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Edge and bulk electron states in a quasi-one-dimensional metal in a magnetic field:
The semi-infinite Wannier-Stark ladder
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We study edge and bulk open-orbit electron states in a quasi-one-dimen&giial metal subject to a
magnetic field. For both types of states, the energy spectrum near the Fermi energy consists of two terms. One
term has a continuous dependence on the momentum along the chains, whereas the other term is quantized
discretely. The discrete energy spectrum is mathematically equivalent to the Wannier-Stark energy ladder of a
semi-infinite 1D lattice in an effective electric field. We solve the latter problem analytically in the semiclas-
sical approximation and by numerical diagonalization. We show explicitly that equilibrium electric currents
vanish both at the edges and in the bulk, so no orbital magnetization is expected in a Q1D metal in a magnetic
field. [S0163-182698)10435-9

I. INTRODUCTION discrete(in the approximation where the longitudinal elec-
tron dispersion law is linearized near the Fermi engrighe
In a strong magnetic field, the quasi-one-dimensionaWKB quantization condition determines the discrete energy
(Q1D) organic conductors of the (TMTSEX family! (also term.s.of bot.h the edge and bu_lk states._ln the Appendix, we
known as the Bechgaard Sa|$(h|b|t very interesting phe_ epr|C|tIy point out a mathematical error in Ref. 9 that led to
nomena, such as magnetic oscillations, magnetic-fieldthe wrong conclusions. In Sec. IV, we show explicitly that
induced spin-density wavéFISDW), and the quantum Hall the equilibrium electric currents vanish both at the edges and
effect (QHE) (see, for example, Ref.)2Because the Fermi in the bulk, so no orbital magnetization is expected in a
surfaces of Q1D metals are open, these phenomena ha gnetic field. This result is in agreement with independence
different mechanisms in Q1D conductors compared to morg th? bUIfk internal energ){_ Oi.ganD metal with an open
conventional materials with closed Fermi surfaces. For ex: ool Sufface on a magnetc fetd. .
. : . The Schrdinger equation that we solve analyticalyec.
ample, the QHE exists only in the FISDW state, but not InII) and numerically(Sec. Il)) in order to find the discrete part
the metallic state of Q1D conductot$ Thus far, the theory ) P

of the electron energy is mathematically equivalent to the
of the Bechgaard salts focused mostly on the bulk eleCtroréquations that descri%)(/a the Wannier-Star>l/< Ia%‘dm‘ra semi-

properties(see, for examP'e= Ref)30nly recently the edge infinite 1D lattice in a uniform electric field. An analytical
aspects of the QHE in the Bechgaard salts attractedo)ytion of this problem in terms of special functions was
attention:™ An explicit picture of the QHE in the FISDW  gptained in Refs. 14 and 15, but our WKB solution is more

state in terms of the edge states was developed in Ref. general. Our results might be useful for interpreting experi-
However, that work did not take into account possible deforments on finite-size GaAs-Ga,Al,As superlattices in an

