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Phase diagram of disordered spin-Peierls systems
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We study the competition between the spin-Peierls and the antiferromagnetic ordering in disordered quasi-
one-dimensional spin systems. We obtain the temperature versus disorder-strength phase diagram, which
qualitatively agrees with recent experiments on doped CuGeO3. @S0163-1829~98!07737-6#
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The discovery of the first inorganic spin-Peierls~SP! ma-
terial CuGeO3 opened the possibility to study the influen
of doping on the SP transition.1 The recently obtained phas
diagram of doped CuGeO3 has several surprising features.2–5

It turns out that doping, while suppressing the SP state, a
same time induces long-range antiferromagnetic~AF! order,
with the Néel temperature initially increasing with the dop
ing concentration. Furthermore, a doping range is fou
where SP and AF order coexist.

At first glance, it seems very strange that disorder~dop-
ing! may lead to the enhancement of some order param
~in this case the AF one!. Also, the coexistence of the dime
ized SP state, in which spins are bound into singlets, wit
spontaneous sublattice magnetization that requires the p
ence of free spins, is rather puzzling. In this paper we
dress both these issues and obtain a phase diagram th
very similar to the experimental one. We also find a re
trance transition from the dimerized SP state back into
undimerized state with decreasing temperature.

Theoretically, the possibility of long-range magnetic o
der in doped SP systems was discussed in Refs. 7–9, w
the lattice was treated classically and it was assumed
impurities ‘‘cut’’ the spin chains into finite segments. It wa
argued that the lattice relaxation in these segments resul
the appearance of regions with a suppressed dimeriza
~close to impurities in the model of Ref. 7, or centered
kinks in the lattice dimerization in Refs. 8,9!. The AF corre-
lations that develop in these regions may, in principle, sta
lize an inhomogeneous state in which the SP and AF ord
coexist. The enhancement of the magnetic susceptibility
disorder-induced kinks was also discussed in Ref. 10.
though these considerations provide a qualitative underst
ing of the magnetic ordering in doped SP materials, the
scription of the thermodynamics of the mixed SP1AF state
within the same approach is complicated and so far has
been given.

In this paper we consider a model that allows for a d
tailed study of the competition between the SP and
phases in the presence of disorder. Instead of conside
disorder that randomly cuts chains into finite segments,
assume that doping results in small fluctuations of the s
exchange constants on many bonds. Furthermore, we
the lattice and the interchain spin exchange in the ‘‘ch
mean field’’ approximation.11,12 Then, the effective single
chain Hamiltonian reads

Hs5(
n

FJn,n11Sn•Sn112h~2 !nSn
z1

h2

2zJ'

1
~J0d!2

2Kas
2 G ,

~1!
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where the exchange constants have the form

Jn,n115J0@11~2 !nd#1 J̃n,n11 . ~2!

Here,d is the average value of the alternating part ofJn,n11

and J̃n,n11 is the random contribution due to doping. Th
antiferromagnetic order parameterh in Eq. ~1! is the ampli-
tude of the alternating magnetic field created byz neighbor-
ing chains andJ' is the exchange constant for nearest sp
from neighboring chains. The last term in Eq.~1! is the lat-
tice energy,K is the spring constant, andas is the spin-
lattice coupling. The minimization of the chain free ener
with respect tod andh gives the self-consistency equation
for these two order parameters.

We use the procedure developed in Ref. 13: by mean
the Jordan-Wigner transformation the spin Hamiltonian E
~1! is mapped on a Hamiltonian of spinless fermions and
interaction between the fermions is treated in the Hartr
Fock approximation. The values for the energy, specific h
and magnetic susceptibility of an AF spin-1

2 chain obtained
by this simple method are rather close to exact result13

Furthermore, this method is known to provide a good se
quantitative description of a wide range of phenomena
lated to the SP transition.14 Finally, although the Hartree
Fock approximation does not maintain the rotation
invariance of the spin-exchange interaction, it should also
well suited to describe disordered spin systems: the lo
temperature response of disordered chains to uniform
alternating magnetic fields is universal, i.e., independen
the anisotropy of the spin exchange.15–17

In the weak-coupling and weak-disorder limit, i.e., f
dJ0 ,h,J̃!J0 , we now introduce a continuum description
the chain~cf. Ref. 18!. The Hamiltonian then becomes

H5E dxH c†~x!Fs3

vF

i

d

dx
1s1@D1h~x!#1s2hGc~x!

