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Polaron in a spherical quantum dot embedded in a nonpolar matrix
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Effects of LO phonons for an electron, confined in a spherical quantum dot embedded in a nonpolar matrix,
are studied theoretically. A variational method is used to calculate the polaron energy shift by taking into
account the interaction with both the bulk type and the interface type phonons in the system. The combination
of the adiabatic and the intermediate coupling methods is developed to provide the results, being valid for the
wide range of the dot radius and the electron-phonon coupling strength. The method is applied to GaAs, CdSe,
and CuCl quantum dots and the results are discussed in comparison with the second-order perturbation theory
and other published theories. General properties of a polaron are also calculated and discussed by changing
physical parameters, which characterize the system. It is showfi Xvaith the increase in the dot radius the
magnitude of the polaron energy shift decreases rapidly from large value and then approaches gradually to the
bulk value, andii) the bulk type LO phonon has the dominant role for the polaron effects and the contribution
of interface LO phonon is very sma[lS0163-18208)03035-3

[. INTRODUCTION The adiabatic method can be used only for the electronic
states that are separated from other states by the energy dif-
Recent remarkable progress in crystal growth techniquéerence being much larger than the phonon energy. This is
has made it possible to fabricate semiconductor nanostrusatisfied in the present problem for the following two cases.
tures whose characteristic dimensions are of the order of th@ne is the case of the strong electron-phonon interaction, by
de Broglie wavelength. Especially the quantum dot system isvhich an electron localizes strongly. Another is the case of
attracting very much attention in electronic and opticalthe small radius of the spherical dot, where the energy dif-
properties-? ference between the electronic states becomes much larger
Electron-phonon coupling effects are very important inthan the phonon energy because the electronic energies are
electronic and optical properties of polar crystallineinversely proportional to the square of the dot radusrhus
materials’ In the quantum dot system, the role of the the adiabatic method becomes valid.
electron-phonon interaction on the carrier relaxation has On the other hand, for the large dot with the weak
been discussed in paying attention to the dimensionatlectron-phonon coupling the situation is quite different: the
effect*® Also, the electron-phonon interaction and the po-smaller energy difference between electronic states makes
laron effects have been discussed in a spherical quantuthe adiabatic method to be invalid, and the polaron effect due
dot®12 a rectangular quantum bd%* and a quantum dot to the electron-LO phonon coupling should be treated with
with the parabolic potenti&*®and in a cylindrical quantum the nonadiabatic approximation such as the intermediate cou-
dot!"8|n confined systems, such as quantum well, quantunpling method. In fact, for the large dot, the adiabatic method
wire, and quantum dot, longitudinal opticdlO) phonons used by Pan and P&hand Mariniet al!* do not yield the
have their characteristic features, being quit different frombulk polaron energy in the weak electron-phonon coupling
the bulk: there exists bulk-type phonons and interface-typ@egion, which will be seen explicitly in the later section of
phonong~9141518-2014 discuss the LO phonon effects on the present work.
an electron in confined systems, we need to take into account In the present work, we study effects of the electron-
these features for LO phonons. phonon interaction in a polar spherical quantum dot embed-
In a spherical quantum dot, being one of the simplesded in a nonpolar matrix. Considering that the previous
quantum confined systems, polaron effects of an electroresult$®~*2are valid only for some limited cases, we develop
have been investigated with the dielectric continuumthe variational method, being valid for the wide range of the
model'®~*2 Pan and P&fl and Mariniet al!* have studied dot radius and the electron-phonon coupling strength. Calcu-
the polaron effects due to both bulk and interface types LQation and discussion of the polaron energy shift are per-
phonons with an adiabatic method. Within their treatment thdormed to clarify the nature of polaron effects systematically,
interface type LO phonons have no contribution to polaronincluding the role of the bulk-type and the interface-type
effects. Klimin et al!? considered the polaron energy shift phonons.
due to both bulk and interface types LO phonons in GaAs This paper is organized as follows. In Sec. Il with the use
guantum dot with the second-order perturbation theory. Thepf the dielectric continuum model the variational method for
concluded, though details of the calculation were not dethe polaron in a spherical quantum dot is developed. In Sec.
scribed, that bulk-type phonons play the dominant role in thell the behavior of the polaron at the small dot limit and the
polaron energy shift, whose magnitude increases rapidly itarge dot limit in both weak and strong electron-phonon cou-
the limit of the small radius. pling cases are analyzed. In order to compare with the other
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author’s result®=*?the polaron energies of GaAs, CdSe, andrespectively, where
CuCl quantum dots are calculated numerically. General