mations of the electron wave functions near the edges. In thglectric field®
current paper, we present a detailed study of the electron
wave functions and energies near the edge of a Q1D conduc- Il. ANALYTICAL SOLUTION
tor in the metallic(not FISDW) state. This work may serve
as a starting point for a more accurate theory of the edge We model the Bechgaard salts by a 2D system that con-
states in the FISDW state and their role in the QHE. Asists of 1D chains parallel to the axis and spaced at a
proper description of the edge states is also important for théistanceb, their coordinates being=nb, wheren is an
theory of the cyclotron resonance in Q1D metals. integer number. The Fermi surface of 1D electron motion
The edge states of electrons in a Q1D metal in a magnetiglong the chains consists of the two Fermi points character-
field were studied semiclassically by Azbel and ChdiRin ized by the Fermi momenta Pe. The energy dispersion
and numerically by Osada and Miutain Ref. 8 the WKB  law of the longitudinal electron motion can be linearized in
quantization condition was applied to the problem inconsisthe vicinity of the Fermi energy;= *vgp,, wherevg is the
tently, which resulted in a wrong conclusion that the edge~ermi velocity, the energy is counted from the Fermi en-
states have a discrete energy spectrum, whereas the bugkgy, and the longitudinal momenta, are counted from
states have a continuous one. This statement was also re&Pg for the two Fermi pointp,=P,+ Pg. In this paper,
peated in Ref. 11. It was claimed in Refs. 8 and 9 that theve consider only the electron states in the vicinity of the
electron edge states produce thermodynamic oscillations of P Fermi point. The formulas for the- P¢ electrons can
magnetization in a Q1D metal with an open Fermi surface. Irbe obtained by changing the sign of. The chains are
the present paper, we clear up the confusion, and show thabupled in they direction by the electron tunneling ampli-
the energy of either a bulk or an edge state is a sum of tweude t. The magnetic fielH is applied in thez direction.
terms, one of which has a continuous spectrum and the oth€hoosing the Landau gaugés=—Hy andA,=A,=0, we
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introduce the magnetic field into the Hamiltonian via the
substitutionp,— p,—eA./c, wheree is the electron charge
andc is the speed of light. An energy eigenfunction of elec-
tron has the factorized form

Yo, m(x,n) =Py (n). 1)

The eigenfunctions of transverse motiak),(n), are labeled
by the discrete quantum numbkt and obey the following
1D discrete Schdinger equation:

NQgy(n) —tfoy(n+1)+ y(n—1)]=Eydu(n),

2
where() is the characteristic energy of the magnetic field:
Q=ebHvg/c. (3

Equation(2) also describes a 1D lattice in the uniform elec-
tric field —Hwvg/c in the y direction. This electric field
would appear in the reference frame moving with the Ferm
velocity ve due to the Lorentz transformation of the mag-
netic fieldH. The energye(p,,M) of eigenfunction(l) is
the sum of the longitudinal and transverse terms:

e(px,M)=veps+Ey. (4)

We assume thatl is not too strong€l=<2t. The opposite
case ()=2t, easily treated by perturbation theory in the
small parametert2(), requires unrealistically high magnetic
fields in the Bechgaard salts.

We consider a crystal that is infinite in tledirection and
semi-infinite in the positivey direction. The wave functions
dm(n) are defined ah=1 with the free boundary condition
at n=1. As one can see from E@2), this formulation is
equivalent to consideringy,(n) at both positive and nega-
tive n with the zero boundary condition at=0:

#ém(0)=0. (5

We closely follow Ref. 17 in our treatment of the prob-
lem. To solve Eq.(2), we expresspy(n) in terms of its
Fourier transformpy, (k):

dk

pum= [ e™outo5 ©

Equation(6) defines the functionp(n) of the continuous
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FIG. 1. (a) The bulk(curvea) and the edgécurveb) classical
trajectories of electrons in the phase spatg(). The coordinate
n is confined betweenHy,*1t)/Q for the bulk state and between
(Em+1)/Q and 0 for the edge statéh) Solid lines: Classical prob-
ability distributions for the two trajectories shown in para).
Dots: Quantum probability distributiorjgy, (n)|? of the two wave
functions corresponding to the two trajectories.

is defined for a general transverse dispersion kwk),
whereas Eq(9) is specific toe, (k)= —2t cosk.

Whent>(}, integral(6) with ¢\, (k) from Eq.(8) can be
taken by the method of steepest descent in the vicinity of the
pointsk, where the derivative ik of the phase of the inte-
grand vanishes:

n=&(K, ,Ey)=(Ey+2t cosk, )/Q. (11)

Equation(11) can be interpreted as the classical conservation
law of the kinetic,— 2t cosk, , and potentialn(}, energies

of electron. If the coordinate belongs to the classically
allowed regior (Ey—2t)/Q,(E\y +2t)/Q ], thenk, is real;
otherwisek, is complex. Real solutions of E¢L1) describe
classical electron trajectories in the phase spatg,().
When E,,>2t, the trajectory lies entirely within the region
n>0, and does not cross the boundary of the crystat at
=0 [curvea in Fig. 1(@]. When—2t<E<2t, the trajec-
tory reaches the eddeurveb in Fig. 1(a)]. These two types

of classical trajectories correspond to the bulk and the edge
guantum states of electrons. The classical motion is periodic
both for the bulk trajectory, because the end poikis

