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We study force-free configurations of Abrikosov flux lines in the line-liquid and line-crystal limit, near the
melting transition aH ,,. We show that the condition for zero force configurations can be solved by appealing
to the structure of chiral liquid crystalline phasgS0163-182@08)08138-7

In high temperature superconductors, the extremely larges the local tangent density of flux lines. Since flux lines
ratio of the London penetration depthto the coherence cannot end we havE-m=0. Using standard techniques for
length & suggests that the most important degrees of freedortreating topological defectsve have
are Abrikosov vortex excitations. The configuration of flux
lines in applied currents and fields thus becomes of great [1-\?VZ]B=dom, 6)
interest. It is therefore useful to construct a theory of the flux . .

whered, is the flux quantum. It is useful to decompaoses

lines themselves which may be used to study their confor- : A X
mations y y the product of a unit vecton and an areal density, m

g . .
o - =pn.” If « varies on a lengthscale long compared with the
We start by considering the London equation for a super- pn.= At . 202
conductor, which relates the current dengitg the magnetic penetration de_pth then by applying the operdtbs-A“V*]
field B: to Eq. (3) we find:

VpXn+pVXn=~apn. (6)

c
Xj=—— . .
V] 41r\? B, @ If we consider the system neét,, where the flux lines are

) ) o dense, we can take~p,, a constant and Eq6) becomes
where \ is the London penetration depth. This is supple-y « A= A while conservation of flux becomas. A=0. To-

mented by Maxwell's equation: gether, these equations appear in the study of liquid crystals:
4 the flux lines adopt a configuration with no splay -
VXB:%J-_ 20 =0), no bend Hx[VxA]=0), but with twist @-Vxn

=a). We will pursue this analogy with liquid crystals. Of
. . ourse, the flux-line density does not need to be uniform.
These two equations predict much of the phenomenology he liquid crystal analogy will allow us, however, to con-

superconductors. _In parthular, W is along_ thez axis, the_n . sider a class of paradigmatic vortex configurations which do
the London equation predicts that screening currents will cir-

culate in thexy plane. If the magnetic field is confined within not require density variations and are thus of low energy.
yp - 'Tthe mag o For simplicity, we consider a superconductor in a mag-
flux tubes parallel to the axis then the currents will circu-

late about these confined regions. These flux tubes will forrrg;ggccgﬁl%’ear?]%léee?ezlc;nsg;rl;]i?;:ib-rmhg dﬁjbrg!(osov flux lat-
the Abrikosov flux-line lattice. '

Under an applied current, flux lines will adopt a steady 1
state configuration in which there is no net force. In the = F =5 f d3x{C14uf +2Ced UF — Uf T+ Caa( ,0)2},
absence of pinning the Lorentz force per unit length on the
vortices, F/I=BXj, will be balanced by repulsive vortex- @)
vortex interactions. In a “force-free” configuratiorit is whereu is the two-dimensional displacement vecfperpen-
necessary thgtbe parallel toB: dicular to the average flux-line directipnu;; is the two-
dimensional strain tensar; = (d;u;+ d;u;)/2, and we have
used the elastic constantg as defined in Ref. 5. The equi-
librium conformation will minimize the elastic free energy
_ _ while maintaining a force-free configuration.
where the last equality follows from Maxwell's equation and  Eist we consider the case just abotk, where Cgg
a(x) is a spatially varying scalar. In a superconductor, the,anishes—the flux liquif.in this case, when the flux lines
magnetic field is confined to be near flux tubes and along,e aligned by an external magnetic field, we can directly

a(0B(X) = 2= ()= T XB(x), €

their tangents. If the flux lines trace out the cunR&s),  show that a current parallel to the field tends to twist the
wheres is their arclength, then flux-line tangents, as in a cholesteric liquid crystal. We em-
ploy the duality mapping between the superfluid and the

m(x):j dsE ﬁ S[Ri(s)— ] (4) supercoonductérupder an applied I_ocal cu_rrent._ We wri@:

T ds =pe.eVv- wherev is the Cooper-pair velocityp, is the pair
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density, ande is the pair charge. The partition function for
the London theory in an applied fieH is:

2
z=f [dv][dA]a[v-A]exp{—f dﬁ%(v—vo—A)z

1
+§(V><A)2+H-V><A , (8)

wherem is the mass of the Cooper pair. Writing the velocity
in Fourier space in terms of longitudinal and transverse com- —

ponents, IJ) J

) ikXm
V(k)IIkQHW’ 9
wherem is the density of flux vortices pointing in the
direction. Since flux lines cannot begin or end in the sample
V-m=0. Upon substituting Eq9) into Eq.(8) and integrat-
ing out ¢ andA we have(to leading order in momentum

sz [dm]8[V-m] ! !

