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Phases of random antiferromagnetic spin-1 chains
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We formulate a real-space renormalization scheme that allows a study of the effects of bond randomness in
the Heisenberg antiferromagnetic spin-1 chain. There are four types of bonds that appear during the renormal-
ization flow. We implement the decimation procedure numerically. We give a detailed study of the probability
distributions of all these bonds in the phases that occur when the strength of the disorder is varied. Approxi-
mate flow equations are obtained in the weak-disorder regime as well as in the strong-disorder case, where the
physics is that of the random-singlet phase.@S0163-1829~98!05025-5#
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I. INTRODUCTION

The effect of quenched impurities on the physics of o
dimensional spin systems is an important and unsolved p
lem. Many spin chains can be doped chemically, and
creates some kind of disorder in the system. In addition,
spin-12 chain is equivalent to a system of spinless fermio
through the Jordan-Wigner transformation. This means
the problem of interacting spinless fermions in a disorde
potential is equivalent to a random spin chain proble
There are not many techniques that allow a study of th
systems. The real-space renormalization group is promin
among them. Some time ago a pioneering study by Ma
Dasgupta1 showed that the spin-1

2 Heisenberg antiferromag
netic chain with bond randomness is in a so-called rand
singlet phase. In this phase, the spins are locked into sing
that extend over arbitrarily long distances, in a pattern d
tated by the bond distribution. It has recently been reali
that the results of their renormalization procedure are in
exact.2 This random-singlet phase may capture the physic
higher-dimensional disordered systems.3

In the spin-12 case, the random-singlet phase appears
various kind of disorder and in a wide regions of the pha
diagram when one addsXXZ anisotropy. This results from
the study of the weak-disorder regime by bosonizing the s
chain.4

The spin-1 Heisenberg antiferromagnetic chain ha
physics which is vastly different in the pure case. There
gap for spin excitations, and a finite spin-spin correlat
length. These features can be best understood by cons
ation of a hidden topological order.5,6 In fact, the ground
state of the spin-1 chain has a hidden long-range order
can be measured only by use of a nonlocal correlation fu
tion, the so-called string order parameter. It is a natural qu
tion to ask what happens to these peculiar features unde
influence of disorder. In fact the original Ma-Dasgupta ren
malization scheme requires a broad enough bond distribu
to work.7 Thus more complex schemes have be
proposed.8–10 As a function of the disorder strength, it ha
been established that there is a phase transition betwe
low-disorder gapless phase with hidden order and a stro
disorder phase which is the random-singlet phase of Ma
Dasgupta~gapless and no hidden order!.
PRB 580163-1829/98/58~2!/805~11!/$15.00
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In this paper, we give a detailed construction of a ren
malization scheme suited to the study of the spin-1 cha
We generalize the Ma-Dasgupta decimation procedure
keeping more degrees of freedom. A brief account was gi
in Ref. 10. Here we obtain explicit flow equations that a
valid deep inside each of the phases that appear. We are
to follow the spin populations as a function of the renorm
ization scale as well as the evolution of distribution functio
of the various kinds of bonds that appear. In Sec. II,
define the renormalization scheme. In Sec. III, we study
weak-disorder phase of the spin-1 chain. Section IV conta
our results for the strong-disorder regime. The critical regi
is studied in Sec. V, and Sec. VI contains our conclusion

II. REAL-SPACE RENORMALIZATION PROCEDURE
FOR DISORDERED ANTIFERROMAGNETIC

SPIN-1 CHAIN

In this section, we explain how to obtain a real-spa
renormalization scheme adequate to study the disordered
tiferromagnetic spin-1 chain.

A. Ma-Dasgupta real-space renormalization in the spin-12 case

Ma and Dasgupta introduced a real-space renormaliza
procedure for the random antiferromagnetic spin-1

2 chain de-
scribed by the Hamiltonian

H5(
i

JiSW i•SW i 11 , ~2.1!

where$SW i% is a quantum spin-1
2 operator, and$Ji% a positive

random variable distributed with some probability distrib
tion P0(J). Suppose thatJ1 is the largest coupling in the
chain. The one-bond Hamiltonian

h05J1SW 1•SW 25
J1

2
@~SW 11SW 2!22SW 1

22SW 2
2#5

J1

2 F ~SW 11SW 2!22
3

2G
~2.2!

admits two energy levels labeled bys50 and 1,
805 © 1998 The American Physical Society
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es5
J1

2 Fs~s11!2
3

2G , ~2.3!

the leveles being (2s11) times degenerate:e052 3
4 J1 rep-

resents the singlet, ande15 1
4 J1 the triplet. At energies much

lower thanJ1, the spinsSW 1 and SW 2 will therefore be frozen
into the singlet states50. The decimation procedure con
sists in eliminating the spinsSW 1 andSW 2, and in replacing the
four spin segment HamiltonianH0,1,2,3 involving the deci-
mated spinsSW 1 andSW 2 ,

H0,1,2,35h01h1 where h15J0SW 0•SW 11J2SW 2•SW 3 ,
~2.4!

by the effective Hamiltonian for the remaining spinsSW 0 and
SW 3 ,

H0,3
eff5E0,38 1J08SW 0•SW 3 , ~2.5!

which is meant to reproduce the four low-energy states
H0,1,2,3 which are separated from the other 12 states
H0,1,2,3 by a large gap of orderJ1. Using second-order per
turbation theory to treath1 gives

E0,38 52
3

4
J12

3

16J1
~J0

21J2
2! ~2.6!

and

J085
J0J2

2J1
. ~2.7!

