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Surface acoustic waves in two-dimensional periodic elastic structures
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Acoustic waves localized at the surface of two-dimensi¢2B) periodic elastic structures, or 2D phononic
crystals, are studied theoretically by taking account of the elastic anisotropy of constituent materials. The
surface considered is perpendicular to the axis of a periodic array of cylinders embedded in a background
material. The dispersion relations of the surface modes are calculated for circular cylinders of AlAs which form
a square lattice in a GaAs matrix. The folding and anisotropy of the surface wave branches, as well as the
existence of pseudosurface waves, are found. The stop band distributions of the surface, pseudosurface, and
bulk waves are plotted in a form relevant for comparison with ultrasound imaging experiments.
[S0163-182608)00336-1

[. INTRODUCTION the axes of elastic cylinders forming a 2D lattice, which
should be more easily accessible experimentally. this
There has been a growing interest in recent years in thease the system occupyirmy>0 is periodic within the flat
study of two-dimensional2D), periodic, dielectric structures surface g=0), which is taken to be the-y plane and ho-
called photonic crystafs? A major reason for this is the fact mogeneous in the direction.
that these systems exhibit band gdphotonic band gaps The purpose of the present study is to elucidate theoreti-
which extend throughout the Brillouin zone. The existence ofcally the characteristics of surface acoustic waves in the 2D
photonic band gaps can lead to a Variety of phenomena (nhononic Crystals of the above geometrical configuration.
both fundamental and practical interest. The absence of ele¢Hereafter, we call surface acoustic waves simply surface
tromagnetic modes in a certain frequency range can modifyvaves) Full account is taken of the elastic anisotropy of the
the basic properties of atomic, molecular, and excitonic sysmedia composing both cylinders and background. We find
tems. that the surface-phonon branch exists below the lowest bulk
The ana|ogy between photons and phonons suggests th@anch, in general, thOUgh it can appear inside the bulk band
consideration of periodic elastic composites of two or morefor a specific direction of propagation. Moreover, the folding
vibrating materials called phononic crystals. So far, severagffect characteristic of a periodic system can also be found
authors have developed for such composites theories d@r the surface branches at the Brillouin-zone boundary.
acoustic band structure for bulk vibrations in an isotropicSim”al’ results for surface waves have been obtained for 1D
approximation with the wave vector perpendicu|ar to the Cy|-phon0nic crystals, i.e., semi-infinite 1D periodic superlattices
inder axis®~5 Acoustic waves are certainly more complicatedWith a free surface in the isotropic approximatfor: An
than the electromagnetic waves due to the presence of lofateresting observation in the presence of anisotropy is the
gitudinal vibrations. Also, the presence of elastic anisotropyact that the folded surface wave branch continues to exist
of both the host and cylinder materials should properly bénside the bulk band as a pseudosurface wave branch after
taken into account. intersection with the dispersion curve of a bulk phonon. We
Of Specia| interest for the phonon case is the prospect (ﬁlSO plOt the stop band distribution of both the surface and
achieving a complete frequency gap, or phonon stop band),ulk acoustic waves which would be observable in an ultra-
for both longitudinal and transverse vibrations. So far, asound imaging experimeft.*3
complete frequency gap has been observed experimentally
only for a single modelongitudinal mod&® However, by
choosing constituent materials with large acoustic mismatch, Il. FORMULATION
and also by varying the filling fraction of the composites, a We assume the system to be an elastic continuum com-

phononi_c band gap extendinlg throughout the Brillouin Zo_neposed of a periodic array of cylinders of mateakembed-
IS pred|§:ted5. The suppression of the electron—acoustic- ed in a background materiBl. Both A andB materials are
phonon interaction due to the presence of phonon stop ban(gﬁbic crystals and elastic anisotropy is fully taken into ac-

n ZAD sttﬁperlattlt%esh_slhoul(g_prct)wde mte_restlrrl]g app_llcano?sl. count. The equation governing the motion of lattice displace-
nother worthwhile subject concerning phononic crys asmentu(r,t) of the system is given by

would be the acoustic mode localized near the truncated sur-
face of the structure. Such localized surface states of photons
in 2D periodic dielectric lattices have been studied by Etche-
goin and Phillips. The surfaces they introduced are those
parallel to the axes of dielectric rods, and the surface states
are found inside the photonic gaps. In the present study wehere p(r) and cjj,y(r) are the position-dependent mass
consider a different case, that is, a surface perpendicular tdensity and elastic stiffness tensor, respectively, and the