=+ correspond to the same state, and for the edge trajec-
tory, because elastic reflection at pokg reverses the sign

of k, and transfers the electron back to pdmt. Thus, we
expect the WKB quantization condition to apply in both
cases:

variablen, which has a physical meaning only at the integer

positive points. The integration in E¢6) proceeds along a
certain contour in the complex plane kof Equation(6) sat-
isfies EqQ.(2) provided ¢\ (k) vanishes at the ends of the
contour, and obeys the equation

i1Qdpy (k) ok=(Epy+2t cosk) oy (k). (7)
Solution of Eq.(7) is
K
<pM<k>=exp[—if f(k’,Em)dk’} ®)
0
=exd —i(Eyk+2t sink)/Q], 9
where the function
§(kEm)=[En—e, (K ]/Q (10

f (K Ey)dk=27(M+ ), (12
where —1<y=0 is a constant, and the integral represents
the phase-space area enclosed by the classical trajectory. For
the bulk and the edge trajectoriasandb in Fig. 1(a), these
areas are shaded vertically and horizontally. Contrary to Ref.
8, we find well-defined WKB quantization areas for both the
bulk and edge trajectories.

To derive quantization conditioiL2) for our model for-
mally, and to find the constany, we need to apply the
boundary conditions properly. Integr@), with ¢\, (k) given
by Eqg. (9), converges only if the ends of the integration
contour extend to infinity within the shaded areas in Fig. 2,
where Im sirk<0, and¢y (k) tends to zero at infinity. The
right boundary condition in real spacehy(n)—0 atn
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FIG. 2. Complex plane ok. Thick lines show the contours of
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= arccos(’/2t). The contour of integration connects re-
gions | and Il by passing through poinBsandC:

i i i : -k
du(n)= (elﬂkB—IﬂT/4+ e'nk0+'”/4_'/kgf(k/rEM)dk’)

X ou(kg)/2m/(2t1Q)2—n'2,

The factors exptin/4) appear in Eq(14), because the di-
rections of steepest descent for poitsand C are at the
angles+ /4 to the real axis ok. The integral fromkg to k¢

in Eqg. (14) reflects the change of functidB) between points
B and C. For the edge states, the pomt=0 is classically
accessible. To satisfy the left boundary conditiby the first
line in Eq. (14) must vanish ah=0. This generates quanti-

(14

. - o :
integration in Eq(6) for three different positions of the coordinate Zation condition(12) with y= —3 for the edge states:

n.

— +oo, is satisfied provided the contour of integration starts —arccos—Ejy/2t)

jarccos—EMIZt) ( )
15

g(k,EM)dk=27r( M —% .

in area | and ends in area Il in Fig. 2. Indeed, in the classi-

cally inaccessible region— +«, solutions of Eq(11) are
imaginary. One of themi,=i arccoshfi’ 2/2t), wheren’
=n—E\/Q, is represented by poik in Fig. 2. The con-

tour of integration connects regions | and Il by passing

through pointA. Taking integral(6) in the vicinity of point

Substituting Eq.(10) into Eqg. (15 gives a transcendental
equation onEy,, which has the following explicit solution
for the states on the very edge with<<t/():

En=t{—2+[(37Q/2t)(M—1/4)]%3}. (16)

A along the direction of steepest descent, which is parallel tge total number of the edge statesnigge=2t/Q). Equa-

the real axis ok in this case, we find:

du(n)~exp{—n'[In(n'Q/t)—1]}/y27n’,

which does satisfy the right boundary condition.

