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Phases of random antiferromagnetic spin-1 chains
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We formulate a real-space renormalization scheme that allows a study of the effects of bond randomness in
the Heisenberg antiferromagnetic spin-1 chain. There are four types of bonds that appear during the renormal-
ization flow. We implement the decimation procedure numerically. We give a detailed study of the probability
distributions of all these bonds in the phases that occur when the strength of the disorder is varied. Approxi-
mate flow equations are obtained in the weak-disorder regime as well as in the strong-disorder case, where the
physics is that of the random-singlet phajs80163-182¢08)05025-5

[. INTRODUCTION In this paper, we give a detailed construction of a renor-
malization scheme suited to the study of the spin-1 chain.
The effect of quenched impurities on the physics of one-\We generalize the Ma-Dasgupta decimation procedure by
dimensional spin systems is an important and unsolved protkeeping more degrees of freedom. A brief account was given
lem. Many Spin chains can be doped Chemica”y’ and th|$n Ref. 10. Here we obtain eXp”Cit flow equations that are
creates some kind of disorder in the system. In addition, th&alid deep inside each of the phases that appear. We are able
spin+ chain is equivalent to a system of spinless fermiond© follow the spin populations as a function of the renormal-
through the Jordan-Wigner transformation. This means thdgation sca]e as vyell as the evolution of distribution functions
the problem of interacting spinless fermions in a disordere®f the various kinds of bonds that appear. In Sec. Il, we
potential is equivalent to a random spin chain problemdefine the renormalization scheme. In Sec. lil, we study the
There are not many techniques that allow a study of thes@eak-disorder phase of the spin-1 chain. Section IV contains
systems. The real-space renormalization group is prominerfur regults_for the strong-disorder regime. The critical regime
among them. Some time ago a pioneering study by Ma an# studied in Sec. V, and Sec. VI contains our conclusions.
Dasgupta showed that the spih-Heisenberg antiferromag-
n_etic chain with bond randomness_is in a so—callgd raqdom- Il. REAL-SPACE RENORMALIZATION PROCEDURE
singlet phase. In thls_phase, the spins are Io.cked into smg_lets FOR DISORDERED ANTIFERROMAGNETIC
that extend over arbitrarily long distances, in a pattern dic- SPIN-1 CHAIN
tated by the bond distribution. It has recently been realized
that the results of their renormalization procedure are in fact In this section, we explain how to obtain a real-space
exact? This random-singlet phase may capture the physics ofenormalization scheme adequate to study the disordered an-
higher-dimensional disordered systemns. tiferromagnetic spin-1 chain.
In the spin3 case, the random-singlet phase appears for
various kind of disorder and in a wide regions of the phas
diagram when one add$XZ anisotropy. This results from
the study of the weak-disorder regime by bosonizing the spin Ma and Dasgupta introduced a real-space renormalization
chain? procedure for the random antiferromagnetic spithain de-
The spin-1 Heisenberg antiferromagnetic chain has &cribed by the Hamiltonian
physics which is vastly different in the pure case. There is a
gap for spin excitations, and a finite spin-spin correlation
length. These features can be best understood by consider- H=> JS-S.1, (2.2
ation of a hidden topological ordéf In fact, the ground ‘
state of the spin-1 chain has a hidden long-range order that
can be measured only by use of a nonlocal correlation funq;vhere{g} is a quantum spi-operator, andJ;} a positive
tion, the so-called string order parameter. It is a natural quesandom variable distributed with some probability distribu-
tion to ask what happens to these peculiar features under thdn P,(J). Suppose thad; is the largest coupling in the
influence of disorder. In fact the original Ma-Dasgupta renor-chain. The one-bond Hamiltonian
malization scheme requires a broad enough bond distribution
to worlg l(;I’hus more complex schemes have been ] 3 3
proposed™"" As a function of the disorder strength, it has, _ & & _"1r & ; &\2_&_&_"1 & .&y2_°2
been established that there is a phase transition betweenhg 1SS 2 [(51#5)" =S~ 5] 2 (5:+5) 2}
low-disorder gapless phase with hidden order and a strong- (2.2
disorder phase which is the random-singlet phase of Ma and
Dasguptagapless and no hidden orgler admits two energy levels labeled By-0 and 1,

e T .
A. Ma-Dasgupta real-space renormalization in the spins case
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1 3
&=% S(s+1)— >

, (2.3 a(Q) = ————, (2.10
0<Qq In (_0)
the leveleg being (2+ 1) times degeneratey,= — 3J; rep- o
resents the singlet, argd = 3 J, the triplet. At energies much for which two typical bonds are typically much weaker than
lower thanJ,, the spinsél andéz will therefore be frozen the strongest on€. The approximation involved in the use
into the singlet stats=0. The decimation procedure con- Of perturbation theory to obtain rul@.7) therefore becomes
sists in eliminating the spin§1 and §2 and in replacing the better and .better as the decimation pro'ceeds, and _the w'hc_)le
four spin segment Hamiltoniahl, ; , 5 involving the deci- procgdu_re is th_erefore completely consistent even if the_ ini-
L2 = - tial distribution is not broad. The Ma-Dasgupta renormaliza-
mated spinsS; andsS, , tion scheme is moreover very appealing because it gives an
S S interesting physical picture of the random sgirchain: at
Ho123=hot+hy  where hy=30Sy- S;+J,S;- S3, low energy, the chain is made of pairs of spins that are
(2.4) coupled together into singlets over arbitrarily long distances,
the long singlets bonds being typically much weaker than the

by the effective Hamiltonian for the remaining spiﬁ;;and smaller ones.

