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Polaron in a spherical quantum dot embedded in a nonpolar matrix

Kazunori Oshiro, Koji Akai, and Mitsuru Matsuura
Department of Advanced Materials Science and Engineering, Faculty of Engineering, Yamaguchi University,

Ube, Yamaguchi 755-8611, Japan
~Received 18 February 1998!

Effects of LO phonons for an electron, confined in a spherical quantum dot embedded in a nonpolar matrix,
are studied theoretically. A variational method is used to calculate the polaron energy shift by taking into
account the interaction with both the bulk type and the interface type phonons in the system. The combination
of the adiabatic and the intermediate coupling methods is developed to provide the results, being valid for the
wide range of the dot radius and the electron-phonon coupling strength. The method is applied to GaAs, CdSe,
and CuCl quantum dots and the results are discussed in comparison with the second-order perturbation theory
and other published theories. General properties of a polaron are also calculated and discussed by changing
physical parameters, which characterize the system. It is shown that~i! with the increase in the dot radius the
magnitude of the polaron energy shift decreases rapidly from large value and then approaches gradually to the
bulk value, and~ii ! the bulk type LO phonon has the dominant role for the polaron effects and the contribution
of interface LO phonon is very small.@S0163-1829~98!03035-5#
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I. INTRODUCTION

Recent remarkable progress in crystal growth techni
has made it possible to fabricate semiconductor nanost
tures whose characteristic dimensions are of the order of
de Broglie wavelength. Especially the quantum dot system
attracting very much attention in electronic and optic
properties.1,2

Electron-phonon coupling effects are very important
electronic and optical properties of polar crystalli
materials.3 In the quantum dot system, the role of th
electron-phonon interaction on the carrier relaxation
been discussed in paying attention to the dimensio
effect.4,5 Also, the electron-phonon interaction and the p
laron effects have been discussed in a spherical quan
dot,6–12 a rectangular quantum box,13,14 and a quantum do
with the parabolic potential15,16 and in a cylindrical quantum
dot.17,18In confined systems, such as quantum well, quan
wire, and quantum dot, longitudinal optical~LO! phonons
have their characteristic features, being quit different fr
the bulk: there exists bulk-type phonons and interface-t
phonons.6–9,14,15,18–20To discuss the LO phonon effects o
an electron in confined systems, we need to take into acc
these features for LO phonons.

In a spherical quantum dot, being one of the simpl
quantum confined systems, polaron effects of an elec
have been investigated with the dielectric continuu
model.10–12 Pan and Pan10 and Marini et al.11 have studied
the polaron effects due to both bulk and interface types
phonons with an adiabatic method. Within their treatment
interface type LO phonons have no contribution to pola
effects. Klimin et al.12 considered the polaron energy sh
due to both bulk and interface types LO phonons in Ga
quantum dot with the second-order perturbation theory. T
concluded, though details of the calculation were not
scribed, that bulk-type phonons play the dominant role in
polaron energy shift, whose magnitude increases rapidl
the limit of the small radius.
PRB 580163-1829/98/58~12!/7986~8!/$15.00
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The adiabatic method can be used only for the electro
states that are separated from other states by the energy
ference being much larger than the phonon energy. Thi
satisfied in the present problem for the following two cas
One is the case of the strong electron-phonon interaction
which an electron localizes strongly. Another is the case
the small radius of the spherical dot, where the energy
ference between the electronic states becomes much la
than the phonon energy because the electronic energie
inversely proportional to the square of the dot radiusR. Thus
the adiabatic method becomes valid.

On the other hand, for the large dot with the we
electron-phonon coupling the situation is quite different: t
smaller energy difference between electronic states ma
the adiabatic method to be invalid, and the polaron effect
to the electron-LO phonon coupling should be treated w
the nonadiabatic approximation such as the intermediate
pling method. In fact, for the large dot, the adiabatic meth
used by Pan and Pan10 and Marini et al.11 do not yield the
bulk polaron energy in the weak electron-phonon coupl
region, which will be seen explicitly in the later section
the present work.

