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The binding energies of excitons bound to silicon donors in GaAs/@d,As quantum-wel(QW) struc-

tures have previously been investigated experimentally as a function of the well width by several groups. The
most comprehensive data show a clear maximum for a well width of about 100 A, and a steady decrease for
widths above this. Existing theories give qualitative agreement with the decrease in binding energy with
increasing well width. However, no theory predicts a maximum near 100 A. Furthermore, the quantitative
agreement is poor for all well widths. We develop a theoretical model using a density-functional approach
which correctly predicts the maximum in the binding energy at 100 A. The agreement with the experimental
results is significantly better for all well widths than that of existing models. Photoluminescence experiments
have also been carried out on samples with a wide range of different doping profiles in order to clarify the
previous experimental results and provide additional information on the effect of the position of the impurity
in the QW.[S0163-182@08)05036-X

I. INTRODUCTION ticle correlation effects, for values af varying between 8
and 150 A. A clear maximum ifEyp was found, but at a
Much experimental data exists on the donor-bound excivalue of about 15 A rather than 100 A. This is much smaller

ton (D°X) in GaAs/Ga_ Al As quantum well§QWs). Sev- than that observed experimentally. Also, the magnitude of

eral investigations have centered on the variations of th1® Pinding energy and its variation with well width only
binding energyEyp as a function of the well widttd for give qualitative agreement with the available experimental
XD

; . data.
3
both single QWS(Ref. 3 and multiple QWS® as summa- The purpose of this paper is to describe details of a theo-

rized in Ref. 4.3 The most comprehensive results are those @fical model involving a nonvariational approach to density-
Reynoldset al,” who investigated impurities both at the cen- fynctional theory. Photoluminescence experiments have also
ter and edge of a QW in multiple-quantum-well samples withbeen undertaken on samples with a range of doping profiles
an aluminum concentration=0.25. Their results exhibit a in order to investigate the dependence of the binding energy
clear maximum in theEyp-d curve ford=100 A. Above upon the positions of the impurities in the wells, and also to
this the binding energy steadily decreases. The results dfelp clarify the previous experimental picture. We use
Refs. 1 and 2 are approximately 0.2—0.3 meV lower tharinolecular-beam-epitaxy-grown  GaAs/GaAl,As QW
those of Ref. 3, although insufficient samples were includeg@mples withk=0.33, well widthsd in the range 75-170 A,

to make any clear deductions on the variation witht is not ~ &nd barriers sufficiently wide to prevent interaction between
clear how much of this difference is due to differing sample'mpu”ty centers. The experimental and theoretical values are

characteristics; the aluminum concentratiois 0.22 in Ref. ~compared with each other and with the previously published
1 and is not s]oecified in Ref. 2 values. Our experimental results are found to be very close to

The first theoretical calculations of tH°X binding en- those of Ref. 3 for all well widths, even though the latter are

: . : for x=0.25 and with barriers of only 100 A. Both sets of
ergy in quantum wells were by Kleinmanyho used a six-

. . " __results exhibit a pronounced maximum at around 100 A.
parameter wave function to determine the energy variationgy |, theory correctly predicts a maximum at this position.

ally using a two-dimensional model. However, it Was a|so the magnitudes of binding energies predicted agree
necessary to include an artificial nonvariational parameter ifye|| with the experimental values at all well widths, and are
turning point in the binding energy. Halféhen calculated Section Il describes the results obtained from the experi-
the binding energy for the finite barrier problem using aments. Sections Ill-V give some background details of
variational approach within a density-functional formalism. density-functional theory and how it may be applied to the
These results show a possible maximum around 60 A, bub®X system. Section VI describes the calculation of the total
this is not as clear as it is at the lower limit of their calcula- energy of the system, and Sec. VIl compares our results with
tions. Very recently, Liu and Korfgcarried out variational the original and current experimental data and the previous
calculations using a two-parameter wave function for impu-theoretical calculations. A preliminary report of this work
rities at the center and edge of a QW incorporating interparwas presented by Pyat al.’
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Il. EXPERIMENTAL DETAILS — T T T T o