P(r)ui:&j[cijmn(r)5num]v (i=1,2,3), (1)
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summation convention over repeated indices is assumed. Wehere r =(x,z) =(X,Y,2), k=(ky,ky)=(ky,k;) is a Bloch

try to solve this equation by a standard Fourier expansionvave vector,

method, or we put

andG=(G,,G,) is a two-dimensional
reciprocal-lattice vector. The Bloch theorem is used for the
displacement vectan. Note thatp andc;;,, do not depend

u(r)= elkre x-ioty (7). 2 on z becaL_Jse of the homoggneity of the system alo_ng the
(Tt % %(2) @ cylinder axis. In order to obtain the surface wave solution we
further put
P(r):% e'®%pg, 3) _
ag(z)=Age™ (5)
C:: r)= eiG-xCijmn’ 4
mn(") % G @ Substituting Eqs(2)—(5) into Eq. (1), we obtain
|
(1) 2n (D) (1) (1) 1
MG.G’_)\ NG,G’ LG,G’ )\KG,G’ AG/
(2) (2) (2) (2) 2
LG,G’ MG,G’_)\ZNG,G' AKG,G’ AG’ :O, (6)
(L) (2) (3 (3 3
)\‘]G,G’ )\JG,G’ MG,G’_)\ZNG,G’ Acr

where
MO — 2 — (K3 +Gy) (K +G)CE ., —(k,+ G
G =0 Ppe-c (k1T G1)(ki+G1)Cq g — (ko +Gy)
X(ky+GyC @
M@ — 2 — (Ko+Gy) (Ko + GHCE ., — (ki + G
6.6 =@ PG-c (ko 2)(kz 2) c—c (ki 1)

X(ky+G)Ca o ®)

MO =w?pe o —(k+G)-(k+G')Cq o/, (9)

Neo=Co o (i=12), (10)
3) _ 11
Nge=Cg_ g (11
L&, =~ (kg+ Gy (kp+ GHCE ¢,
—(ky+G}) (ko +G)Co &, (12)
L&, =~ (kp+ Gp) (ks +GCE ¢,
—(ky+Gy)(ky +G1)Co &, (13)
Kg,)e':_(ki+Gi)Cé2—G'_(ki+Gi/)Cé4_Gr (i=1,2),
(14
i _ 12 44 .
Igs=—(k+G))CZ ¢ —(ki+G)Cq ¢, (|—1,2()1.5)

In the above equations the Fourier coefficieBfsare related
ijmn

tocg ' in a usual manner. Putting, further,
L=MAL  (i=1,2), (16)
A=A, (17

Eqg. (6) is reduced to the generalized eigenvalue equation
with respect tan?, which determines the spatial variation of
the wave with the distance from the surface,

(APge— Qg6 )Ac =0, (18)
where
NS 0 0
Peo=| O N O |, (9
e 9 N
Moo Los Koo
Qeo=| Lee Mée Kéo (20
0 0 MY

If we truncate the expansions of Eq2)—(4) by choosing
n reciprocal-lattice vectors, Eq18) gives & eigenvalues
)\|2, (I=1-3n). For the surface wave we are seeking solu-
tions for which the lattice displacement may decay exponen-
tially into the medium £>0) away from the surface=0.
Hence, all\ =\, must have a positive imaginary part. If such
a set of\|’s are found for a given frequenay, the displace-
ment vector of the surface wave takes the form

3n

U(I’,t)=§, ei(k+G).x—ia)tIZ1 Ag)e“lz, (21)

3n
_ ’ ei(k+G)~xfith X|sg)e”"z,
G =1

(22

where € is a unit polarization vector, and the prime of the
summation means that the sum oeiis truncated up ta.

