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Surface acoustic waves in two-dimensional periodic elastic structures

Yukihiro Tanaka and Shin-ichiro Tamura
Department of Applied Physics, Hokkaido University, Sapporo 060, Japan

~Received 21 April 1998!

Acoustic waves localized at the surface of two-dimensional~2D! periodic elastic structures, or 2D phononic
crystals, are studied theoretically by taking account of the elastic anisotropy of constituent materials. The
surface considered is perpendicular to the axis of a periodic array of cylinders embedded in a background
material. The dispersion relations of the surface modes are calculated for circular cylinders of AlAs which form
a square lattice in a GaAs matrix. The folding and anisotropy of the surface wave branches, as well as the
existence of pseudosurface waves, are found. The stop band distributions of the surface, pseudosurface, and
bulk waves are plotted in a form relevant for comparison with ultrasound imaging experiments.
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I. INTRODUCTION

There has been a growing interest in recent years in
study of two-dimensional~2D!, periodic, dielectric structure
called photonic crystals.1,2 A major reason for this is the fac
that these systems exhibit band gaps~photonic band gaps!
which extend throughout the Brillouin zone. The existence
photonic band gaps can lead to a variety of phenomen
both fundamental and practical interest. The absence of e
tromagnetic modes in a certain frequency range can mo
the basic properties of atomic, molecular, and excitonic s
tems.

The analogy between photons and phonons suggest
consideration of periodic elastic composites of two or m
vibrating materials called phononic crystals. So far, seve
authors have developed for such composites theories
acoustic band structure for bulk vibrations in an isotro
approximation with the wave vector perpendicular to the c
inder axis.3–5 Acoustic waves are certainly more complicat
than the electromagnetic waves due to the presence of
gitudinal vibrations. Also, the presence of elastic anisotro
of both the host and cylinder materials should properly
taken into account.

Of special interest for the phonon case is the prospec
achieving a complete frequency gap, or phonon stop ba
for both longitudinal and transverse vibrations. So far
complete frequency gap has been observed experimen
only for a single mode~longitudinal mode!.6 However, by
choosing constituent materials with large acoustic misma
and also by varying the filling fraction of the composites
phononic band gap extending throughout the Brillouin zo
is predicted.5 The suppression of the electron–acoust
phonon interaction due to the presence of phonon stop b
in 2D superlattices should provide interesting application

Another worthwhile subject concerning phononic cryst
would be the acoustic mode localized near the truncated
face of the structure. Such localized surface states of pho
in 2D periodic dielectric lattices have been studied by Etc
goin and Phillips.7 The surfaces they introduced are tho
parallel to the axes of dielectric rods, and the surface st
are found inside the photonic gaps. In the present study
consider a different case, that is, a surface perpendicula
PRB 580163-1829/98/58~12!/7958~8!/$15.00
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the axes of elastic cylinders forming a 2D lattice, whi
should be more easily accessible experimentally.8 In this
case the system occupyingz.0 is periodic within the flat
surface (z50), which is taken to be thex-y plane and ho-
mogeneous in thez direction.

The purpose of the present study is to elucidate theor
cally the characteristics of surface acoustic waves in the
phononic crystals of the above geometrical configurati
~Hereafter, we call surface acoustic waves simply surf
waves.! Full account is taken of the elastic anisotropy of t
media composing both cylinders and background. We fi
that the surface-phonon branch exists below the lowest b
branch, in general, though it can appear inside the bulk b
for a specific direction of propagation. Moreover, the foldi
effect characteristic of a periodic system can also be fo
for the surface branches at the Brillouin-zone bounda
Similar results for surface waves have been obtained for
phononic crystals, i.e., semi-infinite 1D periodic superlattic
with a free surface in the isotropic approximation.9–11 An
interesting observation in the presence of anisotropy is
fact that the folded surface wave branch continues to e
inside the bulk band as a pseudosurface wave branch
intersection with the dispersion curve of a bulk phonon. W
also plot the stop band distribution of both the surface a
bulk acoustic waves which would be observable in an ult
sound imaging experiment.8,12,13

II. FORMULATION

We assume the system to be an elastic continuum c
posed of a periodic array of cylinders of materialA embed-
ded in a background materialB. Both A andB materials are
cubic crystals and elastic anisotropy is fully taken into a
count. The equation governing the motion of lattice displa
mentu(r ,t) of the system is given by

r~r !üi5] j@ci jmn~r !]num#, ~ i 51,2,3!, ~1!