In the present work, we study effects of the electro
phonon interaction in a polar spherical quantum dot emb
ded in a nonpolar matrix. Considering that the previo
results10–12are valid only for some limited cases, we devel
the variational method, being valid for the wide range of t
dot radius and the electron-phonon coupling strength. Ca
lation and discussion of the polaron energy shift are p
formed to clarify the nature of polaron effects systematica
including the role of the bulk-type and the interface-ty
phonons.

This paper is organized as follows. In Sec. II with the u
of the dielectric continuum model the variational method
the polaron in a spherical quantum dot is developed. In S
III the behavior of the polaron at the small dot limit and th
large dot limit in both weak and strong electron-phonon co
pling cases are analyzed. In order to compare with the o
7986 © 1998 The American Physical Society
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author’s result,10–12the polaron energies of GaAs, CdSe, a
CuCl quantum dots are calculated numerically. Gene
properties of the polaron effect in this system are also ca
lated and discussed. The conclusion is given in Sec. IV.

II. THEORY

Let us consider an electron, which is confined perfectly
a sphere with radiusR and is interacting with LO phonons
The Hamiltonian of the system is given by

H5He1Hph1H int . ~2.1!

Here the electronic partHe is given by

He5
p2

2m
1Vconf~r !, ~2.2!

wherep and r are momentum and position of an electro
respectively.m is electron mass.Vconf(r ) is the confinement
potential for an electron:

Vconf~r !5H ` for r .R

0 for r ,R,
~2.3!

wherer 5ur u.
The solution of the electronic part is well known and

obtained from the Schro¨dinger equation Hec
e(r )

5Eece(r ), which yields the wave function and the energy
follows:

cnlm
e ~r !5A 2

R3 j l 11~knlR!
j l~knlr !Yl

m~u,w!,
~2.4a!

Enl
e 5

\2knl
2

2m
.

Here the state is specified by the set of quantum num
(n,l ,m). The functionsj l(x) andYl

m(u,w) are the spherica
Bessel function and the spherical harmonics, respectiv
knl is defined byknl5m ln /R, wherem ln is the nth zero of
the spherical Bessel function of orderl ; j l(m ln)50. Espe-
cially for the ground state~1,0,0!, m01 is equal top and then
the wave functioncg

e5c100
e and the energyEg

e5E10
e are

given by, respectively,

cg
e~r !5A p

2R3 j 0~pr /R!

~2.4b!

Eg
e5

\2p2

2mR2 .

The LO phonon HamiltonianHph and the electron-LO
phonon interaction HamiltonianH int are written by6,10,11

Hph5(
s,s

\vssass
† ass ~2.5!

and

H int5(
s,s

\vssvss@Sss~r !ass1H.c.#, ~2.6!
al
u-

n

,

s

rs

y.

respectively, where

Ss1~r !5H j l~knlr !Yl
m~u,w! ~r<R!

0 ~r .R!
~2.7!

and

Ss2~r !5H ~r /R! lYl
m~u,w! ~r<R!

~R/r ! l 11Yl
m~u,w! ~r .R!.

~2.8!

Heres51 and 2 denote the bulk-type and the interface-ty
LO phonon, respectively. Another indexs is given by s
5(n51,2,3,...;l 50,1,2,...;m50,61,62,...,6 l ) for the
bulk-type phonon ands5( l 51,2,3,...;m50,61,62,...,
6 l ) for the interface-type phonon.ass

† (ass) is the creation
~annihilation! operator of thess mode.

The energy for the bulk-type LO phonon\vs1 is equal to
the bulk LO phonon energy\vLO , being independent of the
index s. The interface phonon energy\vs2 is given by

\vs25\v Il[F ed1~ed1e0!l

ed1~ed1e`!l G
1/2

\vTO for any m,

~2.9!

where\vTO is the transverse optical phonon energy rela
with \vLO by the well-known Lyddane-Sachs-Teller relatio
vLO

2 /vTO
2 5e0 /e` . e0 and e` are the static dielectric con

stant and the high-frequency dielectric constant, respectiv
ed is the dielectric constant of the nonpolar matrix that s
rounds the dot sphere.

