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Binding energy of bound excitonsD0X in quantum wells
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The binding energies of excitons bound to silicon donors in GaAs/Ga12xAl xAs quantum-well~QW! struc-
tures have previously been investigated experimentally as a function of the well width by several groups. The
most comprehensive data show a clear maximum for a well width of about 100 Å, and a steady decrease for
widths above this. Existing theories give qualitative agreement with the decrease in binding energy with
increasing well width. However, no theory predicts a maximum near 100 Å. Furthermore, the quantitative
agreement is poor for all well widths. We develop a theoretical model using a density-functional approach
which correctly predicts the maximum in the binding energy at 100 Å. The agreement with the experimental
results is significantly better for all well widths than that of existing models. Photoluminescence experiments
have also been carried out on samples with a wide range of different doping profiles in order to clarify the
previous experimental results and provide additional information on the effect of the position of the impurity
in the QW.@S0163-1829~98!05036-X#
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I. INTRODUCTION

Much experimental data exists on the donor-bound e
ton (D0X) in GaAs/Ga12xAl xAs quantum wells~QWs!. Sev-
eral investigations have centered on the variations of
binding energyEXD as a function of the well widthd for
both single QWs~Ref. 1! and multiple QWs,2,3 as summa-
rized in Ref. 4. The most comprehensive results are thos
Reynoldset al.,3 who investigated impurities both at the ce
ter and edge of a QW in multiple-quantum-well samples w
an aluminum concentrationx50.25. Their results exhibit a
clear maximum in theEXD-d curve for d5100 Å. Above
this the binding energy steadily decreases. The result
Refs. 1 and 2 are approximately 0.2–0.3 meV lower th
those of Ref. 3, although insufficient samples were includ
to make any clear deductions on the variation withd. It is not
clear how much of this difference is due to differing samp
characteristics; the aluminum concentrationx is 0.22 in Ref.
1, and is not specified in Ref. 2.

The first theoretical calculations of theD0X binding en-
ergy in quantum wells were by Kleinman,5 who used a six-
parameter wave function to determine the energy variat
ally using a two-dimensional model. However, it w
necessary to include an artificial nonvariational paramete
order to obtain bound states, and the results did not exhib
turning point in the binding energy. Haufe6 then calculated
the binding energy for the finite barrier problem using
variational approach within a density-functional formalis
These results show a possible maximum around 60 Å,
this is not as clear as it is at the lower limit of their calcu
tions. Very recently, Liu and Kong4 carried out variational
calculations using a two-parameter wave function for imp
rities at the center and edge of a QW incorporating interp
PRB 580163-1829/98/58~12!/7970~8!/$15.00
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ticle correlation effects, for values ofd varying between 8
and 150 Å. A clear maximum inEXD was found, but at a
value of about 15 Å rather than 100 Å. This is much smal
than that observed experimentally. Also, the magnitude
the binding energy and its variation with well width on
give qualitative agreement with the available experimen
data.

The purpose of this paper is to describe details of a th
retical model involving a nonvariational approach to densi
functional theory. Photoluminescence experiments have
been undertaken on samples with a range of doping pro
in order to investigate the dependence of the binding ene
upon the positions of the impurities in the wells, and also
help clarify the previous experimental picture. We u
molecular-beam-epitaxy-grown GaAs/Ga12xAl xAs QW
samples withx50.33, well widthsd in the range 75–170 Å,
and barriers sufficiently wide to prevent interaction betwe
impurity centers. The experimental and theoretical values
compared with each other and with the previously publish
values. Our experimental results are found to be very clos
those of Ref. 3 for all well widths, even though the latter a
for x50.25 and with barriers of only 100 Å. Both sets
results exhibit a pronounced maximum at around 100
Our theory correctly predicts a maximum at this positio
Also, the magnitudes of binding energies predicted ag
well with the experimental values at all well widths, and a
considerably better than those of the previous theories.