where r(r ) and ci jmn(r ) are the position-dependent ma
density and elastic stiffness tensor, respectively, and
7958 © 1998 The American Physical Society
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summation convention over repeated indices is assumed
try to solve this equation by a standard Fourier expans
method, or we put

u~r ,t !5(
G

ei ~k1G!•x2 ivtaG~z!, ~2!

r~r !5(
G

eiG•xrG , ~3!

ci jmn~r !5(
G

eiG•xcG
i jmn , ~4!
e
n
where r5(x,z)5(x,y,z), k5(kx ,ky)5(k1 ,k2) is a Bloch
wave vector, and G5(G1 ,G2) is a two-dimensional
reciprocal-lattice vector. The Bloch theorem is used for
displacement vectoru. Note thatr andci jmn do not depend
on z because of the homogeneity of the system along
cylinder axis. In order to obtain the surface wave solution
further put

aG~z!5AGeilz. ~5!

Substituting Eqs.~2!–~5! into Eq. ~1!, we obtain
S MG,G8
~1!

2l2NG,G8
~1! LG,G8

~1! lKG,G8
~1!

LG,G8
~2! MG,G8

~2!
2l2NG,G8

~2! lKG,G8
~2!

lJG,G8
~1! lJG,G8

~2! MG,G8
~3!

2l2NG,G8
~3!

D S AG8
1

AG8
2

AG8
3
D 50, ~6!
tion
f

lu-
en-

h

e

ary
where

MG,G8
~1!

5v2rG2G82~k11G1!~k11G18!CG2G8
11

2~k21G2!

3~k21G28!CG2G8
44 , ~7!

MG,G8
~2!

5v2rG2G82~k21G2!~k21G28!CG2G8
11

2~k11G1!

3~k11G18!CG2G8
44 , ~8!

MG,G8
~3!

5v2rG2G82~k1G!•~k1G8!CG2G8
44 , ~9!

NG,G8
~ i !

5CG2G8
44

~ i 51,2!, ~10!

NG,G8
~3!

5CG2G8
11 , ~11!

LG,G8
~1!

52~k11G1!~k21G28!CG2G8
12

2~k11G18!~k21G2!CG2G8
44 , ~12!

LG,G8
~2!

52~k21G2!~k11G18!CG2G8
12

2~k21G28!~k11G1!CG2G8
44 , ~13!

KG,G8
~ i !

52~ki1Gi !CG2G8
12

2~ki1Gi8!CG2G8
44

~ i 51,2!,
~14!

JG,G8
~ i !

52~ki1Gi8!CG2G8
12

2~ki1Gi !CG2G8
44

~ i 51,2!.
~15!

In the above equations the Fourier coefficientsCG
i j are related

to cG
i jmn in a usual manner. Putting, further,

AG
i 5lÃG

i ~ i 51,2!, ~16!

AG
3 5ÃG

3 , ~17!
Eq. ~6! is reduced to the generalized eigenvalue equa
with respect tol2, which determines the spatial variation o
the wave with the distance from the surface,

~l2PG,G82QG,G8!ÃG850, ~18!

where

PG,G85S NG,G8
~1! 0 0

0 NG,G8
~2! 0

2JG,G8
~1!

2JG,G8
~2! NG,G8

~3!
D , ~19!

QG,G85S MG,G8
~1! LG,G8

~1! KG,G8
~1!

LG,G8
~2! MG,G8

~2! KG,G8
~2!

0 0 MG,G8
~3!

D . ~20!

If we truncate the expansions of Eqs.~2!–~4! by choosing
n reciprocal-lattice vectors, Eq.~18! gives 3n eigenvalues
l l

2 , (l 5123n). For the surface wave we are seeking so
tions for which the lattice displacement may decay expon
tially into the medium (z.0) away from the surfacez50.
Hence, alll5l l must have a positive imaginary part. If suc
a set ofl l ’s are found for a given frequencyv, the displace-
ment vector of the surface wave takes the form

u~r ,t !5( 8
G

ei ~k1G!•x2 ivt(
l 51

3n

AG
~ l !eil l z, ~21!