For the bulk-type phonon,vs1 is written as

vs15A 8pa1Rp

m ln
2 j l 11

2 ~m ln!R
, ~2.10!

where Rp is the polaron radius defined asRp

5A\/(2mvLO) and a1 is the dimensionless electron-bulk
type phonon coupling constant, which is defined by

a15
e2

2Rp\vLO
S 1

«`
2

1

«0
D .

For the interface type phonon,vs2 is written as

vs25A4pa2Rp

R
, ~2.11!

wherea2 is defined by

a25a2~ l ![a1S Al«`

l«01~ l 11!«d
D 2S \vLO

\v Il
D 3

.

By following Lee-Low-Pines theory, the unitary operat
in the electron-LO phonon interaction system is defin
as21–23

U5expF(
s,s

@Fss* ~r !ass2Fss~r !ass
† #G . ~2.12!

The transformed HamiltonianH̃5U21HU is given by

H̃5H̃01H̃11H̃2 , ~2.13!
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where H̃0 , H̃1 , and H̃2 are zero-phonon, one-phonon, a
two-phonon terms:

H̃05
~p1 j !2

2m
1Vconf~r !1(

s,s

\2u¹Fssu2

2m

1(
s,s

\vssuFssu22(
s,s

\vss@vssSssFss1H.c.#,

~2.14!

H̃152
~p1 j !•J

2m
1(

s,s

@¹2Fssass
† 2¹2Fss* ass#

2m

2(
s,s

\vss~Fss* ass1Fssass
† !

1(
s,s

\vss@vssSssass1H.c.#, ~2.15!

and

H̃25(
s,s

\vssass
† ass

1
1

2m (
s,s

(
s8,s8

@~¹Fss!~¹Fs8s8!ass
† as8s8

†

1~¹Fss* !~¹Fs8s8
* !assas8s8

1~¹Fss!~¹Fs8s8
* !ass

† as8s8

1~¹Fss* !~¹Fs8s8!as8s8
† ass#. ~2.16!

Here, we have used the abbreviations

J52 i\(
s,s

@ass
† ¹Fss2ass¹Fss* #

and

j52
i\

2 (
s,s

@Fss* ¹Fss2Fss¹Fss* #. ~2.17!

The functionFss is chosen in the following form:

Fss~r !5vss f ssSss* ~r !1vssgss . ~2.18!

As the trial function to the transformed stateuC&, we choose
the product form of the electronic stateuF& and the zero-
phonon stateu0&, that is uC&5uF&u0&. Then the expectation
value of the Hamiltonian is given by

E5^CuH̃uC&5^FuH̃0uF&. ~2.19!

The choice of only the first term in the right-hand side
Eq. ~2.18!, i.e.,Fss5vss f ssSss* (r ), corresponds to the inter
mediate electron-phonon coupling method. The intermed
coupling method works well in the larger dot size with t
weak and the intermediate electron-phonon coupling, wh
the electronic energy differences are smaller than the
phonon energy\vss . The choice of only the second term o
the right-hand side of Eq.~2.18!, i.e., Fss5vssgss , corre-
f

te

re
O

sponds to the adiabatic method. The adiabatic metho
valid when the relevant electronic state is well separa
from other electronic states. This situation is realized in
very small radius of the quantum dot as well as in t
strongly localized state due to the strong electron-pho
interaction. ThusFss , given by Eq.~2.18!, is expected to
yield reasonable results for polaron effects for the wide ra
of the dot radius and the electron-phonon coupling stren
These points will be clearly seen in analysis and the num
cal calculation in the next section.

For simplicity we choose that bothf ss and gss are real
and have an inversion symmetry. From the variational c
ditions]^FuH̃uF&/] f ss50 and]^FuH̃uF&/]gss50, we ob-
tain the variational parametersf ss andgss as

f ss5
Bss2Ass

2

Bss1Css2Ass
2 , ~2.20!

gss5
AssCss

Bss1Css2Ass
2 . ~2.21!