Section II describes the results obtained from the exp
ments. Sections III–V give some background details
density-functional theory and how it may be applied to t
D0X system. Section VI describes the calculation of the to
energy of the system, and Sec. VII compares our results w
the original and current experimental data and the previ
theoretical calculations. A preliminary report of this wo
was presented by Pyeet al.7
7970 © 1998 The American Physical Society
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II. EXPERIMENTAL DETAILS

Optical spectroscopy experiments have been carried
on silicon-doped GaAs/Ga0.67Al0.33As multiple-QW samples
of between 30 and 150 periods, and also on a single-
sample. The samples were grown at Nottingham usin
Varian GEN II molecular-beam-epitaxy machine on a se
insulating GaAs substrate followed by a pure GaAs buf
layer. The well widths were in the range 75–170 Å. So
samples were uniformly doped, either across the whole w
or in the central third, with a silicon concentration
1016 cm23. Samples withd-doping at various positions in th
QW to a Si concentration of 1010 cm22 ~or 2.531010 cm22

in one sample! were also investigated. One sample was a
constructed with the central third Si doped as above,
with the outer thirds doped with a lower Si concentration
231014 cm23. The barrier layers were arranged to be su
ciently thick that the ground-state wave function in one w
has little overlap with those in adjacent wells.

Photoluminescence~PL! experiments were carried out a
very low temperatures using an excitation from the 5145
line of a cw argon-ion laser. The emitted photons were a
lyzed through a grating monochromator of focal length 0
m, and detected after standard lock-in amplification by
liquid-nitrogen-cooled Ge detector. Both the free-excit
transition energyXe1hh1 and theD0X transitions have also
been observed in the single QW sample by thermally
tected optical absorption and by reflectivity. The identific
tion of the Xe1hh1 and D0X PL recombination peaks wer
checked using temperature-dependent~4–300 K! and
excitation-intensity-dependent PL experiments. Thed-doped
multiple-quantum-well samples in which the silicon atom
were positioned away from the QW center have given e
mates of the decrease ofEXD when the doping position
moves from the center to the edge of the QW. This decre
depends upon the QW thickness; the magnitude is;0.3 Å
~in wavelength units! for a well of thickness 100 Å, and 0.
Å for a well of thickness 170 Å, in agreement with Reynol
et al.3 In samples of uniformly doped wells, theD0X transi-
tions energies are identical to those in samples withd-doping
at the center of the well, and therefore can be assume
arise from Si atoms at the center of the QW. Some typical
spectra are given in Fig. 1. TheD0X feature shown consist
of a double line from Si atoms located at the center~lower
energy! and an edge of the well~higher energy!. Figure 2
shows the measured binding energies~d! of theD0X center
as a function of the QW thickness. The results of Ref. 3~s!
are also shown for comparison. It can be seen that both
of measurements are very similar, despite the slightly diff
ent sample characteristics. In particular, the maximum in
binding energy for a QW of width of about 100 Å is clear
both sets of results. The results of Refs. 1 and 2 are not g
in this figure, although a comparison of them and the res
of Ref. 3 can be found in Ref. 4.

III. DENSITY-FUNCTIONAL THEORY

A. Review and background

Treatment of theD0X problem is intrinsically difficult
because it is necessary to specify the positions of three
ticles. A strict variational calculation requires a minimum
ut
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three variational parameters and evaluation of three Har
terms. An alternative approach is to use density-functio
theory, which is a variational-type method tailored spec
cally to many-body systems. Its roots lie in the Thoma
Fermi method of treating an inhomogeneous electron g
Hohenberg and Kohn8 showed that all aspects of the ele
tronic structure of a system in its ground state may be
scribed by the electron density. Using this work as a ba
Kohn and Sham9 were able to formulate a particularly usef
form of density-functional theory involving single-particl
equations to be solved self-consistently. Density-functio
theory is an attractive approach as it includes both excha
and correlation effects~albeit approximately! while main-
taining the simplicity of self-consistent equations.

FIG. 1. The PL spectra from two samples; one is from
GaAs/Ga0.67Al0.33As sample in which there is one QW withd
593 Å and the other relates to a similar sample containing 1
QWs with d5153 Å. The peaks labeledXe1lh1 and Xe1hh1 corre-
spond to free-exciton transitions, and theD0X peak is the recombi-
nation of the neutral bound exciton.

