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Cooperatively rearranging regions in a two-spin facilitated kinetic Ising model
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Spin-facilitated kinetic Ising models are reasonable models for a study of cooperative dynamics that is
assumed in supercooled liquids. The present numerical study of a two-dimensional model confirms the exis-
tence of cooperatively rearranging regions by quantitative results. A broad distribution of relevant sizes sug-
gests that the kinetic of spin-facilitated kinetic Ising models can be characterized by a strong pronounced
heterogeneity. On the other hand, a characteristic length scale corresponding to a dominant fraction of coop-
erative regions cannot be supported. Furthermore, the temperature dependence of various quantities of the
cooperative regions reflects the typical non-Arrhenius behavior of supercooled liquids.
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In spite of advances in the description of liquids near
glass transition using different approaches1–4 the phenom-
enon is generally not completely understood. Supercoo
fluids reveal often a non-Arrhenius behavior of the relaxat
spectrum such as it is manifested in a stretched expone
decay of the correlation function. In contrast to conventio
phase transitions a long-range order is not developed. H
ever, the dynamical glass transition can be described b
increasing cooperativity of local processes with decreas
temperature.5 The cooperativity leads to the well-know
slowing down in the dynamical behavior~non-Arrhenius!
that can be illustrated by a strongly curved trajectory in
Arrhenius plot~relaxation timet versus the inverse tempera
ture T21). One possible fit of this curve is given by th
Williams-Landel-Ferry ~WLF! curve6 with lnt}(T2T0)

21

and a finite Vogel temperatureT0 . This slowing down is an
universal phenomena of the glass transition. There is a g
eral suggestion that these slow processes correspond m
to the cooperative molecular diffusion, i.e., the self-diffusi
coefficientD and the relaxation timet are often related by
Dt.1.

Mode-coupling theories1,7,8 ~MCT! predict the existence
of an ergodic behavior above a critical temperatureTc and a
nonergodic behavior belowTc . Note thatTc is in the range
between the melting temperatureTm and the glass tempera
ture Tg , i.e., Tm.Tc.Tg . At Tc the system undergoes
sharp transition from an ergodic state to a state with parti
frozen ~density! fluctuations. The slowa-process within the
MCT is thought to correspond to the actual dynamic gl
transition whereas the fastb-process is often identified with
a cage rattling or the boson peak.

Actually, the nonergodic structures obtained from t
original MCT belowTc are approximately stable only for
finite time interval. Strongly cooperative processes lead t
slow decay of apparently frozen structures. This slow de
shows the typical properties corresponding usually to the
namics of the main glass transition~WLF-like behavior of
the relaxation time, stretched exponential decay of the co
lation function!. These effects can be partially described
terms of an extended mode-coupling theory2,7 introducing
additional hopping processes.

There exists also various alternative descriptions3,9 that
explain the cooperative motion of the particles inside a
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percooled liquid belowTc . One of these possibilities is th
spin-facilitated kinetic Ising model,9–12 originally introduced
by Fredrickson and Andersen. The basic idea of all th
models consists in a coarse graining of space and time sc
and simultaneously a reduction of the degrees of freed
Therefore, the supercooled liquid is separated into cells c
taining a sufficiently large number of particles that realize
representative number of molecular motions. Thus the ma
body system is considered of a virtual lattice with the u
size l . Each cell will be characterized by only one trivia
degree of freedoms j that characterizes the actual dynam
state of particles inside the cellj . The usual realization is
given by the local densityr j with s j521 ~immobile or
solidlike state! if r j. r̄ and s j51 ~mobile or liquidlike
state! if r j, r̄, wherer̄ is the averaged density of the sy
tem. The set of all observabless5$s j% forms a configura-
tion. The evolution of the statistical probability distributio
function P(s,t) can be described by a usual master eq
tion: ]P(s,t)/]t 5(s8L(s,s8)P(s,t). To make the dy-
namical matrixL(s,s8) and the time evolution ofP(s,t)
more transparent we use the argumentation following
idea of Fredrickson and Andersen,9–12 i.e., we suppose tha
the basic dynamics is a simple~Glauber! processs j5
11↔s j521 controlled by the thermodynamical Gibb
measure and by self-induced topological restrictions. In p
ticular, an elementary flip at a given cell is allowed only
the number of the nearest neighbored mobile cells (s j5
11) is equal or larger than a restriction numbern with 0
,n,z (z: coordination number of the lattice!. So, elemen-
tary flip processes and geometrical restrictions lead to
cooperative rearrangement of the underlying system
therefore to a mesoscopical modeling describing a su
cooled liquid belowTc .