properties of the polaron effect in this system are also calcu- [ hikan)Y(8,0)  (r<R)
lated and discussed. The conclusion is given in Sec. IV. Sai(r)= 2.7
0 (r>R)
IIl. THEORY and

Let us consider an electron, which is confined perfectly in (r/R)'Y(6,) (r<R)
a sphere with radiuR and is interacting with LO phonons. Seo(r)= (RN Y™(6.0) (r>R) (2.8
The Hamiltonian of the system is given by A '
Hereo=1 and 2 denote the bulk-type and the interface-type
H=He+Hpnt Hip. (2.)  LO phonon, respectively. Another indexis given by s
=(n=1.23,..;1=0,1,2,..;m=0,+1,+2,...,x1) for the
bulk-type phonon ands=(1=1,2,3,..;,m=0,£1,+2,...,
p? +1) for the interface-type phonora;,(as(,) is the creation
He=5m + Veonlr), (220 (annihilation operator of thesc mode.

The energy for the bulk-type LO phondiw; is equal to
wherep andr are momentum and position of an electron, the bulk LO phonon energiw, o, being independent of the
respectivelym is electron massV,(r) is the confinement indexs. The interface phonon enerdyw., is given by
potential for an electron:

Here the electronic paH, is given by

€qt (egt €o)l |12
w for r>R hwgp=ho=|———F—| foro for any m,
_ Ed+ (6d+ Gm)l
Vel D=0 for r<R @3 2.9
wherer =|r|. wherefi w1q is the transverse optical phonon energy related

The solution of the electronic part is well known and is With 1,0 by the well-known Lyddane-Sachs-Teller relation
obtained from the Schdinger equation HoyS(r) wio/wio=¢€ple.. €y and e, are the static dielectric con-

=E®y(r), which yields the wave function and the energy asstant and the high-frequency dielectric constant, respectively.
follows: €4 Is the dielectric constant of the nonpolar matrix that sur-

rounds the dot sphere.

2 ) For the bulk-type phononyg; is written as
Prim(r) = \/mh(kmf)\({n(@@), °
1+1(Kn| (2.439 - | 8maiR, 2.10
. A NV phifa (R '

n=2m where R, is the polaron radius defined aR,

Here the state is specified by the set of quantum numbers VA/(2Mw o) and «, is the dimensionless electron-bulk-
(n,1,m). The functionsj;(x) andY(6,¢) are the spherical type phonon coupling constant, which is defined by
Bessel function and the spherical harmonics, respectively. 2 1 1

k. is defined byk, = u,/R, wherey,, is thenth zero of = [ —— _)_
the spherical Bessel function of order j,(u,) =0. Espe- 2Rpfiwo L& €0
cially for the ground stat€l,0,0, uq; is equal tor and then
the wave functionyg= 5, and the energyEg=E7, are

given by, respectively, [A7a,R
Ug2= R pa (2 l:D

e

For the interface type phonong, is written as

ar
Yg(N ="\ 553 lo(7r/R) : :
2R herea, is defined b
(2.4D w ay i i y
ﬁz’ﬂ'z \/I—Sm 2 ﬁwLo 3
Ee:—. a2=a2(|)5a1 .
9 2mR leg+(1+1)eg) \ foy
The LO phonon HamiltoniarH, and the electron-LO By following Lee-Low-Pines theory, the unitary operator
phonon interaction HamiltoniaH ,, are written by-1%11 in§1th263 electron-LO phonon interaction system is defined
adl-
th: Sz ﬁw&ra;rasm (2.9