Now let us calculatepy,(n) in the classically accessible
region. In this case, solutions of E¢ll), represented by
points B and C in Fig. 2, are real: ke=—kg

13

dm(n)=(—1)

The integral betweeky andkg in Eq. (17) proceeds along
the horizontal line[ —a,7] and the vertical lineqdkp,
—ar] and[m,kg] (see Fig. 2 however, the integrals along

the vertical lines cancel. To satisfy the left boundary condi-Bessel

tion [Eqg. (5)] for a semi-infinite crystal okpy(N)—0 atn
——oo for an infinite one, the first line in Eq17) must
vanish. This generates quantization conditid2) with
=0 for the bulk states:

f £(k,Eyy)dk=27M. (18)

Substituting Eq(10) into Eq.(18), we recover the Wannier-
Stark ladde? for the bulk states energies:
Ey=MQ. (19

When Eq.(19) applies, the functionpy (k) in Eq. (9) is
periodic: ¢y (k)=e@pu(k+27); thus integral (6) can be

ke
1—ex% —i J’k §(k’,EM)dk')

xexp — Vn'2—(2t/Q)2]/\2 74

tions (15) and(16) are similar to the edge-state quantization
equations for a closed Fermi surfaCe.

In the classically inaccessible region<(Ey—2t)/Q,
solutions of Eq(11), represented by poinf3 andE in Fig.
2, are complexkp g=F w+i arccosh-n’Q/2t). The con-
tour of integration connects regions | and Il by passing
through pointsD andE:

exp{—n’'[arccosli—n' Q/2t)+im]}

n'2—(2t/Q)>. (17

taken only from— 7 to , because the integrals along the
vertical portions of the integration contour cancel. In this
case, the bulk wave functions are expressed in terms of the
functions J of an integer order: ¢y(n)
=J,_m(2t/Q).

In all cases, as follows from Eq$6) and (9) with the
contours of integration shown in Fig. 2, the electron wave
functions

_f dk K Emk+2t sink
dm(n)= Eex in _IT

=Jn-g,, 10(2t/Q2) (20)
are nothing but the Bessel functions of a general order
—Epn/Q in the Sommerfeld representatibhThe quantized
value of the energ¥,, is determined by the boundary con-
dition (5)
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The quantization condition in forni21) was found in Ref.
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J_EM /Q(ZUQ):O.

(21)

8005

gies found from Eqgs(19), (15), and (10) within less than
1%. As Fig. 3a) demonstrates, the energy levels are uni-
formly spaced in the bulksee Eq(19)], with the energy

14. As shown in the Appendix, Ref. 9 would have obtained[Eq. (3)] proportional to the magnetic field, but the spacing is
the same equatidreq. (21)], if mathematical errors were not different and not uniform near the edges. In agreement with

made there.

Eq. (16), the spacing of the levels near the edges is sublinear

The electron wave functions can be expressed in terms qiE,,«constr M?3), and the extremal energy levels wikh
the Bessel functions[Eq. (20)] only when ¢, (k)=
—2t cosk in Egs. (10) and (8), which corresponds to the |ation of the bulk law{Eq. (19)] by the amountAE~ ¥ 2t.
electron tunneling between the nearest-neighboring chains. Transitions between the energy levélg in an external
Proper description of the Bechgaard salts requires taking intgc electromagnetic field constitute the cyclotron resonance.
account higher harmonics of the transverse dispersion law @ecause the penetration depth in metals is short, we expect
electron, such as 2t’ cos X, which corresponds to the elec- the energie$Eq. (16)] of the edge states to show up in the
next-nearest-neighboringurface impedance, as in conventional metal$he edge
chains® The WKB method described in this section is still states were neglected in the theory of the cyclotron reso-
applicable for an arbitrary transverse dispersion awk),
but the wave functions are not the Bessel functions any The complete, transverse and longitudinal, dispersion law

tron

more.

tunneling between

the

IIl. NUMERICAL SOLUTION AND DISCUSSION

To verify the semiclassical results, we solve E2).for a
finite number of chaing ;.= 150> N ¢q¢e= 2t/ =25 by nu-
merical diagonalization of the Hamiltonian