The same procedure may be iterated and successively
plied to the strongest bond of the chain. This defines a fl
for the probability distribution of couplingsP(J,V), where
V is the current strongest coupling1

2
]P~J,V!

]V
5P~V,V!E

0

V

dJaE
0

V

dJbP~Ja ,V!

3P~Jb ,V! dS J2
JaJb

2V D . ~2.8!

This flow equation has to be supplied by some initial con
tion P(J,V0). Fisher showed2 that, for generic initial condi-
tions, in the reduced variablesG5 ln(V0 /V) and z
51/G ln(V/J), the probability distributionR(z,G) of the
variablez flows towards the unique fixed pointR* (z),

R~z,G! →
G→`

R* ~z![u~z!e2z, ~2.9!

where u is the Heaviside step function. This so-calle
random-singlet fixed point corresponds to a power-law d
tribution in the original variables

P* ~J,V!5u~V2J!
a~V!

V S J

V D a~V!21

,

where
f
f

p-
w

-

-

a~V! .
V!V0

1

ln S V0

V D , ~2.10!

for which two typical bonds are typically much weaker th
the strongest oneV. The approximation involved in the us
of perturbation theory to obtain rule~2.7! therefore becomes
better and better as the decimation proceeds, and the w
procedure is therefore completely consistent even if the
tial distribution is not broad. The Ma-Dasgupta renormaliz
tion scheme is moreover very appealing because it give
interesting physical picture of the random spin-1

2 chain: at
low energy, the chain is made of pairs of spins that
coupled together into singlets over arbitrarily long distanc
the long singlets bonds being typically much weaker than
smaller ones.

B. Renormalization of an AF bond between two spinsS51

The one-bond Hamiltonian

h05J1SW 1•SW 25
J1

2
@~SW 11SW 2!22SW 1

22SW 2
2#

5
J1

2
@~SW 11SW 2!224# ~2.11!

admits three energy levels labeled bys50, 1, and 2,

es5
J1

2
@s~s11!24#, ~2.12!

the leveles being (2s11) times degenerate:e0522J1 rep-
resents the singlet,e152J1 the triplet, ande25J1 the quin-
tuplet.

In the Ma-Dasgupta procedure, there are only two lev
and ‘‘projecting onto the lowest level’’ is equivalent to ‘‘pro
jecting out the highest level.’’ Here these two possibiliti
are not equivalent. The first possibility has already been c
sidered in Refs. 8 and 9 where it is shown that the gener
zation of Eq.~2.7!, describing the effective coupling betwee
SW 0 and SW 3 resulting from the projection onto the single
formed bySW 1 andSW 2, reads

J085
4

3

J0J2

J1
. ~2.13!

The coefficient4
3 being larger than 1, this rule is not auto

matically consistent: indeed, the inequalitiesJ0,J1 and J2

,J1 are not sufficient to imply that new couplingJ08 is
smaller than the decimated couplingJ1, in contrast with rule
~2.7! concerning spin-12 chains. This procedure can, howeve
be considered as qualitatively correct for very broad init
randomness, where the cases which would produce a
pling J08 larger than the decimated couplingJ1 are statisti-
cally negligible. So the strongly disordered antiferromagne
spin-1 chains are described by the same random-singlet fi
point already found in the study of disordered spin-1

2 chains.
For weak initial randomness, however, this naive pro

dure cannot be made consistent. We thus generalize the
Dasgupta procedure with the interpretation of ‘‘projecti
out the highest level’’ instead of ‘‘projecting onto the lowe
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level.’’ More precisely, for the antiferromagnetic bond d
scribed by the Hamiltonianh0, we project out the quintuple
e2 but keep the singlete0 and the triplete1 by replacing the
two spinsS51 SW 1 andSW 2 by two spinsS5 1

2 SW 18 andSW 28 , and
by replacingh0 by the effective Hamiltonian

h0
eff52

5J1

4
1J1SW 18•SW 28 . ~2.14!

The four-spin-segment HamiltonianH0,1,2,3, containing the
old spinsSW 1 andSW 2,

H0,1,2,35h01h1 where h15J0SW 0•SW 11J2SW 2•SW 3 ,
~2.15!

has to be replaced by an effective Hamiltonian involving
spinsSW 0, SW 18 , SW 28 , andSW 3:

H0,1,2,3
eff 5h0

eff1h1
eff . ~2.16!