. (2.12

U= eX[{ 2 [Fzg(r)aSa_ FSU‘(r)alO']
and >
The transformed HamiltoniaH =U "*HU is given by

Hiy= f ras,+H.cl], 2.6 ~
int gf WsoV s Ssoll) sy ] (2.6) H=Hg+H;+H,, (2.13
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Whereﬁo, ’|:|1, and HZ are Zero_phonon, one_phonon, and Sponds to the adiabatic method. The adiabatic method is

two-phonon terms:

o _(pH)’ W2 VFs,|?
Ho="Zm—+ Vel N+ 2 —5 5

+ 2 ﬁw50| FSO’|2_ 2 fiwso[v s SseFsoTH.C,
S,0 S,o

(2.14
5 (Pt [V2Fg,al,—V2FE,as,]
1 2m +s,g 2m
_2 ﬁwSO’(F:O'aSU'+ FSO'alO')
S, o
+ D) hwey[VsySspasy+ H.CJ, (2.15
S, o

and

O T
H,= f W55,y

s,0

1
+5m 2 2 [(VF)(VFs,alag,,
S0 ¢ o'

+ (VF;‘U)(VF:,”,)aSUas,U,

+(VFg)(VFE Dal ag o
+(VF%)(VFgnal, as,]. (2.16
Here, we have used the abbreviations
J=—it, [al VFs, —as,VFL ]
S,o
and
A
== 5 2 [FLVF,—FL,VFL]. (217
S, o0

The functionFg, is chosen in the following form:

FSU’(r):vSUfSUS;U(r)+USUgSU' (2.18

As the trial function to the transformed std#), we choose
the product form of the electronic staj®) and the zero-

phonon staté0), that is|¥)=|®)|0). Then the expectation

value of the Hamiltonian is given by

E=(W|Fi[w)=(|Fig|®). (219

The choice of only the first term in the right-hand side of
EQ.(2.18, i.e.,Fs,=vs,fs,St,(r), corresponds to the inter-
mediate electron-phonon coupling method. The intermediate
coupling method works well in the larger dot size with the

valid when the relevant electronic state is well separated
from other electronic states. This situation is realized in a
very small radius of the quantum dot as well as in the
strongly localized state due to the strong electron-phonon
interaction. ThusF,,, given by Eq.(2.18, is expected to
yield reasonable results for polaron effects for the wide range
of the dot radius and the electron-phonon coupling strength.
These points will be clearly seen in analysis and the numeri-
cal calculation in the next section.

For simplicity we choose that both,, andg,, are real
and have an inversion symmetry. From the variational con-
ditions 9(®|H|®)/f¢,=0 andd(D|H| D)/ dgs,= 0, we ob-
tain the variational parametefg, andgg, as

fo— Bs«r_Agu (2 20)
7 BSU+CSU—A§U’ ‘
A O'C {oa
Ose — (2.2

T Bgy+Co— AL
HereA,,, Bs,, andCg, are defined by
Asy=(P[Ss,(N)|P),
Bsy=(®|[Sso(1)]?|®)
and

_h
C 2Mmog,

Cso (®[|VSso(N)[? D).

For the electronic statgh), we choose the product form
of z,//g in Eq. (2.4b and the Gaussian function including a
variational parameteg:

1 2
D(r)=—jo(mr/IR)e A", (2.22
e
Here AN is a normalization constant, given by

=4nfRdrr3j3(ar/R)e 2#°. The Gaussian function in
®(r) describes the nature of the localization of the polaron
in the strong electron-LO phonon coupling case.