HereAss , Bss , andCss are defined by

Ass5^FuSss~r !uF&,

Bss5^FuuSss~r !u2uF&

and

Css5
\

2mvss
^Fuu¹Sss~r !u2uF&.

For the electronic stateuF&, we choose the product form
of cg

e in Eq. ~2.4b! and the Gaussian function including
variational parameterb:

F~r !5
1

AN
j 0~pr /R!e2br 2

. ~2.22!

Here N is a normalization constant, given byN
54p*0

Rdrr 2 j 0
2(pr /R)e22br 2

. The Gaussian function in
F(r ) describes the nature of the localization of the polar
in the strong electron-LO phonon coupling case.

The polaron energyE is given by the minimization of the
expectation value of the energy with respect to the va
tional parameterb, i.e.,

E5min
b

H K FU p2

2m
1Vconf~r !UF L

2(
s,s

\vssvss
2 FBss~Bss2Ass

2 !1Ass
2 Css

Bss1Css2Ass
2 G J .

~2.23!

Then the polaron energy shift is defined by

DE5E2 K cg
eU p2

1Vconf~r !Ucg
eL . ~2.24!
2m
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TABLE I. Values of physical parameters for typical semiconductors dots; electron massme , LO phonon energy of bulk\vLO , the static
dielectric constante0 , the high frequency dielectric constante` , the lattice constanta, the electron-phonon coupling constanta1 , and the
polaron radiusRp . a2( l ) and\v Il are the coupling constant of the electron-interface phonon and the interface phonon energy with ml ,
respectively: a dot is surrounded by vacuum (ed51) or the Pyrex 1710 (ed56.0). Values of material parametersme , \vLO , e0 , e` , and
a are taken from Ref. 11 for CuCl and CdSe and from Ref. 26 for other materials.

KBr TlCl CuCl CdSe ZnS GaAs

me 0.369 0.424 0.504 0.13 0.34 0.067
\vLO 20.97 21.464 25.64 26.54 43.18 35.33
e0 4.52 32.7 7.9 9.3 8 12.4
e` 2.39 4.76 3.61 6.1 5.1 10.6
a1 3.051 2.943 2.460 0.460 0.736 0.070
Rp ~Å! 22.19 20.46 17.17 33.23 16.11 40.11
a ~Å! 6.59 3.84 5.41 5.2 5.41 5.65
@for ed51 ~vacuum!#

\v I1 18.58 18.55 23.02 25.39 40.91 34.92
\v I2 18.97 19.14 23.51 25.62 41.36 35.01
\v I` 19.46 19.81 24.08 25.89 41.87 35.11
a2(1) 0.589 0.086 0.452 0.153 0.225 0.039
a2(2) 0.325 0.040 0.235 0.082 0.121 0.021
@for ed56.0 ~Pyrex 1710!#
\v I1 16.34 13.37 19.57 23.32 37.28 33.94
\v I2 16.61 14.26 20.07 23.66 37.85 34.13
\v I` 17.07 15.53 20.85 24.17 38.72 34.39
a2(1) 0.1350 0.1379 0.1821 0.0557 0.0743 0.0148
a2(2) 0.1284 0.1139 0.1689 0.0533 0.0710 0.0146
th
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III. ANALYSIS AND CALCULATION

A. Weak electron-phonon coupling case

In this case, we expect that the Gaussian function in
electronic wave function plays no role, and then we may
b50.

Let us consider the large radius limit, i.e.,R→`. In this
limit the contribution of the interface phonon is negligible.
is enough to consider bulk-type phonons with largen in the
phonon modes5(n,l ,m) and then the relations ofAs1

!Bs1 , Cs15Rp
2ks

2Bs1 andvs158pa1Rp /R hold. Thus, the
variational parametersf s1 andgs1 in the unitary transforma-
tion Eq. ~2.12! reduce to

f s15
1

11Rp
2ks

2 ~3.1!

and

gs150. ~3.2!

