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Force-free configurations of vortices in high-temperature superconductors
near the melting transition
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We study force-free configurations of Abrikosov flux lines in the line-liquid and line-crystal limit, near the
melting transition atHm . We show that the condition for zero force configurations can be solved by appealing
to the structure of chiral liquid crystalline phases.@S0163-1829~98!08138-7#
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In high temperature superconductors, the extremely la
ratio of the London penetration depthl to the coherence
lengthj suggests that the most important degrees of freed
are Abrikosov vortex excitations. The configuration of flu
lines in applied currents and fields thus becomes of g
interest. It is therefore useful to construct a theory of the fl
lines themselves which may be used to study their con
mations.

We start by considering the London equation for a sup
conductor, which relates the current densityj to the magnetic
field B:

¹3 j52
c

4pl2 B, ~1!

where l is the London penetration depth. This is supp
mented by Maxwell’s equation:

¹3B5
4p

c
j . ~2!

These two equations predict much of the phenomenolog
superconductors. In particular, ifB is along theẑ axis, then
the London equation predicts that screening currents will
culate in thexy plane. If the magnetic field is confined withi
flux tubes parallel to theẑ axis then the currents will circu
late about these confined regions. These flux tubes will fo
the Abrikosov flux-line lattice.

Under an applied current, flux lines will adopt a stea
state configuration in which there is no net force. In t
absence of pinning the Lorentz force per unit length on
vortices,F/ l 5B3 j , will be balanced by repulsive vortex
vortex interactions. In a ‘‘force-free’’ configuration1 it is
necessary thatj be parallel toB:

a~x!B~x!5
c

4p
j ~x!5¹3B~x!, ~3!

where the last equality follows from Maxwell’s equation a
a~x! is a spatially varying scalar. In a superconductor,
magnetic field is confined to be near flux tubes and alo
their tangents. If the flux lines trace out the curvesRi(s),
wheres is their arclength, then

m~x!5E ds(
i

dRi

ds
d3@Ri~s!2x# ~4!
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is the local tangent density of flux lines. Since flux lin
cannot end we have¹•m50. Using standard techniques fo
treating topological defects2 we have

@12l2¹2#B5F0m, ~5!

whereF0 is the flux quantum. It is useful to decomposem as
the product of a unit vectorn̂ and an areal densityr, m
5rn̂.3 If a varies on a lengthscale long compared with t
penetration depth then by applying the operator@12l2¹2#
to Eq. ~3! we find:

¹r3n̂1r¹3n̂'arn̂. ~6!

If we consider the system nearHm where the flux lines are
dense, we can taker'r0 , a constant and Eq.~6! becomes
¹3n̂5an̂ while conservation of flux becomes¹•n̂50. To-
gether, these equations appear in the study of liquid crys
the flux lines adopt a configuration with no splay (¹•n̂
50), no bend (n̂3@¹3n̂#50), but with twist (n̂•¹3n̂
5a). We will pursue this analogy with liquid crystals. O
course, the flux-line density does not need to be unifo
The liquid crystal analogy will allow us, however, to con
sider a class of paradigmatic vortex configurations which
not require density variations and are thus of low energy

For simplicity, we consider a superconductor in a ma
netic field, applied along thez axis. The Abrikosov flux lat-
tice can be modeled as an elastic medium:4

FLattice5
1

2 E d3x$c11uii
2 12c66@ui j

2 2uii
2 #1c44~]zu!2%,

~7!

whereu is the two-dimensional displacement vector~perpen-
dicular to the average flux-line direction!, ui j is the two-
dimensional strain tensorui j 5(] iuj1] jui)/2, and we have
used the elastic constantsci j as defined in Ref. 5. The equ
librium conformation will minimize the elastic free energ
while maintaining a force-free configuration.