The polaron energf is given by the minimization of the
expectation value of the energy with respect to the varia-
tional parametep, i.e.,

Y

ler( BS(r_ Ag(r) + AgfrCS(r
BSO’ + CSO’ - Aga .

p2
E=min| <<1>‘ ﬁJrVCOm(r)
B

2
- E ﬁwsa'vsu
S, 0

(2.23

weak and the intermediate electron-phonon coupling, wherghen the polaron energy shift is defined by
the electronic energy differences are smaller than the LO

phonon energyt ., . The choice of only the second term of

the right-hand side of Eq2.18), i.e., Fs,=v¢,0s,, COITe-

p2

ﬁ + Vcom( r ) (2-24)

)

AE=E—<:/;§
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TABLE I. Values of physical parameters for typical semiconductors dots; electronmgadsO phonon energy of bulk w, o, the static
dielectric constang,, the high frequency dielectric constant, the lattice constard, the electron-phonon coupling constant, and the
polaron radiusk, . a,(l) and# w,, are the coupling constant of the electron-interface phonon and the interface phonon energy with mode
respectively: a dot is surrounded by vacuueg=1) or the Pyrex 17104;=6.0). Values of material parameterg, fiw o, €, €., and
a are taken from Ref. 11 for CuCl and CdSe and from Ref. 26 for other materials.

KBr TICI CuCl CdSe ZnS GaAs
me 0.369 0.424 0.504 0.13 0.34 0.067
hoo 20.97 21.464 25.64 26.54 43.18 35.33
€ 4.52 32.7 7.9 9.3 8 12.4
€. 2.39 4.76 3.61 6.1 51 10.6
ay 3.051 2.943 2.460 0.460 0.736 0.070
Ry A 22.19 20.46 17.17 33.23 16.11 40.11
a(A) 6.59 3.84 5.41 5.2 5.41 5.65
[for eq=1 (vacuum]
YOI 18.58 18.55 23.02 25.39 40.91 34.92
YOI 18.97 19.14 23.51 25.62 41.36 35.01
h., 19.46 19.81 24.08 25.89 41.87 35.11
as(1) 0.589 0.086 0.452 0.153 0.225 0.039
as(2) 0.325 0.040 0.235 0.082 0.121 0.021
[for €4=6.0 (Pyrex 1710]
ho, 16.34 13.37 19.57 23.32 37.28 33.94
fw,s 16.61 14.26 20.07 23.66 37.85 34.13
hwo, 17.07 15.53 20.85 24.17 38.72 34.39
as(1) 0.1350 0.1379 0.1821 0.0557 0.0743 0.0148
ay(2) 0.1284 0.1139 0.1689 0.0533 0.0710 0.0146
ll. ANALYSIS AND CALCULATION we can showX| ,Bg;=1/47. Then, by changing the sum
A. Weak electron-phonon coupling case overn into the integral ofk, AE in the large dot limit is
obtained as

In this case, we expect that the Gaussian function in the

electronic wave function plays no role, and then we may set R (. 2aR, 1

B=0. AEZ—ﬁwLO— dk R m=—a1ﬁw|_o,
Let us consider the large radius limit, i.&;—. In this /o p 3

limit the contribution of the interface phonon is negligible. It 3.9

is enough to consider bulk-type phonons with largi the

) which is the well-known polaron energy shift in the weak
phonon modes=(n,I,m) and then the relations oA

electron-phonon coupling case in the beti?

<Bg, Cs1=RPkEBs1 andvg =8ma;R,/R hold. Thus, the In the small radius limit, we hav€,,>A,,, Bs,. Thus
variational parametery; andgs; in the unitary transforma- ¢ —f_,-0, g,=A,,, andg,,=0 are obtained, and then
tion Eq. (2.12 reduce to the polaron energy shifsE is given by
——1 2 2 2 2
fa= 1+ ngg (3.1 AE=— h“’Loin: V100170001~ ~ R ®LOV(1,0,01A(1,0,01"
(3.6
and
which is equal to the result by the adiabatic methbtive
0s1=0. (3.2 note that the above weak-coupling polaron energy shifts
in the large and small dot limits, given by Eq&.3 and
Therefore we have the polaron energy shift: (3.6) can be derived from the second-order perturbation, as
shown in the Appendix.
2
vs1Bs1
AE= _thOES 1+ ngg' (33 B. Strong electron-phonon coupling case