Such models9–12 are denoted asn-spin-facilitated Ising
models on a d-dimensional lattice SFM@n,d#. The
SFM@n,d# can be classified as an Ising-like model the kin
ics of which is confined by restrictions of the ordering
nearest neighbors to a given lattice cell. These self-adap
environments influence in particular the long-time behav
of the spin-spin and therefore of the corresponding dens
density correlation functions. These models were stud
numerically13–16 (SFM@2,2#) and recently also
analytically17 (SFM@1,1#).
8178 © 1998 The American Physical Society
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In the present paper we will give on the basis of t
SFM@2,2# a numerical approach to the size of the coope
tive regions. Cooperative regions or cooperatively rearra
ing regions5 are regions with a kinetic correlation of the pa
ticle motion. Recently, numerical investigations18–20 are
performed that demonstrate the existence of such region
the SFM@2,2#. The short-time evolution of the SFM@2,2#
shows typical pocketlike structures of spins that are flipp
since a given initial time18 and that suggest qualitatively th
cooperative motion of the spin-facilitated kinetic Isin
model. Furthermore, it was demonstrated19,20 that the aver-
age cooperative lengthl ~this length is defined as the dis
tance from a particular spin to other spins needed to
before the selected spin becomes flippable! shows a strong
dependence on the temperature. On the other hand, u
now there is no quantitative information about the size d
tribution of cooperative regions.

The above introduced definition of cooperatively re
ranging regions5 is too imprecise for a well-defined math
ematical investigation.

Therefore, we use a technique that is capable of be
extended to other model systems like Lennard-Jones or h
core liquids. We define that there exist in the environmen
each cell j a time- and temperature-dependent coopera
region Rj (t,T) containing the minimum number of anoth
cell that must change at least one time their state, before
state of the chosen cellj can be changed. All cells of a
cooperative regionRj (t,T) form a connected cluster.

The numerical simulation bases on two procedures:~1!
creation of equilibrium configurations for the SFM@2,2# on a
two-dimensional lattice and~2! determination of the coop
erative regions of all cells.

The aim of the simulation is the determination of t
temperature-dependent distribution functionF(N,T) that de-
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scribes the probability of finding a cooperative region co
sisting ofN cells at temperatureT.

The creation of equilibrium configurations is based on
following steps. Starting from a regular~square! lattice we
introduce at each lattice point a spin variables i with the two
possible statess i561 and the initial configurations5$s i
511 for all i %. We allow the elementary steps:s i
521
s i511. Such flips are realized with a transitio
probability 1 for11→21 and exp$2«/T% for 21→11 («
is the energy difference between the solid and liquidl
state!. In addition to this thermodynamic flip rate we hav
the topological restriction that a flip of this type is only po
sible if the following condition is satisfied:( j ( i )(12s j )
<4. @ j ( i ) means allz neighbors of the lattice pointi .] As
mentioned above, this restriction is the central idea of e
SFM@n,d# and leads to the characteristic hindrance effec
Using these elementary steps it is easy to create an equ
rium configuration. The equilibrium is reached if the rat
N2 /N1 (N6 are the numbers of spin states511 ands
521, respectively! becomes

N1/~N21N1! 5 1/~11exp«/T! . ~1!

It should be denoted that the principle of detailed balanc
always fulfilled, i.e., the equilibrium state is realized for ea
spin and each elementary process.

After reaching the equilibrium, the flip processes of
cells will be stopped. The actual configuration may bes* . In
a subsequent step we choose randomly an available cellk of
s* . Only this cell receives the possibility for a further mo
tion under consideration of the above-mentioned elemen
steps and kinetic restrictions. If the cellk changes its state
after a sufficiently long simulation time, then the cooperat
region has the sizeÑcoop

(k) 51. If not, a second cell ofs*
FIG. 1. Distribution functionF(N,T) for different temperatures. The solid lines correspond to a fit using Eq.~2!.
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FIG. 2. Fractionw(T) of relatively movable
regions as a function of«/T. The inset shows the
temperature dependence ofn1 ~triangles! andn2

~squares!.
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neighbored tok will be chosen randomly. Both cells form
simple cluster. The cells of this cluster receive again
possibility for a motion whereas the state of all other cells
completely frozen. If now the cellk changes its state after
sufficiently long time, then the cooperative region has
size Ñcoop

(k) 52. If one observes no change of the state of c
k, an additional cell ofs* neighbored to the previous cluste
is randomly determined and the same procedure will be
peated. The cluster size will be increased up to the case
the original cellk changes its state. Thus, the apparent size
the cooperative region isÑcoop

(k) .
The same procedure, starting from the old configurat

s* and the original cellk will be realized sufficiently often
~only the growing of the cluster is always changed!. The aim
is the determination of a minimum numberNcoop

(k)

5min(Ñcoop
(k) ). Thus,Ncoop

(k) is the size of the cooperative re
gion of the cellk for a given configurations* .

Now, one can start the same procedure for another ce
the same configurations* or also for another equilibrium
configuration. The repetition will be realized over a suf
ciently long computation time up to the moment that one
a relatively smooth distribution functionF(N,T) describing
the probability of finding a cooperative region consisting
N cells.