Optical spectroscopy experiments have been carried out PL
on silicon-doped GaAs/GaAlp3As multiple-QW samples T=4K
of between 30 and 150 periods, and also on a single-QW d=153A
sample. The samples were grown at Nottingham using a
Varian GEN Il molecular-beam-epitaxy machine on a semi-
insulating GaAs substrate followed by a pure GaAs buffer
layer. The well widths were in the range 75-170 A. Some
samples were uniformly doped, either across the whole well
or in the central third, with a silicon concentration of
106 cm~3. Samples with-doping at various positions in the
QW to a Si concentration of #®cm™2 (or 2.5x 10'° cm™2
in one samplewere also investigated. One sample was also
constructed with the central third Si doped as above, and
with the outer thirds doped with a lower Si concentration of
2x 10" cm™3. The barrier layers were arranged to be suffi- a0
ciently thick that the ground-state wave function in one well — ' L
has little overlap with those in adjacent wells. 7900 7950 8000 8050 8100 8150
PhotoluminescencéPL) experiments were carried out at Wavelength (A)
very low temperatures using an excitation from the 5145-A
line of a cw argon-ion laser. The emitted photons were anag
lyzed through a grating monochromato_r of focgl_ Ier!gth 0.64_ 93 A and the other relates to a similar sample containing 150
m, _and. detected after standard lock-in amplification py 8QWs with d=153 A. The peaks labeledp; and Xq;pn; Corre-
liquid-nitrogen-cooled Ge detector. Both the free-excitongpong to free-exciton transitions, and héX peak is the recombi-
transition energyXe;pn, and theDPX transitions have also  pation of the neutral bound exciton.
been observed in the single QW sample by thermally de-
tected optical absorption and by reflectivity. The identifica-
tion of the Xq;hny and DPX PL recombination peaks were

Xe,hh,

Xe,lh,

)

PL
T=2K
Xe,lh, D°X d=93A

Xe,hh,

PL Intensity (arbitrary units, linear scale)

FIG. 1. The PL spectra from two samples; one is from a
aAs/Ga gAlg3As sample in which there is one QW with

three variational parameters and evaluation of three Hartree

; terms. An alternative approach is to use density-functional
checked using temperature-depende@-300 K and  yheqny which is a variational-type method tailored specifi-

excitation-intensity-dependent PL experiments. Bradoped cally to many-body systems. its roots lie in the Thomas-
multiple-quantum-well samples in which the silicon atomsge i method of treating an inhomogeneous electron gas.
were positioned away from the QW center have given estiyohennerg and Koffinshowed that all aspects of the elec-

mates of the decrease @&xp when the doping position onic structure of a system in its ground state may be de-
moves from the center to the edge of the QW. This decreasg;ineq by the electron density. Using this work as a basis,

depends upon the QW thickness; the magnituc/j&eﬁs3 A Kohn and Shafwere able to formulate a particularly useful
(in wavelength unitsfor a well of thickness 100 A, and 0.5 ¢,y of density-functional theory involving single-particle

A forga well of thickness 170 A, in agreement W(i)th Reynolds gqations to be solved self-consistently. Density-functional
etal” In samples of uniformly doped wells, tHe"X transi-  heory is an attractive approach as it includes both exchange

tions energies are identical to those in samples @loping 5 correlation effectgalbeit approximately while main-
at the center of the well, and therefore can be assumed tl%ining the simplicity of self-consistent equations.

arise from Si atoms at the center of the QW. Some typical PL
spectra are given in Fig. 1. TH2°X feature shown consists

of a double line from Si atoms located at the ceritewer PRES

energy and an edge of the welhigher energy. Figure 2 % . :

shows the measured binding enerdi® of the D°X center Eosl™

as a function of the QW thickness. The results of RefO3 §

are also shown for comparison. It can be seen that both sets 2,50

of measurements are very similar, despite the slightly differ- "';, """"

ent sample characteristics. In particular, the maximum in the £ 15l

binding energy for a QW of width of about 100 A is clear in .’J’SJ '

both sets of results. The results of Refs. 1 and 2 are not given

in this figure, although a comparison of them and the results 100 6 80 100 120 140 160 180 200
Of Ref 3 can be found n Ref 4 Well Width d(A)

