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Phase diagram of disordered spin-Peierls systems
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We study the competition between the spin-Peierls and the antiferromagnetic ordering in disordered quasi-
one-dimensional spin systems. We obtain the temperature versus disorder-strength phase diagram, which
qualitatively agrees with recent experiments on doped CuGESD163-18208)07737-6

The discovery of the first inorganic spin-Peief& ma-  where the exchange constants have the form
terial CuGeQ opened the pgssibility to study the influence
of doping on the SP transitionThe recently obtained phase _ AN ST
diagram of doped CuGeas several surprising features. Inne1=Jal 1+ (=)0 nnss- @
It turns out 'ghat doping, while suppressing the SP state, at thﬁere,éis the average value of the alternating partpf,. ;
same time induces long-range antiferromagngii€) order, ~ . I o
with the Neel temperature initially increasing with the dop- @1d Jnn+1 i the random contribution due to doping. The
ing concentration. Furthermore, a doping range is foundntiferromagnetic order parameteiin Eq. (1) is the ampli-
where SP and AF order coexist. tude of the alternating magnetic field createdzoyeighbor-

At first glance, it seems very strange that disor@ap-  ing chains and, is the exchange constant for nearest spins
ing) may lead to the enhancement of some order parametdfom neighboring chains. The last term in Ed) is the lat-
(in this case the AF oneAlso, the coexistence of the dimer- tice energy,K is the spring constant, ands is the spin-
ized SP state, in which spins are bound into singlets, with dattice coupling. The minimization of the chain free energy
spontaneous sublattice magnetization that requires the prewith respect tod andh gives the self-consistency equations
ence of free spins, is rather puzzling. In this paper we adfor these two order parameters.
dress both these issues and obtain a phase diagram that iswe use the procedure developed in Ref. 13: by means of
very similar to the experimental one. We also find a reenthe Jordan-Wigner transformation the spin Hamiltonian Eq.
trance transition from the dimerized SP state back into th?l) is mapped on a Hamiltonian of spin|ess fermions and the
undimerized state with decreasing temperature. interaction between the fermions is treated in the Hartree-

Theoretically, the possibility of long-range magnetic or- ¢k approximation. The values for the energy, specific heat,
der in doped SP systems was discussed in Refs. 7-9, whe

impurities “cut” the spin chains into finite segments. It Was ¢, yparmore. this method is known to provide a good semi-
argued that the lattice relaxation in these segments results | Liantitative ’description of a wide range of phenomena re-

the appearance of regions with a suppressed dimerizati o .
(close to impurities in the model of Ref. 7, or centered a(?ated to the S.P tr_ansmoﬁ. Finally, although the Hartrge-
Fock approximation does not maintain the rotational

kinks in the lattice dimerization in Refs. 8,9The AF corre- | . . - . .
lations that develop in these regions may, in principle, stabiinvariance of the spin-exchange interaction, it should also be
lize an inhomogeneous state in which the SP and AF order¥ell suited to describe disordered spin systems: the low-
coexist. The enhancement of the magnetic susceptibility byemperature response of disordered chains to uniform and
disorder-induced kinks was also discussed in Ref. 10. Alalternating magnetic fields is universal, i.e., independent of
though these considerations provide a qualitative understanéhe anisotropy of the spin exchange:’
ing of the magnetic ordering in doped SP materials, the de- In the weak-coupling and weak-disorder limit, i.e., for
scription of the thermodynamics of the mixed -&RF state 5JO,h,j<JO, we now introduce a continuum description of
\t/)vithin the same approach is complicated and so far has nahe chain(cf. Ref. 1§. The Hamiltonian then becomes

een given.

In this paper we consider a model that allows for a de-
+ F
f dX(t// (X)

tailed study of the competition between the SP and AF H= O'SU_— i+gl[A+ 7(X)]+ o h | h(X)
i

phases in the presence of disorder. Instead of considering dx
disorder that randomly cuts chains into finite segments, we 2 2
) . ) . 1 (A h
assume that doping results in small fluctuations of the spin- + —+—t, (3)
exchange constants on many bonds. Furthermore, we treat 2 Ny A

the lattice and the interchain spin exchange in the “chain . ) . i ]
mean field” approximatiod:2 Then, the effective single- whereo; (i=1,2,3) are the Pauli matrices. The first term in
chain Hamiltonian reads the HamiltonianH describes the free motion of the fermions

with the Fermi velocity = paJ,, wherea denotes the lat-

tice constant in the chain direction apds a renormalization

factor that forT<J, equals # 2/7.*® The second and the
1) third terms describe the backward scattering caused by the

HemS [SumiS S s+ 00
sT ~ n,n+1 +1 Sn ZZJL 2Ka§
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dimerizationA =pdJ,, the disorder, and the staggered mag- 1
netic field. The disordes(x) is related to the disorder in the
spin-exchange constants by ot
2n2)= & (G0 1~ Tanams1) @
n(2na)= 2( 2n-1,21n " J2n2n+1)- = 06
We will assume white noise disorder with a correlator é“’
= 0.4}
(n(X)n(y))=Ad(x~y), ©) SP
which corresponds to the statistical independence of the 0.2}
variations of the exchange couplings on different bonds in AF
the discrete model Eq(1). Finally, the constants\,
=pa?/mKJ, and \,=2J, /mpJ, characterize the strength % 02 04 06 08

of, respectively, the spin-lattice and the interchain spin ex-
change interactions.