Therefore we have the polaron energy shift:

DE52\vLO(
s

vs1
2 Bs1

11Rp
2ks

2 . ~3.3!

By using the relation between the spherical wave and
plane wave

j l~kr !Yl
m~u,w!5

1

4p i l E dVkYl
m* ~uk ,wk!e

ik•r, ~3.4!
e
et

e

we can show( l ,mBs151/4p. Then, by changing the sum
over n into the integral ofk, DE in the large dot limit is
obtained as

DE52\vLO

R

p E
0

`

dk
2a1Rp

R

1

11Rp
2k2 52a1\vLO ,

~3.5!

which is the well-known polaron energy shift in the wea
electron-phonon coupling case in the bulk.21,24

In the small radius limit, we haveCss@Ass , Bss . Thus
f s15 f s250, gs15As1 , and gs250 are obtained, and the
the polaron energy shiftDE is given by

DE52\vLO(
n

v ~n,0,0!1
2 A~n,0,0!1

2 .2\vLOv ~1,0,0!1
2 A~1,0,0!1

2 ,

~3.6!

which is equal to the result by the adiabatic method.11 We
note that the above weak-coupling polaron energy shiftsDE
in the large and small dot limits, given by Eqs.~3.3! and
~3.6! can be derived from the second-order perturbation
shown in the Appendix.

B. Strong electron-phonon coupling case

In the case of the strong electron-phonon interaction
electron localizes at a small region. If the radius of this
gion is much smaller than the dot radius, the electronic w
function F(r ) reduces to (8b3/p3)1/4 exp(2br2). Then for
the largeb in a large dotCs1@As1 , Bs1 . Thus f s1 and f s2
are negligible andgs15As1 and gs250 in Eq. ~2.18! are



ea

ng

c
n
o
te

or

do
ar
n
o

l-
as

fo
tio
y
ria
a

he
a-

rba-

has
pe

e
rgy
e
ed
en-
of

ion
d to
lts
es
out

ly

he
on

tio

th

hed
ults
s

7990 PRB 58KAZUNORI OSHIRO, KOJI AKAI, AND MITSURU MATSUURA
obtained. This yields the same results in the adiabatic tr
ment of Ref. 11. Then the polaron energyE is given by

E5min
b

H 3bRp
2\vLO2

2a1RpAb

Ap
\vLOJ . ~3.7!

Here the minimum is achieved atb5a1
2/(9pRp

2) and the
polaron energy shiftDE is given by

DE52
a1

2

3p
\vLO , ~3.8!

which is the well-known polaron energy shift of the stro
electron-phonon coupling system in the bulk.24,25

C. Application to GaAs, CdSe, and CuCl dot systems

It has been shown in the above that the present theory
give correct results in both limits of the weak and the stro
electron-phonon coupling cases. Thus, we expect that
method, which combines the adiabatic method and the in
mediate coupling method, can give reasonable results
wide regions. To confirm this point and compare our the
with other authors’ published theories,10–12 we compute the
polaron energy shift of GaAs, CdSe, and CuCl quantum
numerically. The physical parameters for the calculation
taken from Ref. 26 for GaAs and from Ref. 11 for CdSe a
CuCl, which are given in Table I. We note that the degree
freedom for the bulk-type phononsN is limited in dot system
and then the summation over bulk-type phonon modes
5(n,l ,m) in the calculation is limited toN, approximately
given by the volume of the dot divided by the unit cell vo
ume. However, it is shown that this limitation of sum h
little effect on the results as seen below.