83 H
. o B. Renormalization of an AF bond between two spinsS=1
Hoa=Eost J0S0- S5, (2.9

which is meant to reproduce the four low-energy states of 3
Ho 123 Which are separated from the other 12 states of hozjlél.ézz_l[(§1+ $,)2-$-&
Ho123by a large gap of orded;. Using second-order per- 2
turbation theory to tredh, gives

The one-bond Hamiltonian

Iooa
. = S1(8,+8)7-4] (211
ro_ = _ 2 2
Eos= 4‘]1 1631(‘]°+‘]2) (2.6 admits three energy levels labeled 0, 1, and 2,

and J
es=—=[s(s+1)—4], (2.12

2

,Jod2 . .
Jff. (2.7 the leveleg being (X+ 1) times degenerate,= —2J, rep-
1

resents the singleg; = — J, the triplet, ande,=J, the quin-
The same procedure may be iterated and successively aW'et-
plied to the strongest bond of the chain. This defines a flow In the Ma-Dasgupta procedure, there are only two levels,
for the probability distribution of coupling®(J,2), where  and “projecting onto the lowest level” is equivalent to “pro-
Q is the current strongest couplihg jecting out the highest level.” Here these two possibilities
are not equivalent. The first possibility has already been con-

IP(J,Q) Q Q sidered in Refs. 8 and 9 where it is shown that the generali-
BT e P(Q,Q)f dJaJ dJ,P(J,,Q) zation of Eq.(2.7), describing the effective coupling between
0 0 §o and §3 resulting from the projection onto the singlet
JaJ formed byS, and$,, reads
XP(Jy, Q) 83— =0 2.8 yS, ands,
2Q)
, 4302
This flow equation has to be supplied by some initial condi- 073 J (213

tion P(J,Q,). Fisher showetthat, for generic initial condi- A ) )
tions, in the reduced variabled' =In(Qy/Q) and z The coefficient; being larger than 1, this rule is not auto-

= 1/T In(Q/J), the probability distributionR(z,I") of the matically consistent: indeed, the inequalitigs<J, and J,

variablez flows towards the unique fixed poif* (), <J; are not sufficient to imply that new coupling, is
smaller than the decimated couplidg in contrast with rule
R(zT) — R*(2)=0(2)e %, (2.9 (2.7 concerning spirg chains. This procedure can, however,
= be considered as qualitatively correct for very broad initial

randomness, where the cases which would produce a cou-
where ¢ is the Heaviside step function. This so-called pling J; larger than the decimated couplidg are statisti-
random-singlet fixed point corresponds to a power-law discally negligible. So the strongly disordered antiferromagnetic
tribution in the original variables spin-1 chains are described by the same random-singlet fixed
point already found in the study of disordered spichains.
a(Q)[ 3\t
a

For weak initial randomness, however, this naive proce-
) ' dure cannot be made consistent. We thus generalize the Ma-
Dasgupta procedure with the interpretation of “projecting
where out the highest level” instead of “projecting onto the lowest

P*(J3,Q)=6(Q-J)
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level.” More precisely, for the antiferromagnetic bond de- ever it is possible to define a decimation procedure that is
scribed by the Hamiltoniah,, we project out the quintuplet “closed” inside a particular set of spin chains, as we will see

e, but keep the singlet, and the triplete; by replacing the
two spinsS=1 S, andS, by two spinsS=1$ S} andS,, and
by replacinghg by the effective Hamiltonian

5J L.
hef=——=2+7,8-S,.

7 (2.19

The four-spin-segment Hamiltoniad, ; , 3, containing the
old spinsS; andS,,

where h1=J0§0~ §1+J2§2~ 53
(2.15

Ho1.23=hothy

in the following.

C. Real-space renormalization procedure

We consider the enlarged set of spin chains described by
the Hamiltonian

H=2 3§ §.1, (223
where the spiréi is a spin operator of sizg =3 or s;=1,

and where the couplingg);} can be either positive or nega-
tive, but have to satisfy the following constraint: for any pair

has to be replaced by an effective Hamiltonian involving the{j 1 such thati<j, the classical magnetization of the clas-

spinsSo, S;, S, andS;:
o peff, peff
Ho127ho +hi.

