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Cooperatively rearranging regions in a two-spin facilitated kinetic Ising model
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Spin-facilitated kinetic Ising models are reasonable models for a study of cooperative dynamics that is
assumed in supercooled liquids. The present numerical study of a two-dimensional model confirms the exis-
tence of cooperatively rearranging regions by quantitative results. A broad distribution of relevant sizes sug-
gests that the kinetic of spin-facilitated kinetic Ising models can be characterized by a strong pronounced
heterogeneity. On the other hand, a characteristic length scale corresponding to a dominant fraction of coop-
erative regions cannot be supported. Furthermore, the temperature dependence of various quantities of the
cooperative regions reflects the typical non-Arrhenius behavior of supercooled liquids.
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In spite of advances in the description of liquids near thepercooled liquid belowl .. One of these possibilities is the
glass transition using different approachésthe phenom- spin-facilitated kinetic Ising modél;*? originally introduced
enon is generally not completely understood. Supercooletly Fredrickson and Andersen. The basic idea of all these
fluids reveal often a non-Arrhenius behavior of the relaxationmodels consists in a coarse graining of space and time scales
spectrum such as it is manifested in a stretched exponentiand simultaneously a reduction of the degrees of freedom.
decay of the correlation function. In contrast to conventionall herefore, the supercooled liquid is separated into cells con-
phase transitions a long-range order is not developed. Howining a sufficiently large number of particles that realize a
ever, the dynamical glass transition can be described by ai¢Presentative number of molecular motions. Thus the many-
increasing cooperativity of local processes with decreasin§dy System is considered of a virtual lattice with the unit

temperaturd. The cooperativity leads to the well-known Sizel. Each cell will be characteri_zed by only one triviql
slowing down in the dynamical behavignon-Arrhenius degree of freedonar; that characterizes the actual dynamic

that can be illustrated by a strongly curved trajectory in thesF":lte of particles inside the cqll The usual realization is

Arrhenius plot(relaxation timer versus the inverse tempera- glv_en_ by the Igcal density; with o;= __1 (|mm_ob|.le_or
ture T-1). One possible fit of this curve is given by the Solidlike stat¢ if p;>p and oyj=1 (mobile or liquidiike
Williams-Landel-Ferry (WLF) curvé with Inr<(T-Tp)"*  state if pj<p, wherep is the averaged density of the sys-
and a finite Vogel temperatuf&,. This slowing down is an tem. The set of all observables={o;} forms a configura-
universal phenomena of the glass transition. There is a geition. The evolution of the statistical probability distribution
eral suggestion that these slow processes correspond mairflynction P(o,t) can be described by a usual master equa-
to the cooperative molecular diffusion, i.e., the self-diffusiontion: dP(o,t)/ot =2, L(o,0')P(o,t). To make the dy-
coefficientD and the relaxation time are often related by namical matrixL(o,0') and the time evolution oP(o,t)
Dr=1. more transparent we use the argumentation following the
Mode-coupling theorigs™® (MCT) predict the existence idea of Fredrickson and Anders&n?i.e., we suppose that
of an ergodic behavior above a critical temperaffigand a  the basic dynamics is a simpléGlaubej processo;=
nonergodic behavior beloW,. Note thatT. is in the range +1«<0;=—1 controlled by the thermodynamical Gibb’s
between the melting temperatufg, and the glass tempera- measure and by self-induced topological restrictions. In par-
ture Ty, ie, T,>T>T,. At T, the system undergoes a ticular, an elementary flip at a given cell is allowed only if
sharp transition from an ergodic state to a state with partialljthe number of the nearest neighbored mobile cefts=(
frozen (density fluctuations. The slow-process within the +1) is equal or larger than a restriction numbremith 0
MCT is thought to correspond to the actual dynamic glass<n<z (z: coordination number of the latticeSo, elemen-
transition whereas the fag-process is often identified with tary flip processes and geometrical restrictions lead to the
a cage rattling or the boson peak. cooperative rearrangement of the underlying system and
Actually, the nonergodic structures obtained from thetherefore to a mesoscopical modeling describing a super-
original MCT belowT, are approximately stable only for a cooled liquid belowT.
finite time interval. Strongly cooperative processes lead to a Such modef§'? are denoted as-spin-facilitated Ising
slow decay of apparently frozen structures. This slow decaynodels on a d-dimensional lattice SFhh,d]. The
shows the typical properties corresponding usually to the dySFM n,d] can be classified as an Ising-like model the kinet-
namics of the main glass transitigVLF-like behavior of ics of which is confined by restrictions of the ordering of
the relaxation time, stretched exponential decay of the correaearest neighbors to a given lattice cell. These self-adapting
lation function. These effects can be partially described inenvironments influence in particular the long-time behavior
terms of an extended mode-coupling thédryntroducing  of the spin-spin and therefore of the corresponding density-
additional hopping processes. density correlation functions. These models were studied
There exists also various alternative descriptidnthat  numerically®>'® (SFM2,2]) and recently also
explain the cooperative motion of the particles inside a suanalytically'’ (SFM 1,1]).
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In the present paper we will give on the basis of thescribes the probability of finding a cooperative region con-
SFM 2,2] a numerical approach to the size of the cooperasisting of N cells at temperature.
tive regions. Cooperative regions or cooperatively rearrang- The creation of equilibrium configurations is based on the
ing regions are regions with a kinetic correlation of the par- following steps. Starting from a regulésquare lattice we
ticle motion. Recently, numerical investigatiofis® are  introduce at each lattice point a spin variablewith the two
performed that demonstrate the existence of such regions f@ossible states;=+1 and the initial configurationr={o;
the SFM2,2]. The short-time evolution of the SHM,2] =+1 forall i}. We allow the elementary stepso;
shows typical pocketlike structures of spins that are flipped= —1=0;=+1. Such flips are realized with a transition
since a given initial tim¥ and that suggest qualitatively the probability 1 for+1— —1 and exp—&/T} for —1—+1 (e
cooperative motion of the spin-facilitated kinetic Ising is the energy difference between the solid and liquidlike
model. Furthermore, it was demonstraf&d that the aver- statd. In addition to this thermodynamic flip rate we have
age cooperative length (this length is defined as the dis- the topological restriction that a flip of this type is only pos-
tance from a particular spin to other spins needed to fligsible if the following condition is satisfiedZ;;,(1— o)
before the selected spin becomes flippalsleows a strong =<4. [j(i) means allz neighbors of the lattice poirit] As
dependence on the temperature. On the other hand, up teentioned above, this restriction is the central idea of each
now there is no quantitative information about the size dis<SFM n,d] and leads to the characteristic hindrance effects.
tribution of cooperative regions. Using these elementary steps it is easy to create an equilib-