Xexp{ - J d3x
(10

where we have omitted terms independentofandv. The

first two terms are responsible for the presence of vortices ithe following, a defect-riddled state can allow local configu-
the superconductor—they favan=H. The next term in- rations similar to those shown in Fig. 1, with finite displace-
duces the screening current in the Meissner phase. The lastents of the flux lines. The handedness of the rotation of the
term is the new interaction which tends to twist the vorticesflux lines is determined by the right-hand rule and the direc-
around the applied current. Whétiz, it is natural to write  tion of the current. Note, however, that an equally acceptable
m=~ pz+ pydn, where o is the projection of the average force-free conformation would babsolutely straight flux

FIG. 1. Configuration of flux lines and current in a wifieoth
follow the heavy lines The flux lines are parallel to the current
! everywhere and both wrap around the center of the wire. Note that
there is a nonvanishing X B andV X j. The applied fieldH and the
average current densifyare parallel.

1
5 m2—m-H—v0. VXH+Vv%.VXm

tangent onto they plane. ThenV-m=0 becomes: lines parallel to the applied current. The difficulty with this is
that thermal fluctuations will destabilize this state and lead to
d,0p+poV, - 6n=0. (1)) a helical instability of flux lines, as predicted by Cl&fn

1977. As a consistency check, we note that if we were to
consider the effect of the Lorentz forces acting on the indi-
vidual flux lines that there is an instability also at any finite
current® towards helical flux-line trajectories.

We note that there is a certain duality between the current
i-V,Xa,ut, and the magnetic field in the London-Maxwell equations. In
particular, the equations are invariant under

This constraint can be sol&dby introducing a two-
dimensional vector fieldi and writing §p=—poV, -u and
on=4,u. In terms of this fieldu,

Mpo
2€2pc

Cn Cas
Fiota™ f dgx[7 uﬁ"' 7 (azu)Z_
(12

where we have allowed for anisotropic elastic constants. This _ c

theory is simply the theory of polymer cholesterics, in the J-’m B,

limit of small pitch?® For large deviations one might expect

that the flux lines will rotate in a plane perpendicular to a

pitch direction. This configuration was, in fact, proposed in B — 42 (13)

the seminal work of Campbell and Evettdvioreover, an I

additional conformation is possible in a finite radius, cylin-

drical sample, namely a double-twist configuration as in thdt would thus be natural to consider the dual physical situa-
blue phase of chiral liquid crystals. This possible double-tion to the Abrikosov flux lattice. In this case, the current
twist configuration is shown in Fig. 1. In this double-twist would flow along thez axis leading to a screening magnetic
conformation theB field andj wrap around each other, si- circulation in thexy plane. If the current were confined into
multaneously satisfying the Maxwell and London E€B.  regions, so would be the circulating magnetic field. Physi-
and (1). It was correctly noted in Ref. 1 that this configura- cally, this is accomplished via flux lines tracing out helical
tion would be energetically unacceptable as the radius of th&ajectories: thexy components of the flux-line tangents cir-
cylinder grew—the flux lines on the boundary of the sampleculate in that plane, dragging the magnetic field with them
would grow unacceptably long. However, as we shall see iproviding the necessary magnetic field.
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There is, however, an essential difference between ththe sample boundary at~27R\. The London energy for
Abrikosov solution and its dual: in the original problem, this current configuration is, per unit length along
guantum mechanics imposes a constraint on the amount of
magnetic flux that could be confined in a flux tube—single F/L=27-rf rdrmgpen?= e |2
valuedness of the wave function implies that the flux must R—\ ee 27RApee” ¥’
be an integer multiple of the flux quantuntb .
a 9 . pie ob d O wherem, is the mass of the electron.
=(2whc)/(2€). This constraint is responsible for the pres- , .