(2.16

If we use a first-order perturbation theory to trbat we find
that the singlet oh, remains unchanged

(81,,=0|hy[s;,=0)=0, (2.17

whereas the degeneracy of the triplet is lifted by the pertur-
bation h;. Using the Wigner-Eckart theorem for vectorial

operators, we find, more explicitly,

(1mlhy|1m")=(330So+ 33553 - (1 m|(S,+Sp)[1,m").
(2.18

We can reproduce these matrix elements by choosing thlgq

effective Hamiltonian

he=3,5,- S;+ 3,5, - Ss. (2.19

sical ground state of the segmenmtjj, must be smaller or
equal to one in absolute value
Im; j[=<1,

(2.22

where the quantityn; ; reads

j n-1
mj=si+ >, snxsgr{l_[ (—Jp)] (2.23

n=i+1 p=i

This condition forj=i+1 gives immediately that there
are exactly four types of bondgt) link of type 1: Ferromag-
netic bond between two spiichains.(2) link of type 2:
Antiferromagnetiod AF) bond between two spi-chains.(3)

k of type 3: Antiferromagnetic bond between one spin-1
ain and one spig-chain.(4) link of type 4: Antiferromag-
netic bond between two spin-1 chains. Our decimation pro-
cedure is the following.

To each bondii ,§i+1,Ji) we associate the energy dif-

This does not reproduce the matrix elements mixing singleference between the higher state and lower states of the re-

and triplets like(0|h,|1,m).

In fact, as noted by Hymahthe exact first-order effective

Hamiltonian is

. [1+ a. a— 191
h$ee 35Sy (781—782)

a—1._

1+a. | .
+J2( - TSi-i-TSé) - S, (2.20

where a«=+/8/3. It contains ferromagnetic next-nearest-

neighbor couplings betwee®, andS,, and betweer$; and

duced Hamiltoniard;S - S 1

A;=-J; ifthebondi is oftype 1, (2.29

A;=J; ifthebondi is of type 2, (2.2
Aj=3J, ifthebondi is of type 3, (2.26
A;=3J; ifthebondi is of type 4. (2.27

We pick up the bond il,éz,\]il) corresponding to the
strongestA; of the chain. To define the renormalization rule

§3, but they arenonfrustrating and, as such, they are not

expected to lead to qualitatively new physics. We use th

simpler approximate effective Hamiltoniahﬁff that pre- H

serves the structure of the chain and that reproduces most of

the matrix elements. It also means that we ignore multiplicawhere

tive factors ofa= \/8/3, but these will not matter in regimes

in which the probaibility distribution is broad. In fact one can ho=J;5.S., andh,=3 S-S +3,.S.-S.,

check explicitly in the spir;case that the coefficiegtin the v oo (2.29

decimation ruldEq. (2.7)] plays no role at the fixed point. . ] ]

Such approximations will of course change nonuniversafnd treath, as a perturbation oh, to find the effective

quantities like the precise value of the critical disorder be-Hamiltonian replacingH; ; i, i, when the highest-energy

tween the two regimes of the spin-1 chain. state ofhg is removed. We now have to distinguish the four
We have now enlarged the initial space, since the chaitypes of bonds.

now contains not only=1 spins but als&=3% spins. How- Rule (1) F bond between two spinS= 3.

éor this bond, we again divide the four-spin Hamiltonian into

:h0+ hl

lgilq.lg,l3
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The Hamiltonianh,=J; S and S, admits two energy
levels: the triplete,=—[J; |[/4 and the singlee,=3|J; |/4.

The perturbatiorh; lifts the degeneracy of the triplet, and

using Wigner-Eckart theorem, we find that is equivalent
at first order of perturbation theory to

h=(33,,5,+33,5)(§,+S,). (229
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5;
e =—_—1438 .¢4+38.84+3 ¢ .38
HiO'ilviz'iS_ 4 +J'OS‘0 S'1+J'1S'1 S24—‘]'28'2 S3'

(2.39

This renormalization procedure is entirely consistent from
the point of view of the progressive elimination of the
highest-energy degrees of freedom: it is easy to show that in
the four cases of renormalization of a bond described above,

To eliminate the singlet state and only keep the triplet stat@ll the energy scales; of the new bonds are always smaller

of ho, we remove the two spig-S andS;, and replace them
by a single spin—]él’l, and we replacdi-lio,il,iz,i3 by

ot I I R
= + 53,55, 59,5,S,. (230

S, =
igigidg 4

Rule (2) AF bond between two spinS= 3.

Here, we directly apply the Ma-Dasgupta procedure dis-

cussed in Sec. Il A: we remove the two sgir§; and S
chains, and replaclelio,il,iz,i3 by

H eff —_§J _

gz 4% 2—'—Jizz)—’—

ﬁil(‘]io
(2.31

Rule (3) AF bond between one spin-1 and one sgin-

Suppose thalsi1=1 and si2=%. The Hamiltonianhg
=J3;,S,S, admits two energy levels: the doublety,

==J, and the quadruplei3,2=Ji1/2. At first order pertur-

than the energy scalk;; of the bond that we renormalize.