FIG. 2. The binding energyEXD for a D0X center at the cente
of a Ga12xAl xAs single QW a function of the QW widthd. The
solid pointsd are the current experimental values, and the so
line is the current theoretical calculation~both for x50.33!. Also
shown are the experimental results of Ref. 3~s! and the theoretical
results of Refs. 5~short dash!, 4 ~long dash,x50.25!, and 6~– –,
x50.4;

• • • , x50.2!.
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Density-functional theory has been applied to theD0X
system in bulk semiconductors by a number of authors,10–14

and generally good agreement with experiment has been
tained. More recently, Xia and Quinn15 used density-
functional theory to calculate the binding energies of D2

centers in quantum wells subject to a magnetic field. I
expected that, for a multiparticle theory of this type, re
tively greater accuracy will result as the number of partic
in the complex increases. Thus an improvement in the r
tive accuracy is expected by moving from the two-parti
complex, as studied by Xia and Quinn,15 to the three-particle
D0X complex. As mentioned earlier, Haufe6 used a density-
functional formalism to study theD0X center, but only
within a variational ansatz. In the following analysis, we w
employ the full multicomponent form of the Kohn-Sha
equations within the local-density approximation.

B. Application to D0X in a QW

The D0X system involves two electrons and a hole.
wide barriers were present in the samples studied, pen
tion into other wells is negligible, and we can model t
system in terms of a single quantum well. For simplicity, t
hydrogenic impurity ion will be assumed to be located at
center of the quantum well. Therefore for each particle,
QW potential is

VQW,a~z!5 H0 if 2d/2,z,d/2
V0,a otherwise, ~3.1!

wherea5e andh for an electron and hole, respectively. Th
z axis is chosen to lie along the direction of growth. F
Ga12xAl xAs/GaAs materials,15 the gap mismatch isDEg
51.247x eV, and the barrier heights areV0,e50.65DEg and
V0,h50.35DEg .

It is necessary to consider the Coulomb interactions
tween the two electrons and also between the electron
the hole; also the exchange-correlation poten
Vxc,a@ne ,nh#, which are functionals of the electron and ho
densitiesne andnh , must be introduced. The precise form
of these functionals will be discussed shortly. The effect
Hamiltonian for one of the single particles in the Kohn-Sha
basis is given by

Heff,a5F2
me

ma
¹21VQW,a~z!1Veff,a~r,z!G , ~3.2!

where ma are the electron and hole effective masses, d
tances are given in terms of the effective Bohr radiusa0
(54pe\2/mee

2) and energy in terms of the effective Ryd
bergR(5mee

4/2\2(4pe)2), and wheree is the background
dielectric constant. In Eq.~3.2!, the effective potential
Veff,a(r,z) in polar coordinates (r,z) for particles atr andr 8
is

Veff,a~r,z!5 (
b5e,h

E dr8uab~r2r 8!nb~r 8!

1Vxc,a@ne ,nh#7
1

Ar21z2
, ~3.3!

where
b-

s
-
s
a-

ra-

e
e

r

-
nd
l

e

-

uee5
11

ur2r 8u
,

ueh5uhe5
21

ur2r 8u
or uhh50. ~3.4!

The first term on the right-hand side represents the Coulo
interaction between the particles, and the last term repres
the interaction between the particle and the impurity cen
the minus sign applies to the electron and the positive sig
the hole.

In general, the Kohn-Sham equations are of the form

Heff,aC i ,a~r,z!5e i ,aC i ,a~r,z!, ~3.5!

whereC i ,a(r,z) are a set of single-particle wave function
and e i ,a the corresponding energy levels. The ground-st
particle densities are then written in the form

na~r,z!5(
i

uC i ,a~r,z!u2, ~3.6!

where the sum is carried out over all the occupied sing
particle states. For the ground state of theD0X complex,
there is only one single-particle state occupied for each p
ticle ~the two electrons are in their lowest-energy states w
opposing spins!. Consequently, the indexi is superfluous
here and will be subsequently omitted.