H=

—t
20
—t

0
0

0
—t
30

0
0
—t

—t
0

(nmax_ 1)9
—t

. (22

—t
Nmax(2

The quantum probability distribution$éy(n)|?> of two
eigenfunctions of Hamiltoniarg22) [the dots in Fig. b)]
agree with the classical probability distributiofthe solid
lines in Fig. 1b)] of the corresponding bulk and edge trajec- thqgh these B modes are gapless, electric current is not

tories shown in Fig. (). The classical probability distribu- dissipated, because the modes are chiral, and the Hall con-

tions are proportional to the square of Ef4) and are equal

to 2/Tv,, wherevy=2tsinlgc/ﬁocl/\/(Zt)z—(n’Q)2 is the

velocity andT=¢dn/v, is the period of classical motion. ot match the Fermi momeni@3) near the edges, where
The numerically calculated eigenvaluEg, of Hamiltonian

(22), shown in Fig. 8a), agree with the semiclassical ener- shoy|d exist there and cause dissipation in the QHE regime.
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FIG. 3. (a) Eigenenergie€,, of Hamiltonian (22) found by
numerical diagonalization in the caseg,= 150 andnggge=2t/()
=25. (b) Electron dispersion lawe(py,M) [EqQ. (4)]. Only the
branches wittM=1,6,11 . .. ,61 areshown.

=1 andM =n,,, are displaced relative to the linear extrapo-

nance in Q1D conductors.

(4) is shown in Fig. 8). It consists of discrete branches,
each having a continuous linear dispersiompjn The Fermi
momenta of the branches,

PP = —En/vE, (23

are defined as the points where the enerfyy, ,M) [Eq. (4)]
vanishes. The Fermi momenta of the bulk states are spaced
uniformly with the distanceG=Q/vg=ebH/c, but the
spacing is different and not uniform near the edge. This may
have important consequences for the FISDW state. The
FISDW couples thet P electrons in the eigenstaké with

the — P electrons in the eigenstal —N.* As long as Eq.
(19 applies, the FISDW wave vectdd,=2P—NG ex-
actly matches the difference between the Fermi momenta of
these states and opens an energy gap in their spechNum.
branches of the- P electrons at one edge of the crystal and
N branches of the- P¢ electrons at the other edge remain
gapless, because they have no partners to couplehiidien

ductivity is quantizedzrxy=2Ne2/h, whereh is the Planck
constanf. However, the wave vecto®,=2P—NG does

their spacing is not uniform. Thus gapless electron pockets

The size of the pockets may be reduce®if adjusts to the
spacing of the edge states. The energetics involved in the
latter effect requires a separate study.

IV. EQUILIBRIUM CURRENTS AND MAGNETIZATION

Since the transverse eigenfunctiofig(n) are real, they
carry no electric current across the chains. The current car-
ried by eigenstategEq. (1)] along the chains is

eA(n)

“om, 29

Jigiame

j;X,M(n):e( Tug—

wherem, is the electron band mass, and the signsefer to
the = P electrons. To find the total currehtat the chaim,
we sum Eq.(24) over M and integrate ovep, with the
Fermi distribution functionat zero temperatuye
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M)
m=2e3 | pim > (op)l gl (29
28A(N) T [pesp
Ccme W= f— pM2 ﬁ m(mI%
(26
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V. MAGNETIZATION IN THE CASE OF QUADRATIC
DISPERSION LAW

In Sec. IV, we found that orbital magnetization of the
system vanishes identically. That is a consequence of the
linearized longitudinal energy dispersion law of electrons in
our model. However, for a nonlinear dispersion law, magne-
tization is not necessarily zero. We can crudely estimate the
change in the bulk free energy per one electron at zero tem-

where the factor 2 comes from the spin of electrons. It isperature generated by an applied magnetic fial, in the

understood that the wave functiongy,(n) and ¢y,(n)
should be used when the integration ofgris close to+ Pg

following way. AF must vanish wherH—0 and whent
—0. (Whent=0, the magnetic field has no orbital effect on

and —Pg, and some interpolating functions should be usediD uncoupled chainsBecauseAF does not depend on the
for the intermediate values d?,. The result does not de- signs ofH andt, it should be quadratic iR =ebHvg/c and

pend on the contributions far from the Fermi surface.
Taking into account that

EMOIEEMOIR (27)

we find that the integrajﬁ':PFd P, in Eqg. (25) vanishes. The

t in the lowest order. To achieve the dimensionality of en-
ergy, we need to divide the expression by a power of the
Fermi energyeg=Pgruv /2. In this way, we find