The above introduced definition of cooperatively rear-rium configuration. The equilibrium is reached if the ratio
ranging regiorsis too imprecise for a well-defined math- N_/N, (N. are the numbers of spin state=+1 ando

ematical investigation. = —1, respectively becomes
Therefore, we use a technique that is capable of being
extended to other model systems like Lennard-Jones or hard- N,/(N_+N,)=1/(1+expe/T). 1)

core liquids. We define that there exist in the environment of o ) )
each cellj a time- and temperature-dependent cooperativét Should be denoted that the principle of detailed balance is
region R;(t,T) containing the minimum number of another aIv_vays fulfilled, i.e., the equilibrium state is realized for each
cell that must change at least one time their state, before tiPin and each elementary process.
state of the chosen cejl can be changed. All cells of a  After reaching the equilibrium, the flip processes of all
cooperative regiofR;(t,T) form a connected cluster. cells will be stopped. The actual configuration mawlje In

The numerical simulation bases on two procedutés: @ Subsequent step we choose randomly an availablé céll

creation of equilibrium configurations for the SF812) ona o - Only this cell receives the possibility for a further mo-
two-dimensional lattice an€?) determination of the coop- tion under consideration of the above-mentioned elementary

erative regions of all cells. steps and kinetic restrictions. If the céllchanges its state
The aim of the simulation is the determination of the after a sufficiently long simulation time, then the cooperative
temperature-dependent distribution functdb(N, T) that de-  region has the sizexl(c'&pz 1. If not, a second cell otr*
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FIG. 1. Distribution function®(N,T) for different temperatures. The solid lines correspond to a fit using 2q.
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FIG. 2. Fractione(T) of relatively movable
= regions as a function of/ T. The inset shows the
temperature dependence mof (triangles andn,
(squares
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neighbored tdk will be chosen randomly. Both cells form a length scale becomes questionable. Of course one can deter-
simple cluster. The cells of this cluster receive again themine an averaged size of the cooperative regions and there-
possibility for a motion whereas the state of all other cells isfore an averaged length scale of these objects, but this is not
completely frozen. If now the cek changes its state after a a usual characteristic length corresponding to a dominant
sufficiently long time, then the cooperative region has theraction of cooperative regions with a size closé\tg,,,. We
sizeN{J,,= 2. If one observes no change of the state of cellconclude that cooperative regions at a given temperature are
k, an additional cell ob* neighbored to the previous cluster Not at all relatively similar objects, and especially at low

is randomly determined and the same procedure will be relemperatures these objects have a broad spectrum. The as-
peated. The cluster size will be increased up to the case thg/mption of some authdrsthat cooperative regions form a

the original cellk changes its state. Thus, the apparent size ofélatively regular “kinetic pattern” cannot be confirmed at

e cooperave region B, e e Bt Iesgalone of e S e
The same procedure, starting from the old configuration . ' P y ’

o* and the original celk will be realized sufficiently often signalized that there occurs an increasing kinetic heterogene-

(only the growing of the cluster is always changethe aim ity with decreasing te_mper_ature._This behavior was observed
. 0 - - ) also by other numerical simulatici?$® and by various ex-
is the determination of a minimum numbeNg,