o : If we allow the Abrikosov lattice to have defects then the
ence of a second-order transition between the Meissner state .
; . . “current can flow through more of the cross section thus low-
and the Abrikosov state. In the dual case, there is no equiva: . .
. ) ering the London energy. Of course, the energy decrease will
lent quantization of current flux. It is easy to understand Whybe offset by the enerav of the screw dislocations in the flux-
in the dual language: a helical flux line can execute an arbiz 't by gy . ; . T
trarily long-pitched wobble which allowsV X B], to be ar- line lattice. If we consider a m0|reonf|gurat|_on WhICh is
N o ; LR ... reasonably dense then as a rough approximation we take
bitrarily small. This is what allows Clem’s helical instability. : - oo
. ; VX én to be uniform alongz. This implies that the current

Whencgg# 0 we are forced to consider a crystalline struc- . . .

: . ) . runs uniformly through the entire cross section of the
ture with a force-free conformation of the flux lines. This amole. The decreased London enerav is-
problem has been considered in the context of quuidS pie. ayis:
crystals—namely, how a chiral line crystal minimizes its free m
energy in the presence of the two competing tendencies to Fgefectd L= RZ, &2 |§. (15
twist and to have periodic order. These two tendencies frus- TR Pe
trate each other and thus, as in the Renn-Lubensky twisin the moirestate we must add the energy of the dislocation
grain boundary(TGB) phase of smectic liquid crystals the |attice that produces the twisted configuration. In a crystal-
frustration will be resolved via the introduction of topologi- line lattice the energy in the strain field due to a single dis-
cal defects—screw dislocations. ~ location diverges logarithmically with system size. If we

In Ref. 11 two types of crystal defect arrays were considhave a network of dislocations as in the maitate;" how-
ered. One array ConSIStec_i of a periodic arrangement of tiltever, the strain energy of the lattice is finite. In this case the
grain boundarie¢TGB) which would change the local flux largest contribution to the energy of a grain boundary is due
line direction. The other array was made of helicoidal-grainto the logarithmic interactions of the screw dislocations. We
boundarieHCB), each of which is a honeycomb lattice of take the energy per unit length of a screw dislocation to be
screw dislocations lying in they plane. A single isolated ¢gIn(d/?) whered is the average defect spacing ah the

HCB leads to a twisting of the crystalline order along thedefect core siz&® The energy cost per unit length alongf
flux-line direction. If we were to consider stacking many the sample is therefore:

HCB'’s together with some spacingy, this twisted moire
state would have both twisting @fn as well as twisting of T
the crystal directions. This is similar to the physics of blue Egetectd L = €oln(d/{) o2 (16)
phases in chiral liquid crystaté.In chiral liquid crystals, ) ) ) ) _
there is a tendency for the local directoto twist. However, ~With a uniform current density Maxwell's equation gives
in blue phases this twist manifests itself in double-twist cyl-V X B=41,/(cR?). In turn, the defect density is determined
inders. Taking the nematic director field as a local tangenPy the amount ofVx'n required to produce the uniform
vector density for lines, these double-twist cylinders becomé&urrent. For a defect spacinhwe estimatt'

ropelike bundles of twisted lines. Analogously, a twisted

R
(14

2

bundle of flux lines will allow the magnetic field to circulate V, X dn~ ﬂz- (17)
while keeping the flux lines, on average, along a single di- 2d

rection. While in the softer liquid crystal theory the elastic =
energy cost of this deformation is proportional to the angle
of rotation!! in the flux-line system interactions between the
screw dislocations of the vortex lattice will lead to logarith- -—= ,
mic corrections to this energy. In any event, the energy of a d C JdoH,
rain boundary per unit area will be finite. We propose these
gefected stateyspas paradigms for a flux-line sztticrc)a under afyhere we hav_e .use;doz H,/®o andag=1/po. Thus the
applied, parallel current. efect energy is:
Notice that we can have no twist #=0. However,j

utting this together with Maxwell’'s equation, we get

7R 8w, 1

(18

2
=aB. If current flows through the superconductor then it Eereed L =11 ¢ CDOHZZR Ameolz (19
must flow on the often-neglected boundaries of the sample. e 8mlL CVDH,