First we consider the case just aboveHm where c66
vanishes—the flux liquid.6 In this case, when the flux line
are aligned by an external magnetic field, we can direc
show that a current parallel to the field tends to twist t
flux-line tangents, as in a cholesteric liquid crystal. We e
ploy the duality mapping between the superfluid and
superconductor7 under an applied local current. We writej0

5reev0 wherev is the Cooper-pair velocity,re is the pair
8218 © 1998 The American Physical Society
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density, ande is the pair charge. The partition function fo
the London theory in an applied fieldH is:

Z5E @dv#@dA#d@¹•A#expH 2E d3x
mree

2

2
~v2v02A!2

1
1

2
~¹3A!21H•¹3AJ , ~8!

wherem is the mass of the Cooper pair. Writing the veloc
in Fourier space in terms of longitudinal and transverse co
ponents,

v~k!5 ikf1
ik3m

uku2 , ~9!

where m is the density of flux vortices pointing in them̂
direction. Since flux lines cannot begin or end in the sam
¹•m50. Upon substituting Eq.~9! into Eq.~8! and integrat-
ing out f andA we have~to leading order in momentum!:

Z5E @dm#d@¹•m#

3expH 2E d3xF1

2
m22m•H2v0

•¹3H1v0
•¹3mG J ,

~10!

where we have omitted terms independent ofm andv. The
first two terms are responsible for the presence of vortice
the superconductor—they favorm5H. The next term in-
duces the screening current in the Meissner phase. The
term is the new interaction which tends to twist the vortic
around the applied current. WhenHi ẑ, it is natural to write
m'r ẑ1r0dn, where dn is the projection of the averag
tangent onto thexy plane. Then¹•m50 becomes:

]zdr1r0¹'•dn50. ~11!

This constraint can be solved8 by introducing a two-
dimensional vector fieldu and writing dr52r0¹'•u and
dn5]zu. In terms of this fieldu,

F total5E d3xH c11

2
uii

2 1
c44

2
~]zu!22

mr0

2e2rc
j •¹'3]zuJ ,

~12!

where we have allowed for anisotropic elastic constants. T
theory is simply the theory of polymer cholesterics, in t
limit of small pitch.3 For large deviations one might expe
that the flux lines will rotate in a plane perpendicular to
pitch direction. This configuration was, in fact, proposed
the seminal work of Campbell and Evetts.1 Moreover, an
additional conformation is possible in a finite radius, cyli
drical sample, namely a double-twist configuration as in
blue phase of chiral liquid crystals. This possible doub
twist configuration is shown in Fig. 1. In this double-twi
conformation theB field and j wrap around each other, s
multaneously satisfying the Maxwell and London Eqs.~2!
and ~1!. It was correctly noted in Ref. 1 that this configur
tion would be energetically unacceptable as the radius of
cylinder grew—the flux lines on the boundary of the sam
would grow unacceptably long. However, as we shall see
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the following, a defect-riddled state can allow local config
rations similar to those shown in Fig. 1, with finite displac
ments of the flux lines. The handedness of the rotation of
flux lines is determined by the right-hand rule and the dir
tion of the current. Note, however, that an equally accepta
force-free conformation would beabsolutelystraight flux
lines parallel to the applied current. The difficulty with this
that thermal fluctuations will destabilize this state and lead
a helical instability of flux lines, as predicted by Clem9 in
1977. As a consistency check, we note that if we were
consider the effect of the Lorentz forces acting on the in
vidual flux lines that there is an instability also at any fin
current10 towards helical flux-line trajectories.

We note that there is a certain duality between the curr
and the magnetic field in the London-Maxwell equations.
particular, the equations are invariant under

j→
c

4pl
B,

B→2
4pl

c
j . ~13!

It would thus be natural to consider the dual physical sit
tion to the Abrikosov flux lattice. In this case, the curre
would flow along theẑ axis leading to a screening magnet
circulation in thexy plane. If the current were confined int
regions, so would be the circulating magnetic field. Phy
cally, this is accomplished via flux lines tracing out helic
trajectories: thexy components of the flux-line tangents ci
culate in that plane, dragging the magnetic field with the
providing the necessary magnetic field.