First, we discuss polaron energy shift in a GaAs dot,
which numerical results by the second-order perturba
were shown by Kliminet al.12 The calculated polaron energ
shifts as a function of the dot radius by the present va
tional method and the second-order perturbation method

FIG. 1. The polaron energy shiftDE as a function of the dot
radius R for GaAs quantum dot. The solid line stands for t
present variational method, the short-dashed line for the variati
method without limitation of sum over bulk-type phonon modess,
and the long-dashed line for the the second-order perturba
theory without limitation of sum over bulk-type phonon modess.
In the inset the contribution of the interface type phonon in
polaron energy shift is shown.
t-

an
g
ur
r-
in
y

t
e
d
f

r
n

-
re

shown in Fig. 1. In the calculation we takeed52 as in Ref.
12. The solid line is the result of the variational method, t
short-dashed line for the variational method without limit
tion of sum over bulk-type phonon modess and the long-
dashed line shows the result of the second-order pertu
tion, which is calculated from the following expression:

DE~2!52 (
n,l ,m

(
s,s

z^cnlm
e u\vssvssSss~r !ucg

e& z2

Enl
e 1\vss2Eg

e .

~3.9!

Here the calculation of the second-order perturbation
been performed also without the limitation of the bulk-ty
phonon modes.

In Fig. 1 we see that the limitation of sum over bulk-typ
phonon modes yields little effects on the polaron ene
shift. One might consider this limitation is effective in th
polaron energy shift in the small dot. However, it is not
that the rapid increase of the magnitude of the polaron
ergy shift for small radius comes from the contribution
only the single bulk-type modes5(n51,l 50,m50).

As GaAs crystal is a weak electron-phonon interact
system, the second-order perturbation theory is considere
work well. As seen in Fig. 1, the difference between resu
by two methods is small and our variational method giv
reasonable results for any dot size. It should be pointed
that Klimin et al.12 calculated the polaron energy shift on

al

n

e

FIG. 2. The polaron energy shiftDE as a function of the dot
radiusR in the case of~a! CdSe and~b! CuCl quantum dot. The
solid line stands for our variational method, and the long-das
line for the intermediate coupling method. The dotted line is res
of the method of Pan and Pan~Ref. 10!, and the short-dashed line i
results of the method of Mariniet al. ~Ref. 11!.
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for a small radiusr<1.5Rp . In the region, the magnitude o
the polaron energy shift decreases monotonously with
increase of the dot radius. However, it is seen from Fig
that for the further increase of the dot radius, the magnit
of the polaron energy shift reaches to the minimum and t
increases gradually to approach the bulk valuea1\vLO . The
inset in Fig. 1 shows that the contribution of interface-ty
phonons in the polaron energy shift is very small.

Next we discuss the polaron energy shift in the case
CdSe and CuCl, for which numerical results of the electr
phonon interaction energy were shown in Ref. 11. The c
culated polaron energy shifts are shown in Fig. 2. The do
line in Fig. 2 is the result of the method of Pan and Pan10 and
the short-dashed line is the result of the method of Ma
et al.11 In both works they used the adiabatic method, wh
corresponds to the consideration of only the second term
the right-hand side of Eq.~2.18!, i.e., Fss5vssgss . Marini
et al. included the localization effect of the electronic wa
function due to the strong electron-phonon interaction in
same way in Eq.~2.22! and Pan and Pan did not. The lon
dashed line is the result of the intermediate coupling met
in which only the first term in the right-hand side of E
~2.18!, Fss5vss f ssSss , is kept. It is clearly seen that ou
variational method gives a much better result than the o
previous adiabatic methods10,11 in all the regions.

It is also clearly seen in Fig. 2 that the inclusion of bo
the intermediate and the adiabatic terms inFss is essential to
describe the polaron in a spherical quantum dot. This is c
trasted with the quantum well system, where only the int
mediate term describes well the polaron energy shift for
wide range of the well width.27 The difference arises from
the fact that, in quantum-well system, there are continu
free states in thex-y plane even if the well width in thez
direction becomes small and, in the quantum dot system,
electronic energy difference becomes much larger than
phonon energy for a small radius. This makes the adiab
term to be very important for the small dot.