FIG. 2. The binding energfyp for a DX center at the center
ll. DENSITY-FUNCTIONAL THEORY of a Ga_,Al,As single QW a function of the QW widtd. The
solid points® are the current experimental values, and the solid
line is the current theoretical calculatighoth for x=0.33. Also
Treatment of theD®X problem is intrinsically difficult  shown are the experimental results of RefC8 and the theoretical
because it is necessary to specify the positions of three paresults of Refs. §short dash 4 (long dashx=0.25, and 6(— —,
ticles. A strict variational calculation requires a minimum of x=0.4; —.—.—.— x=0.2).

A. Review and background
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Density-functional theory has been applied to X +1
system in bulk semiconductors by a number of autfior¥! Uee=m,
and generally good agreement with experiment has been ob-
tained. More recently, Xia and Quitth used density- 1
functional theory to calculate the binding energies of D ueh:uhe:m or up,=0. (3.9

centers in quantum wells subject to a magnetic field. It is

expected that, for a multiparticle theory of this type, rela-The first term on the right-hand side represents the Coulomb
tively greater accuracy will result as the number of particlespteraction between the particles, and the last term represents
in the complex increases. Thus an improvement in the relame interaction between the particle and the impurity center;

tive accuracy is expected by moving from the two-particlethe minus sign applies to the electron and the positive sign to
complex, as studied by Xia and Quifihto the three-particle  he hole.

D°X complex. As mentioned earlier, Hafifesed a density- | general, the Kohn-Sham equations are of the form
functional formalism to study thé°X center, but only

within a variational ansatz. In the following analysis, we will Hett o Vi (P, 2) = € o Vi o(p,2), (3.5
employ the full multicomponent form of the Kohn-Sham ) . .
equations within the local-density approximation. whereV¥; ,(p,z) are a set of single-particle wave functions,

and ¢ , the corresponding energy levels. The ground-state

B. Application to DX in a QW particle densities are then written in the form

The D%X system involves two electrons and a hole. As
wide barriers were present in the samples studied, penetra- na(p,z)=2i ¥ia(p,2)%, (3.6
tion into other wells is negligible, and we can model the
system in terms of a single quantum well. For simplicity, thewhere the sum is carried out over all the occupied single-
hydrogenic impurity ion will be assumed to be located at theparticle states. For the ground state of BEX complex,
center of the quantum well. Therefore for each particle, théhere is only one single-particle state occupied for each par-

QW potential is ticle (the two electrons are in their lowest-energy states with
opposing spins Consequently, the indek is superfluous
0 if —d/2<z<d/2 here and will be subsequently omitted.
Vow.a(2)= Vo, Otherwise, @D

. C. Exchange-correlation potential
wherea = e andh for an electron and hole, respectively. The g P

z axis is chosen to lie along the direction of growth. For To solve the Kohn-Sham equations, a form for the
Ga _,Al,As/GaAs materials® the gap mismatch IAE, exchange-correlation potential is needed. We thus follow
=1.24% eV, and the barrier heights a¥%=0.65AE, and Wunsche and Henneberdérwho derived simple forms for
Von=0.3RAE,. the exchange-correlation potential using the local density and
It is necessary to consider the Coulomb interactions beSlater approximations(as discussed in Ashcroft and
tween the two electrons and also between the electron arfermin,'® for examplg. They applied their potentials to the
the hole; also the exchange-correlation potentialP®X System in bulk semiconductors by writing the
Vyc.olNe,Np], which are functionals of the electron and hole exchqnge-correl_ation contribution to the total energy, in di-
densitiesn, andn;,, must be introduced. The precise forms Mensionless units, as
of these functionals will be discussed shortly. The effective
Hamilt_onign for one of the single particles in the Kohn-Sham Exc[ne(r)rnh(r)]:f &3 e no(r),nn(1)], (3.7
basis is given by

where

m
Hett o=| — — VZ+Vow o(2) + Ve o(p,2) |, (3.2
ta=| T, VT Vewa DT Venapi2) o B2 ]P0+ sl

wherem, are the electron and hole effective masses, disyith
tances are given in terms of the effective Bohr radiys