FIG. 1. Configuration of flux lines and current in a wire~both
follow the heavy lines!. The flux lines are parallel to the curren
everywhere and both wrap around the center of the wire. Note
there is a nonvanishing¹3B and¹3 j . The applied fieldH and the
average current densityj̄ are parallel.
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There is, however, an essential difference between
Abrikosov solution and its dual: in the original problem
quantum mechanics imposes a constraint on the amoun
magnetic flux that could be confined in a flux tube—sing
valuedness of the wave function implies that the flux m
be an integer multiple of the flux quantumF0

5(2p\c)/(2e). This constraint is responsible for the pre
ence of a second-order transition between the Meissner
and the Abrikosov state. In the dual case, there is no equ
lent quantization of current flux. It is easy to understand w
in the dual language: a helical flux line can execute an a
trarily long-pitched wobble which allows@¹3B#' to be ar-
bitrarily small. This is what allows Clem’s helical instability

Whenc66Þ0 we are forced to consider a crystalline stru
ture with a force-free conformation of the flux lines. Th
problem has been considered in the context of liq
crystals—namely, how a chiral line crystal minimizes its fr
energy in the presence of the two competing tendencie
twist and to have periodic order. These two tendencies f
trate each other and thus, as in the Renn-Lubensky tw
grain boundary~TGB! phase of smectic liquid crystals th
frustration will be resolved via the introduction of topolog
cal defects—screw dislocations.

In Ref. 11 two types of crystal defect arrays were cons
ered. One array consisted of a periodic arrangement of
grain boundaries~TGB! which would change the local flux
line direction. The other array was made of helicoidal-gr
boundaries~HCB!, each of which is a honeycomb lattice o
screw dislocations lying in thexy plane. A single isolated
HCB leads to a twisting of the crystalline order along t
flux-line direction. If we were to consider stacking man
HCB’s together with some spacingd8, this twisted moire´
state would have both twisting ofd n as well as twisting of
the crystal directions. This is similar to the physics of bl
phases in chiral liquid crystals.12 In chiral liquid crystals,
there is a tendency for the local directorn to twist. However,
in blue phases this twist manifests itself in double-twist c
inders. Taking the nematic director field as a local tang
vector density for lines, these double-twist cylinders beco
ropelike bundles of twisted lines. Analogously, a twist
bundle of flux lines will allow the magnetic field to circulat
while keeping the flux lines, on average, along a single
rection. While in the softer liquid crystal theory the elas
energy cost of this deformation is proportional to the an
of rotation,11 in the flux-line system interactions between t
screw dislocations of the vortex lattice will lead to logarit
mic corrections to this energy. In any event, the energy o
grain boundary per unit area will be finite. We propose th
defected states as paradigms for a flux-line lattice unde
applied, parallel current.

Notice that we can have no twist ifa50. However, j
5aB. If current flows through the superconductor then
must flow on the often-neglected boundaries of the sam
Thus, to study the energetics of this state, we must incl
the usual London energy for the supercurrent. We consid
current along the magnetic field directionẑ and assume tha
there is a flux-line lattice. Ifv is the Cooper-pair velocity and
re is the density of Cooper pairs, then the total curren
I z5ereAv whereA is the cross-sectional area of the regi
in which current flows. If there are no defects in the fl
lattice the current must flow within a penetration depthl of
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the sample boundary andA'2pRl. The London energy for
this current configuration is, per unit length alongẑ,

F/L52pE
R2l

R

rdrmerev
25

me

2pRlree
2 I z

2, ~14!

whereme is the mass of the electron.
If we allow the Abrikosov lattice to have defects then t

current can flow through more of the cross section thus lo
ering the London energy. Of course, the energy decrease
be offset by the energy of the screw dislocations in the fl
line lattice. If we consider a moire´ configuration which is
reasonably dense then as a rough approximation we
¹3dn to be uniform alongẑ. This implies that the curren
runs uniformly through the entire cross section of t
sample. The decreased London energy is:

Fdefects/L5
m

pR2ree
2 I z

2. ~15!