5( 8
G

ei ~k1G!•x2 ivt(
l 51

3n

Xl«G
~ l !eil l z,

~22!

where« is a unit polarization vector, and the prime of th
summation means that the sum overG is truncated up ton.

The surface wave should satisfy the stress-free bound
condition at the surfacez50, or
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Ti3uz50[ci3mn]numuz5050 ~ i 51,2,3!. ~23!

This leads to 3n homogeneous linear equations forXl ( l
5123n),

S H1,G
~1! H1,G

~2! ••• H1,G
~3n!

H2,G
~1! H2,G

~2! ••• H2,G
~3n!

H3,G
~1! H3,G

~2! ••• H3,G
~3n!

D S X1

X2

A

X3n

D [H̃X50, ~24!

whereH̃ is a 3n33n matrix, and its elements are

Hi ,G
~ l ! 5( 8

G
CG2G8

44
@~ki1Gi8!«G8

3~ l !
1l l«G8

i ~ l !
#, ~ i 51,2!,

~25!

H3,G
~ l ! 5( 8

G
$CG2G8

11 l l«G8
3~ l !

1CG2G8
12

@~k11G18!«G8
1~ l !

1~k21G28!«G8
2~ l !

#%. ~26!

Equation~24! determines the relative weightsXl of 3n wave
amplitudes if the frequencyv is correctly chosen. Actually
we do not knowa priori the eigenfrequencyv5vs of the
surface localized acoustic mode, so Eq.~18! and

det~H̃ !50 ~27!

should be solved simultaneously to obtainvs andl l .

III. NUMERICAL EXAMPLES

To develop numerical examples, we specify the phono
crystal more explicitly. We consider the structure where el
tic circular cylinders~denoted byA) of radiusr 0 are embed-
ded periodically in a background material~denoted byB),
forming a square lattice with lattice spacinga. In this struc-
ture the reciprocal-lattice vector isG5(2pN1 /a, 2pN2 /a)
with N1 and N2 integers, and the Fourier coefficients a
given by

aG5H f aA1~12 f !aB for G50

~aA2aB!F~G! for GÞ0,
~28!

where a5(r,Ci j ), f 5pr 0
2/a2 is the filling fraction which

defines the cross-sectional area of a cylinder relative to a
cell area, and

F~G!5
2 f J1~ uGur 0!

uGur 0
, ~29!

with J1(x) a Bessel function. In addition, AlAs and GaA
are taken for the cylinder (A) and background (B) materials,
respectively.14 We choose thex-y plane~perpendicular to the
cylindrical axes! to be parallel to the~001! plane of both
AlAs and GaAs, so the fourfold symmetry of the syste
within the surface is maintained.

A. Dispersion curves

Figure 1 shows the low-frequency part of the dispers
curves of both the bulk~with wave vectors parallel to thex-y
plane! and surface waves along the boundary of the irred
ic
-

nit

n

-

ible part of the Brillouin zone shown in the inset. The val
of the filling fraction assumed isf 50.564, and the numbern
of the plane waves kept in the Fourier expansions~2!–~4! is
25 (N1 ,N250,61,62), for which the convergence of th
dispersion curves shown in this figure is satisfactorily
tained. We see the existence of the surface wave bra
along theG-X direction (kx direction!, well below the lowest
bulk transverse branch. This branch exhibits the folding
fect with a frequency gap at the zone-edgeX point. The
frequency gap continues to exist along the zone bound
almost up to the midpoint of theX-M line.

Along theG-M direction the surface wave branch appea
above the lowest bulk branch, i.e., the slow transverse~ST!
branch. In this direction the ST branch is a pure shear m
with horizontal polarization. The surface waves polarized
the sagittal plane are hence completely decoupled from
ST mode, and the relative magnitudes of the surface and
wave frequencies are reversed at this isolated direction.
folding effect is seen for the surface mode in this directi
because the surface wave branch disappears before rea
the zone boundary by the intersection with the dispers
curves of the bulk modes. At an angle rotated from theG-M
direction the sagittal mode of vibrations couples weakly
the bulk shear mode, leading to the occurrence of resona
~pseudosurface waves! as discussed below.