C. Exchange-correlation potential

To solve the Kohn-Sham equations, a form for t
exchange-correlation potential is needed. We thus foll
Wunsche and Henneberger,12 who derived simple forms for
the exchange-correlation potential using the local density
Slater approximations~as discussed in Ashcroft an
Mermin,16 for example!. They applied their potentials to th
D0X system in bulk semiconductors by writing th
exchange-correlation contribution to the total energy, in
mensionless units, as

Exc@ne~r !,nh~r !#5E d3r «xc@ne~r !,nh~r !#, ~3.7!

where

«xc@ne~r !,nh~r !#5«x@ne~r !,nh~r !#1«c@ne~r !,nh~r !#,

with

«x@ne ,nh#521.1545S neF ne

Ne
G1/3

1nhF nh

Nh
G1/3D , ~3.8!

and

«c@ne ,nh#52bene
7/62bhnh

7/62beh~nenh!7/12. ~3.9!

Ne andNh are the total numbers of electrons and holes in
system~2 and 1, respectively, forD0X!. The coefficients in
Eq. ~3.9! are defined by

be5bs~Ne!, bh5bs~Nh!A111/s, ~3.10!

and
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beh50.761F0.810.2S @11s2#

2s D 1/2G2be2bh , ~3.11!

where

bs~Na!5 H0.0985
0.1480

if Na51
if Na.1, ~3.12!

and wheres5me /mh is the mass ratio.
The above results arise from applying to nonuniform s

tems the result which would be obtained by treating the e
trons and holes as free particles. Wunsche a
Henneberger12 calculated the correlation energy by interp
lating the fit between the limiting cases of asingle-
componentplasma obtained in Ref. 17.

The exchange-correlation potentials can then be fo
from

Vxc,a@ne ,nh#5
dExc@ne ,nh#

dna~r !
. ~3.13!

This gives

Vxc,e@ne ,nh#521.2218ne
1/321.1667bene

1/6

20.5833behne
25/12nh

7/12 ~3.14!

and

Vxc,h@ne ,nh#521.5393nh
1/321.1667bhnh

1/6

20.5833behne
7/12nh

25/12. ~3.15!

In this calculation, spin effects are not included. We consi
only the case of zero magnetic field so that spin only play
part in the correlation energy of the system. As the theo
ical work on theD0X system in bulk semiconductors cite
above has produced accurate results while omitting the
dependence, it therefore appears likely that spin effects
cause only a minor correction for the QW case. However,
note that spin could be included in our calculation abo
through the use of spin-density-functional theory. The la
requires the use of the spin-up and spin-down densities
each of the particles by the simple formulana5na↑1na↓.
Here this would necessitate working with four single-parti
equations rather than two.

Self-interaction effects have been considered by Xia
Quinn15 in their study of the D2 center in a quantum well in
a magnetic field. They adopted the treatment of Perdew
Zunger18 by adapting their exchange-correlation potential
compensate for the imperfect cancellation between the s
Coulomb and self-exchange terms. As Perdew and Zung18

estimated that over 90% of the self-interaction terms mu
ally cancel each other for the bulk case, they will be n
glected entirely here.

IV. SOLUTION OF THE KOHN-SHAM EQUATIONS
BY AN EXPANSION TECHNIQUE

The effective HamiltonianHeff,a for each componenta
can be decomposed into two parts:

Heff,a
~a! ~z!5

2me

ma

d2

dz2 1VQW,a~z! ~4.1!
-
c-
d

d

r
a
t-

in
ill
e
e
r
or

d

nd

lf-
r
-
-

and

Heff,a
~b! ~r,z!5

2me

ma
¹r

21Veff,a~r,z! ~4.2!

Heff,a
(a) (z) is the Hamiltonian of the component of typea in its

respective quantum well. The solution of this Hamiltonian
straightforward, and is discussed later. We denote the s
band wave functions and energies resulting from such a
lution by ja,n(z) and Ea,n , respectively, where n
51,2, . . . . Heff,a

(b) (r,z) is the part of the effective Hamil-
tonian which couples the subband wave functions.