If we use a first-order perturbation theory to treath1, we find
that the singlet ofh0 remains unchanged

^s1,250uh1us1,250&50, ~2.17!

whereas the degeneracy of the triplet is lifted by the per
bation h1. Using the Wigner-Eckart theorem for vectori
operators, we find, more explicitly,

^1,muh1u1,m8&5~ 1
2 J0SW 01 1

2 J2SW 3!•^1,mu~SW 11SW 2!u1,m8&.
~2.18!

We can reproduce these matrix elements by choosing
effective Hamiltonian

h1
eff5J0SW 0•SW 181J2SW 28 •SW 3 . ~2.19!

This does not reproduce the matrix elements mixing sin
and triplets like^0uh1u1,m&.

In fact, as noted by Hyman,8 the exact first-order effective
Hamiltonian is

h1
exact5J0SW 0•S 11a

2
SW 182

a21

2
SW 28D

1J2S 2
a21

2
SW 181

11a

2
SW 28D •SW 3 , ~2.20!

where a5A8/3. It contains ferromagnetic next-neare
neighbor couplings betweenSW 0 andSW 28 , and betweenSW 18 and

SW 3, but they arenonfrustrating, and, as such, they are no
expected to lead to qualitatively new physics. We use
simpler approximate effective Hamiltonianh1

eff that pre-
serves the structure of the chain and that reproduces mo
the matrix elements. It also means that we ignore multipli
tive factors ofa5A8/3, but these will not matter in regime
in which the probability distribution is broad. In fact one ca
check explicitly in the spin-12 case that the coefficient1

2 in the
decimation rule@Eq. ~2.7!# plays no role at the fixed point
Such approximations will of course change nonuniver
quantities like the precise value of the critical disorder b
tween the two regimes of the spin-1 chain.

We have now enlarged the initial space, since the ch
now contains not onlyS51 spins but alsoS5 1

2 spins. How-
e

r-

he

t

-

e

of
-

l
-

in

ever it is possible to define a decimation procedure tha
‘‘closed’’ inside a particular set of spin chains, as we will s
in the following.

C. Real-space renormalization procedure

We consider the enlarged set of spin chains described
the Hamiltonian

H5(
i

JiSW i •SW i 11 , ~2.21!

where the spinSW i is a spin operator of sizesi5
1
2 or si51,

and where the couplings$Ji% can be either positive or nega
tive, but have to satisfy the following constraint: for any pa
$ i , j % such thati , j , the classical magnetization of the cla
sical ground state of the segment (i , j ), must be smaller or
equal to one in absolute value

umi , j u<1, ~2.22!

where the quantitymi , j reads

mi , j5si1 (
n5 i 11

j

sn3sgnF )
p5 i

n21

~2Jp!G . ~2.23!

This condition for j 5 i 11 gives immediately that there
are exactly four types of bonds:~1! link of type 1: Ferromag-
netic bond between two spin-1

2 chains.~2! link of type 2:
Antiferromagnetic~AF! bond between two spin-1

2 chains.~3!
link of type 3: Antiferromagnetic bond between one spin
chain and one spin-1

2 chain.~4! link of type 4: Antiferromag-
netic bond between two spin-1 chains. Our decimation p
cedure is the following.

To each bond (SW i ,SW i 11 ,Ji) we associate the energy di
ference between the higher state and lower states of the
duced HamiltonianJiSW i•SW i 11:

D i52Ji if the bond i is of type 1, ~2.24!

D i5Ji if the bond i is of type 2, ~2.25!

D i5
3
2 Ji if the bond i is of type 3, ~2.26!

D i53Ji if the bond i is of type 4. ~2.27!

We pick up the bond (SW i 1
,SW i 2

,Ji 1
) corresponding to the

strongestD i of the chain. To define the renormalization ru
for this bond, we again divide the four-spin Hamiltonian in

Hi 0 ,i 1 ,i 2 ,i 3
5h01h1

where

h05Ji 1
SW i 1

SW i 2
and h15Ji 0

SW i 0
•SW i 1

1Ji 2
SW i 2

•SW i 3
,
~2.28!

and treath1 as a perturbation ofh0 to find the effective
Hamiltonian replacingHi 0 ,i 1 ,i 2 ,i 3

when the highest-energ

state ofh0 is removed. We now have to distinguish the fo
types of bonds.

Rule ~1! F bond between two spinsS5 1
2 .
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The Hamiltonianh05Ji 1
SW i 1

and SW i 2
admits two energy

levels: the triplete152uJi 1
u/4 and the singlete053uJi 1

u/4.

The perturbationh1 lifts the degeneracy of the triplet, an
using Wigner-Eckart theorem, we find thath1 is equivalent
at first order of perturbation theory to

h1
eq5~ 1

2 Ji 0
SW i 0

1 1
2 Ji 2

SW i 3
!•~SW i 1

1SW i 2
!. ~2.29!