It is also easy to check that this renormalization procedure
is “closed” inside the set of spin chains defined by condition
(2.22: if we apply this procedure to an initial chain belong-
ing to this space, such as the random antiferromagnetic
spin-1 chain we are interested in, the effective chain always
belongs to this set of spin chains. In particular, spins higher
than 1 cannot appear through this renormalization scheme.
However, since this renormalization procedure is not
purely based on complete decimation of bonds, it introduces
correlations between bonds, so that it is impossible to write
exact closed flow equations for the probability distributions
of couplings, in contrast with the Ma-Dasgupta procedure.
To study the properties of this renormalization scheme, we
have therefore performed numerical simulations on spin-1
chains containingN sites with periodic boundary conditions
(N=222for examplg, whose initial couplingsJ; are distrib-
uted according to probability distributions of the following
form:

1
Py(d)= for 1sJ<1+d

d

bation theory, Wigner-Eckart theorem gives that, within the

subspace of the doublst=3, the perturbatiorn; is equiva-
lent to

h$%= (a1 S+ @231,S) (S, +S,), (232
where the constants; and a, read
1 Sil(si1+ 1)_Si2(si2+ 1) 4
=z 1+ s(s+1) "3
and
1
a2=1—a1= - § (233)

The renormalization rule is therefore the following: we
eliminate the s;pin.-éﬁ1 andéiz, and replace them by a single

spin4 é’l, and we replacé
tonian

ighighinis by the effective Hamil-

eff
ig,i!,i
0111

H

3:_Ji1+%Ji0§ioé|ll_%Ji2§|I1§ (2.34

.3‘

Rule (4) AF bond between two spinS=1.

In this case we apply the rule explained at the beginning

of this section[see Eqs(2.14—(2.19]: we replace the two
spin-1S; andsS, by two spin3 § andS/ , and we replace
Ho 1 23by an effective Hamiltonian

(2.36

The parameted represents the strength of the initial disorder
of the couplings. For a given number of sifdsand a given
initial strengthd of the disorder, we have numerically imple-
mented the renormalization rules on a given numibgpi-
cally 100 of initial independent samples, to compute aver-
aged quantities over these different realizations of the initial
disorder. It is convenient to use the variable

and P4(J)=0 elsewhere

Qo

I'=In ﬁ'

(2.37
where() is the current strongest [see Eq.2.27] andQ,
the initial strongesi\. We have studied the flow of the fol-
lowing quantities: the numbeN(I") of effective spinsS
=3 and 1 still present at scald’; the proportion
{N(s=1)(r)/N(I")} of spinsS=1 among the effective spins
at scalel’; the proportionsp;(I') ={N;(I")/N(I")} of bonds
of typei=1, 2, 3, and 4 at scalE; the probability distribu-
tions P;(J,01) of the couplingd at scale) for the four types
of bondsi=1, 2, 3, and 4. It is in fact more convenient to
study the probability distribution$;(x,I') of the reduced
variable,

-n 5031
x=In m y (238)

whereA(J) is defined as in Eq2.27),
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Proportion of surviving spins
for weak initial disorder (d=0.1, d=0.5, d=1 and d=2)

10° g . .
} —od=0.1
10 &—nd=05 3
e—a d=1
G—Od=2
P 10% L .
Z
£
Z 10° | E
10* L 1
10-5 1 1 1
0.0 10.0 20.0 30.0 40.0
T

FIG. 1. Linear-log plot of the proportioN(I")/N(0) of effec-
tive spins at scal&’, for weak initial disorded=0.1, 0.5, 1, and 2:
this proportion decays exponentialligg. (3.1)].

A(J)=-J for bonds of type 1, (2.39

A(J)=J for bonds of type 2, (2.40
A(J)=2J for bonds of type 3, (2.41
A(J)=3J for bonds of type 4, (2.42

so that the random variablevaries in (0x) for any type of
bonds.

I1l. WEAK-DISORDER PHASE
A. Numerical results

In the weak-disorder phase, we find that the nunidr)
of effective spins decays exponentialsee Fig. 1,

N(T)orp_ e @, (3.0

where «(d) is a decreasing function of the disordeérthat
vanishes in the limid—d. . As a consequence, the mag-
netic susceptibility at temperatureé can be computed by
summing Curie laws for the free spins at scBleT. So we
have

1
X m. (32)
The proportionsp;(I") of the four types of bonds reach a
stationary regime characterized (see Fig. 2

p1(I')=0.25, po(I')=0.75, p3(I')=0, py(I')=0.

(3.3

There are asymptotically only bonds of type 1 and bonds of
type 2. This means in particular that there are only effective

spin+ in the chain, and no more spirB=1. Since two

bonds of type 1 cannot be neighbors according to constraint
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Proportions p,(I"), p,(I"), p5(I), pI)
for weak initial disorder (d=0.1)

10 @ T

0.9 J

0.8 ]

N A=A o0

<« 07 ] &%\ s @ J
o
o 0.6 ) 4
i =—=o Type i=4
— 05 o—= Type i=3 E
2 4 o—o Type i=2
Q_ 0. &—2A Type i=1 ]
<03

0.2 R e ol e il Lk

0.1

0.0 Sfboo e s = S et oot toonan

5.0

FIG. 2. The proportiong;(I") of the four typed =1, 2, 3, and 4
of bonds at scal&’, for weak initial disorded=0.1: they reach the
asymptotic regime3.3).