Y © . _ perimental technique¥:?®

=min(Ngoo) . Thus,Neg, is the size of the cooperative re-  The probability distributiond(N,T) can be empirically

gion of the cellk for a given configurationr* . approximated by the superposition of two exponential func-
Now, one can start the same procedure for another cell ajons; see Fig. 1:

the same configuration® or also for another equilibrium

configuration. The repetition will be realized over a suffi- _ N

ciently long computation time up to the moment that one has (N, T)=e(T)(exp(n; (M} - 1)exp{ B nl(T)]

a relatively smooth distribution functiof®*(N, T) describing

the probability of finding a cooperative region consisting of o 1 _ _ N
N cells. 1= e(M(expin, (D= Lyexp — =
The numerical simulation of the kinetics of the SFAR] @

is possible by using a simple spin-flip dynamics realized by a
usual Monte Carlo simulation with the elementary steps anavith n,(T)<<n,(T). This representation fulfills always the
thermodynamic transition probabilities discussed above. Waormalization condition={_,®(N,T)=1. The value of
do not expect a long-range structure in contrast to the behawr,(T) is relative smallone obtains1,~5 at the lowest tem-
ior of typical critical phenomena; see Refs. 1 and 46d  perature of the present simulatio®n the other handy,(T)
therefore the volume can be chosen relatively small. In thés of an order of magnitude of the averaged size of coopera-
following considerations in two-dimensional space we use aive regions; see Fig. 3. The first term of E@®) can be
square lattice with_? sites (=50) and periodic boundary roughly interpreted as a fraction of relatively small and mov-
conditions. able cooperatively rearranging regions. This part consists
The sizeN of cooperative regions, determined by the mainly in regions with a very small size, i.e., this fraction
above-mentioned procedure, has a probability distributiorappears on a coarse-grained length scale as a homogeneous
®(N,T) that decreases monotonously with increasMg fraction. The second term corresponds to the fraction of rela-
Figure 1 shows these probability distributio®gN,T) for  tively strong disabled cooperative regions with a broad dis-
various temperatures. Obviously, it is easy to see that there tsibution of relevant sizes and consequently a pronounced
no characteristic valueNg,,, at which an extremum of heterogeneity. The fraction of these relatively large coopera-
®(N,T) occurs. Therefore, the motivation of a characteristictively rearranging regions is given by-1p(T) whereas the
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— .
N=1.482exp(1.338(e/T)1-5) -

FIG. 3. Averaged sizdl of the cooperative regions as a function

of &/T. The dotted line corresponds to a fit usingNmA
+B(e/T)".

fraction of the relatively small and movable regions is given

by ¢(T). As expectedp(T) decreases with decreasing tem-
perature; see Fig. 2. Furthermore, it can be confirmed in
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The knowledge of the distribution function allows the de-
termination of thermodynamical averages. Here we discuss

the average sizdN of the cooperative regions. Figure 3

shows the relatively strong dependenceéNobn temperature.
As expected, the averaged size of the cooperatively rearrang-
ing regions is not Arrhenius activated. A rough fit leads to

the representation N=A+B(s/T)” with A=0.394+0.005,
B=1.34+0.01, andy=1.51+0.02 but a WLF fit with Irr
=A"+B'(T-Ty) lis also possible with a slightly less accu-

racy. It should be denoted thafﬁ is proportional to the
average sizé defined by Sappelt and dde ?°

The important message of our simulations using the
SFM 2,2] is that this model can be used as a reasonable
model for the slow kinetics of a supercooled liquid below
T.. The old assumption of the existence of cooperatively
rearranging regionisin such a liquid can be confirmed by
quantitative results. Furthermore, the broad distribution of
relevant sizes suggests on the one hand that the kinetic of the
SFM 2,2] is characterized by a strong pronounced heteroge-
neity that can be observed also for other models of super-
cooled liquids and for real glasses. On the other hand, the
present results suggest that there is no characteristic length
scale corresponding to a dominant fraction of cooperative
regions. This statement is also supported by various experi-
mental dat¥? that confirm the absence of a length scale
near the glass transition. However, one should not defini-

fvely exclude the existence of such a length scale, e.g., there

more quantitative way that the heterogeneity of the kineticss e possibility that the analyzed cluster-size distribution is

increases with decreasing temperature because both the frags the appropriate quantity that may reveal a characteristic
tion of the large cooperatively rearranging regions and thggngih Finally, the temperature dependence of characteristic

width of the corresponding probability distribution function
increase with decreasing temperature. This behavior is
characteristic property of a supercooled liquid beldwthat
supported the above-mentioned assumption that

processes af<T..

th
SFM 2,2] is a reasonable description for the slow dynamical

guantities of the cooperative regiofesg., the averaged size
ﬁ) reflects the typical non-Arrhenius behavior of glassy sys-
tems.
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