To eliminate the singlet state and only keep the triplet s
of h0, we remove the two spin-1

2 SW i 1
andSW i 2

and replace them

by a single spin-1SW i 1
8 , and we replaceHi 0 ,i 1 ,i 2 ,i 3

by

Hi 0 ,i
18 ,i 3

eff
52

uJi 1
u

4
1

1

2
Ji 0

SW i 0
SW i 1
8 1

1

2
Ji 2

SW i 1
8 SW i 3

. ~2.30!

Rule ~2! AF bond between two spinsS5 1
2 .

Here, we directly apply the Ma-Dasgupta procedure d
cussed in Sec. II A: we remove the two spin-1

2 SW i 1
and SW i 2

chains, and replaceHi 0 ,i 1 ,i 2 ,i 3
by

Hi 0 ,i 3
eff 52

3

4
Ji 1

2
3

16Ji 1

~Ji 0
2 1Ji 2

2 !1
Ji 0

Ji 2

2Ji 1

SW i 0
•SW i 3

.

~2.31!

Rule ~3! AF bond between one spin-1 and one spin-1
2.

Suppose thatsi 1
51 and si 2

5 1
2. The Hamiltonianh0

5Ji 1
SW i 1

SW i 2
admits two energy levels: the doublete1/2

52Ji 1
and the quadruplete3/25Ji 1

/2. At first order pertur-
bation theory, Wigner-Eckart theorem gives that, within t
subspace of the doublets5 1

2, the perturbationh1 is equiva-
lent to

h1
eq5~a1Ji 0

SW i 0
1a2Ji 2

SW i 3
!•~SW i 1

1SW i 2
!, ~2.32!

where the constantsa1 anda2 read

a15
1

2
F11

si 1
~si 1

11!2si 2
~si 2

11!

s~s11!
G5

4

3

and

a2512a152
1

3
. ~2.33!

The renormalization rule is therefore the following: w
eliminate the spinsSW i 1

andSW i 2
, and replace them by a singl

spin-12 SW i 1
8 , and we replaceHi 0 ,i 1 ,i 2 ,i 3

by the effective Hamil-

tonian

Hi 0 ,i
18 ,i 3

eff
52Ji 1

1 4
3 Ji 0

SW i 0
SW i 1
8 2 1

3 Ji 2
SW i 1
8 SW i 3

. ~2.34!

Rule ~4! AF bond between two spinsS51.
In this case we apply the rule explained at the beginn

of this section@see Eqs.~2.14!–~2.19!#: we replace the two
spin-1SW 1 andSW 2 by two spin-12 SW i 1

8 andSW i 2
8 , and we replace

H0,1,2,3by an effective Hamiltonian
te

-

g

Hi 0 ,i 1 ,i 2 ,i 3
eff 52

5Ji 1

4
1Ji 0

SW i 0
•SW i 1

8 1Ji 1
SW i 1
8 •SW i 2

8 1Ji 2
SW i 2
8 •SW i 3

.

~2.35!

This renormalization procedure is entirely consistent fro
the point of view of the progressive elimination of th
highest-energy degrees of freedom: it is easy to show tha
the four cases of renormalization of a bond described abo
all the energy scalesD i of the new bonds are always small
than the energy scaleD i1 of the bond that we renormalize.

It is also easy to check that this renormalization proced
is ‘‘closed’’ inside the set of spin chains defined by conditi
~2.22!: if we apply this procedure to an initial chain belon
ing to this space, such as the random antiferromagn
spin-1 chain we are interested in, the effective chain alw
belongs to this set of spin chains. In particular, spins hig
than 1 cannot appear through this renormalization schem

However, since this renormalization procedure is n
purely based on complete decimation of bonds, it introdu
correlations between bonds, so that it is impossible to w
exact closed flow equations for the probability distributio
of couplings, in contrast with the Ma-Dasgupta procedu
To study the properties of this renormalization scheme,
have therefore performed numerical simulations on spi
chains containingN sites with periodic boundary condition
(N5222 for example!, whose initial couplingsJi are distrib-
uted according to probability distributions of the followin
form:

Pd~J!5
1

d
for 1<J<11d

and Pd~J!50 elsewhere ~2.36!

The parameterd represents the strength of the initial disord
of the couplings. For a given number of sitesN, and a given
initial strengthd of the disorder, we have numerically imple
mented the renormalization rules on a given number~typi-
cally 100! of initial independent samples, to compute ave
aged quantities over these different realizations of the ini
disorder. It is convenient to use the variable

G5 ln
V0

V
, ~2.37!

whereV is the current strongestD @see Eq.~2.27!# andV0
the initial strongestD. We have studied the flow of the fol
lowing quantities: the numberN(G) of effective spinsS
51

2 and 1 still present at scaleG; the proportion
$N(S51)(G) /N(G)% of spinsS51 among the effective spin
at scaleG; the proportionsr i(G)5$Ni(G)/N(G)% of bonds
of type i 51, 2, 3, and 4 at scaleG; the probability distribu-
tionsPi(J,V) of the couplingJ at scaleV for the four types
of bondsi 51, 2, 3, and 4. It is in fact more convenient
study the probability distributionsPi(x,G) of the reduced
variable,

x5 ln S V

D~J! D , ~2.38!

whereD(J) is defined as in Eq.~2.27!,
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D~J!52J for bonds of type 1, ~2.39!