In the absenpe of a magnetlp field£0), the dlsordgr- FIG. 1. The phase diagram of the disordered SP system de-
ave_raged density of smgle-fermlon ;tapﬁs) of the Hamll-' scribed by Egs(3), (7), and (8) for Ay>\,,. The dimensionless
tonian Eq.(3) was found analytically in Ref. 19. The density gjigorder strengti/(v-A,) is proportional to the concentration of
p(e) is a symmetric function of the energy lts form de-  gopands (see discussion in the toxThe temperature is measured
pends crucially on the parame@rA/(veA). Forg<2the  in the units of the SP transition temperature at zero disorder.
density of states has a pseudogapPeierls gap filled by
disorder-induced statgswhile for g>2 (strong disorderthe  gi5165 and thus reducing the energy gain due to dimerization.
pseudogap disappears apde) diverges ate=0 [p(2) At the same time, these disorder-induced states enhance the
x|e[%07 at|e| <Al ) o . antiferromagnetic susceptibility of the chains: The effect of

A nonzero alternating magnetic field mixes the=0 5, alternating magnetic field is strongest for the fermionic
eigenstates with opposite energies and transforms the pair gf5teg withe|<h, as the occupied state with energye| is
eigen;tates with energiese into a pgir of eigenstates with pushed down to- &2+ h2 The higher the density of states
energiest ye“+h". Therefore, the disorder-averagldpo-  nearg=0, the more energy is gained when AF order ap-
tential (0= —T(In=y), = being the partition function of pears. within the mean field approximation, this enhance-
the grand-canonical ensemble of fermions with zero chemiment of the chain magnetic susceptibility due to disorder
cal potential is given by results in an increase of the  letlemperature.

—— From the above we conclude that fof>\ , the SP state
2 cosV( Bye®+h? (6) is less favorable than the AF state at all values of the disorder
2 strengthA. If, on the other hand)\,>\y, a much richer
phase diagram arises, as is observed in Fig. 1. This diagram
was obtained by numerically solving Eq&) and (8) for
A2~0.37 and\,~0.25, so thaff§(0)/T2{0)=1/4, where
90, Tgp(A) is the SP transition temperaturehat 0 andT(A) is
A (7)  the Neel temperature ak =0.2? Four phases appear: SP, AF,
mixed SP-AF, and disordered, separated by second order
90 transition lines. At low temperature and weak disorder the
h=—mveAn((op)) = —vakh—f, (8) system is in the SP state. The SP temperafyg€A) de-
ah creases almost linearly with the disorder strength. In particu-

where((---)) denotes the thermal and disorder average. & it can be shown that at sma
In the absence of disordef); depends o\ andh only
through the combinatiof’AZ+h?. As a result, the two self- (

; ; ; . TsHA)=Tgd0)| 1-C
consistency equations acquire the saf®€S form; as, vEAg
however, they have different coupling constants, they cannot
be satisfied simultaneously, unle@sgs=\,. Thus, in agree- whereA, is the value ofA for T, A=0, andy=1.78.., is
ment with previous studie®,we find that in the absence of the exponential of Euler's constant.
disorder the AF and SP phases cannot coexist and the phaseAbove some critical disorder strengly, , the system un-
with the larger coupling constant is realized. A competitiondergoes afT(A)<TsgA) a second(Neel) transition into
between these two phases always exists in spin chain matghe mixed state, in which the SP and AF orders coexist. This
rials and some special conditions, such as a strong spirtoexistence region becomes narrower whgnapproaches
phonon couplini or a significant next-nearest-neighbor \, . Ty rapidly increases with the disorder strength until at
interaction?! are necessary for the SP state to win. This ex-someA=A,, it becomes equal to the SP transition tempera-
plains why the number of SP materials is small. ture TgA,)=Tn(AL)=T, . Above A, only AF long-

Disorder in the spin-exchange constants suppresses tiiange order exists and the &letemperature continues to
dimerized state by filling the SP gap with single-fermion grow slowly with the disorder strength.

A/ (VA AF+SP

2 (W

Qs=-— ,E . dep(e)ln
whereW is the energy cutoff. The two order parametérs
andh satisfy the self-consistency equations

A=—mveNs({01)) = —TUENA

C:_7T2 1.39, (9
’ _4')/~ ’ ()
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FIG. 2. Detail of the phase diagram Fig. 1. The vertical line
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To obtain the dependence @§(A) and Tg(A) on the
disorder strength, we find and h that minimize Q) and
substitute them into Eq$11) and(12). The result is

TN(A) =T, +(A-A,)

Cay(dT2/dA) —byan(dTY/dA)
X CCL’A_bAClh

A=A
(13
Tr(A)=T, +(A-A,)