Complementary information on the surface wave frequ
cies is obtained from Fig. 2, which displays the angular
pendence of dispersion curves atka/p50.5 andka/p51,
wherek5uku. Figure 2~a! for ka/p50.5 exhibits the disper-
sion curves of the surface waves very similar to the o
obtained on the free surface of a cubic single crystal w
anisotropy ratioh52C44/(C112C12).1.15 Note that the
surface wave branch is degenerate to the bulk transv
branch at 45°~theG-M direction!, and the true surface wav

FIG. 1. Dispersion relations of bulk longitudinal (L) and trans-
verse (T) acoustic waves~thin solid lines! and surface acoustic
waves~SW, bold solid lines! in a two-dimensional square lattic
consisting of AlAs circular cylinders in a GaAs substrate. (vT is the
transverse sound velocity of bulk GaAs in the@100# direction, i.e.,
3.353105 cm/s, anda is the lattice spacing.! Also plotted by open
circles are the resonances or bulk transverse waves for which
normalized boundary-condition determinants take values sma
than 1024. All these branches correspond to waves with a wa
vector perpendicular to the cylinder axis. In theG-X direction fast
transverse~FT! and slow transverse~ST! bulk waves are degener
ated. The filling fractionf for this figure is 0.564. The irreducible
part of the Brillouin zone is displayed in the inset.
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at this angle appears at the frequency marked by a cros
ka/p51 @Fig. 2~b!# the situation is more complicated. A
folded surface wave branch appears and its frequency
creases as the propagation angleu increases, but it disap
pears at the point where the folded branch intersects a
transverse branch.

In Fig. 3 the surface wave frequenciesvs1 andvs2 , and
the magnitude of the frequency gapDv5vs22vs1 at theX
point are plotted as the function of the filling fractionf . Both
the surface wave frequenciesvs2 and vs1 at the upper and
lower edges of the band gap increase monotonically withf ,
but their difference takes a maximum value atf 50.564~the
maximum value of the filling fraction isp/450.7854 for the
square lattice!. This value of the filling fraction is chosen i
plotting the dispersion curves of Fig. 1. Similar filling fra
tion dependences of the width of frequency gap are also s
for bulk waves.

In Fig. 4 we illustrate the profiles of the displaceme
amplitudes of the surface mode at the upper edgevs2 and at
the lower edgevs1 of the band gap at theX point. ~No shear
component with horizontal polarization exists in the surfa
wave at this point.! The selected position is the center of t
cylinder consisting of AlAs. Atv5vs2 the wave is polar-
ized almost perpendicular to the surface~transverselike! and

FIG. 2. Angular dependences of the frequencies of the bulk
transverse~FT! wave, slow transverse~ST! wave~thin solid lines!,
surface wave~SW, bold solid line!, and pseudosurface wave~PSW,
dots! ~a! at ka/p50.5 and~b! at ka/p51, i.e., along the dashe
line in the Brillouin zone shown in the insets. Crosses on the P
branches indicate the positions of the true surface waves. The u
inset of ~a! shows the decay parametere of the PSW’s. The filling
fraction is f 50.564.
At
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lk
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e

FIG. 3. Magnitude of the frequency gap (Dv5vs22vs1) of the
surface mode at theX point vs filling fraction f . The frequencies
vs2 at the upper edge andvs1 at the lower edge of the frequenc
gap at theX point are also plotted. The inset shows the schemati
the dispersion curves of the surface mode along theG-X direction
~solid lines!. The maximum value of the filling fraction isp/4
50.7854 for the square lattice.

FIG. 4. The lattice displacementsux ~parallel to the wave vector
along thex axis! anduz ~normal to the surface! at the center of the
cylinder vs distance from the surface,~a! at the upper edge (v
5vs2) and~b! at the lower edge (v5vs1) of the frequency gap a
theX point. ~The component of the lattice displacement along thy
axis is zero.! The inset shows the polarizations of the surface aco
tic waves in a unit cell at theX point. The length of the horizonta
arrow is proportional touuxu/(ux

21uz
2)1/2, which measures the mag

nitude of the lattice displacement along the surface. The propa
tion direction is along thex axis.
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at v5vs1 the wave is longitudinal. However, additional glo
bal pictures illustrated in the insets show that at the up
edgevs2 the displacement vector is predominantly longit
dinal in the heavier GaAs substrate, and that it is polari
rather transversely at the lower edgevs1 .