D~J!5J for bonds of type 2, ~2.40!

D~J!5 3
2 J for bonds of type 3, ~2.41!

D~J!53J for bonds of type 4, ~2.42!

so that the random variablex varies in (0,̀ ) for any type of
bonds.

III. WEAK-DISORDER PHASE

A. Numerical results

In the weak-disorder phase, we find that the numberN(G)
of effective spins decays exponentially~see Fig. 1!,

N~G!}G→`e2a~d!G, ~3.1!

wherea(d) is a decreasing function of the disorderd that
vanishes in the limitd→dc

2 . As a consequence, the ma
netic susceptibility at temperatureT can be computed by
summing Curie laws for the free spins at scaleV5T. So we
have

x}
1

T12a~d!
. ~3.2!

The proportionsr i(G) of the four types of bonds reach
stationary regime characterized by~see Fig. 2!

r1~G!.0.25, r2~G!.0.75, r3~G!.0, r4~G!.0.
~3.3!

There are asymptotically only bonds of type 1 and bonds
type 2. This means in particular that there are only effect
spin-12 in the chain, and no more spinsS51. Since two
bonds of type 1 cannot be neighbors according to constr
~2.22!, the even and odd bonds are not equivalent, as in
effective model of Hyman and Yang:9 the ‘‘even’’ bonds are
all antiferromagnetic, whereas the ‘‘odd’’ bonds are eith
ferromagnetic or antiferromagnetic with equal probability

FIG. 1. Linear-log plot of the proportionN(G)/N(0) of effec-
tive spins at scaleG, for weak initial disorderd50.1, 0.5, 1, and 2:
this proportion decays exponentially@Eq. ~3.1!#.
f
e

nt
e

r

It is necessary to introduce the probability distributio
P2

even(x,G) for the couplings of the even bonds of type 2, a
the probability distributionP2

odd(x,G) for the couplings of
the odd bonds of type 2. We find thatP2

even(x,G) becomes
stationary for large enoughG, and takes the form of an ex
ponential distribution

P2
even~x,G!.aee

2aex, ~3.4!

whereae is independent ofG, but depends on the valued of
the disorder, and is numerically very close to the parame
a(d) characterizing the decay ofN(G) @Eq. ~3.1!#. The prob-
ability distributionsP1(x,G) andP2

odd(x,G) coincide~up to
statistical fluctuations! and take the form of an exponentia
distribution ~see Fig. 3!

P1~x,G!.P2
odd~x,G!.ao~G!e2ao~G!x, ~3.5!

FIG. 2. The proportionsr i(G) of the four typesi 51, 2, 3, and 4
of bonds at scaleG, for weak initial disorderd50.1: they reach the
asymptotic regime~3.3!.

FIG. 3. Linear-log plot of the probability distributionP2
odd(x,G)

for G52, 3, 4, 5, and 6, for weak initial disorderd50.5:P2
odd(x,G)

is well described by the exponential form~3.5!, with a parameter
ao(G) that is found to decay exponentially withG @Eq. ~3.6!#.
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where the parameterao(G) decays exponentially:

ao~G!}e2aeG ~3.6!

As a consequence, for large enoughG, the bond of the
chain of highestD ~corresponding to smallestx), that is cho-
sen to be renormalized, is always an even bond of type 2
the renormalization operation~2!, this even bond disappear
together with its two odd neighbors, and a new weak o
bond is produced. This explains why the distributi
P2

even(x,G) for even bonds remains stationary, whereas
distribution of couplings of odd bonds becomes broader
broader in the variablex. This weak disorder phase is ther
he
c

o

u

In

d

e
d

fore the same as the ‘‘Haldane phase’’ found by Hyman a
Yang in their effective model introduced in Ref. 9, and
very similar to the random dimer phase found in the study
random dimerized antiferromagnetic spin-1

2 chains:11 in the
asymptotic regime, the chain is made of a set of nearly
coupled dimers.

B. Approximate flow equations

Assuming that the ‘‘even’’ bonds are all of type 2, that th
‘‘odd’’ bonds are either of type 1 or of type 2 with equa
probability, and that the unique important process is the d
mation of an even bond according to rule~2!,
u-
-

er

he
it is possible to write approximate flow equations for t
probability distributions of the couplings are normalized a
cording to

15E
0

V

dJ P2
even~J,V!5E

0

V

dJ P2
odd~J,V!

5E
2V

0

dJ P1~J,V!. ~3.7!