It is necessary to introduce the probability distribution
P57¢1x,T') for the couplings of the even bonds of type 2, and
the probability distributionP3%(x,T") for the couplings of
the odd bonds of type 2. We find th&"*(x,I") becomes
stationary for large enough, and takes the form of an ex-
ponential distribution

P, T) = age™ ¥, (3.9

wherea, is independent oF, but depends on the valukeof

the disorder, and is numerically very close to the parameter
a(d) characterizing the decay b(I") [Eq. (3.1)]. The prob-
ability distributions?;(x,I") and P3%Yx,I") coincide (up to
statistical fluctuationsand take the form of an exponential
distribution (see Fig. 3

Pr(x,T) =P x,I") = ao(T) e~ %X, (3.5

Probability distribution P, .,(x,T")

for weak initial disorder d=0.5

10 T T T T T
e—a =6
4 ——oTI=5
10 o—-oT=4 b
AE—A r=3
H—K r=2
_10®
=
k3
g
ot 10°
10*
10° . . . , .
0.0 10.0 20.0 30.0 40.0 50.0
x=Ln(Q/J)

(2.22, the even and odd bonds are not equivalent, as in the FIG. 3. Linear-log plot of the probability distributioR3%(x,I")

effective model of Hyman and Yarthe “even” bonds are

for I'=2, 3, 4, 5, and 6, for weak initial disorder=0.5: P3%(x,I")

all antiferromagnetic, whereas the “odd” bonds are eitheris well described by the exponential for(8.5), with a parameter

ferromagnetic or antiferromagnetic with equal probability.

ao(T") that is found to decay exponentially with[Eq. (3.6)].
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where the parameter,(I") decays exponentially: fore the same as the “Haldane phase” found by Hyman and
wr Yang in their effective model introduced in Ref. 9, and is
ag(l) e (3.6 very similar to the random dimer phase found in the study of

random dimerized antiferromagnetic sgirehains®! in the
asymptotic regime, the chain is made of a set of nearly un-
ﬁoupled dimers.

As a consequence, for large enoujhthe bond of the
chain of highest\ (corresponding to smalleg), that is cho-
sen to be renormalized, is always an even bond of type 2. |
the renormalization operatiof®), this even bond disappears
together with its two odd neighbors, and a new weak odd
bond is produced. This explains why the distribution Assuming that the “even” bonds are all of type 2, that the
P5¥x,I") for even bonds remains stationary, whereas thé‘'odd” bonds are either of type 1 or of type 2 with equal
distribution of couplings of odd bonds becomes broader angrobability, and that the unique important process is the deci-
broader in the variablg. This weak disorder phase is there- mation of an even bond according to ry®,

B. Approximate flow equations

1 1 1 1 1 =1
$1=73 Sy = 3 83 = 35 S84 = 3 S1— 3 $4 = 3
1 J J
Ji Jo =0 Js Ji =55t

it is possible to write approximate flow equations for the In the new variablesI'=In (Qy/Q)) and x=In (Q/J)
probability distributions of the couplings are normalized ac-<[0,+«), the flow equation forP5"*(x) admits stationary
cording to solutions of exponential form

Q Q Ve ) o o X 1
1:JO dJ ngefta,ﬂ)=f0 dJ P94 3,0) P20 = e, @13

with an undetermined constami,, in agreement with our

0 numerical result3.4). With the last change of variables,
=f dJ PL(J,0). 3.7)
—0
It is convenient to introduce the normalized distribution of X—z=ay(I')In (m) (3.12
all odd bonds

the flow equation for the corresponding probability distribu-
Po%%J,0)=5[P3™(J,.0)+P;(J,Q)] for —Q<J<Q. tions P%Y(z,I") andP3%Y(z,I") admit the same stationary so-

(3.8 lution
The approximate flow equations for the probability distribu- _ _
tions P5¥®1J,Q) and P°?4J,Q) then read Pz =Pzl — e*
T —o

aP5*13,Q) i

- T —Pee0,0) PEEL,0), 39 With
ay(l') o e, (3.13
P 3,0) e

=—P5"1Q,Q)P%J,0),
€ wherea, is the number characterizirig'*'(x) [Eq. (3.1D)].
We may also write the flow equation for the total number
a N(Q) of spins still present at scale,
+P5e10,0) f QdJlPOd"(Jl,Q)
dN eve
a0 PSe1Q,Q)N(Q), 3.19

Q 313
od -
xﬁﬂdJSP 4J5,0) 5(J 29>.