(=4meh?/mee?) and energy in terms of the effective Ryd- ne|® np |3
bergR(=m.e*/2:2(47€)?), and wheree is the background ex[Ne,Mn]=— 1-154E< Nel .| TMn N_J ) 39
dielectric constant. In Eq(3.2), the effective potential ¢

Veito(p:2) in polar coordinatesg,z) for particles atr andr’ and

is

e[ Ne,Np]= — Ben®— Bun{®— Ber(neny) 2 (3.9

Vettalp,2)= > f dr'ugg(r—r")ng(r’) N andN;, are the total numbers of electrons and holes in the
p=eh system(2 and 1, respectively, fob°X). The coefficients in
Eq. (3.9 are defined by

—+_ch,a[ne!nh]I (33)

Vp?+ 2% Be=Bs(Ne), Bn=Bs(N)V1+1o,  (3.10

where and
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[1+0_2] 1/2 and
Ber=0.7610.8+ o.z( o ) — Be—Bn, (3.11)
-m,
where Helap2)= 1= Vi + Vet p.2) 4.2
0.0985 if N,=1 HE (2) is the Hamiltonian of the component of typein its
Bs(N)=10.1480 if N, >1, (812 respective quantum well. The solution of this Hamiltonian is
] . straightforward, and is discussed later. We denote the sub-
and wheres=m,/m; is the mass ratio. _ band wave functions and energies resulting from such a so-
The above results arise from applying to nonuniform sysqytion by ¢,,.(z) and E,,, respectively, wheren
tems the result which would be obtained by treating the elec— 12, ... . He?,a(l),z) is the’part of the effective Hamil-

trons and holes as free particles. Wunsche angynian which couples the subband wave functions.
He_nnebergéf calculated the cqrr'ellatlon energy by' interpo- |4 order to proceed, the single-particle wave functibp
lating the fit between the limiting cases of single- \ith angular momentum quantum numberis expanded in

componenplasma obtained in Ref. 17. terms of the subband wave functions as
The exchange-correlation potentials can then be found

from +o0
1 i ®amn(p)
YV, =,m(p.0,2)=——€eMl > ————¢ (2),
SE.L1 0] Vam(p18D= = 2 Gy e
Vic,ol NesNp]= o (3.13 4.3
This gives whered is the polar angle in thg-y plane. The Kohn-Sham

equations then become
VycelNe,Np]=—1.2218:11%~ 1.166B,n’°

1
2_
—0.583Bn;, /12 (3.14 me d? L me ™3 vE, b (p)
T q 27T — €q a a
and m, dp2 m, _pz_ " mntP
+ o
VyenlNe,Nh]=—1.539%7°— 1.1667B;,n%® + 3 0 b () =0, (4.4)
—0-58339em2’12rwﬁs’12. (3.19 n'=1

. . . , .. where the effective potentials in the coupling term are given
In this calculation, spin effects are not included. We considey, P Ping g

only the case of zero magnetic field so that spin only plays a

part in the correlation energy of the system. As the theoret- ,

ical work on theD®X system in bulk semiconductors cited Vgg,a(P)ZJ $an(2D Vet ol ps2) € (2)dz. (4.9

above has produced accurate results while omitting the spin

dependence, it therefore appears likely that spin effects wilHere only the ground state is considered, for whigkr 0.

cause only a minor correction for the QW case. However, wédence the index will subsequently be dropped from the

note that spin could be included in our calculation aboveequations.

through the use of spin-density-functional theory. The latter The coupling term in the effective Hamiltonian mixes the

requires the use of the spin-up and spin-down densities fggubband functions, so that E¢.4) is a set of coupled

each of the particles by the simple formwlg=n_,1+n,|.  second-order differential equations. It is clear that the poten-

Here this would necessitate working with four single-particletial depends upon the densities themselves, so that the pro-

equations rather than two. cedure adopted for solving the coupled equations must be
Self-interaction effects have been considered by Xia angelf-consistent. In order to produce a solution, boundary con-

Quinnt® in their study of the D center in a quantum well in ditions atp=0 and atp=o must be imposed; these will be

a magnetic field. They adopted the treatment of Perdew andiscussed in Sec. V.