It is convenient to introduce the normalized distribution
all odd bonds

Podd~J,V!5 1
2 @P2

odd~J,V!1P1~J,V!# for 2V,J,V.
~3.8!

The approximate flow equations for the probability distrib
tions P2

even(J,V) andPodd(J,V) then read

2
]P2

even~J,V!

]V
5P2

even~V,V! P2
even~J,V!, ~3.9!

2
]Podd~J,V!

]V
52P2

even~V,V!Podd~J,V!,

1P2
even~V,V! E

2V

V

dJ1Podd~J1 ,V!

3E
2V

V

dJ3Podd~J3 ,V! dS J2
J1J3

2 V D .

~3.10!
-

f

-

In the new variablesG5 ln (V0 /V) and x5 ln (V/J)
P@0,1`), the flow equation forP2

even(x) admits stationary
solutions of exponential form

P2
even~x!5aee

2aex, ~3.11!

with an undetermined constantae , in agreement with our
numerical result~3.4!. With the last change of variables,

x→z5ao~G!ln S V

uJu D , ~3.12!

the flow equation for the corresponding probability distrib
tions P̃1

odd(z,G) andP̃2
odd(z,G) admit the same stationary so

lution

P̃1
odd~z,G!. P̃2

odd~z,G! →
G→`

e2z

with

ao~G! }
G→`

e2aeG, ~3.13!

whereae is the number characterizingP2
even(x) @Eq. ~3.11!#.

We may also write the flow equation for the total numb
N(V) of spins still present at scaleV,

2
dN

dV
52P2

even~V,V!N~V!, ~3.14!

so that we obtain the following asymptotic behavior in t
variableG:
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N~G! }
G→`

e2aeG. ~3.15!

IV. STRONG-DISORDER PHASE

A. Numerical results

In the strong-disorder phased.dc , we find that the num-
ber N(G) of effective spins decays as in the random-sing
theory for the disordered antiferromagnetic spin-1

2 chain~see
Fig. 4!:

N~G! }
G→`

1

G2 . ~4.1!

The magnetic susceptibility thus has the random-singlet
havior

x}
1

T ln2T
. ~4.2!

The proportionsr i(G) of the four types of bonds reach a
asymptotic regime characterized by~see Fig. 5!

r1~G!;0, r2~G!;e~G!

r3~G!;2e~G!, r4~G!;123e~G!, ~4.3!

wheree(G) slowly goes to 0 asG→`. This means that there
is a sea of bonds of type 4, with sometimes defects of st
ture $bond of type 3, bond of type 2, bond of type 3%. This
defect structure is produced by the renormalization rule~4!
for a bond of type 4 when its two neighbor bonds are also
type 4. The fact that there are no more bonds of type 1 in
asymptotic regime~4.3! shows that defects are destroyed
the renormalization of the central bond of type 2 and not
the bonds of type 3; this means that for the probability d
tribution P4(J,V) at large enoughV, two typical couplings
are much weaker than the larger one. We indeed find
P4(x,G) is an exponential distribution~see Fig. 6!,

P4~x,G!.a4~G!e2a4~G!x, ~4.4!

FIG. 4. Log-log plot of the proportionN(G)/N(0) of effective
spins at scaleG for strong initial disorderd5100: this proportion
follows the power-law asymptotic behavior~4.1!.
t

e-

c-

f
e

y
-

at

where the parameter 1/a4(G) follows the random-singlet be
havior ~see Fig. 7!

1

a4~G!
.G1Cst. ~4.5!

As a consequence, if a defect is produced at the renorma
tion energy scaleV, it survives until the energy scaleV/3,
where it is decimated according to rule~2!, and the whole
defect of structure~bonds of type 3, bonds of type 2, bond
of type 3! entirely disappears to give one bond of type
Figure 8 indeed shows clearly that the probability distrib
tion P2(x,G) tends to concentrate on the interval 0,x
, ln 3 asG increases. That has to be contrasted with bo

FIG. 5. The proportionsr i(G) of the four typesi 51, 2, 3, and 4
of bonds at scaleG, for strong initial disorderd5100: they reach
the asymptotic regime~4.3!.

FIG. 6. Linear-log plot of the probability distributionP4(x,G)
for G54, 8, 12, 16, and 20, for strong initial disorderd5100:
P4(x,G) is well described by the exponential form~4.4! with a
parametera4(G) plotted in Fig. 7.
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of type 3, which are characterized by a distributionP3(x,G)
that tends to coincide withP4(x,G) for large enoughG.

B. Approximate flow equations phase

Assuming that there is a sea of bonds of type 4, w
sometimes defects of structure~bond of type 3, bond of type
2, bond of type 3!, it is possible to write approximate flow
equations for the probability distributions of the couplin
normalized according to
he
h

15E
0

V

dJ P2~J,V!5E
0

2V/3

dJ P3~J,V!

5E
0

V/3

dJ P4~J,V!. ~4.6!