In order to proceed, the single-particle wave functionCa
with angular momentum quantum numberm is expanded in
terms of the subband wave functions as

Ca[ca,m~r,u,z!5
1

A2p
eimu (

n51

1`
fa,m,n~r!

Ar
ja,n~z!,

~4.3!

whereu is the polar angle in thex-y plane. The Kohn-Sham
equations then become

F2
me

ma

d2

dr2 1
me

ma

m22
1

4

r2 2ea1Ea,n
Gfa,m,n~r!

1 (
n851

1`

neff,a
nn8 fa,m,n~r!50, ~4.4!

where the effective potentials in the coupling term are giv
by

neff,a
nn8 ~r!5E ja,n~z!Veff,a~r,z!ja,n8~z!dz. ~4.5!

Here only the ground state is considered, for whichm50.
Hence the index will subsequently be dropped from
equations.

The coupling term in the effective Hamiltonian mixes th
subband functions, so that Eq.~4.4! is a set of coupled
second-order differential equations. It is clear that the pot
tial depends upon the densities themselves, so that the
cedure adopted for solving the coupled equations mus
self-consistent. In order to produce a solution, boundary c
ditions atr50 and atr5` must be imposed; these will b
discussed in Sec. V.

In order to simplify the problem, we retain one term on
in the subband summation~and so subsequently omit th
index n!. For each step in the self-consistent calculation,
equation to be solved is then a second-order eigenv
equation. Our justification for this comes from the work
Xia and Quinn,15 who investigated the effect of coupling i
the energy subbands for D2 centers for QWs having a width
comparable to the effective Bohr radius~i.e., for GaAs,d
;100 Å!. For wells of this size, the spacing between t
energy subbands is at least an order of magnitude larger
the other energy terms in the equation, and thus we wo
expect only a small amount of subband coupling here.
and Quinn15 performed two sets of calculations: in the fir
set, they included several subbands in the summation f
Eq. ~4.4!, while, in the second set, they included only o
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subband. Their results showed a difference of less than 0
in the final energy. The coupling of the hole subbands
likely to be slightly larger than that of the electrons as t
quantum-well potential for the holes is shallower; nonet
less, it seems highly unlikely that this will lead to a signi
cant discrepancy in the final result.

V. SOLUTION OF THE QUANTUM-WELL HAMILTONIAN

The expansion technique requires the effective Ham
tonian to be separated into two parts. We first solve the
which represents the quantum-well confinement. In dim
sionless units, the quantum-well equations are

2
me

ma

d2ja~z!

dz2 1VQW,a~z!ja~z!5Eaja~z!. ~5.1!

The ~un-normalized! ground-state solution to Eq.~5.1! is
well known; it is given here by

ja~z!5cos~kaz! for uzu,
d

2
,

and ~5.2!

ja~z!5Baexp~2kauzu! for uzu.
d

2
,

where

ka5~maEa /me!
1/2 and ka5„ma~V0,a2Ea!/me…

1/2.
~5.3!

Here Ea and Ba are determined by ensuring continuity
ja(z) and its first derivative at the edges of the well.

The asymptotic forms for the functionfa(r) at the ends
of the ranges of integration of the differential equation~4.4!
must be specified. In order to solve the eigenvalue equati
it is necessary to know the asymptotic behavior
@d2fa(r)/dr2# and @1/fa(r)#@dfa(r)/dr# to define the
eigenvalue equation. For a physically valid solution, the p
ticle densityna(r ) must remain finite throughout the rang
of integration. Asr→0, the dominant term in the differentia
equation is21/(4r2), so that the differential equation be
comes

F2
d2

dr22
1

4r2Gfa~r!50. ~5.4!

This can be solved exactly; its general solution is

fa~r!5c1Ar„11c2ln~r!…, ~5.5!

where c1 and c2 are arbitrary constants. As the solutio
must remain finite, thenc250. Therefore,

1

fa~r!

dfa~r!

dr
→

1

2r
as r→0. ~5.6!