, ) ) In the case of the strong electron-phonon interaction an
By using the relation between the spherical wave and th@eciron localizes at a small region. If the radius of this re-
plane wave gion is much smaller than the dot radius, the electronic wave
function ®(r) reduces to (B3 7)Y exp(—Br?). Then for
the largeg in a large dotCgy; > Ay, Bg. Thusfg andfy,

1 .
; m _ mx ik-r
h(knYi(o.e)= 775 JkoY' (Foee™ B4 e negligible andys;=A; and g,,=0 in Eq. (2.189 are
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obtained. This yields the same results in the adiabatic treat- 0.0

ment of Ref. 11. Then the polaron energyis given by =
3
<
_ 2a;R\B =

E=min| 38R w0~ T"ﬁwm . (37 g 05r
B m &
=
Here the minimum is achieved #=a/(97R?%) and the 2

polaron energy shifAE is given by %° 1.0
=]
AE i f 3.8 -

T 341 %o 38 1.5 ! ! L ! |
which is the well-known polaron energy shift of the strong
electron-phonon coupling system in the befti®

C. Application to GaAs, CdSe, and CuCl dot systems 88
"~

It has been shown in the above that the present theory can o
give correct results in both limits of the weak and the strong <
electron-phonon coupling cases. Thus, we expect that our &
method, which combines the adiabatic method and the inter- «2
mediate coupling method, can give reasonable results in
wide regions. To confirm this point and compare our theory
with other authors’ published theori€%;*2we compute the
polaron energy shift of GaAs, CdSe, and CuCl quantum dot
numerically. The physical parameters for the calculation are 0 1 2 3 4
taken from Ref. 26 for GaAs and from Ref. 11 for CdSe and Dot Radius R (R;)
CuCl, which are given in Table I. We note that the degree of
freedom for the bulk-type phonomsis limited in dot system FIG. 2. The polaron energy shiffE as a function of the dot
and then the summation over bulk-type phonon made rad.ius.R in the case ofa Cd.Se. andb) CuCl quantum dot. The
—(n,I,m) in the calculation is limited tdN, approximately solid line stands for our variational method, and the long-dashed

; o ; line for the intermediate coupling method. The dotted line is results

iven by the volume of the dot divided by the unit cell vol- 2
Sme. H)(l)wever it is shown that this Iimi)':ation of sum has©f the method of Pan and P@.ﬁe.f' 10, and the short-dashed line is
little effect on the results as seen below. results of the method of Mariret al. (Ref. 11.

First, we discuss polaron energy shift in a GaAs dot, for
lerzhsr? gvr\?ne[;;allliﬁisrgltt; ?zy Tthhee czﬁ:icl)gtde_g gj;;rgtner(teunrgg;o 2. The solid line is the result of the variational method, the
shifts as a function of the dot radius by the present varigShort-dashed line for the variational method without limita-
tional method and the second-order perturbation method a on of sum over bulk-type phonon modssand the long-

ashed line shows the result of the second-order perturba-

tion, which is calculated from the following expression:

Yy

2
5}
=
8a)

-9 1 1 1 1 1

hown in Fig. 1. In the calculation we takg=2 as in Ref.

0.0 T T T T T

3

S | T AE'Y=— 2 2 e e .