The numerical simulation of the kinetics of the SFM@2,2#
is possible by using a simple spin-flip dynamics realized b
usual Monte Carlo simulation with the elementary steps
thermodynamic transition probabilities discussed above.
do not expect a long-range structure in contrast to the be
ior of typical critical phenomena; see Refs. 1 and 16! and
therefore the volume can be chosen relatively small. In
following considerations in two-dimensional space we us
square lattice withL2 sites (L550) and periodic boundary
conditions.

The sizeN of cooperative regions, determined by th
above-mentioned procedure, has a probability distribut
F(N,T) that decreases monotonously with increasingN.
Figure 1 shows these probability distributionsF(N,T) for
various temperatures. Obviously, it is easy to see that the
no characteristic valueNchar at which an extremum o
F(N,T) occurs. Therefore, the motivation of a characteris
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length scale becomes questionable. Of course one can d
mine an averaged size of the cooperative regions and th
fore an averaged length scale of these objects, but this is
a usual characteristic length corresponding to a domin
fraction of cooperative regions with a size close toNchar. We
conclude that cooperative regions at a given temperature
not at all relatively similar objects, and especially at lo
temperatures these objects have a broad spectrum. Th
sumption of some authors21 that cooperative regions form
relatively regular ‘‘kinetic pattern’’ cannot be confirmed
least by the present investigations of the SFM@2,2#.

On the other hand, the present analysis of the SFM@2,2#
signalized that there occurs an increasing kinetic heterog
ity with decreasing temperature. This behavior was obser
also by other numerical simulations22,23 and by various ex-
perimental techniques.24,25

The probability distributionF(N,T) can be empirically
approximated by the superposition of two exponential fu
tions; see Fig. 1:

F~N,T!5w~T!~exp$n1
21~T!%21!expH 2

N

n1~T!J
1@12w~T!#~exp$n2

21~T!%21!expH 2
N

n2~T!J
~2!

with n1(T),n2(T). This representation fulfills always th
normalization condition(N51

` F(N,T)51. The value of
n1(T) is relative small~one obtainsn1'5 at the lowest tem-
perature of the present simulation!. On the other hand,n2(T)
is of an order of magnitude of the averaged size of coope
tive regions; see Fig. 3. The first term of Eq.~2! can be
roughly interpreted as a fraction of relatively small and mo
able cooperatively rearranging regions. This part cons
mainly in regions with a very small size, i.e., this fractio
appears on a coarse-grained length scale as a homogen
fraction. The second term corresponds to the fraction of re
tively strong disabled cooperative regions with a broad d
tribution of relevant sizes and consequently a pronoun
heterogeneity. The fraction of these relatively large coope
tively rearranging regions is given by 12w(T) whereas the
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fraction of the relatively small and movable regions is giv
by w(T). As expected,w(T) decreases with decreasing tem
perature; see Fig. 2. Furthermore, it can be confirmed
more quantitative way that the heterogeneity of the kine
increases with decreasing temperature because both the
tion of the large cooperatively rearranging regions and
width of the corresponding probability distribution functio
increase with decreasing temperature. This behavior
characteristic property of a supercooled liquid belowTc that
supported the above-mentioned assumption that
SFM@2,2# is a reasonable description for the slow dynami
processes atT,Tc .

FIG. 3. Averaged sizeN̄ of the cooperative regions as a functio

of «/T. The dotted line corresponds to a fit using lnN̄5A
1B(«/T)g.
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The knowledge of the distribution function allows the d
termination of thermodynamical averages. Here we disc
the average sizeN̄ of the cooperative regions. Figure
shows the relatively strong dependence ofN̄ on temperature.
As expected, the averaged size of the cooperatively rearr
ing regions is not Arrhenius activated. A rough fit leads
the representation lnN̄5A1B(«/T)g with A50.39460.005,
B51.3460.01, andg51.5160.02 but a WLF fit with lnt
5A81B8(T2T0)

21 is also possible with a slightly less accu

racy. It should be denoted thatAN̄ is proportional to the
average sizel defined by Sappelt and Ja¨ckle.20

The important message of our simulations using
SFM@2,2# is that this model can be used as a reasona
model for the slow kinetics of a supercooled liquid belo
Tc . The old assumption of the existence of cooperativ
rearranging regions5 in such a liquid can be confirmed b
quantitative results. Furthermore, the broad distribution
relevant sizes suggests on the one hand that the kinetic o
SFM@ 2,2# is characterized by a strong pronounced hetero
neity that can be observed also for other models of sup
cooled liquids and for real glasses. On the other hand,
present results suggest that there is no characteristic le
scale corresponding to a dominant fraction of coopera
regions. This statement is also supported by various exp
mental data26,27 that confirm the absence of a length sca
near the glass transition. However, one should not defi
tively exclude the existence of such a length scale, e.g., th
is the possibility that the analyzed cluster-size distribution
not the appropriate quantity that may reveal a character
length. Finally, the temperature dependence of character
quantities of the cooperative regions~e.g., the averaged siz
N̄) reflects the typical non-Arrhenius behavior of glassy s
tems.
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