Assuming that the only two important renormalization pr
cesses are the production of the defect structure~bond of
type 3, bond of type 2, bond of type 3! by the renormaliza-
tion rule ~4! for a bond of type 4 when its two neighbo
bonds are also of type 4,
and the suppression of the defect structure by the decimation rule~2!,
e

we obtain the following approximate flow equations for t
three probability distributions:

2
]P2~J,V!

]V
5P2~V,V!P2~J,V!

1
1

3
P4S V

3
,V DN4~V!

N2~V! FdS J2
V

3 D
2P2~J,V!G , ~4.7!

2
]P3~J,V!

]V
5

2

3
P4S V

3
,V DN4~V!

N3~V!
@P4~J,V!2P3~J,V!#,

~4.8!

2
]P4~J,V!

]V
5

1

3
P4S V

3
,V D P4~J,V!

2
N2~V!

N4~V!
P2~V,V!P4~J,V!

1
N2~V!

N4~V!
P2~V,V!E

0

2V/3

dJ0P3~J0 ,V!

3E
0

2V/3

dJ2 P3~J2 ,V!dS J2
J0J2

2 V D ,

~4.9!
together with the flow equations for the numberNi(V) of
bonds of typei 52, 3, and 4:

2
dN2

dV
52

1

2

dN3

dV
5

1

3
P4S V

3
,V D N4~V!

2P2~V,V! N2~V!, ~4.10!

2
dN4

dV
5P2~V,V!N2~V!2P4S V

3
,V D N4~V!,

~4.11!

so that the total numberN(V)5N2(V)1N3(V)1N4(V) of
bonds evolves according to

2
dN

dV
522P2~V,V!N2~V!. ~4.12!

It is more convenient to write the flow equations for th
probability distributionsPi(x,G) of the reduced variablex
5 ln @V/D(J)#, whereD(J) is defined by Eq.~2.42!, so that
the random variablex varies in (0,̀ ) for any type of bonds

]P2~x,G!

]G
5

]P2~x,G!

]x
1P2~0,G!P2~x,G!

1
N4~G!

N2~G!
P4~0,G!@d~x2 ln 3!2P2~x,G!#,

~4.13!
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]P3~x,G!

]G
5

]P3~x,G!

]x
12

N4~G!

N2~G!
P4~0,G!

3@P4~x2 ln 2,G!2P3~x,G!#, ~4.14!

]P4~x,G!

]G
5

]P4~x,G!

]x

1FP4~0,G! 2
N2~G!

N4~G!
P2~0,G!GP4~x,G!

1
N2~G!

N4~G!
P2~0,G!E

0

`

dx1 P3~x1 ,G!

3E
0

`

dx2 P3~x2 ,G!dS x2x12x22 ln
3

2D .

~4.15!

Since the singular term containing thed function in Eq.
~4.13! tends to develop a discontinuity inP2(x,G) at x
5 ln 3, it is convenient to set

P2~x,G!5@12e~G!#
u~ ln 32x!

ln 3
1e~G! f 2~x,G!, ~4.16!

where 0,e(G),1, andf 2(x,G) is a normalized probability
distribution that is regular atx5 ln 3. Equation~4.13! will be
satisfied ife(G) and f (x,G) satisfy

e~G!512~ ln 3!
N4~G!

N2~G!
P4~0,G!, ~4.17!

de~G!

dG
52e~G!@12e~G!# f ~0,G!, ~4.18!

] f ~x,G!

]G
5

] f ~x,G!

]x
1 f ~0,G! f ~x,G!. ~4.19!

Obvious stationary solutions forf (x,G) are simple exponen
tials

f ~x,G! .
G→`

a f e2a f x, ~4.20!

in which casee(G) vanishes exponentially,

e~G! }
G→`

e2a fG, ~4.21!

so thatP2(x,G) converges towards the stationary solution

P2* ~x!5
1

ln 3
u~ ln 32x!. ~4.22!

This corresponds in the original variables to

P2~J,V!5
1

~ ln 3!J
for

V

3
,J,V. ~4.23!

We also obtain the following equation in the asymptotic
gime:

N4~G! P4~0,G!.N2~G!
1

ln 3
, ~4.24!
-

that we will use now to study the flow equations forP3(x,G)
andP4(x,G)

With the last change of variables

x→z5a4~G!x, ~4.25!

we find that the flow equation for the corresponding pro
ability distributionsP̃4(z,G) and P̃3(z,G) admit the station-
ary solutions

P̃4~z,G! →
G→`

e2z and P̃3~z,G! →
G→`

e2z, ~4.26!

where

a4~G! }
G→`

1

G
, ~4.27!

FIG. 7. Plot of the inverse of the parametera4(G) defined in
Eq. ~4.4! as a function ofG: it follows the random-singlet behavio
~4.5!.