AF~120%/ed . (33

only nonzero contribution to this term comes from the devia-Magnetization is obtained by differentiating E&3) in H.

tions p(M) [Eqg. (23)] from the 1D Fermi momenta P

Nmax

2N Ehlda(mP+Enlénm (29
Th V=1

Taking into account that the eigenfunctiogg,(n) form a

complete basis of Hamiltonia(22) and using the relations

Ey=—Epy and Eq.(27), we find that Eq(28) can be rewrit-
ten as

2e . 2e
—%(n|H|n>=—%nQ, (29
where(n|H|n) are the diagonal matrix elements of Hamil-
tonian(22).
Using Eq.(27), term (26) can be written as
2eA(n) (Pe dP, " )
cme ) _p 2t i oMM (30

Taking into account the completeness relatibyg| ¢y, (n)|?
=1 and integrating oveP,, we transform Eq(30) into

2eA(n)vg  2en()
cmh  wh

(31)

The two termg29) and(31) cancel each other, so that the

total electric current on any chamis zero:

I(n)=0. (32

It is difficult to calculateAF explicitly in the case of a
weak magnetic fieldf) <<t<eg. In the semiclassicdWKB)
approximation, the bulk free energy of a Q1D metal does not
depend on the magnetic field, even if the longitudinal disper-
sion law is nonlinear, as long as the Fermi surface is open,
and the electron energy spectrum is continuous, and not
quantized-? This result is related to the Bohr—van Leeuwen
theorem, which states that partition function in classical sta-
tistical mechanics does not depend on magnetic field. Thus,
in order to obtain a nonzemF, it is necessary to go beyond
the WKB approximation, which is difficult.

On the other hand, we can easily calculate in case of
a strong magnetic field, < <eg, although this case may
not correspond to the Bechgaard salts in realistic magnetic
fields. In this case, the transverse tunneling amplitudan
be treated as a small perturbation to the energy spectrum.
The second-order correction to the total energy of the system
per one electron at zero temperature due to a perturbtion
is given by the expression

15 (aMB)AVIe)

801_8[3

AF = : (34)

Ne a(e,<ep)
Bleg>sf)

where N, is the total number of electrons, and the sum is
taken over the energy eigenstates below and above the Fermi
energy, labeled by the indices and 8, respectively. Treat-

ing the transverse tunneling amplituti@s the perturbation

V, and taking into account that its matrix elements change
the longitudinal momentunp, by +G, <ak;,M,|V|,8kX,M>
=—tSy m+10(k;—k+G), we find that the sum in Eq.
(34) is restricted to an interval of the widf@ in the vicinity

of the Fermi momentum:

Because the current vanishes everywhere including the

edges, there is no orbital magnetizatiamd no de Haas—van

Alphen oscillations proposed in Refs. 8 angdifi a Q1D

metal in a magnetic field. Experimentally, no magnetization

was found in the Bechgaard salts in the metallic $taien-

4t2 (o d 1
SFP=— f Px (35)

~c2mh g)(py) —g|(Px+G) '

like in the FISDW state, where energy gaps exist in the elecin Eq. (35), the factor of 4 accounts for the two Fermi points

tron spectrum

and two spin orientations, ang,=4kg/27 is the electron
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concentration per one chain. Using the quadratic longitudinalo M. Ya. Azbel for drawing attention to Ref. 9. This work
dispersion lave(py) = (Pr+ py)?/2m,, wherem, is the ef-  was partially supported by the NSF under Grant No. DMR—

fective electron mass, we find 9417451 and by the Packard Foundation.
2
Ap@_ AT dp Me APPENDIX
pe J-c2mh G(Pg+py+Gl2) . : . ,
In this appendix, we use the notation of Ref. 9. Equation
t> [Pe+G/2 (8) of Ref. 9,
=——In| m—/—=]|. (36)
Q \Pe—G/I2 1
Expanding Eq(36) in the small paramete®/Pe=Q/2¢, 5 ™MI,(M)J;— (M) = sin(mrv), (A1)

and keeping the first two nonvanishing terms, we find o o )
can be simplified by using identit9.1.19 from Ref. 22;