1
1

2pvF
S D2

lD
1

h2

lh
D J , ~3!

wheres i ( i 51,2,3) are the Pauli matrices. The first term
the HamiltonianH describes the free motion of the fermion
with the Fermi velocityvF5paJ0 , wherea denotes the lat-
tice constant in the chain direction andp is a renormalization
factor that forT!J0 equals 112/p.13 The second and the
third terms describe the backward scattering caused by
8190 © 1998 The American Physical Society
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dimerizationD5pdJ0 , the disorder, and the staggered ma
netic field. The disorderh(x) is related to the disorder in th
spin-exchange constants by

h~2na!5
p

2
~ J̃2n21,2n2 J̃2n,2n11!. ~4!

We will assume white noise disorder with a correlator

^h~x!h~y!&5Ad~x2y!, ~5!

which corresponds to the statistical independence of
variations of the exchange couplings on different bonds
the discrete model Eq.~1!. Finally, the constantslD

5pas
2/pKJ0 and lh5zJ' /ppJ0 characterize the strengt

of, respectively, the spin-lattice and the interchain spin
change interactions.

In the absence of a magnetic field (h50), the disorder-
averaged density of single-fermion statesr~«! of the Hamil-
tonian Eq.~3! was found analytically in Ref. 19. The densi
r~«! is a symmetric function of the energy«. Its form de-
pends crucially on the parameterg5A/(vFD). For g,2 the
density of states has a pseudogap~a Peierls gap filled by
disorder-induced states!, while for g.2 ~strong disorder! the
pseudogap disappears andr~«! diverges at«50 @r(«)
}u«u2/g21 at u«u!D#.

A nonzero alternating magnetic field mixes theh50
eigenstates with opposite energies and transforms the pa
eigenstates with energies6« into a pair of eigenstates with
energies6A«21h2. Therefore, the disorder-averagedV po-
tential (V f52T^ lnJf&, J f being the partition function of
the grand-canonical ensemble of fermions with zero che
cal potential! is given by

V f52
2

b E
0

W

d«r~«!lnF2 coshS bA«21h2

2 D G , ~6!

whereW is the energy cutoff. The two order parametersD
andh satisfy the self-consistency equations

D52pvFlD^^s1&&52pvFlD

]V f

]D
, ~7!

h52pvFlh^^s2&&52pvFlh

]V f

]h
, ~8!

where^^¯&& denotes the thermal and disorder average.
In the absence of disorder,V f depends onD andh only

through the combinationAD21h2. As a result, the two self-
consistency equations acquire the same~BCS! form; as,
however, they have different coupling constants, they can
be satisfied simultaneously, unlesslD5lh . Thus, in agree-
ment with previous studies,20 we find that in the absence o
disorder the AF and SP phases cannot coexist and the p
with the larger coupling constant is realized. A competiti
between these two phases always exists in spin chain m
rials and some special conditions, such as a strong s
phonon coupling14 or a significant next-nearest-neighb
interaction,21 are necessary for the SP state to win. This
plains why the number of SP materials is small.

Disorder in the spin-exchange constants suppresses
dimerized state by filling the SP gap with single-fermi
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states and thus reducing the energy gain due to dimeriza
At the same time, these disorder-induced states enhanc
antiferromagnetic susceptibility of the chains: The effect
an alternating magnetic field is strongest for the fermio
states withu«u<h, as the occupied state with energy2u«u is
pushed down to2A«21h2. The higher the density of state
near «50, the more energy is gained when AF order a
pears. Within the mean field approximation, this enhan
ment of the chain magnetic susceptibility due to disord
results in an increase of the Ne´el temperature.