so that we obtain the following asymptotic behavior in the
(3.10 variableI:
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Proportion of surviving spins Proportions p,(I), p,(I), ps(I')/2, p,(I')
. for a large initial disorder (d=100) for large initial disorder (d=100)
10 1.0 . ; . . ;
oo | s i
W' L | 0.8 | -
£ o7 1
<
8 Q06 «—o Type i=4 7
Z 402 L i = o—— Type i=3
< 10 % ype _
£ <05 o—o Type i=2
=z £ 04 —aTypei=l
(=N
10.3 L | E;_ 0.3 A
02 .
0.1 .
10~4 1 1 1 1 0'0 ‘ L bea
1 10 s 9 100 0.0 10.0 20.0 30.0 40.0 50.0 60.0
r r
FIG. 4. Log-log plot of the proportioM(I')/N(0) of effective FIG. 5. The proportiong;(T') of the four types =1, 2, 3, and 4
spins at scald’ for strong initial disordedd=100: this proportion 4 honds at scalé, for strong initial disorded=100: they reach
follows the power-law asymptotic behavi¢t.1). the asymptotic regimé4.3).
—apl
N(F)Ffwe ° (315 where the parameterd4(I") follows the random-singlet be-
havior (see Fig. 7
IV. STRONG-DISORDER PHASE
A. Numerical results
. . =I"+Cst. 4,
In the strong-disorder phasie>d., we find that the num- ay(T) 4.9

ber N(T") of effective spins decays as in the random-singlet

theory for the disordered antiferromagnetic spiohain(see ) . .
As a consequence, if a defect is produced at the renormaliza-

2

Fig. 4):
g-4 tion energy scald), it survives until the energy scal@/3,
1 where it is decimated according to rul2), and the whole
N(T) = 72 (4.1)  defect of structurébonds of type 3, bonds of type 2, bonds
e of type 3 entirely disappears to give one bond of type 4.
The magnetic susceptibility thus has the random-singlet pefigure 8 indeed shows clearly that the probability distribu-
havior tion P,(x,I") tends to concentrate on the intervak®
<In 3 asI" increases. That has to be contrasted with bonds
1
X% =T 4.2 e
T In°T Probability distribution P,(x,I")
The proportionsp;(I") of the four types of bonds reach an . for large initial disorder (d=100)
asymptotic regime characterized tsee Fig. 5 10 ' ' ' ' ' '
, —a =20
p1(1)~0, pp(I)~e(l) 0! B e
X &—aT=8
pa(I')~2€('),  pa(I')~1-3e(l), 4.3 —s T4

wheree(I') slowly goes to 0 a§'— . This means that there ¢ 10
is a sea of bonds of type 4, with sometimes defects of struc-f:,
ture {bond of type 3, bond of type 2, bond of typg Jhis 10°
defect structure is produced by the renormalization (d)e
for a bond of type 4 when its two neighbor bonds are also of 4 |
type 4. The fact that there are no more bonds of type 1 in the
asymptotic regimeé4.3) shows that defects are destroyed by
the renormalization of the central bond of type 2 and not by  10°® ' ' ' o ' 2
the bonds of type 3; this means that for the probability dis- 00 100 200 Xj_or;&/(s J);'O‘O 500 €00
tribution P4(J,Q)) at large enouglf), two typical couplings
are much weaker than the larger one. We indeed find that FIG. 6. Linear-log plot of the probability distributio®,(x,I")
P.(x,I") is an exponential distributiofsee Fig. 6, for =4, 8, 12, 16, and 20, for strong initial disorder=100:
Pa(x,I") is well described by the exponential for(d.4) with a
Pux,I) = (T)e™ X (4.4 parametein,(I') plotted in Fig. 7.
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of type 3, which are characterized by a distributiBs(x,1") (e _[2os
that tends to coincide witt,(x,I") for large enougi’. 1= 0 dJ P(J,Q)= 0 dJ P3(J,Q)
/3
B. Approximate flow equations phase = fo dJ Py(J,9). (4.6)

Assuming that there is a sea of bonds of type 4, withassuming that the only two important renormalization pro-
sometimes defects of structuiieond of type 3, bond of type cesses are the production of the defect structbrnd of
2, bond of type B it is possible to write approximate flow type 3, bond of type 2, bond of type By the renormaliza-
equations for the probability distributions of the couplingstion rule (4) for a bond of type 4 when its two neighbor

normalized according to bonds are also of type 4,
so=1 s=1 s3=1 s3=1 sp=1 3’1=% 3’2:% s3=1
& 'y & 'y _) @ & & 'Y
Jo h=% L Jo =% ]
and the suppression of the defect structure by the decimation2ule
802131—_—%822%33:1 30:1 33:1
¢ ——0 — 06— 0 —_— [ 2 L ]
Jo Jo
']0 ']1 =0 J2 . J(/) =55

we obtain the following approximate flow equations for thetogether with the flow equations for the numhber () of