~ . . nl,m s,o En|+ﬁws(,— E

m - Interface Contribution 9

< -0.1F 88 O . (3.9

&

.C% § &l— Here the calculation of the second-order perturbation has

& = been performed also without the limitation of the bulk-type

= i phonon modes.

g 02} < 0 e In Fig. 1 we see that the limitation of sum over bulk-type
R (R,) phonon modes yields little effects on the polaron energy

. shift. One might consider this limitation is effective in the
0 1 ]%ot Radi3 SR (R4) 5 6 polaron energy shift in the small dot. However, it is noted

U P that the rapid increase of the magnitude of the polaron en-
FIG. 1. The polaron energy shiftE as a function of the dot €'9Y shift for small radius comes from the contribution of

radius R for GaAs quantum dot. The solid line stands for the ONly the single bulk-type modg=(n=1,/=0m=0).

present variational method, the short-dashed line for the variational AS GaAs crystal is a weak electron-phonon interaction
method without limitation of sum over bulk-type phonon modes ~ System, the second-order perturbation theory is considered to

and the long-dashed line for the the second-order perturbatiowork well. As seen in Fig. 1, the difference between results
theory without limitation of sum over bulk-type phonon modes by two methods is small and our variational method gives
In the inset the contribution of the interface type phonon in thereasonable results for any dot size. It should be pointed out
polaron energy shift is shown. that Klimin et al? calculated the polaron energy shift only
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A
-
0

i ainininininininininlel O T ____I____________I___________-I_-_ T
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AE (A )

-0.5 +

a0k! . |

Energy Shift AE (7®, o)
Energy Shift AE (7o)
N

-15 I l 1 1 1 1 1
2 3 4 5 6 0 1 2 3 4
Dot Radius R (Rp) Dot Radius R (R)

-1.0

FIG. 3. Contribution of the bulk and the interface phonon for the 2 T T . X T
polaron energy shifAE as a function of the dot radiu®. The solid (b) -
line stands for the polaron energy shiE, the dashed line for the .
contribution of the bulk type phonon, and the dotted line for the A
contribution of the interface type phonon. The physical parameters
are set agg/e,.=2, €¢4/e,=1.5, anda;=1. The inset shows the
polaron energy shifAE in the range of small dot radius.

<r>(Ry)
\

for a small radiug <1.5R,. In the region, the magnitude of N —
the polaron energy shift decreases monotonously with the -
increase of the dot radius. However, it is seen from Fig. 1
that for the further increase of the dot radius, the magnitude 00 ! 1 ! ! !
of the polaron energy shift reaches to the minimum and then 1 éot Radi3us R (R4)

increases gradually to approach the bulk valyé w . The 4

inset in F_ig. 1 shows that the con_trik_)ution of interface-type FIG. 4. (a) The polaron energy shifiE and(b) the expectation
phonons in the polaron energy shift is very small. value(r) of r as function of the dot radiuR, taking the electron

Next we discuss the polaron energy shift in the case of tyne phonon coupling, as a parameter. The dash-dotted line
CdSe and CuCl, for which numerical results of the electronyiangs fora, =9, the long-dashed line faz,=6, the short-dashed

phonon interaction energy were shown in Ref. 11. The calfine for &,=3, and the dotted line for,=1. The solid line stands
culated polaron energy shifts are shown in Fig. 2. The dottegbr R/2 in Fig. 4b). The other physical parameters are set as
line in Fig. 2 is the result of the method of Pan and ¥amd €0l€.=2, eqle,=1.5.

the short-dashed line is the result of the method of Marini

etal!* In both works they used the adiabatic method, whichproach gradually to the bulk value. The large magnitude of
corresponds to the consideration of only the second term ithe polaron energy shift for a smaller dot is due to a exis-
the right-hand side of Eq2.18), i.e., Fs,=vs,0s,- Marini  tence of an electron even if the dot radius becomes very
et al. included the localization effect of the electronic wave small, which yields the stronger coupling between an elec-
function due to the Strong eIeCtron—phonon interaction in thQron and phonon_ The gradua| increase in the magnitude of
same way in Eq(2.22) and Pan and Pan did not. The long- the polaron energy shift for the large dot is caused by an
dashed line is the result of the intermediate coupling methoghcrease of the contribution of nonadiabatic processes with
in which only the first term in the right-hand side of Eq. increasing the dot radius. These two effects yield a minimum

(2.18, Fs,=vs,fs0Ss,, is kept. It is clearly seen that our of the magnitude of the polaron energy shift.
variational method gives a much better result than the other

previous adiabatic methotfs'tin all the regions.