From the above we conclude that forlh.lD the SP state
is less favorable than the AF state at all values of the diso
strengthA. If, on the other hand,lD.lh , a much richer
phase diagram arises, as is observed in Fig. 1. This diag
was obtained by numerically solving Eqs.~7! and ~8! for
lD'0.37 andlh'0.25, so thatTN

0 (0)/TSP
0 (0)51/4, where

TSP
0 (A) is the SP transition temperature ath50 andTN

0 (A) is
the Néel temperature atD50.22 Four phases appear: SP, A
mixed SP1AF, and disordered, separated by second or
transition lines. At low temperature and weak disorder
system is in the SP state. The SP temperatureTSP(A) de-
creases almost linearly with the disorder strength. In parti
lar, it can be shown that at smallA

TSP~A!5TSP~0!S 12C
A

vFD0
D , C5

p2

4g
'1.39, ~9!

whereD0 is the value ofD for T, A50, andg51.78..., is
the exponential of Euler’s constant.

Above some critical disorder strengthAN , the system un-
dergoes atTN(A),TSP(A) a second~Néel! transition into
the mixed state, in which the SP and AF orders coexist. T
coexistence region becomes narrower whenlh approaches
lD . TN rapidly increases with the disorder strength until
someA5A* it becomes equal to the SP transition tempe
ture TSP(A* )5TN(A* )5T* . Above A* only AF long-
range order exists and the Ne´el temperature continues t
grow slowly with the disorder strength.

FIG. 1. The phase diagram of the disordered SP system
scribed by Eqs.~3!, ~7!, and ~8! for lD.lh . The dimensionless
disorder strengthA/(vFD0) is proportional to the concentration o
dopandsx ~see discussion in the text!. The temperature is measure
in the units of the SP transition temperature at zero disorder.
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The surprising feature of our phase diagram is the f
that the disorder strengthASP at which the dimerization dis
appears at zero temperature, is smaller thanA* . This implies
that for ASP,A,A* the system experiences three conse
tive transitions as the temperature goes down~see Fig. 2!:
first the SP transition, next the Ne´el transition, and then the
‘‘anti-spin-Peierls’’ transition, at which the SP order disa
pears. The reentrance into the undimerized state occurs
cause the rapid growth of the AF order parameter below
Néel temperature suppresses the SP state.

The reentrance transition can be discussed quite gene
~without reference to a particular model! using the Landau
expansion ofV5V f1(1/pvF)(D2/2lD1h2/2lh) near the
multicritical point (T* ,A* ):

V5aD@T2TSP
0 ~A!#D21

bD

2
D4

1ah@T2TN
0 ~A!#h21

bh

2
h41cD2h2. ~10!

In Eq. ~10! the coefficientsaD ,ah.0. Furthermore, the sta
bility of the system described by Eq.~10!, requiresbD , bh ,
andD[bDbh2c2 to be positive.

In the presence of a dimerization~at A,A* ) the Néel
temperature becomes

TN~A!5TN
0 ~A!2

c

ah
D2. ~11!

As the dimerization suppresses the AF state,c.0. Similarly,
one can find a temperatureTR(A), at whichD becomes zero
at nonzeroh:

TR~A!5TSP
0 ~A!2

c

aD
h2, ~12!

which is the temperature of the reentrance into the undim
ized state.

FIG. 2. Detail of the phase diagram Fig. 1. The vertical li
A/(vFD0)50.52 passes through three phase-transition points:
SP transition temperatureTSP, the Néel temperatureTN , and the
temperature of reentrance into the undimerized stateTR . Dotted
lines showTSP

0 for A.A* ~the SP transition temperature calculat
at h50) andTN

0 for A,A* ~the Néel temperature calculated atD
50).
t

-
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To obtain the dependence ofTN(A) and TR(A) on the
disorder strength, we findD and h that minimize V and
substitute them into Eqs.~11! and ~12!. The result is

TN~A!'T* 1~A2A* !

3FcaD~dTSP
0 /dA!2bDah~dTN

0 /dA!

caD2bDah
G

A5A
*

,

~13!

TR~A!'T* 1~A2A* !

3Fcah~dTN
0 /dA!2bhaD~dTSP

0 /dA!

cah2bhaD
G

A5A
*

.

From Eq.~13! and the fact thatTN
0 (A) increases withA,

while TSP
0 (A) decreases, it is easy to find that for

c.bh

aD

ah
~14!

both TN(A) andTR(A) increase linearly with disorder atA
,A* and TR(A),TN(A). Therefore, inequality~14! is the
condition for the existence of the reentrance transition. In
model, its validity can be checked analytically forlh
→lD , in which caseA*→0, ah→aD , and c→2bh . Our
numerical calculations suggest that condition~14! is satisfied
for all lh,lD .