three probability distributions: bonds of type =2, 3, and 4:
9P5(3,02) _ONp | 1dNs 1000
~ = =P, Q)P,(3,0) a0~ 2d0 3 43 N
1 [Q \NyiQ) 5 Q —P2(Q,Q) NyQ), (4.10
HERE R T 3
dN, Q
TN P2(Q,Q)Nx(Q) =Py ?’Q N4(€2),
0 0 0 so that the total numbed(Q)=N,(Q)+N3(Q)+N,(Q) of
dP3(J,Q)) 2 N4(Q) bonds evolves according to
~—a 3 4(5,5)) Na(2) [P4(3,Q2)—=P3(3,Q)],
(4.8 dN
— = —2P,(Q,Q)N,(Q). 4.12
dQ
IP,(3,Q) 1
3P4 3] Pa3.Q) It is more convenient to write the flow equations for the
probability distributionsP;(x,I") of the reduced variable
N,(Q) =In [Q/A(J)], whereA(J) is defined by Eq(2.42), so that
- N4(Q)P2(Q’Q)P4(J!Q) the random variable varies in (0) for any type of bonds
No(€2) 2013 aPy(x,T)  dPy(x.T")
+ sz(ﬂ,ﬂ) ,  9JoP3(Jo, ) T = o P00 PAX.T)
20/3 JoJs N,(T)
X fo dJ, P3(J2,9)5(J ﬁ) N PalODIL3(x=In3) = Po(x. )],

(4.9 (4.13
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IP3(x,T") B IP3(x,T") N4(T)
o ox N,(T") P4(0)
X[Py(x=In21")=Ps(x,I")], (4.19
IP4(x,T) B IP4(x,T")
oL ox
No(T")
+| P4(0,I0) —m Po(ON) | Pa(x,T7)
2o(I) ®
+ NA(F)PZ(O,F)fO dx; Ps(xq,I)

° 3
xf dx, Pg(xz,F)é(x—xl—xz—In 5).
0

(4.19

Since the singular term containing tléefunction in Eq.
(4.13 tends to develop a discontinuity i®,(x,I") at x
=In 3, it is convenient to set

V= 1—e(T 6(In 3—x)
Py =[1=e(l)]— 75—
where 0<e(I")<1, andf,(x,I") is a normalized probability
distribution that is regular at=In 3. Equation(4.13 will be
satisfied ife(I') andf(x,I") satisfy

+e(lM)fy(x,T), (4.19

N, (T

e(l)=1—(In 3)N:EF;P4(O,F), (4.17)
%:—e(l‘)[l—e(l‘)]f(o,l“), (4.18
&f(x’r)= otexL) +f(O)f(x,I). (4.19

ar

Obvious stationary solutions fd(x,I") are simple exponen-
tials

oX

f(x,I') = a; e *, (4.20
I'—ow
in which casee(I") vanishes exponentially,
e(I') « efafr, (4.2])

I'—oo

so thatP,(x,I") converges towards the stationary solution

1
* —_—— J—
P (x)= n 36P(In 3—X). (4.22
This corresponds in the original variables to
Py(J,Q)=—+——%—= f —Q J<Q 4.2
2(J, )_(InS)J or z<J<Q. (4.23

We also obtain the following equation in the asymptotic re-

gime:

1
Na(T) Pa(0L)=Na(T') . (4.24
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1/0,,(T)
20.0 T T T
150 J
£
Q‘. 10.0 b
5.0 r b
0.0 : ' '
0.0 50 10.0 15.0 20.0
T

FIG. 7. Plot of the inverse of the parametes(I") defined in
Eq. (4.4) as a function of": it follows the random-singlet behavior

(4.5).

that we will use now to study the flow equations f&4(x,I")
andP,(x,I)
With the last change of variables

(4.2

X—2z=ay(I')X,

we find that the flow equation for the corresponding prob-
ability distributionsP,(z,I') andP5(z,I') admit the station-
ary solutions

Pyzl) — e ? and Py(zl) — e % (4.26
| E— o
where
a (') « =, (4.27
FHOOF
Probability distribution P,(x,I")
for large initial disorder d=100
0-8 T T T T T T T T T

o

FIG. 8. Plot of the probability distributio®,(x,I") for I'=8, 12,
16, and 20, for a strong initial disorder=100: P,(x,I") tends to
concentrate on the intervakOx<In 3, as explained in the text.
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Proportion of spin-1 among the effective spins Proportions p ('), p,(ID), p,(I), p,(I)
for initial disorder d=1, 2, 4, 5.5, 6, 8, 16, 100 for critical initial disorder d,=5.75
1.0 ; ; ; . ; ; : .
el |
o8l i ’ =——a Type i=4
: 0.55 —oTypei=3 |
07 | < 0.50 e—o Type i=2 1
o 0.45 &+—a Type i=1 E
g 06 1 o 040 |
Z .ﬂ
< 05 § < 0.35
Q:O . | *2 0.30 ]
£ < 025 .
0.3 . 0.20 . 1
0.2 | il 0.15 1
0.10 | .
01 B 0.05 |- i
0-0 i 1 | 0.00 1 1 1 1
0.0 10.0 20.0 30.0 40.0 50.0 0.0 10.0 20.0 300 40.0 50.0
T T