It is also clearly seen in Fig. 2 that the inclusion of both
the intermediate and the adiabatic term& iy is essential to Now, changing physical parameters for the system vari-
describe the polaron in a spherical quantum dot. This is coneusly, we calculate polaron energy shifts and discuss general
trasted with the quantum well system, where only the interfroperties of the polaron in a spherical quantum dot system-
mediate term describes well the polaron energy shift for theatically. The present system is characterized by the following
wide range of the well widtA’ The difference arises from seven physical parameters: electron massthe static di-
the fact that, in quantum-well system, there are continuunelectric constank,, and the high-frequency dielectric con-
free states in the-y plane even if the well width in the  stante. of the inside of the dot, the dielectric constagtof
direction becomes small and, in the quantum dot system, thiée outside of the dot, the bulk LO phonon energy of the dot
electronic energy difference becomes much larger than thmaterialz w o, the dot radiusR, and the lattice constant of
phonon energy for a small radius. This makes the adiabatithe dot materiah. Values of these parameters for the typical
term to be very important for the small dot. semiconductors are given in Table I, together with some in-

Figures 1 and 2 show that with increasing the dot radiugerface phonon energies and electron-interface coupling con-
the magnitude of the polaron energy shifts decrease rapidigtantsa,(l). If we takeR, and% w o as the units of length
from a large value, via a minimum and then increase to apand energy, then properties of the system are characterized

D. General properties of the polaron in a spherical dot
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-0.5 T T T T T IV. CONCLUSION
89 06 | 1 We have discussed the LO phonon effects of an electron
£ in a spherical quantum dot, embedded in a nonpolar matrix.
g We take account of both bulk-type and interface-type LO
& 0.7 phonons being characteristic in the system. The developed
% variational method combines the adiabatic method and the
% -0.8 - intermediate coupling method. The present method has been
3 shown to be valid for the wide range of the dot size and the
G -09 | electron-phonon coupling strength. The above combination
is essential to obtain this wide applicability. It is seen in the
-1.0 ' ' ' ' ' present wide range of the calculations that the bulk-type
0 1 2 3 4 5 6 phonons have a dominant role and the interface phonons

Dot Radius R (R))) yield only very small effects.
) _ Finally, we mention remaining problems related to the
FIG. 5. The polaron energy shiiE as a function of the dot  rasent work. There are many experiments in the quantum
radiusR, taking the ratio of the dielectric constanég/e. as a ot system whose barrier region has LO phonons, such as a
parameter. The solid line stands fey/e..=2, the dashed line for - o 10m of 3 CuCI dot in NaCl crystal. Thus it is necessary to
edlfx_tl'S’ and thte d;)tteg 2I|ne ;Ofd /_fz_l' The other physical studying the electron-phonon coupling effects in this type of
parameters are set ag/e..= < anday = L. system, for which the present variational method is expected
by the following five physical parametersy;, eg/e,, 10 work well. Also, the present method can be extended to
eqle.., R, anda. We seta/R,=0.2 as a typical value. To treat the exciton interacting with LO phonons in a spherical
discuss general properties of an electron under the influenagguantum dot, whose electronic and optical properties are cur-

of the LO phonon the four physical parameters, /€., rently attracting very much attention.

eqle., andR are changed in the wide range, while typical

values in Table I are kept in mind. The results of numerical ACKNOWLEDGMENTS

calculation of the polaron energy shift are plotted in Figs. . .
3.5 P gy P g We would like to thank Dr. R. Zheng and Dr. H. Kurisu

To see the role of both bulk- and interface type-phonondOr useful discussions.
for the polaron energy shift, the polaron energy shif as a

function of the dot radiu® is plotted in Fig. 3 for the fixed APPENDIX: THE SMALL AND THE LARGE DOT LIMIT
values ofeg/e.=2, g4/e,,=1.5, anda;=1. As shown in IN THE SECOND-ORDER PERTURBATION