As r→`, only the constant terms remain, so that the diff
ential equation becomes

F2
me

ma

d2

dr22ea1EaGfa~r!50, ~5.7!
%
s

-

l-
rt
-

s,
f

r-

-

and has a solution

fa~r!5c1expF2S ma

me
~Ea2ea! D 1/2

rG
1c2expF1S ma

me
~Ea2ea! D 1/2

rG . ~5.8!

In order to preventfa(r) becoming infinite asr→`, we set
c250, so that

1

fa~r!

dfa~r!

dr
→2S ma

me
~Ea2ea! D 1/2

r as r→`.

~5.9!

VI. CALCULATION OF THE TOTAL ENERGY
OF THE SYSTEM

The total energyE@ne ,nh# of the system can be obtaine
after solving the Kohn-Sham equations given in Eq.~4.4!.
This gives

E@ne ,nh#5 (
a5e,h

ea2 1
2 (

a5e,h
(

b5e,h
E dr dr 8uab~r2r 8!

3na~r !nb~r 8!1Exc@ne ,nh#

2 (
a5e,h

E dr na~r !Vxc,a@ne ,nh#, ~6.1!

However, certain difficulties with this form arise in its con
version into a computational routine. A discussion of the
problems, and how they can be overcome, is given belo

The processes described below are repeated by comp
new eigenvalues with those obtained on the previous p
through the procedure, until the results are identical to wit
a specified accuracy. For a quantitative test of converge
it is simpler to examine the eigenvalue rather than the eig
vector while ensuring that the eigenvectors are also s
consistent.

A. Initial functions

The self-consistent procedure requires an initial form
the wave function for the first solution to the Kohn-Sha
equation~4.4!. Therefore, it would at first sight appear se
sible to select an analytical function which mimics som
anticipated features of the real wave function. However,
order to avoid spurious results and instabilities in the ite
tive procedure, we found that a more reliable technique w
to take the initial functionfa(r)50, implying that there is
no interaction between the particles and the system is me
an electron bound to an impurity center. In addition to sta
lizing the results, this procedure had the added advan
that the energy values produced by the first iteration co
spond to the binding energy of aD0 center in a QW, for
which accurate values are well known~e.g., Pang and
Louie19 and Xia and Quinn15!. The disadvantage of taking
zero-valued initial function is that it increases the compu
tion time as at least two iterations are required before a
alistic wave function is produced. However, it has be
found that this lengthening in the computation time was
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significant relative to the total time necessary to allow
Kohn-Sham energy levels to converge.

B. Calculation of the effective potential

The form of the effective potentialneff,a(r) is determined
from Eqs.~3.3! and ~4.5!. Inspection of Eq.~3.3! confirms
that two of the terms in the effective potential~the interpar-
ticle Coulomb interaction and the exchange-correlation in
action! depend upon the densitiesna(r ), and hence upon the
particle wave functionsfa(r). In principle, the calculation
of the effective potential is a straightforward example of n
merical quadrature. The interparticle Coulomb term is eva
ated by use of the well-known general expansion in term
associated Legendre functionsPl

m

1

ur2r 8u
5 (

k50

`

(
m52k

k
~k2umu!!
~k1umu!!

r a
k

r b
k11 Pk

umu~cosu1!

3Pk
umu~cosu2!exp@ im~f12f2!#, ~6.2!

wherer a is the smaller ofur u andur 8u, andr b is the larger of
the two.$u1 ,f1% and$u2 ,f2% are the polar angles forr and
r 8, respectively. The above expression can be simpli
slightly. The last term contributes only if the exponent
zero, and therefore only them50 term is retained in the
second sum. The sum overk must be restricted to a finite
number of terms for the computation. As the above s
converges quickly, only a small number of terms need to
retained. The second Hartree term is an integral of the fo

E ja
2~z!F (

b5e,h
E dr 8uab~r2r 8!nb~r 8!Gdz. ~6.3!