Zunget® by adapting their exchange-correlation potential to  In order to simplify the problem, we retain one term only

compensate for the imperfect cancellation between the selin the subband summatiofand so subsequently omit the

Coulomb and self-exchange terms. As Perdew and Zdfhgerindexn). For each step in the self-consistent calculation, the

estimated that over 90% of the self-interaction terms mutuequation to be solved is then a second-order eigenvalue

ally cancel each other for the bulk case, they will be ne-equation. Our justification for this comes from the work of

glected entirely here. Xia and Quinm.> who investigated the effect of coupling in
the energy subbands forDrenters for QWSs having a width
IV. SOLUTION OF THE KOHN-SHAM EQUATIONS comparable to the effective Bohr radifise., for GaAs,d
BY AN EXPANSION TECHNIQUE ~100 A). For wells of this size, the spacing between the

energy subbands is at least an order of magnitude larger than
The effective Hamiltoniare; , for each componen&  the other energy terms in the equation, and thus we would
can be decomposed into two parts: expect only a small amount of subband coupling here. Xia
and Quin® performed two sets of calculations: in the first
set, they included several subbands in the summation from
Eq. (4.4), while, in the second set, they included only one

HE (z)=_—m‘*d—2+v (2) (4.2)
eff,a m, dZZ QW,a .
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subband. Their results showed a difference of less than 0.1%nd has a solution
in the final energy. The coupling of the hole subbands is

likely to be slightly larger than that of the electrons as the m, 12
quantum-well potential for the holes is shallower; nonethe- balp)=cCreXp — me (BEa—ed) | p
less, it seems highly unlikely that this will lead to a signifi-
cant discrepancy in the final result. m, vz
+coexg + o (Ey,—€) | pl. (5.8
e

V. SOLUTION OF THE QUANTUM-WELL HAMILTONIAN .
In order to prevent ,(p) becoming infinite ap— o0, we set

The expansion technique requires the effective Hamilc,=0, so that
tonian to be separated into two parts. We first solve the part

which represents the quantum-well confinement. In dimen- 1 deu(p) (ma £ ))1’2
i i - i —— | (Ea—€)| p asp—
sionless units, the quantum-well equations are b.(p) dp Me
Me 0%4,(2) 9
- m_ dZZ +VQW,01(Z) ga(z) = Eaga(z) ' (51)
“ VI. CALCULATION OF THE TOTAL ENERGY
The (un-normalizedl ground-state solution to Eq5.1) is OF THE SYSTEM

well known; it is given here b .
g y The total energ¥E[ ne,n;] of the system can be obtained

d after solving the Kohn-Sham equations given in E44).
£,(2)=cogk,z) for |z|<§, This gives
and G2 Enenl= X e3> X fdr dr'Ugs(r=r")
a=¢h a=eh B=eh
d
£,(2)=B.exp—k,|z|]) for |z|>§, XN (NNg(r') +Exd Ne,Np]
where - > fdr No()Vye ol NesNkl, (6.1
a=eh

Ko=(M.Eq/me)™ and  k,=(m,(Vo,—E,)/me)" 2 e o
’ (5.3 However, certain difficulties with this form arise in its con-
. ) o version into a computational routine. A discussion of these
Here E, and B, are determined by ensuring continuity of proplems, and how they can be overcome, is given below.
£.(2) and its first derivative at the edges of the well. The processes described below are repeated by comparing
The asymptotic forms for the functiof,(p) at the ends  npew eigenvalues with those obtained on the previous pass
of the ranges of integration of the differential equatiénd)  through the procedure, until the results are identical to within
must be specified. In order to solve the eigenvalue equationg, specified accuracy. For a quantitative test of convergence,
it is necessary to know the asymptotic behavior ofjt js simpler to examine the eigenvalue rather than the eigen-

