from top to bottom correspond to
times t5100, 500, and 3000. The alloy on the left has an ar
density of dislocations of 0.01~area measured in units ofDx2)
while the alloy on the right is dislocation-free. The dislocations a
represented by grey dots and the regions wheref.0 (f,0) are
white ~black!. Both alloys were started with the same initial cond
tions.
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cal chemical potential due to the dislocations produce a ra
segregation of the alloy components. Furthermore, the t
dependence ofk was also studied7 and agrees with our find
ings that at a given timek is smaller when the dislocatio
density is higher and that the differences in the time evo
tion of k occur at the early times of the aging process. Al
the rate of coarsening was found not to be affected by
dislocations at later times, in agreement with our numer
simulations. An alternate explanation for the acceleration
spinodal decomposition in cold-worked alloys is as follow
cold work can increase the concentration of vacancies ab
the equilibrium concentration, and hence, increase the d
sion coefficient. This increase in the diffusion coefficie
would accelerate the decomposition of the alloy. Expe
ments can be performed to distinguish between these
scenarios by measuring the rate of coarsening as a func
of the dislocation density.

We conclude this section by noting that the preferred s
regation of the two components in the stress field of
dislocations also occurs for alloys outside of the two-ph
region of the phase diagram. This is illustrated in Fig.
which shows the equilibrium profile of the alloy componen
in a random distribution of edge dislocations. In the abse
of the dislocations, the alloy would be perfectly homog
neous and Fig. 7 would be entirely gray. Because the di
cations introduce a stress field, aweak inhomogeneity ap-
pears in the order parameter distribution. The weaknes
this segregation is due to the fact that the elastic ene
relieved is in competition with the entropic contributions th
tend to homogenize the system.

IV. GROWING THIN FILM

In this section we discuss the application of the results
the previous section to thin films. We first briefly discuss t
equilibrium position of misfit dislocations at the interfac
between a substrate and a thin film that is composition

FIG. 6. Time evolution of the wave number for various valu
of the density of dislocations~measured perDx2). The curves from
top to bottom are for dislocation densities of 0, 0.01, 0.05, and
The inset showsk at timest5500 ~top curves! and att53000
~bottom curves! for the systems with a random distribution of di
locations~solid squares! and for the system with an array of dislo
cations~open squares!.
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modulated. We then turn our attention to a growth proc
where the appearance of arrays of misfit dislocations can
used to compositionally pattern a growing film.

One of the possible mechanism to relieve the strain
mismatched systems is the bending of dislocation lines
the substrate/film interface. If the overlayer is modulat
with c5Acos@q(x2x0)#, then the question we ask is what
the equilibrium position of the dislocation when it is be
into the interface? This can happen, for example, whe
binary alloy is deposited directly onto a mismatched su
strate, since the phase separation will occur at the onse
the deposition and the introduction of the misfit dislocatio
will occur later ~at the critical thickness for example!. Ne-
glecting the fact that the actual solution of the mechani
equilibrium equations would require that the growing surfa
be free, the energy to be minimized is the interaction ene
between the order parameter and the stress field of the
location, the f I of the previous sections. For a film unde
tensilestrain growing in they direction, and with an edge
dislocation with Burgers’ vector in thex direction and lo-
cated at (x,y)5(0,0) the total energy per unit length is give
by @see Eqs.~11! and ~12!#

F52ba8AE
2`

` E
0

h

cos@q~x2x0!#
y

x21y2
dydx, ~22!

where we have considered only the lattice constant to dep
on f. Evaluation of the integral leads to

F52ba8AS 12e2qh

q D cos~qx0!, ~23!

implying that, forba8 , the minimum is when cos(qx0)51, or
x050,2p/q, . . . , independently of the value of the modula
tion wavelength or of the film thickness~since the prefactor

1.