Figures 1 and 2 show that with increasing the dot rad
the magnitude of the polaron energy shifts decrease rap
from a large value, via a minimum and then increase to

FIG. 3. Contribution of the bulk and the interface phonon for t
polaron energy shiftDE as a function of the dot radiusR. The solid
line stands for the polaron energy shiftDE, the dashed line for the
contribution of the bulk type phonon, and the dotted line for t
contribution of the interface type phonon. The physical parame
are set ase0 /e`52, ed /e`51.5, anda151. The inset shows the
polaron energy shiftDE in the range of small dot radiusR.
e
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proach gradually to the bulk value. The large magnitude
the polaron energy shift for a smaller dot is due to a ex
tence of an electron even if the dot radius becomes v
small, which yields the stronger coupling between an el
tron and phonon. The gradual increase in the magnitud
the polaron energy shift for the large dot is caused by
increase of the contribution of nonadiabatic processes w
increasing the dot radius. These two effects yield a minim
of the magnitude of the polaron energy shift.

D. General properties of the polaron in a spherical dot

Now, changing physical parameters for the system v
ously, we calculate polaron energy shifts and discuss gen
properties of the polaron in a spherical quantum dot syst
atically. The present system is characterized by the follow
seven physical parameters: electron massm, the static di-
electric constante0 , and the high-frequency dielectric con
stante` of the inside of the dot, the dielectric constanted of
the outside of the dot, the bulk LO phonon energy of the
material\vLO , the dot radiusR, and the lattice constant o
the dot materiala. Values of these parameters for the typic
semiconductors are given in Table I, together with some
terface phonon energies and electron-interface coupling c
stantsa2( l ). If we takeRp and\vLO as the units of length
and energy, then properties of the system are character

rs

FIG. 4. ~a! The polaron energy shiftDE and~b! the expectation
value ^r & of r as function of the dot radiusR, taking the electron
bulk type phonon couplinga1 as a parameter. The dash-dotted li
stands fora159, the long-dashed line fora156, the short-dashed
line for a153, and the dotted line fora151. The solid line stands
for R/2 in Fig. 4~b!. The other physical parameters are set
e0 /e`52, ed /e`51.5.
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by the following five physical parameters:a1 , e0 /e` ,
ed /e` , R, anda. We seta/Rp50.2 as a typical value. To
discuss general properties of an electron under the influe
of the LO phonon the four physical parametersa1 , «0 /«` ,
«d /«` , andR are changed in the wide range, while typic
values in Table I are kept in mind. The results of numeri
calculation of the polaron energy shift are plotted in Fig
3–5.

To see the role of both bulk- and interface type-phono
for the polaron energy shift, the polaron energy shiftDE as a
function of the dot radiusR is plotted in Fig. 3 for the fixed
values of«0 /«`52, «d /«`51.5, anda151. As shown in
Fig. 3 the contribution of the interface-type phonon is ve
much smaller than the contribution of the bulk-type phon
In passing it is noted that, in interface phonon effects, o
the first few terms in the summation ofl contribute. This is
expected from the values ofa2( l ) in Table I together with
the limiting valuea2(`)50.

In Fig. 4 the polaron energy shifts and the expectat
value^r &5^Fur uF& for the four values ofa151, 3, 6, and 9
are plotted as a function of the dot radiusR, when the values
of «0 /«`52 and «d /«`51.5 are fixed. In the case ofa1
51 and 3 the polaron energy shift approaches to2a1\vLO ,
which is the result of the theory of the weak coupling. On t
other hand, for the strong electron-phonon coupling cas
a159, the polaron energy shift is smaller than2a1\vLO in
R/Rp>4. The behavior of̂ r & in Fig. 4~b! shows the impor-
tance of the modification effect of the electronic wave fun
tion due to the electron-phonon coupling. Without the mo
fication, i.e., with b50, we have ^r &5R/2. Thus the
deviation from the line of̂ r &5R/2 shows the importance o
the modification. It is seen that for larger electron-phon
couplinga1 and the larger dot radius the modification effe
becomes important. Especially in the case ofa156 and 9
the effect becomes large, which reflect the localization of
electron due to the strong electron-phonon coupling.

Figure 5 shows the polaron energy shift as a function
the dot radiusR for the three values of«d /«`55.0, 1.5, and
0.2 and the fixed values of«0 /«`52 anda151. It is seen
that the ratio«d /«` , i.e., the effects of the dielectric consta
outside the sphere, has only a small influence upon the
laron energy shift.