[d®¢.(p)/dp?] and [1/¢,(p)I[d¢.(p)/dp] to define the vector while ensuring that the eigenvectors are also self-
eigenvalue equation. For a physically valid solution, the partgnsistent.

ticle densityn,(r) must remain finite throughout the range
of integration. Asp— 0, the dominant term in the differential
equation is— 1/(4p?), so that the differential equation be-
comes The self-consistent procedure requires an initial form of

the wave function for the first solution to the Kohn-Sham

A. Initial functions

B d_2_ 1 —o 5.4 equation(4.4). Therefore, it would at first sight appear sen-
dp? 4p?® balp)=0. (5.4 sible to select an analytical function which mimics some
) . o anticipated features of the real wave function. However, in
This can be solved exactly; its general solution is order to avoid spurious results and instabilities in the itera-
tive procedure, we found that a more reliable technique was
alp)=CcrVp(1+caIn(p)), (59 {5 take the initial functiong ,(p) =0, implying that there is
wherec; and c, are arbitrary constants. As the solutions N0 interaction between the particles and the system is merely
must remain finite, thes,=0. Therefore, an electron bound to an impurity center. In addition to stabi-
lizing the results, this procedure had the added advantage
1 doyp) 1 that the energy values produced by the first iteration corre-
bp) dp  2p as p—0. (56 spond to the binding energy of B® center in a QW, for

_ ~which accurate values are well know.g., Pang and
As p—o, only the constant terms remain, so that the differ-Louie'® and Xia and Quint?). The disadvantage of taking a

ential equation becomes zero-valued initial function is that it increases the computa-

) tion time as at least two iterations are required before a re-

me d _ alistic wave function is produced. However, it has been
___2_€a+Ea ¢a(p)_01 (57) ; : ; ; : :

m, d found that this lengthening in the computation time was in-
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significant relative to the total time necessary to allow theasymptotic form of the eigenfunction as-0 is imposed at

Kohn-Sham energy levels to converge. a sufficiently small value op such that the latter term domi-
nates; inspection of the equation reveals that10 ® (in
B. Calculation of the effective potential dimensionless uni}sis a suitable value. For the right-hand

boundary value, we simply take an arbitrarily large value of
p such that the nonconstant terms of the potential have all

from Egs.(3.3 and (4.9). Inspection of Eq(3.3) confirms  a:aved to a negligible value. Inspection shows gha0 is
that two of the terms in the effective potentigthe interpar- a sui%/able value? g - 1NSP e

ticle Coulomb interaction and the exchange-correlation inter- 5o 1 antioned above, the eigenfunctign(p) is calcu-
acthrb depend upon the densmeg(r), .and hence upon_the lated as a series of values at a set of lattice points. However,
particle wave functionsp,(p). In principle, the calculation ¢, yhe sycceeding iterations, values of this function are re-
of the effective potential is a straightforward example of nu-ireq to generate the potential in the Kohn-Sham equations.
merical quadrature. The interparticle Coulomb term is evaluy, general, the points at which the potential will be evaluated
ated by use of the well-known general expansion in terms Ofjigter from the lattice points of the eigenfunction. Therefore,
associated Legendre functioRy' it is necessary to fit a function to the values given for the
K eigenfunctiong.(p). An interpolating spline is chosen as a