FIG. 7. Equilibrium distribution of the order parameter when t
alloy is outside of the two-phase region of the coherent alloy. T
black dots represent edge dislocations. In the absence of dis
tions, the system would be homogeneous and the figure woul
entirely of the same gray shade. The maximum absolute valu
the order parameter is 0.1.
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in F never changes sign asq or h is varied!. If the overlayer
is viewed as being made of alternating stripes of the a
constituents, then the equilibrium position of the dislocat
line is at the center of a stripe with the smallest lattice c
stant~note that because the energy is always negative, a
location line perpendicular to the modulation will alwa
have a smaller energy than a dislocation line parallel to
composition modulation!. There exists the possibility tha
dislocations that do not bend into the interface to relieve
misfit strain extend to the surface and have a dislocation
that is perpendicular to the surface. In such a case, the
energy per unit length of the dislocation~edge type with
Burgers’ vectorb5 x̂ and located at the origin! in the pres-
ence of a composition modulation in thez direction is

F52
2pba8A

q
sin~qz0!, ~24!

implying that the equilibrium location of the dislocation is
the interface between the compositional domains.

We can estimate, using energy minimization argument11

the critical thickness of the compositionally modulated gro
ing film when the introduction of the misfit dislocations w
occur. Our goal is to show that the composition modulat
can decrease the critical thickness by considering the in
duction of the first misfit dislocation. The energy per u
length of one misfit dislocation located at its equilibriu
position is

E5
Mb2

4p~12n!
lnS 4h

b D22M u«ubS 11n

12n D t

2uba8 uAS 12e2qh

q D , ~25!

where« is the misfit between the film and the substrate, a
n is the Poisson ratio. The first two terms are the ene
contributions for a dislocation in a homogeneous film11

while the last term in this equation accounts for the com
sition modulation and is the new effect of interest here. B
cause this term is always negative, the energy of the di
cation is reduced by its presence, implying that t
introduction of the dislocation will occur earlier. We no
make the rescalingh* 5h/b, k5qb and define the param
eters

S5@8p~11n!#21 and R5
uba8 uA
2Mb S 12n

11n D , ~26!

and obtain the zero energy equation for the critical thickne

u«uh* 2Sln~4h* !1RS 12e2kh*

k
D 50. ~27!

In the limit where the modulation wavelength is very sma
k→`, the last term vanishes and we recover the equation
the critical thickness of a homogeneous overlayer. The
posite limit of very large modulation wavelength,k→0,
gives the equation

~ u«u1R!h* 2Sln~4h* !50, ~28!
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corresponding to a homogeneous overlayer of effective m
fit whose absolute value isu«u1R. This is because, in this
limit of small k, the system looks like a single compone
film of the alloy element with the smallest lattice consta
effectively making the misfit more negative. If the abo
analysis is repeated for a film under compression, the rig
hand side of Eq.~22! changes sign~since the Burgers’ vecto
of the dislocations changes sign! and the equilibrium loca-
tion of the dislocation is in the center of a stripe with th
largest lattice constant. In the limitk→0, this makes the
effective misfit larger. Hence, because the dislocation p
tions itself to effectively increase the misfit, we can say th
the physical mechanism for the preferred location of the d
location is the additional reduction in the strain energy of
overlayer.

The parameterR depends on the amplitude of the comp
sition modulationA and the misfit between the overlaye
componentsh52a/3K; an estimate for real systems give
R'0.1Ah, which is at least a factor of 10 smaller thanS.
Figure 8 shows the ratio of the critical thickness whenR
50.003 to the critical thickness whenR50 as a function of
the wavelength of the composition modulation. The value
S is 0.03 corresponding to a Poisson ratio of 1/4 and
Burger’s vector has length 0.5 nm. We show the curves
values of the substrate/film misfit of 1% and 0.1%. As can
seen in the figure, a significant decrease of the critical thi
ness occurs as the wavelength of the composition modula
increases; this decrease is more pronounced for the 0
misfit since the critical thickness in the absence of the co
position modulation (R50) is much larger compared to th
1% misfit.