FIG. 5. The polaron energy shiftDE as a function of the dot
radius R, taking the ratio of the dielectric constantsed /e` as a
parameter. The solid line stands fored /e`52, the dashed line for
ed /e`51.5, and the dotted line fored /e`51. The other physical
parameters are set ase0 /e`52 anda151.
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IV. CONCLUSION

We have discussed the LO phonon effects of an elec
in a spherical quantum dot, embedded in a nonpolar ma
We take account of both bulk-type and interface-type L
phonons being characteristic in the system. The develo
variational method combines the adiabatic method and
intermediate coupling method. The present method has b
shown to be valid for the wide range of the dot size and
electron-phonon coupling strength. The above combina
is essential to obtain this wide applicability. It is seen in t
present wide range of the calculations that the bulk-ty
phonons have a dominant role and the interface phon
yield only very small effects.

Finally, we mention remaining problems related to t
present work. There are many experiments in the quan
dot system whose barrier region has LO phonons, such
system of a CuCl dot in NaCl crystal. Thus it is necessary
studying the electron-phonon coupling effects in this type
system, for which the present variational method is expec
to work well. Also, the present method can be extended
treat the exciton interacting with LO phonons in a spheri
quantum dot, whose electronic and optical properties are
rently attracting very much attention.
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APPENDIX: THE SMALL AND THE LARGE DOT LIMIT
IN THE SECOND-ORDER PERTURBATION

In this appendix we discuss the polaron energy s
DE(2) by the second-order perturbation in Eq.~3.9! in the
both small and large dot limits.

First we show that Eq.~3.9! reduces to Eq.~3.3! in the
large dot limit. We can rewriteDE(2) in Eq. ~3.9! in the
form28

DE~2!52(
s,s

u\vssvssu2

3^cg
euSss* @\vss1He2Eg

e#21Sssucg
e&. ~A1!

In the large dot limit the interface phonon contribution c
be neglected and then

DE~2!52 (
n,l ,m

u\vLOvs1u2

3^cg
euSs1* @\vLO1He2Eg

e#21Ss1ucg
e&. ~A2!

By using the relation between the spherical wave and
plane wave in Eq.~3.4!, DE(2) can be written as

DE~2!52 (
n,l ,m

u\vLOvs1u2

~4p!2 E dVk8E dVk

3Yl
m* ~uk8 ,wk8!Yl

m~uk ,wk!

3^cg
eue2 ik8•r@\vLO1He2Eg

e#21eik•rucg
e&.

~A3!

Using the relation
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e2 ik•rHee
ik•r5

~p1\k!2

2m
1Vconf, ~A4!

andHeucg
e&5Eg

euc&, we obtain

@\vLO1He2Eg
e#21eik•rucg

e&

5eik•rF\vLO1
\2kln

2

2m
1

\k•p

m
1He2Eg

eG21Ucg
eL
~A5!

5eik•r(
j 50

` F\vLO1
\2kln

2

2m G2~ j 11!S \k•p

m D jUcg
eL .

~A6!

Then, keeping the first term in the summationj and using the
relation in Eq.~3.4!, we can obtain
. B

B

s

DE~2!52 (
n,l ,m

u\vLOvs1u2

\vLO1\2kln
2 /~2m!

^cg
euuSs1u2ucg

e&.

~A7!

This is the result in Eq.~3.3!, which yields the bulk polaron
energy shift2a1\vLO .

Next we consider the polaron energy shiftDE(2) in the
small dot limit. In this limit uEnl

e 2Eg
eu@\vLO for (n,l )

Þ(1,0) and thus from Eq.~3.9! we obtain the polaron energ
shift

DE~2!52\vLO(
n

uv ~n,0,0!1u2z^cg
euS~n,0,0!1ucg

e& z2

.2\vLOuv ~1,0,0!1u2z^cg
euS~1,0,0!1ucg

e& z2, ~A8!

which is the same result in Eq.~3.6!.
es
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