Here we note that the folded surface wave branch in
G-X direction disappears at the point where the upgoing s
face wave branch intersects the dashed line, i.e., before
surface wave branch intersects the bulk transverse w
propagating parallel to the surface. The reason is unders
in terms of Fig. 5 which shows the lower part of the disp
sion curves in theG-X direction as well as thekx-kz section
of the constant-frequency surfaces (v surfaces! of the lowest
three bulk branches. At a given low value of the frequen
the wave number of the surface wave indicated bykSW exists
along thekx axis outside threev surfaces of the bulk mode
@Figs. 5~a! and 5~b!#. The key observation is the fact that th
outermost curve of the slow transverse wave is deform
considerably from a circle due to the anisotropy of the u
derlying lattice. Thus the tangential line of this curve para
to the kz axis intersects thekx axis at the pointkST larger
thankT . The relation betweenv andkST defines the dashe
line in Figs. 1 and 5~a!. When the wave numberkSW be-
comes smaller thankST we can find a real wave vectorK
5(kSW5kPSW,kz) pointing inside the substrate@Fig. 5~c!#.
This means if the surface wave couples to the ST mode
attenuated by radiating the acoustic energy into the bulk
the system. The existence of such a coupling leads to
appearance of new pseudosurface waves or resonances
present system considered.

We are also interested in how far the surface wave
quency is separated from the frequency of the lowest b
wave with the same wave vector. This separation is sens
to the acoustic mismatch between the materials compo
the cylinders and background, and also to the filling fract
f . To obtain an idea of this, we have changed the densityrA
of the cylinders relative torB (5rGaAs) of the background
material, but kept their elastic constants the same. The re
at theX point are plotted in Fig. 6. A remarkable feature
the fact that the upper-edge frequencyvs2 of the folded
branch of the surface mode depends strongly onrA /rB . No
folded branch appears forrA /rB<0.3.

B. Pseudosurface waves

Figure 7~a! displays the magnitude of boundary-conditio
determinantudet H̃u along the vertical dot-dashed line of Fig
1. In addition to the deep minimum associated with the s
face wave, two local minima ofudet H̃u are found. The mini-
mum at the lower frequency is the bulk transverse wave,
the one at the higher frequency corresponds to the reson
which Every studied for the surfaces of bulk solids.16

The open circles of Fig. 1 indicate the positions of t
local minima of udet H̃u satisfying udet H̃u/udet H̃umax

,1024 for eachk, whereudet H̃umax is the maximum value
of udet H̃u in the range 0,va/v t,5.17 These minima occur
either on the bulk transverse branches or along the l
above the lowest bulk wave branches, i.e., inside the b
band. In theG-X direction, for example, we find the reso
nances along the line continuing from the folded branch
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FIG. 5. ~a! Magnification of the lower part of the dispersio
relations in theG-X direction of Fig. 1. The pointskL , kT , kST,
andkSW indicate the wave numbers in thex-y plane of the bulk and
surface waves of a given frequencyv. ~b! The section of the
constant-frequency (v5v1) surfaces of the bulk waves by th
kx-kz plane. The wave numberskL , kT , kST, andkSW correspond
to those shown in~a!. ~c! The section of the constant-frequenc
(v5v2) surfaces of the bulk waves by thekx-kz plane. The wave
numberskL , kT , kPSW, andkST are defined by the intersections o
the dispersion curves with the horizontal dashed line (v5v2) in
~a!. We can find a real wave vectorK whose component parallel to
the surface iskPSW and the corresponding group-velocity directio
~outward normal of the surface plotted by the short dashed l!
points in the directionz.0. This means that the PSW branch show
by the dotted line of~a! radiates the energy into the bulk of th
system.
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the surface mode and their frequencies are inside the
band. Hence they possess bulk wave components, and
amplitudes at the surface should decay as they propa
along the surface, as noted in Sec. III A. This can be exp
itly seen from the fact that the dip of the boundary-conditi
determinant goes down further~essentially to zero! if we add
a small imaginary part to the two-dimensional wave vectok
ask(11 i e), wheree is a real, positive number and its ma
nitude is typically;1022 or less@see Fig. 7~b!#. In a semi-
infinite solid with a free surface, these waves are known
pseudosurface waves~PSW’s!.15,18,19