The calculation above considered the effects of the co
position modulation on the behavior of the dislocation
given the initial form of the composition modulation. In
similar way, we now discuss the effects of a given distrib
tion of misfit dislocations on the compositional orderin
This idea of using the dislocation stress field to order str
tures has been exploited to grow microwires in electro
devices17 ~the process involves the introduction of metal

FIG. 8. The graph shows the ratio of the critical thickness
the introduction of misfit dislocations for a compositionally mod
lated film to the critical thickness for a homogeneous film, as
function of the wavelength of the composition modulation. T
material parameters aren50.25 andb50.5 nm.
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impurities at the surface of a thin film as it is growing; th
impurities aggregate along the misfit dislocations and fo
the wires!, and to align islands on top of growing layers.18

The process we have in mind is the following~see Fig. 9!:
deposit a mismatched single-component film on a subst
until the critical thickness is reached~for example Si on Ge!
and then deposit simultaneously the two-components o
compound~GaAs for example!. We assume that the averag
lattice constant and the elastic moduli of the compound
perfectly matched to the first deposited layer and that
diffusion of atoms occurs at the surface only. The~dimen-
sionless! distance between the growing surface and the a
of edge dislocations ish5h01vt, with v the dimensionless
speed at which the film is growing and the constanth0 rep-
resenting the critical thickness for the first deposited lay
The results from the calculations above for an array of e
dislocations in a bulk material cannot be carried over direc
because of the free surface of the thin film. However,
shown in the Appendix, proper consideration of the bou
ary conditions at the free surface leads to the approxim
dimensionless free-energy functional for the binary alloy
the surface

F$c%5E dxF2
f2

2
1

f4

4
1

u¹fu2

2

1gf
1

d
expS 2

2p

d
hD cosS 2p

d
xD G . ~29!

The dynamical equation is then

]f

]t
5¹2F2f1f32¹2f

1gexpS 2
2p

d
vt D cosS 2p

d
xD G2vf, ~30!

whereg5g8/dexp(22ph0 /d). The last term in this equation
accounts for the constant deposition of material that tend
mix the surface layer.

For g50,13 a linear stability analysis of Eq.~30! shows
that the homogeneous alloy is unstable ifv,1/4; the com-
petition between the decomposition and the constant dep
tion of material leads to the formation of lamellar pattern

FIG. 9. Sketch of the film grown by the process discussed in
text. The first deposited layer is mismatched to the substrate a
grown until the critical thickness for the formation of an array
misfit dislocations is reached. The alloy layer is then grown
simultaneous deposition of the alloy constituents.
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For values ofv close to 1/4, the pattern amplitude is sma
~weak segregation regime! while far below 1/4 the amplitude
of the order parameter modulation is at its maximum~strong
segregation regime!. As time increases the value of the ter
due to the dislocations decreases on account of the expo
tial factor exp(22pvt/d), implying that the long time behav
ior of the system is the same as wheng50. At very early
times, we take exp(22pvt/d)'1 and solve the linear dy
namical equation to obtain the time dependence of the o
parameter~with the expansionf5(qfqcosqx) as fq(t)
5fq(0)(11Vt)1gq2tdq,2p/d with V5q22q42v. The
modeq52p/d grows the fastest because of the termgq2t
that is always present, even whenfq(0) is made vanishingly
small. The mode corresponding to the spacing of the dis
cations will therefore always dominate at early times, ev
when the dispersion relationV(q52p/d) is negative.

We have simulated the above dynamical equation as
the previous sections. The surface is represented by a
dimensional square plane with periodic boundary conditio
and the constantg50.02 in all of the simulations corre
sponding to order of magnitude estimates w
h05500 Å, d5200 Å andTc51000 K. Figure 10 shows