The form of the effective potentialy (p) is determined

0 k

1 (k=[m)r r i ; it i
= 2 m| il PL”"(cos 6,) su[table compromise 'between fitting the po_lnts exactly, and
Ir=r'| " &o m<tk (k+[m! rf being a smooth function over the range of integration.
m .
X PL |(COS f2)explim(¢,— ¢2)], (6.2 D. Solution of the hole Kohn-Sham equation
wherer , is the smaller ofr| and|r’|, andr is the larger of The solution of the single-particle equation for the hole

the two.{6,,¢4} and{#,,¢p,} are the polar angles farand  equation(4.4) is treated by a similar process to that of the
r’, respectively. The above expression can be simplifieglectron. The hole equation may be solved by repeating the
slightly. The last term contributes only if the exponent iscalculation for the electron with a different form of the
zero, and therefore only the=0 term is retained in the boundary conditions described by E¢5.6) and(5.9). How-
second sum. The sum ov&rmust be restricted to a finite ever, the entire iteration procedure has been accelerated by
number of terms for the computation. As the above surrusing the electron eigenfunction from the previous stage.
converges quickly, only a small number of terms need to bé& his will affect the effective potential. Hence this latter stage
retained. The second Hartree term is an integral of the forngonsists of the same type of procedure as above, but with the
updated form of the electron wave functign(p).
| &2

Although this term can be determined accurately, the procesg
involved is particularly time consuming as the integral must [
be evaluated several thousand times during each evaluatiofd
Therefore, we will evaluate the exact form of the Hartree'S

term at 100 points covering the range of the integration pro- _ 0 _

cess. A function will then be fitted to these points to repre- Exo=E(DD)+ECO~ElNe.Mnl, €4
sent the interparticle interaction. Thorough examination ofwhereE(D°) is the ground state energy of the neutral impu-
this term has shown that the Hartree effective potential igity as given by the electron eigenvalue on the first iteration
quite smooth, and therefore that the fitting will be unlikely to of the calculation when the interparticular forces are disre-
cause an appreciable inaccuracy in the energy evaluatiogarded.E(X) is the ground-state energy of the free exciton
The other terms in the effective potentighe particle inter- in a single quantum well. To determine this, it is appropriate
action with the impurity center and the Wunsche-to use the numerical calculation of Ref. 20, as it is based on
Henneberger exchange-correlation poteptidre found very similar approximations to those used in our calcula-

ﬁ:Ee’h fdr Uag(r=1")ng(r") dz. (6.9 E. Calculation of the binding energy

In order to calculate the binding energy, the total energy
Nne,n,] of the system is first evaluated by the simple
uadrature process using E.1). The binding energ¥yp

readily using expression8.3), (3.14), and(3.15. tions.
C. Solution of the electron Kohn-Sham equation VIl. RESULTS
The Kohn-Sham equatiof#.4) is a second-order eigen- Figure 2 shows our calculated and our experimental val-

value equation. This problem is specified by the form of theues ofEyp as a function of the well width. The impurity is
electron effective potentiabege(p), and by the boundary located at the mid point of a GaAs/GaAl,As single QW
conditions on the electron wave functiaf(p) given by  for x=0.33, which corresponds to the value used in the ex-
Egs.(5.6) and(5.9). A shooting method is used to solve Eq. periments described in Sec. Il. The figure also includes the
(4.9 and to determine the electron eigenfunctipg(p) and  experimental results of Ref. 3 and the theoretical calculations
the eigenvalueg, over the semi-infinite rangeQp=<w~. Itis  of Refs. 4—6. The improvement of our model over previous
necessary to find a way of representing this by a realisti@approaches is very clear, even allowing for the different val-
finite range. We must exclude=0 to prevent singularities ues ofx used in the other models. First, our calculated results
in the potential occurring due both to the Coulomb interac-are closer to the experimental points than any of the previous
tion with the impurity center, and to the J4term. The approaches. Second, our approach is the only one to predict
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TABLE I. The convergence of the electron eigenvalue for the
first ten iterations for a QW of widtld=100 A and withx=0.33.

Iteration number Electron eigenvalue

—-1.977
—0.425
—0.763
—0.632
—0.679
—0.660
—0.668
—0.665
—0.666
—0.666

Wave function ¢_(p)

O© O NO UL WN P

FIG. 3. The first six iterations in the calculation of the electron
wave function(as labeled in the kegy The first iteration does not
include the interparticle effects, but succeeding calculations include
increasingly accurate approximations for these effects.