Thus, to study the energetics of this state, we must include
the usual London energy for the supercurrent. We consider a Putting together all the energies we may compare the en-
current along the magnetic field directiarand assume that ergy of the moirestructure with that of the untwisted Abri-
there is a flux-line lattice. If is the Cooper-pair velocity and kosov structure. There will be an instability towards a
pe is the density of Cooper pairs, then the total current iswisted state when
I,=ep.Av whereA is the cross-sectional area of the region
in which current flows. If there are no defects in the flux m 2 m 2

i ithi i 2 Iz2 2 2 |z+EdefectJ|—- (20)
lattice the current must flow within a penetration deptbf 27RAp€ wRp.€
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If A<R we may neglect the first term on the right-hand sidescreening current push the flux lines along the direction ei-
of Eq. (20) and find that the moirstate is favored when ther parallel or antiparallel to the axis depending on the
sign of the force. The forces build up and the Bean critical

cVPoH,7R?| 87m?RAp %€y staté’ is formed. For current to flow along the sides of the
[,=In 8.0 : (2)  superconductor, the flux lines must twist about, giving a non-
z MeCVPoH, zero VX B. Moreover, these vortex twisters can be made
or when the applied current density=1,/(7R?) is ever more stable and compact through “work hardening” by
applying an ac component ofi, . The work-hardened
N [cy®oH,| 8mp.ele bundles are stable for hours, while the unhardened bundles
=g In 8 72 . (22)  are not stable at all. It is unlikely that these vortex twisters
720" | mee\®oH, form a perfect moirestructure. However, the local structure

Thus as the system size increases the current density nec&§-these vortices might resemble the highly entangled moire
sary to go to the moiretate goes to zero. Thus the instability State- This could explain the work hardening: when there are
of Clem may be stabilized through the lattice structure an any screw dislocations it is difficult for the flux-.llne Iatyce
its screw dislocations. The moistate that proposed here is 0 t;glaxt,has th: ﬂdefcabcts d(far;nqttc(rjoss 'theF'quxl Imesl, dW'tTOUI
not exactly force-free. In each cell of the honeycomb, theoUtiNg them. ux bundie WISted as In 1g. 1 could retax
flux-line displacement is azdependent ro'Eation: u; eail%ri]s H:ggz allirr?ego iﬁo\?v(gg%cgélr;?gggﬁgsfo study the
=CzejjX; . This configuration ha¥ X B parallel toz, notthe ’

local h I liel dynamics of the flux-line lattice under an applied current.
ocal B. However, when averaged over one cBlis parallel 5, aboveH ,,, the flux-line picture suggests a striking fre-

to z and so there is no net force on each bundle of vor'[icesquency dependence of theV curve for currents along the
It is clear, however, that small adjustments to the flux-linee .y ayis. At high frequencies the flux-line lattice may act
Ipcatlons that do not change their topology can yield an enpyq 5 solid, unable to relax, while at low frequencies it could
tirely force-free configuration. . . flow, reminiscent of viscoelasticity in polymer melts. Fi-
) We comment on recent experimetitperformed on thin nally, if work hardening the Abrikosov lattice were possible,
film, YBa,Cus0; ab-plane superconductors which have y,q critical current in the sample might be increa¥ed.

seen what are called “vortex” twisters, composed of thou-
sands of flux lines. These twisters are formed by first apply- It is a pleasure to acknowledge stimulating discussions
ing a magnetic field along the long direction of the samplewith J. R. Clem, T. C. Lubensky, M. C. Marchetti, L. Radzi-
creating an Abrikosov flux-line lattice. An additional field hovsky, and especially D. R. Nelson. We thank the Aspen
H, is applied perpendicular to the plane of the flux lines.Center for Theoretical Physics, where some of this work was
The anisotropy insures that the flux lines will remain in thedone. This work was supported by an award from Research
ab plane if H, is small enough® Lorentz forces from the Corporation and an NSF Career Grant No. DMR97-32963.
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