e
is

y

FIG. 10. Time evolution of the order parameter at the surface
a growing film in the weak segregation regime~left column! and in
the strong segregation regime~right column!. The spacing between
the misfit dislocations isd510. For the left column, the growth
velocity is v50.24 and the times from top to bottom aret
5100, 500, and 10 000. The right panels correspond to a gro
velocity v50.01 and timest5100, 1000, and 10 000 from top t
bottom.
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snapshots of the surface layer at different times of the
merical simulations in the weak and strong segregation
gimes. For the weak segregation regime (v50.24), the ini-
tial modulation due to the dislocation array persists unt
time t'300, after which the long-time behavior takes ov
The decay of the initial modulation proceeds by a decre
of its amplitude@due to the factor exp(22pvt/d)] until it is
comparable to the amplitude of the other modes. The in
modulation will persist on a time scale that depends on
strength of the initial fluctuations inf ~the strength of the
beam fluctuations in a real experiment!, the value ofg,
which determines the amplitude of the initial modulatio
and on the value of 2pv/d, which is responsible for the
decay of the initial modulated state. The behavior of
system in the strong segregation regime is quite different
shown in the right panels of Fig. 10. The system quic
orders in the lamellar pattern with modulationq52p/d due
to the dislocations. As opposed to the weak segregation
gime, the amplitude of the modulation stays const
throughout the dynamical evolution. At a timet'500, the
crossover to the long-time steady state begins: the lame
become unstable to fluctuations, breakup, and join w
neighboring stripes. This mechanism has the effect of
creasing the wavelength of the modulation towards
steady-state value.

Experiments related to the deposition process descr
above have been reported.19 In these experiments, a layer o
GaAs was deposited on a Si substrate prior to the depos
of InGaAs. Both spinodal decomposition of the InGaAs a
misfit dislocations at the GaAs/Si interface were observ
while the InGaAs/GaAs interface remained coherent. It w
found that the spinodal decomposition occurred along
@11̄0# direction, in contrast to experiments where the deco
posing alloy is deposited directly on the substrate and wh
the decomposition occurs along the@100# and @010# direc-
tions. The difference between these experimental res
could be due to the presence of the array of misfit dislo
tions at the GaAs/Si interface that influences the decomp
tion.

V. CONCLUSION

We have considered the role played by dislocations
alloys undergoing spinodal decomposition. Effective co
tinuous free-energy functionals were derived for bulk ma
rials containing straight, immobile dislocations and for th
films with misfit dislocations. By assuming that mechanic
equilibrium is instantaneously satisfied, we showed that
displacement vector can be calculated in terms of the p
erties of the dislocations and as a function of the order
rameter. We demonstrated that the composition depend
of the lattice constant and of the elastic moduli can induce
interaction between the composition and the stress field
the dislocations, and we calculated explicitly the form
these interactions for pure edge and screw dislocations.

For bulk systems, we presented results of numerical in
grations of the dynamical equations describing the evolu
of the system after a quench from a high temperature
temperature inside the coexistence region of the phase
gram. These results showed the segregation of the two c
ponents in the stress field of the dislocations: the sma
-
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~larger! atoms segregate to regions of compressive~tensile!
stress above and below edge dislocations, the atoms with
smallest bulk and shear moduli segregate around edge d
cations, and the species with the smallest shear mod
wrap screw dislocations. The presence of an array of e
dislocations favors strongly the phase separation of the a
components by introducing a location of choice for the int
face between the components. For a random distribution
dislocations, the spinodal decomposition accelerates as
density of dislocations increases since the atoms can e
diffuse in the stress field of the dislocations to phase se
rate.

The equilibrium location of strain-relieving edge disloc
tions at the interface between a homogeneous substrate a
compositionally patterned overlayer was shown to be in
center of a stripe of the alloy element with the smallest~larg-
est! lattice constant for films under tensile~compressive!
strain, while edge dislocations that extend from the subst
to the growth surface run at the interface between t
stripes. It was demonstrated that the critical thickness for
introduction of misfit dislocations in a compositional
modulated overlayer can be drastically reduced as comp
to the homogeneous overlayer, and the reduction incre
with the increase of the composition modulation waveleng