To obtain the PSW’s solutions we have to assign, at
same time, a negative imaginary part~instead of a positive
imaginary part for the surface modes! to one or twol l ’s of
the dominant partial waves. This is required because the
cay of the amplitude along the surface should be balance
the growth of the amplitude into the bulk of the system.
the present work we call the resonances PSW’s if
boundary-condition determinant decreases to a value as
as that of the surface waves by introducing the decay par
eter e as well as the bulk wave components radiating
acoustic energy into the substrate. Because of the smal
cay parametere, PSW’s can propagate along the surfa
almost unattenuated, and should be observed experimen
just like true surface waves.18

In Fig. 8 we show the decay parametere of PSW’s in the
G-X direction. The magnitude is about 131022 or less, as
expected, so they should behave like surface waves f
traveling distance of ten wavelengths or longer. An intere
ing observation is thate vanishes atka/p;0.73 ~point A)
and ;0.9 ~point B). At the latter value ofk the PSW is
degenerate to the bulk transverse wave~see Fig. 1!. How-
ever, at the former value ofk the PSW becomes a true su
face wave with the polarization vector out of the symme
plane. Such a surface wave in a semi-infinite solid is calle

FIG. 6. Surface wave frequenciesvs1 andvs2 at theX point vs
the relative density of constituent materials. Frequencies are
malized byvT , i.e., the frequency of the lowest transverse (T)
branch at the same point. The cross shows the point at which
upper frequencyvs2 touches the bulk transverse branch, and
folded branch appears forrA /rB<0.3. The inset shows a simila
plot, but the frequency is not normalized byvT . rB5rGaAs, and
the elastic constants of GaAs are assumed for both the cylinder
substrate.
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FIG. 7. The normalized magnitude of the boundary condit

determinant udet H̃u vs frequency along the dot-dashed lin
(ka/p50.857 along theG-X direction! in Fig. 1. ~a! For the real
wave vector parallel to the surface, withe50. ~b! For the complex
wave vector parallel to the surface, i.e.,e52.4831024. The fre-
quencies at which the four branches intersect the dot-dashed
~Fig. 1! are labeled.~The cross indicates the frequency at which t
dashed line of Fig. 1 intersects the dot-dashed line.! The number of
real l l ~the wave number normal to the surface! is also shown in
~a!.

FIG. 8. Decay parametere of the pseudosurface waves~PSW’s!
along theG-X direction. For the value ofk at which e vanishes
~point A), PSW becomes a true surface wave~secluded supersonic
surface wave!. At point B, PSW is degenerate to the bulk transver
wave propagating along the surface. The lattice displacement
distance from the surface at pointA are plotted in the inset.
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7964 PRB 58YUKIHIRO TANAKA AND SHIN-ICHIRO TAMURA
secluded supersonic surface wave. Secluded supersonic
face waves in a germanium surface were recently studied
Maznev and Every.20

Another characteristic feature of the PSW’s is found
changing the propagation angleu for a fixed magnitude of
the wave vectork. The angular dependences of the disp
sion relations forka/p50.5 and 1 are shown in Fig. 2 b
dotted lines. In particular, two PSW branches can be see
Fig. 2~b!, plotted for the larger value ofk. The lower line
@also the line in Fig. 2~a!# is quite similar to the one in the
free surface of bulk GaAs,21 and the upper branch seems
continue from the folded surface wave branch. The mag
tude of the decay parametere is again about 131022 or less,
and the secluded supersonic surface waves are found in
PSW branches~crosses in Fig. 2!, as explicitly shown in the
inset of Fig. 2~a!.

C. Stop band distribution

A possible experiment to verify the propagation of t
surface waves and the PSW’s would make use of point
line-focus ultrasonic immersion transducers, which act a
transmitter and a receiver for an acoustic signal. This ul
sonic method has been developed by Vines, Hauser,
Wolfe for characterizing the propagation of coherent surf
acoustic waves in anisotropic media.13 By rotating the
sample about an axis normal to the surface, the propaga
of waves along any direction in the surface can be record
When point-focus transducers are used, ultrasonic wa
with a broad angular distribution of wave vectors are excit
so the measurement reveals the acoustic energy flux or g
velocity along a given direction. On the other hand, ult
sonic waves with a well-defined wave vector are produce
line-focus transducers are employed. In these experim
the occurrence of band gaps in the transmission spectrum
be detected.

In view of these possible experiments, we in Fig. 9 ha
plotted the distributions of the lowest four frequency gaps
the surface, pseudosurface, and bulk waves as a functio
wave-vector direction. The lowest distributions aroundu50°
and their equivalent directions are the stop bands of sur
waves, and the hatched regions continuing from these di
butions are the stop bands of PSW’s. The upper distributi
are the stop bands of the bulk waves.