Next we compare our phase diagram to experimental d
At small dopand concentrationsx, the observed SP transitio
temperature in Cu12xZnxGeO3 is described by

TSP~x!5TSP~0!~12ax!, ~15!

where a;14.2 To compare this to our result Eq.~9!, we
have to relate the disorder strengthA to the dopand concen
trationx. This can be done by assuming that the substitut
of Cu by Zn changes the spin exchange constant by
amount ;J0 . From Eqs. ~4! and ~5! we then obtainA
;a(pJ0)2x. Equation~9! then reduces to Eq.~15! with a
;C(pJ0 /D0);15 in good agreement with experiment~we
useJ05150 K andD052.1 meV!. Also the even stronge
suppression (a;50) of the SP phase in Si doped CuGeO3
~Refs. 3–6! may be understood: Si, substituting Ge, is l
cated between two CuO2 chains and thus influences tw
chains simultaneously.8

While the suppression of the SP transition temperature
doping is nicely described by our theory, the critical dopi
concentrationxc at which AF order appears in our model,
too large as compared with experiment.6 The large value of
xc is an artifact of our continuum treatment of disorder a
may be understood from the following considerations: D
order enhances the AF susceptibility of spin chains by filli
the SP gap with low-energy spin excitations. As was sho
in Ref. 23, with highest probability the excited states w
energy«!D occur for disorder fluctuationsh(x) that have
the form of a kink-antikink pair. For such a fluctuation, th
order parameterD(x)5D1h(x) has reversed sign in a do
main of lengthR5(vF /D)ln(2D/«) between the kink and the
antikink. The kink and antikink, being fractionally charge
objects,24 each carry spin1

2 , which together form a weakly
bound singlet. A low-energy excited state is then obtained

e
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exciting this singlet into a triplet. These weakly bound sp
do not contribute to the dimerization, but they can give r
to AF ordering. However, for weak disorder~small x), the
density of kink-antikink fluctuations is exponentially small
our model, implying that a critical dopand concentrationxc
is necessary for AF order to appear. If one assumes
doping, instead of resulting in small disorder in all sp
exchange constants, strongly decreases the exchang
some randomly chosen bonds, the kink density is prop
tional to x at small doping, which then impliesTN}x.8,9

To summarize, we obtained the phase diagram of a di
dered SP system, described by a mean-field model.
i
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s

s
e

at

on
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e

showed that disorder results in a strong suppression of the
state and gives rise to AF long-range order, which in a c
tain range of the disorder strength coexists with the dime
ization. These results are in agreement with the experimen
data on doped CuGeO3. Finally, our results suggest the pos
sibility of a reentrance transition from the dimerized SP sta
back into the undimerized state.
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13L. N. Bulaevskii, Zh. Éksp. Theor. Fiz.43, 968 ~1962! @Sov.

Phys. JETP16, 685 ~1963!#.
14L. N. Bulaevskii, A. I. Buzdin, and D. I. Khomskii, Solid State

Commun.27, 5 ~1978!.
-

i,

.

15C. Dasgupta and S. K. Ma, Phys. Rev. B22, 1305~1980!.
16D. S. Fisher, Phys. Rev. B50, 3799~1994!.
17R. A. Hyman, K. Yang, R. N. Bhatt, and S. M. Girvin, Phys. Rev.

Lett. 76, 839 ~1996!.
18H. Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev. B21, 2388

~1980!.
19A. A. Ovchinnikov and N. S. Erikhman, Zh. E´ ksp. Theor. Fiz.73,

650 ~1977! @Sov. Phys. JETP46, 340 ~1977!#.
20S. Inagaki and H. Fukuyama, J. Phys. Soc. Jpn.52, 3620~1983!.
21G. Castilla, S. Chakravarty, and V. J. Emery, Phys. Rev. Lett.75,

1823 ~1995!.
22For CuGeO3 J' /J0;0.1 @see M. Nishi, O. Fujita, and J. Akim-

itsu, Phys. Rev. B50, 6508~1994!# andz52, so thatlh;0.04
and the Hartree-Fock approximation gives a very small value o
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