FIG. 9. Proportion of spin§=1 among the effective spins at  FIG. 10. The proportiong;(I) of the four types =1, 2, 3, and
scalel for various values of the initial disorde=1, 2, 3, 4, 5.5, 6, 4 of bonds at scal&, for the critical initial disorded.=5.75[Eq.
8, 16, and 100: this proportion flows toward 0 in the weak-disorder5-D]-
phase, and toward 1 in the strong-disorder phase. Between these
two attractive values, there is an unstable fixed pointdat Where the parameter &/(I') (see Fig. 12 follows the be-
=5.755), where the proportion of spir8=1 among the effective havior of the effective model of Hyman and Yahg:
spins remains stationary at the intermediate value @515

1 r
as in the random-singlet solution of Ma-Dasgupta. It is then ae(I) = §+C5t' (5.3
easy to obtain the asymptotic behavior of the total number ) o .
N(T) of spins(4.12), The magnetic susceptibility is given by the effective number
of free spins
1
N(T) = 7, (4.28 1 e
e XTIt 4

and the asymptotic behavior of the proportie(l’) [Eqg.
(4.3)] of defects from Eq(4.26): VI. CONCLUSION
No(T') In3 4.29 We have introduced a real-space renormalization scheme
N(T) * T 429 that allows a study of the spin-1 chain. Within this scheme
we obtained a complete characterization of the weak-
coupling phase, the critical regime, and the strong-disorder
V. CRITICAL REGIME phase. In all phases we were able to follow the spin popula-
In Fig. 9, we plot the proportiofiNs_ 1,(I) I/N(T") of tions and to obtain the probability distributions of the differ-

spinsS=1 among the effective spins for various values ofent types of bonds that appear under r.en.ormahzatlon. It is
the disorder; this proportion flows toward 0 in the weak-OnIy in the weak- and strong-coupling limits that we were

disorder phase and toward 1 in the strong-disorder phas&‘-’ilble to obtain approximate analytical flow equations.

Between these two attractive values, there is an unstable The renormalization scheme that we used is an extension

fixed point atd,~5.755), where the proportion of spirS of the Ma-Dasgupta idea. These schemes have in common

—1 among the effective spins remains stationary at the in'ghe fact that they are consistent for arbitrarily weak initial

termediate value 0.315). Theproportionsp:(I') of the four disorder. They do not create bonds stronger than the original

. . decimated bond. In the spihcase, it is believed that this
types of bonds reach a stationary state characterizeddey means that there is no critical disorder. In fact, this is sug-

eI')=

I'—o

Fig- 10 gested by bosonization: most bosonic forms of randomness

I)~0.17, ')~0.35, ')~0.33, give rise to relevant operatqrs along.the massless Iing of the

pal) p2(T) pa(l) pure system when the anisotropy is varied. The simplest
pa(T)~0.15 (5.1) assumptiofiis thus that the system flows immediately to the

random-singlet phaséhere is a region of stability of the
We find, of course, that the four probability distributions spin liquid but this happens only for attractive enough inter-
Pi(x,I') for i=1, 2, 3, and 4 coincide up to statistical fluc- actions between the Jordan-Wigner fermions, i.e., for nega-
tuations[otherwise, the proportiong;(I") would not remain  tive enough anisotropy
stationary and follow the exponential forrntsee Fig. 11 However, this is not the case for the spin-1 chain. Here
the Haldane gap is perturbatively insensitive to disorder, as
Pi(x,T)=a T)e ®X (5.2 naively expected. This is known from bosonization studies of
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Probability distribution P,(x,I") /o (D)
for critical initial disorder d =5.75
10° . . . . . 12.0 . ; . ; : : : . .
: o o120 1.0
10" o—e I'=16 | 100 |
o—o =12 90 F
. a—aT=8
. A —Tod 80
10° 70 L
[y £
Z e 6or
ST T 50+
40
B 30
10* | 20
10 | -
10'5 1 L ) 1 ). S 0.0 L 1 1 1 1 L 1 L 1
0.0 10.0 20.0 30.0 40.0 50.0 60.0 00 20 40 60 80 100 120 140 160 180 20.0
x=Ln(/J) T
FIG. 11. Linear-log plot of the probability distributigh,(x,T") FIG. 12. Plot of the inverse of the parametey(I") defined in

for =4, 8, 12, 16, and 20, for critical initial disorder,=5.75:  Ed.(5.2) as a function of": it follows the behavior(5.3).
P,(x,I") takes the exponential forits.2) with a parametem(I")

plotted in Fig, 12 scheme which is then asymptotically exact. Conversely, the

bosonization methods are unable to follow the flow to strong
coupling, and thus are unable to describe even the weak-
the spinj two-leg laddel? as well as of the anisotropic disorder phase captured by the real-space scheme. It may be
spin-1 chaint® So we may be in a situation with a first criti- also that there is nothing like a critical value of the disorder
cal disorder strength corresponding to the vanishing ofor the vanishing of the Haldane gap, if for example there are
Haldane gap, but which is unreachable by the real-spacstates of arbitrarily small energies in the gap, as in the case
scheme. With increasing disorder there is then the secondf the Lifshitz tails in the localization problem. It remains to
critical disorder strength for which the string order vanishesbe seen if there is a single theoretical approach that is able to
This second transition is described by our renormalizatiordeal with all known limiting cases.
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