An interesting observation is the fact that the width of t
stop band labeledL-T vanishes in theG-X direction. The
corresponding frequency is shown by the horizontal arrow
Fig. 1, where the dispersion curves of the longitudinal a
~folded! transverse branches intersect each other. As
propagation direction is rotated from theG-X direction, the
frequency gap is open and increases due to the mixing o
polarization vectors of these modes~see the inset of Fig. 9!.
Thus this stop band exists inside the Brillouin zone, and
physically interpreted as an intermode Bragg reflection
acoustic waves, which has been predicted theoretically
also verified experimentally in one-dimensional period
superlattices.22–24 The other two kinds of stop bands of th
bulk transverse and surface waves are due to the intram
Bragg reflections characteristic of a periodic system.

All these stop bands are related to the waves with w
vectors parallel to the surface, and have sizable magnitu
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Hence they should be observed in a wave-vector-scan
technique in which an ultrasonic wave is focused on a l
using a cylindrical acoustic lens and a receiving transduce
cylindrically focused on a parallel line some distance aw
on the surface. Such a preliminary experiment with a po
mer filling periodically drilled holes in an aluminum sub
strate was done by Vines and Wolfe,8 and the existence of a
stop band distribution similar to that in Fig. 8 has been o
served in the transmitted acoustic signal.

IV. CONCLUDING REMARKS

In the present work we have calculated the dispers
relations of surface and pseudosurface acoustic wave
two-dimensional phononic crystals consisting of periodic
rays of circular cylinders embedded in a background s
stance. The surface is a plane perpendicular to the cylin
axes, and we find folding effects of the surface-wave disp
sion relations which are characteristic of a periodic syste
The folded dispersion curves continue to go up into the b
band as PSW branches. A similar continuation of the PS
branch from the surface wave branch was recently also
dicted for 1D periodic superlattices with a free surface.21 The
secluded supersonic surface waves are found at some
lated points on the pseudosurface branches. The distribut
of frequency gaps, i.e., stop bands, of surface acoustic wa
are well separated from those of bulk waves, and they sho
be observed, for example, by ultrasound imaging exp
ments.

In the present calculation a square lattice is considered
the configuration of cylinders in the host material. This la
tice structure is accommodated by the fourfold symmetry
the surfaces under consideration owing to the materials~cu-
bic crystals! taken for the cylinders and background. How
ever, other lattice structures with lower symmetry such

FIG. 9. Distributions of the stop bands of the bulk waves@lon-
gitudinal (L), fast transverse~FT!, slow transverse~ST! waves, and
the coupled longitudinal and transverse (L-T) waves, smeared re
gions#, the surface waves~SW, vertically hatched regions!, and
pseudosurface waves~PSW, horizontally hatched regions!. The FT
and ST stop bands are overlapped in the regions surrounded b
dashed lines. The horizontal axis is the angle in wave-vector sp
The inset shows the relevant part of the dispersion relation
u515°, where the intrazoneL-T stop band is created.



in
st
is
re
io

D
e
e

im
ul
ui
as
th
d

are
iate
ab-
ch
on-

for
ey
e
in-
n,

PRB 58 7965SURFACE ACOUSTIC WAVES IN TWO-DIMENSIONAL . . .
hexagonal, graphite structure, etc., would be worth study
It would be also interesting to study the surface acou
waves in a 2D phononic crystals with larger acoustic m
match, in which complete frequency gaps common to th
bulk modes are formed in the lower part of the dispers
relations.

A preliminary ultrasound imaging experiment with 2
phononic crystals8 suggests at least two subjects for furth
study. The first one is the effect of liquid loading on th
surface of phononic crystals. In the imaging experiment
mersion transducers are used to generate and detect
sound signals, so the sample surface is covered with liq
The second one is the frequency dependence of the el
constants of the material composing the cylinders. In
experiment a polymer is filled in the circular cylinders drille
ri-
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e
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tra-
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tic
e

in a metallic substrate. The elastic constants of polymers
generally frequency dependent in the MHz range appropr
to the experiment, and at the same time the ultrasonic
sorption is very large. We plan to extend our theory to su
systems with frequency-dependent, complex elastic c
stants.
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