2 1202

)= — +...
A= el B0 3, (M) +3, (M), y(M)=—

2 sin(7v)

™

The first term in Eq.(37) coincides with the second-order (A2)

correction due to the electron tunneling between the chainsubstituting Eq(A2) into Eq. (A1), we find

in the absence of a magnetic field. Only this, magnetic-field-

independent, term is obtained, if the longitudinal dispersion J,(M)[J_,1(M)+J_, 1(M)]=—=J,,11(M)J_(M).
law is linearized in Eq(35). The second term in Eq37) (A3)

appears due to nonlinearity of the dispersion law and reproysing the recurrence relatia®.1.27 of Ref. 22,
duces the result of dimensional analyfs. (33)] up to a

numerical factor. Its negative sign indicates paramagnetism. 2v
However, because the carriers in (TMTSK)are holes with Jy+a(M)+3,-2(M) = = 3, (M), (Ad)
a negativem,, the orbital response would be diamagnetic in )
these materials. in Eq. (A3), we find
2v
VI. CONCLUSIONS J_,(M) VJ”(M)_J”“(M) =0. (A5)

In conclusion, the energy of either a bulk or an edge elec-, . . . . '
tron state in a Q1D metal is the sum of two terfes. (4)], Using the recurrence relatig@4) in Eq. (A5) again, we find
one of WhiCh has a continuous spectrum and t.he other 'dis— J_(M)J,_1(M)=0. (AB)
crete. The discrete part of the electron energy is determined . . o
by the semi-infinite Wannier-Stark equatié®). We have Equation(A6) is satisfied if either
solved the semi-infinite Wannier-Stark problem semiclassi-

cally and numerically. The WKB quantization conditi¢it®) J-,(M)=0 (A7)

of the electron phase space af€dg. 1(a)] determines the or

energies of the edge states with the constant—3 [Eq.

(15)] and the bulk states with=0 [Eq. (18)]. The energies J,-1(M)=0. (A8)

are spaced uniformly in the bulk, but not near the edges ] ) o

Fig. 3(a) and Egs(19) and(16)]. These results may be im- Equation(A7) is the same as our energy quantization con-

portant for the cyclotron resonance and the QHE in thefition [Eq. (21)]. Equation(A8) describes unphysical elec-

Bechgaard salts, as well as the finite-size GaAs-Gal As  tron states located outside of the crystal<t0) and should
superlattices in an electric field. We have demonstrated ex€ discarded. The two sets of eigenvalligss. (A7) and
plicitly that the equilibrium electric currents vanish both at (A8)] are completely decoupled and do not repel when cross.
the edges and in the bulk, so no orbital magnetization is "uS there should be no gaps in Fig. 2 of Ref. 9, no frac-
expected in a Q1D metal in a magnetic field in the approxi-t'ona?l interference between the two sets of energy levels, and
mation of linearized longitudinal energy dispersion law of "© d_lama_gnetlc oscillations. Contrary to_the explicit transfor-
electrons. We have also estimated the magnitude of orbitdl@tion given above, the two sets of eigenvalues come out

magnetization for the quadratic longitudinal dispersion law.Coupled via a constamt in Eq. (10) of Ref. 9. We conclude
that there must be an error in the “rather boring calcula-

tions” mentioned between Eq$9) and (10), and leading
from Eq.(8) to Eq.(10) in Ref. 9. The conclusions following

V.M.Y. is grateful to P. M. Chaikin, A. H. MacDonald, R. Eq. (10) in Ref. 9 are invalid because of the error in this
E. Prange, and S. Das Sarma for useful discussions, and aleguation.
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