Fig. 3 the contribution of the interface-type phonon is very |4 this appendix we discuss the polaron energy shift

much smaller than the contribution of the bulk-type phonon.j g(2) by the second-order perturbation in H&.9) in the
In passing it is noted that, in interface phonon effects, only, i1 small and large dot limits.

the first few terms in the summation bfcontribute. This is First we show that Eq(3.9 reduces to Eq(3.3) in the
expected from the values af,(l) in Table | together with large dot limit. We can rewriteAE®? in Eq. (3.9 in the
the limiting valuea,()=0. form2®

In Fig. 4 the polaron energy shifts and the expectation
value(r)=(®|r|®) for the four values of;=1, 3, 6, and 9
are plotted as a function of the dot radRswhen the values
of egle,=2 andey/e,,=1.5 are fixed. In the case ai,
=1 and 3 the polaron energy shift approaches @,/ v o, X (gl St [hws,+He—Egl ™S, |4g). (Al
which is the result of the theory of the weak coupling. On the
other hand, for the strong electron-phonon coupling case
a1=9, the polaron energy shift is smaller tharw A w g in
R/R,=4. The behavior ofr) in Fig. 4(b) shows the impor-

AE(2)= _E |ﬁwS(J’vSU’|2

S, o

IP the large dot limit the interface phonon contribution can
Be neglected and then

tance of the modification effect of the electronic wave func- AE@= —nlEm [hwLovsl?
tion due to the electron-phonon coupling. Without the modi- v
fication, i.e., with =0, we have(r)=R/2. Thus the X (gl Ssalh oot He— ES]_1351|¢3>- (A2)

deviation from the line ofr)=R/2 shows the importance of 5 ing the relation b h herical d th
the modification. It is seen that for larger electron-phonon y using the relation between the spherical wave and the

. . e i (2) i
couplinga; and the larger dot radius the modification effect Plane wave in Eq(3.4), AE' can be written as

becomes important. Especially in the caseaqE=6 and 9 | wovel?
the effect becomes large, which reflect the localization of an AE®@=— E A f ko,f dQ
electron due to the strong electron-phonon coupling. itm - (4m)
Figure 5 shows the polaron energy shift as a function of XY™ (B, 01) YO 1)
the dot radiugR for the three values of4/¢.,.=5.0, 1.5, and
0.2 and the fixed values afy/s..,=2 anda;=1. It is seen ><<¢g|e‘ik/"[hw|_o+ He— Eg]—leik~r|¢g>_
that the ratice4/¢., , i.e., the effects of the dielectric constant
outside the sphere, has only a small influence upon the po- (A3)

laron energy shift. Using the relation
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(p+#k)?
2m

[fiwovsl?
+ 2— _ e 2 4°.
Veonts (Ad) AE n;m thO+ h2k|2n/(2m) <¢g||ssl| |¢9>

(A7)

e—ik-rH eik~r:
e

andH|yg) =Eg|#), we obtain
This is the result in Eq(3.3), which yields the bulk polaron

[hwiotHe—Egl™ e yg) energy shift— a;hw o.

. A2 hikep -1 Next we consider the polaron energy sh&E® in the
=N hw ot ——+ —— +He— Eg} ¢S> small dot limit. In this limit |Ef,—Eg|>%w o for (n,l)
2m m #(1,0) and thus from Eq3.9) we obtain the polaron energy
(A5) shift
I 222170 fkp)]
=e'k'r]2=:0 ho ot 2r‘rl1n (Tp> ¢g>. AE® = _ﬁwLo; |U(n,o,0)1|2|<¢S|S(n,o,o>1|¢S>|2
, _ , ) _ (A9) =—hoLolv1001l’ PG Swo0dl 4> (A8)
Then, keeping the first term in the summatjoand using the
relation in Eq.(3.4), we can obtain which is the same result in E§3.6).
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