Although this term can be determined accurately, the proc
involved is particularly time consuming as the integral m
be evaluated several thousand times during each evalua
Therefore, we will evaluate the exact form of the Hartr
term at 100 points covering the range of the integration p
cess. A function will then be fitted to these points to rep
sent the interparticle interaction. Thorough examination
this term has shown that the Hartree effective potentia
quite smooth, and therefore that the fitting will be unlikely
cause an appreciable inaccuracy in the energy evalua
The other terms in the effective potential~the particle inter-
action with the impurity center and the Wunsch
Henneberger exchange-correlation potential! are found
readily using expressions~3.3!, ~3.14!, and~3.15!.

C. Solution of the electron Kohn-Sham equation

The Kohn-Sham equation~4.4! is a second-order eigen
value equation. This problem is specified by the form of
electron effective potentialneff,e(r), and by the boundary
conditions on the electron wave functionfe(r) given by
Eqs.~5.6! and~5.9!. A shooting method is used to solve E
~4.4! and to determine the electron eigenfunctionfe(r) and
the eigenvalueee over the semi-infinite range 0<r<`. It is
necessary to find a way of representing this by a reali
finite range. We must excluder50 to prevent singularities
in the potential occurring due both to the Coulomb inter
tion with the impurity center, and to the 1/4r2 term. The
e
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m
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-
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asymptotic form of the eigenfunction asr→0 is imposed at
a sufficiently small value ofr such that the latter term domi
nates; inspection of the equation reveals thatr;1026 ~in
dimensionless units! is a suitable value. For the right-han
boundary value, we simply take an arbitrarily large value
r such that the nonconstant terms of the potential have
decayed to a negligible value. Inspection shows thatr520 is
a suitable value.

As mentioned above, the eigenfunctionfe(r) is calcu-
lated as a series of values at a set of lattice points. Howe
for the succeeding iterations, values of this function are
quired to generate the potential in the Kohn-Sham equatio
In general, the points at which the potential will be evalua
differ from the lattice points of the eigenfunction. Therefor
it is necessary to fit a function to the values given for t
eigenfunctionfe(r). An interpolating spline is chosen as
suitable compromise between fitting the points exactly, a
being a smooth function over the range of integration.

D. Solution of the hole Kohn-Sham equation

The solution of the single-particle equation for the ho
equation~4.4! is treated by a similar process to that of th
electron. The hole equation may be solved by repeating
calculation for the electron with a different form of th
boundary conditions described by Eqs.~5.6! and~5.9!. How-
ever, the entire iteration procedure has been accelerate
using the electron eigenfunction from the previous sta
This will affect the effective potential. Hence this latter sta
consists of the same type of procedure as above, but with
updated form of the electron wave functionfe(r).

E. Calculation of the binding energy

In order to calculate the binding energy, the total ene
E@ne ,nh# of the system is first evaluated by the simp
quadrature process using Eq.~6.1!. The binding energyEXD
is

EXD5E~D0!1E~X!2E@ne ,nh#, ~6.4!

whereE(D0) is the ground state energy of the neutral imp
rity as given by the electron eigenvalue on the first iterat
of the calculation when the interparticular forces are dis
garded.E(X) is the ground-state energy of the free excit
in a single quantum well. To determine this, it is appropria
to use the numerical calculation of Ref. 20, as it is based
very similar approximations to those used in our calcu
tions.

VII. RESULTS

Figure 2 shows our calculated and our experimental v
ues ofEXD as a function of the well width. The impurity is
located at the mid point of a GaAs/Ga12xAl xAs single QW
for x50.33, which corresponds to the value used in the
periments described in Sec. II. The figure also includes
experimental results of Ref. 3 and the theoretical calculati
of Refs. 4–6. The improvement of our model over previo
approaches is very clear, even allowing for the different v
ues ofx used in the other models. First, our calculated res
are closer to the experimental points than any of the previ
approaches. Second, our approach is the only one to pre
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the observed maximum inEXD for a well width of about 100
Å. Our predicted results for well widths above 100 Å d
crease more rapidly with well width than is observed expe
mentally. However, the agreement between our predic
variation and that observed experimentally is at least as g
as that of the previous theoretical approaches, for which
dependence ond is either too rapid~Ref. 4! or too slow
~Refs. 5 and 6!. Also, the absolute values for the bindin
energy obtained in our calculations are closer to the exp
mental data than those of the other approaches.