We also described a crystal growth process, where a
layer is deposited on a mismatched substrate until its th
ness exceeds the critical thickness for the introduction
misfit dislocations. The constituents of an alloy are then
multaneously deposited on the layer containing the mi
dislocations. The stress field of the misfit dislocations w
found to decay exponentially with the critical thickness
the first layer and with the thickness of the alloy layer. To
first approximation, the stress field is periodic with a wav
length corresponding to the spacing between the misfit
locations. At early times of the deposition process, a p
fectly ordered composition pattern arises due to the m
dislocations. For values of the dimensionless deposition
v.1/4, the amplitude of the modulation decays to zero a
the layer is then homogeneously mixed. Forv,1/4, two
regimes exist: whenv is close to 1/4, the initial composition
modulation decays in amplitude until it becomes compara
to the other modes; forv far from 1/4, the initial modulation
decays by the breaking and merging of stripes. Hence,
most interesting practical situation for growing pattern
films is the case where the growth velocity is large enough
preclude the phase separation.
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APPENDIX A: DERIVATION OF THE EFFECTIVE FREE
ENERGY FUNCTIONAL FOR A GROWING THIN

FILM

We assume that the system is semi-infinite in they direc-
tion with a free surface aty5h and an array of edge dislo
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cations of spacingd with Burgers vectorb5bx̂. The bound-
ary conditions require that the stresses vanish asy→2` and
thatsxy5syy5szy50 at the free surface. We are interest
in lateral phase separation at the free surface, and there
take the order parameter gradient in they direction to vanish.
This ensures that the contributions toszy andsxy from spa-
tial variations in the order parameter are equal to zero.
order parameter contribution tosyy also vanishes due to th
mechanical equilibrium condition. Since thez axis is parallel
to the dislocation lines, the displacement vector is indep
dent ofz anduz50, implying thatszy50. The procedure to
cancelsxy and syy at the free surface is as follows:20 first
introduce an image dislocation aty52h ~this cancelssxy)
and then add a stress function that will eliminate the res
ing syy . The value ofsyy to be eliminated after the imag
dislocation is introduced is

syy5
2M

11nS b

2p D F2
2n

12n (
n52`

`
h

~x2nd!21h2

1 (
n52`

`
~x2nd!2h2h3

@~x2nd!21h2#2G . ~A1!

The terms in this expression are written in such a way t
the summation is well behaved. Evaluation of these su
gives the expressions

(
n52`

`
h

~x2nd!21h2
5

p

2d

sinh2f

cosh2f2cos2u
~A2!

and

(
n52`

`
~x2nd!2h2h3

@~x2nd!21h2#2

5
hp2

d2

cos2ucosh2f2sin2usinh2f

@cos2ucosh2f1sin2usinh2f#2
. ~A3!

The angular variablesf and u are defined asf5(h/d)p
and u5(x/d)p. The hyperbolic functions can be approx
mated by sinhf'coshf'1/2exp(f) whenf is not too small,
giving the ratio of the second sum to the first sum prop
tional to (h/d)exp(22f). Hence, the second term in Eq
~A1! can be neglected.
,

l.
re

e

n-

t-

t
s

-

We now introduce the stress functionC that satisfies the
mechanical equilibrium equation¹4c50 and from which
the stresses can be calculated assyy5]yy

2 C and sxy

52]yx
2 C. Separation of variables with the boundary con

tions C→0 asy→2` and that the addition ofc does not
produce a shear stresssxy at the surface, gives the solutio

C52M
2n

~11n!~12n!

b

2p2
@~y2h!I 12I 2#, ~A4!

whereI 1 and I 2 are given by

I n5E
0

`

k2nek~y2h!I ~k!cos~kx!dk. ~A5!

In this last expression,I (k) is given by

I ~k!5E
2`

` S (
n52`

`
h

~x2nd!21h2D cos~kx!dx. ~A6!

The expression forC can then be used to compute the elas
free energy at the surface from Eq.~2!:

Fel$c%5E drF ~a8c1b8¹x
2¹22c! (

n52`

`
h

~x2nd!21h2G .

~A7!

The new coefficientsa8 andb8 are given by

a85a
8M23K

3M

2n~122n!

~12n!2

b

2p
~A8!

and

b852a
6Mb

3K14M

12n22n2

~12n!2

b

2p
. ~A9!

Neglecting terms as discussed above, the dimensionless
tic functional integral can be written as

Fel$f%5E dxFg8f
1

d
expS 2

2p

d
hD cosS 2p

d
xD G ,

~A10!

with the constantg85(a81b8)r 21(u/c)1/2.
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