FIG. 8. Plot of the probability distributionP2(x,G) for G58, 12,
16, and 20, for a strong initial disorderd5100:P2(x,G) tends to
concentrate on the interval 0,x, ln 3, as explained in the text.
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as in the random-singlet solution of Ma-Dasgupta. It is th
easy to obtain the asymptotic behavior of the total num
N(G) of spins~4.12!,

N~G! }
G→`

1

G2 , ~4.28!

and the asymptotic behavior of the proportione(G) @Eq.
~4.3!# of defects from Eq.~4.26!:

e~G!5
N2~G!

N~G!
}

G→`

ln3

G
. ~4.29!

V. CRITICAL REGIME

In Fig. 9, we plot the proportion@N(S51)(G)#/N(G) of
spinsS51 among the effective spins for various values
the disorder; this proportion flows toward 0 in the wea
disorder phase and toward 1 in the strong-disorder ph
Between these two attractive values, there is an unst
fixed point atdc.5.75(5), where the proportion of spinsS
51 among the effective spins remains stationary at the
termediate value 0.315(5). Theproportionsr i(G) of the four
types of bonds reach a stationary state characterized by~see
Fig. 10!

r1~G!;0.17, r2~G!;0.35, r3~G!;0.33,

r4~G!;0.15. ~5.1!

We find, of course, that the four probability distribution
Pi(x,G) for i 51, 2, 3, and 4 coincide up to statistical flu
tuations@otherwise, the proportionsr i(G) would not remain
stationary# and follow the exponential form~see Fig. 11!

Pi~x,G!.ac~G!e2ac~G!x, ~5.2!

FIG. 9. Proportion of spinsS51 among the effective spins a
scaleG for various values of the initial disorderd51, 2, 3, 4, 5.5, 6,
8, 16, and 100: this proportion flows toward 0 in the weak-disor
phase, and toward 1 in the strong-disorder phase. Between
two attractive values, there is an unstable fixed point atdc

.5.75(5), where the proportion of spinsS51 among the effective
spins remains stationary at the intermediate value 0.315(5).
n
r

f
-
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le
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where the parameter 1/ac(G) ~see Fig. 12! follows the be-
havior of the effective model of Hyman and Yang:9

1

ac~G!
.

G

2
1Cst. ~5.3!

The magnetic susceptibility is given by the effective numb
of free spins

x}
1

T ln3T
. ~5.4!

VI. CONCLUSION

We have introduced a real-space renormalization sch
that allows a study of the spin-1 chain. Within this schem
we obtained a complete characterization of the we
coupling phase, the critical regime, and the strong-disor
phase. In all phases we were able to follow the spin popu
tions and to obtain the probability distributions of the diffe
ent types of bonds that appear under renormalization. I
only in the weak- and strong-coupling limits that we we
able to obtain approximate analytical flow equations.

The renormalization scheme that we used is an exten
of the Ma-Dasgupta idea. These schemes have in com
the fact that they are consistent for arbitrarily weak init
disorder. They do not create bonds stronger than the orig
decimated bond. In the spin-1

2 case, it is believed that this
means that there is no critical disorder. In fact, this is s
gested by bosonization: most bosonic forms of randomn
give rise to relevant operators along the massless line of
pure system when the anisotropy is varied. The simp
assumption2 is thus that the system flows immediately to t
random-singlet phase~there is a region of stability of the
spin liquid but this happens only for attractive enough int
actions between the Jordan-Wigner fermions, i.e., for ne
tive enough anisotropy!.

However, this is not the case for the spin-1 chain. H
the Haldane gap is perturbatively insensitive to disorder
naively expected. This is known from bosonization studies

r
se

FIG. 10. The proportionsr i(G) of the four typesi 51, 2, 3, and
4 of bonds at scaleG, for the critical initial disorderdc55.75 @Eq.
~5.1!#.
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the spin-12 two-leg ladder12 as well as of the anisotropic
spin-1 chain.13 So we may be in a situation with a first criti-
cal disorder strength corresponding to the vanishing
Haldane gap, but which is unreachable by the real-sp
scheme. With increasing disorder there is then the sec
critical disorder strength for which the string order vanishe
This second transition is described by our renormalizati

FIG. 11. Linear-log plot of the probability distributionP2(x,G)
for G54, 8, 12, 16, and 20, for critical initial disorderdc55.75:
P2(x,G) takes the exponential form~5.2! with a parameterac(G)
plotted in Fig. 12.
f
ce
nd
.
n

scheme which is then asymptotically exact. Conversely,
bosonization methods are unable to follow the flow to stro
coupling, and thus are unable to describe even the we
disorder phase captured by the real-space scheme. It ma
also that there is nothing like a critical value of the disord
for the vanishing of the Haldane gap, if for example there
states of arbitrarily small energies in the gap, as in the c
of the Lifshitz tails in the localization problem. It remains
be seen if there is a single theoretical approach that is ab
deal with all known limiting cases.

FIG. 12. Plot of the inverse of the parameterac(G) defined in
Eq. ~5.2! as a function ofG: it follows the behavior~5.3!.
-
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