In the moiréstate we must add the energy of the dislocat
lattice that produces the twisted configuration. In a crys
line lattice the energy in the strain field due to a single d
location diverges logarithmically with system size. If w
have a network of dislocations as in the moire´ state,11 how-
ever, the strain energy of the lattice is finite. In this case
largest contribution to the energy of a grain boundary is d
to the logarithmic interactions of the screw dislocations. W
take the energy per unit length of a screw dislocation to
e0ln(d/z) whered is the average defect spacing andz is the
defect core size.13 The energy cost per unit length alongẑ of
the sample is therefore:

Edefects/L5e0ln~d/z!
pR2

d2 . ~16!

With a uniform current density Maxwell’s equation give
¹3B54I z /(cR2). In turn, the defect density is determine
by the amount of¹3dn required to produce the uniform
current. For a defect spacingd we estimate14

¹'3dn'
a0

2d2 . ~17!

Putting this together with Maxwell’s equation, we get

pR2

d2 5
8pI z

c

1

AF0Hz

, ~18!

where we have usedr05Hz /F0 and a051/Ar0. Thus the
defect energy is:

Edefects/L5 lnFcAF0HzpR2

8pI zz
2 G 4pe0I z

cAF0Hz

. ~19!

Putting together all the energies we may compare the
ergy of the moire´ structure with that of the untwisted Abri
kosov structure. There will be an instability towards
twisted state when

m

2pRlrce
2 I z

2>
m

pR2rce
2 I z

21Edefects/L. ~20!
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If l!R we may neglect the first term on the right-hand s
of Eq. ~20! and find that the moire´ state is favored when

I z> lnFcAF0HzpR2

8pI zz
2 G 8p2Rlrce

2e0

mecAF0Hz

, ~21!

or when the applied current densityj z5I z /(pR2) is

j z>
l

R
lnFcAF0Hz

8p j zz
2 G 8prce

2e0

mecAF0Hz

. ~22!

Thus as the system size increases the current density n
sary to go to the moire´ state goes to zero. Thus the instabili
of Clem may be stabilized through the lattice structure a
its screw dislocations. The moire´ state that proposed here
not exactly force-free. In each cell of the honeycomb,
flux-line displacement is az-dependent rotation:ui
5Cze i j xj . This configuration has¹3B parallel toẑ, not the
local B. However, when averaged over one cell,B is parallel
to ẑ and so there is no net force on each bundle of vortic
It is clear, however, that small adjustments to the flux-l
locations that do not change their topology can yield an
tirely force-free configuration.

We comment on recent experiments15 performed on thin
film, YBa2Cu3O72d, ab-plane superconductors which hav
seen what are called ‘‘vortex’’ twisters, composed of tho
sands of flux lines. These twisters are formed by first app
ing a magnetic field along the long direction of the sam
creating an Abrikosov flux-line lattice. An additional fiel
H' is applied perpendicular to the plane of the flux line
The anisotropy insures that the flux lines will remain in t
ab plane if H' is small enough.16 Lorentz forces from the
es-

d

e

s.

-

-
-

e

.

screening current push the flux lines along the direction
ther parallel or antiparallel to thec axis depending on the
sign of the force. The forces build up and the Bean criti
state17 is formed. For current to flow along the sides of th
superconductor, the flux lines must twist about, giving a n
zero ¹3B. Moreover, these vortex twisters can be ma
ever more stable and compact through ‘‘work hardening’’
applying an ac component ofH' . The work-hardened
bundles are stable for hours, while the unhardened bun
are not stable at all. It is unlikely that these vortex twiste
form a perfect moire´ structure. However, the local structur
of these vortices might resemble the highly entangled mo´
state. This could explain the work hardening: when there
many screw dislocations it is difficult for the flux-line lattic
to relax, as the defects cannot cross the flux lines with
cutting them. A flux bundle twisted as in Fig. 1 could rela
easily as there are no topological impediments.

Along these lines, it would be interesting to study t
dynamics of the flux-line lattice under an applied curre
Just aboveHm , the flux-line picture suggests a striking fre
quency dependence of theI -V curve for currents along the
field axis. At high frequencies the flux-line lattice may a
like a solid, unable to relax, while at low frequencies it cou
flow, reminiscent of viscoelasticity in polymer melts. F
nally, if work hardening the Abrikosov lattice were possib
the critical current in the sample might be increased.18
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