It is instructive to investigate the convergence of the
genvalues and eigenfunctions predicted by our method.
ure 3 illustrates the convergence of the electron wave fu
tion fa(r) as the calculation progresses. The first iterat
gives the electron wave function for aD0 center; the terms in
the potential are then calculated using this function to de
a better approximation to the true wave function. This p
cess is repeated at each iteration. Qualitative self-consist
in the wave function occurs rapidly, and the result from t
fourth iteration is already close to the final function. How
ever, there is no clear method for us to judge the quantita
convergence of theeigenfunctionand a better test lies with
the eigenvalue«a . If the process is self-consistent, w
should expect to find convergence in the values of«a at each
iteration; this was indeed observed. Once the eigenva
have converged, we may compare the eigenfunctions f
different stages of the calculation to check that se
consistency has truly occurred. However, it is a slower p
cess for the eigenvalue to converge than for the eigenfu
tion. As an example of the convergence, we give the elec
eigenvalue ford5100 Å in Table I. Typically, it requires 20
iterations until a consistent value of the electron eigenva
can be obtained to four decimal places. A similar numbe
iterations are required for the hole eigenvalue to conve
Thus at least 40 iterative stages are required in the comp
calculation for each well width.

VIII. CONCLUSIONS

The aim of this paper has been to present a more cohe
picture of the behavior of theD0X center in GaAs/Ga12xAl x
QW’s from both experimental and theoretical points of vie

FIG. 3. The first six iterations in the calculation of the electr
wave function~as labeled in the key!. The first iteration does no
include the interparticle effects, but succeeding calculations inc
increasingly accurate approximations for these effects.
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Previous experimental investigations by Reynoldset al.3 of
the variation of the exciton binding energy with well widt
~for samples with 100-Å barriers! suggested that there is
maximum in the exciton binding energyEXD at a well width
of around 100 Å. However, no other investigations have
tained this result, as insufficient samples have been stud
Hence we have undertaken a comprehensive set of ex
ments to probe the variation ofEXD with well width. These
results confirm the existence and position of the maxim
obtained by Reynoldset al.3 We have also investigated th
variation of the binding energy with impurity doping pos
tion.

No theoretical model exists that predicts a maximum
EXD at or anywhere close to 100 Å. Therefore, we ha
developed a theoretical approach that predicts such a m
mum inEXD . The approach chosen is based on an adapta
of density-functional theory. Although density-functional a
proaches have been applied previously to model exciton
bulk semiconductors10–14and the D2 center in a QW, this is
the first time~to our knowledge! that such an approach ha
been used to study excitons in a QW. The model presen
here has been shown to give a much closer agreement
the available experimental data than previous theoret
models.4–6 In particular, it correctly predicts the observe
maximum inEXD . Moreover, both the position of the max
mum and the actual numerical values obtained for the bi
ing energy are in good agreement with the experimental
servations.

The close fit to the experimental points was achieved
cause a form of the Hamiltonian with corrections which i
cluded both exchange and correlation effects was us
Kleinman5 used an approximate model potential and a tw
dimensional approach to mimic the interparticle Coulom
potential. Liu and Kong4 used a variational procedure wit
no explicit inclusion of exchange or correlation effects. Co
sequently, these two methods underestimate the binding
ergy. Haufe6 used a variational procedure within a densit
functional formalism, and so was able to include exchan
and correlation energies and thus predict a higher bind
energy. However, the clear maximum in the binding ene
at a well width observed experimentally of around 100
was not obtained in this approach.

e

TABLE I. The convergence of the electron eigenvalue for t
first ten iterations for a QW of widthd5100 Å and withx50.33.

Iteration number Electron eigenvalue

1 21.977
2 20.425
3 20.763
4 20.632
5 20.679
6 20.660
7 20.668
8 20.665
9 20.666

10 20.666
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