Can(dTY/dA) —bpa,(dT2/dA)
X Cah—bha/A

A=A,

From Eq.(13) and the fact thaTJ(A) increases witA,

Al(veAy)=0.52 passes through three phase-transition points: thevhile TgP(A) decreases, it is easy to find that for

SP transition temperaturBgp, the Nesl temperaturely, and the
temperature of reentrance into the undimerized state Dotted

lines showT2sfor A>A, (the SP transition temperature calculated

ath=0) andTﬁ, for A<A, (the Nesl temperature calculated At
=0).

ap
c>b,—
@n

(14)

both T (A) and T(A) increase linearly with disorder #t
<A, andTg(A)<Ty(A). Therefore, inequality14) is the

The surprising feature of our phase diagram is the facgondition for the existence of the reentrance transition. In our

that the disorder strengthgp at which the dimerization dis-

appears at zero temperature, is smaller than This implies

model, its validity can be checked analytically for;,
— Ay, in which caseA, —0, a,—a,, andc—2b;,. Our

that for Asp<A<A, the system experiences three conseculumerical calculations suggest that conditia#) is satisfied

tive transitions as the temperature goes ddgsee Fig. 2

first the SP transition, next the Mletransition, and then the

for all A, <\, .
Next we compare our phase diagram to experimental data.

“anti-spin-Peierls” transition, at which the SP order disap-At sSmall dopand concentrations the observed SP transition
pears. The reentrance into the undimerized state occurs btemperature in Cu.,Zn,GeQ; is described by

cause the rapid growth of the AF order parameter below the

Neel temperature suppresses the SP state.

Tse(X)=Tsd0)(1— ax), (15

The reentrance transition can be discussed quite generalhere a~14.2 To compare this to our result E¢9), we

(without reference to a particular moglelsing the Landau
expansion ofQ=Q+ (1/mvg)(A%2\,+h2/2\,) near the
multicritical point (T, ,A,):

b
Q=ay[T-TeA) AT+ A%

b
+ap[ T-TO(A)Th?+ 7“h4+ cA%h2.  (10)

In Eq. (10) the coefficientsx, ,@,>0. Furthermore, the sta-

bility of the system described by E{L0), requiresb, , by,
andD=b,b,,—c? to be positive.

In the presence of a dimerizatiqat A<A,) the Neel
temperature becomes

0 c 2
TN(A) =Ty(A)— a—hA . (11
As the dimerization suppresses the AF state. Similarly,
one can find a temperatuiigy(A), at whichA becomes zero
at nonzerch:

TR(A)=T2A)— —h?, (12
o

have to relate the disorder strengthto the dopand concen-
trationx. This can be done by assuming that the substitution
of Cu by Zn changes the spin exchange constant by an
amount ~J,. From Egs.(4) and (5) we then obtainA
~a(pJy)®x. Equation(9) then reduces to Eq15) with a
~C(pJo/Ag)~15 in good agreement with experimefie
useJo=150 KandAy=2.1 me\). Also the even stronger
suppression ¢~50) of the SP phase in Si doped CuGeO
(Refs. 3—6 may be understood: Si, substituting Ge, is lo-
cated between two CuQchains and thus influences two
chains simultaneousf.

While the suppression of the SP transition temperature by
doping is nicely described by our theory, the critical doping
concentratiorx, at which AF order appears in our model, is
too large as compared with experiménthe large value of
X IS an artifact of our continuum treatment of disorder and
may be understood from the following considerations: Dis-
order enhances the AF susceptibility of spin chains by filling
the SP gap with low-energy spin excitations. As was shown
in Ref. 23, with highest probability the excited states with
energye<<A occur for disorder fluctuationg(x) that have
the form of a kink-antikink pair. For such a fluctuation, the
order parameteA (x) =A+ 5(x) has reversed sign in a do-
main of lengthR= (v /A)In(2A/e) between the kink and the
antikink. The kink and antikink, being fractionally charged

which is the temperature of the reentrance into the undimerebjects?* each carry spirt, which together form a weakly

ized state.

bound singlet. A low-energy excited state is then obtained by
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exciting this singlet into a triplet. These weakly bound spinsshowed that disorder results in a strong suppression of the SP
do not contribute to the dimerization, but they can give risestate and gives rise to AF long-range order, which in a cer-
to AF ordering. However, for weak disordésmall x), the  tain range of the disorder strength coexists with the dimer-
density of kink-antikink fluctuations is exponentially small in ization. These results are in agreement with the experimental
our model, implying that a critical dopand concentratigh  data on doped CuGeOFinally, our results suggest the pos-

is necessary for AF order to appear. If one assumes thafimility of a reentrance transition from the dimerized SP state
doping, instead of resulting in small disorder in all spin-pack into the undimerized state.

exchange constants, strongly decreases the exchange on
some randomly chosen bonds, the kink density is propor- This work was supported by the “Stichting voor Funda-
tional tox at small doping, which then impligByocx.8° menteel Onderzoek der MateiEOM).” We would like to

To summarize, we obtained the phase diagram of a disoithank Professor J.-P. Renard for providing us with the manu-
dered SP system, described by a mean-field model. Wecript of Ref. 6 prior to its publication.
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