[EnY
o

) ] _ Previous experimental investigations by Reynodtisl> of
the observed maximum iBip for a well width of about 100 the variation of the exciton binding energy with well width
A. Our predicted results for well widths above 100 A de- (for samples with 100-A barriersuggested that there is a

aximum in the exciton binding enerdiyp at a well width

crease more rapidly with well width than is observed experi-

me_nta_llly. However, the agreement betwe_en our predicte f around 100 A. However, no other investigations have ob-
variation and that observed experimentally is at least as goot%ined this result, as insufficient samples have been studied.
ence we have undertaken a comprehensive set of experi-

as that of the previous theoretical approaches, for which thﬁ|
ments to probe the variation &yp with well width. These

dependence ol is either too rapid(Ref. 4 or too slow
(Refs. 5 and B Also, the absolute values for the binding X . o >
energy obtained in our calculations are closer to the experf€Sults confirm the existence and position of the maximum
mental data than those of the other approaches. obtained by Reynoldst al.” We have also investigated the

It is instructive to investigate the convergence of the ej-variation of the binding energy with impurity doping posi-
genvalues and eigenfunctions predicted by our method. Figlon-
ure 3 illustrates the convergence of the electron wave func- NO theoretical model exists that predicts a maximum in
tion ¢,(p) as the calculation progresses. The first iterationExp at or anywhere close to 100 A. Therefore, we have
gives the electron wave function fol center; the terms in developed a theoretical approach that predicts such a maxi-
the potential are then calculated using this function to derivanum inEyxp . The approach chosen is based on an adaptation
a better approximation to the true wave function. This pro-of density-functional theory. Although density-functional ap-
cess is repeated at each iteration. Qualitative self-consistengyoaches have been applied previously to model excitons in
in the wave function occurs rapidly, and the result from thebulk semiconductofS~**and the D' center in a QW, this is
fourth iteration is already close to the final function. How- the first time(to our knowledgg that such an approach has
ever, there is no clear method for us to judge the quantitativéeen used to study excitons in a QW. The model presented
convergence of theigenfunctionand a better test lies with here has been shown to give a much closer agreement with
the eigenvaluee,. If the process is self-consistent, we the available experimental data than previous theoretical
should expect to find convergence in the values pét each models*=® In particular, it correctly predicts the observed
iteration; this was indeed observed. Once the eigenvalug®aximum inEyp. Moreover, both the position of the maxi-
have converged, we may compare the eigenfunctions frormum and the actual numerical values obtained for the bind-
different stages of the calculation to check that self-ing energy are in good agreement with the experimental ob-
consistency has truly occurred. However, it is a slower proservations.
cess for the eigenvalue to converge than for the eigenfunc- The close fit to the experimental points was achieved be-
tion. As an example of the convergence, we give the electronause a form of the Hamiltonian with corrections which in-
eigenvalue fod=100 A in Table I. Typically, it requires 20 cluded both exchange and correlation effects was used.
iterations until a consistent value of the electron eigenvaludlleinmar? used an approximate model potential and a two-
can be obtained to four decimal places. A similar number oflimensional approach to mimic the interparticle Coulomb
iterations are required for the hole eigenvalue to convergepotential. Liu and Konfjused a variational procedure with
Thus at least 40 iterative stages are required in the complet@ explicit inclusion of exchange or correlation effects. Con-
calculation for each well width. sequently, these two methods underestimate the binding en-
ergy. Haufé used a variational procedure within a density-
functional formalism, and so was able to include exchange
and correlation energies and thus predict a higher binding

The aim of this paper has been to present a more cohereahergy. However, the clear maximum in the binding energy
picture of the behavior of thB°X center in GaAs/Ga ,Al,  at a well width observed experimentally of around 100 A
QW'’s from both experimental and theoretical points of view.was not obtained in this approach.

VIIl. CONCLUSIONS
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