The surface wave should satisfy the stress-free boundary
condition at the surface=0, or
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Ti3|z:OECi3mn‘9num|z:O:0 (i=1,2,3. (23

This leads to 8 homogeneous linear equations f&r (I
=1-3n),

HE HE o gD (0
HY HEZ HEY || 7% | =Fix=0, (24
HE G - me )|
3n
whereH is a 31x 3n matrix, and its elements are i r X 4
(l) _E CG G'[(k +G! )83(|)+7\|Sglr 1, (i=1,2), FIG. 1. Dispersion relations of bulk longitudindl) and trans-

verse {) acoustic wavegthin solid lineg and surface acoustic
(25 waves(SW, bold solid liney in a two-dimensional square lattice
consisting of AlAs circular cylinders in a GaAs substrate; (s the
transverse sound velocity of bulk GaAs in 0] direction, i.e.,
3.35x 10° cm/s, anda is the lattice spacinyAlso plotted by open
circles are the resonances or bulk transverse waves for which the
+(k,+G))e G/>]} (26) normalized boundary-condition determinants take values smaller
than 1074, All these branches correspond to waves with a wave
Equation(24) determines the relative weights of 3n wave  vector perpendicular to the cylinder axis. In thieX direction fast
amplitudes if the frequency is correctly chosen. Actually transversd€FT) and slow transvers¢ST) bulk waves are degener-
we do not knowa priori the eigenfrequencw= wg of the  ated. The filling fractionf for this figure is 0.564. The irreducible

H{S Z [l nedDec l(kg+Gpel)

surface localized acoustic mode, so Etg) and part of the Brillouin zone is displayed in the inset.
detH)=0 27 ible part of the Brillouin zone shown in the inset. The value
should be solved simultaneously to obtaig and X, . of the filling fraction assumed i5=0.564, and the number
of the plane waves kept in the Fourier expansi@)s-(4) is
I1l. NUMERICAL EXAMPLES 25 (N;,N,=0,=1,+2), for which the convergence of the

dispersion curves shown in this figure is satisfactorily at-

To develop numerical examples, we specify the phononl(fauned We see the existence of the surface wave branch
crystal more explicitly. We consider the structure where elasalong thel'-X direction , direction, well below the lowest

tic circular cylinders(denoted byA) of radiusr, are embed- bulk transverse branch. This branch exhibits the folding ef-

ded periodically in a background materi@enoted byB), ) :
forming a square lattice with lattice spaciag In this struc- IECt with a frequentgy gari at t.h ? zlone-tirc]i)gepomt. bThe d
ture the reciprocal-lattice vector G=(27Ny/a, 27N,/a) requency gap continues to exist along the zone boundary

with N; and N, integers, and the Fourier coefficients are2/Most up to the midpoint of th¥-M line.

given by Along theT'-M direction the surface wave branch appears
above the lowest bulk branch, i.e., the slow transvég&B
fap+(1—f)ag for G=0 branch. In this direction the ST branch is a pure shear mode
ac= (ap—ag)F(G) for G#0, (28 with horizontal polarization. The surface waves polarized in

- the sagittal plane are hence completely decoupled from the
where a=(p,C'l), f=nr§/a® is the filling fraction which ST mode, and the relative magnitudes of the surface and bulk
defines the cross-sectional area of a cylinder relative to a unifave frequencies are reversed at this isolated direction. No
cell area, and folding effect is seen for the surface mode in this direction

because the surface wave branch disappears before reaching
2f3.1(|Glro) (29 the zone boundary by the intersection with the dispersion
IGlrg curves of the bulk modes. At an angle rotated fromhi
direction the sagittal mode of vibrations couples weakly to
the bulk shear mode, leading to the occurrence of resonances
(pseudosurface waveas discussed below.

Complementary information on the surface wave frequen-
cies is obtained from Fig. 2, which displays the angular de-
pendence of dispersion curveslka/7=0.5 andka/7=1,
wherek=|k|. Figure Za) for ka/ == 0.5 exhibits the disper-
sion curves of the surface waves very similar to the one
obtained on the free surface of a cubic single crystal with

Figure 1 shows the low-frequency part of the dispersionanisotropy ratio 7=2C,,/(C1;—C1,)>1.1° Note that the
curves of both the bulkwith wave vectors parallel to they ~ surface wave branch is degenerate to the bulk transverse
plane and surface waves along the boundary of the irreducbranch at 45{theI’-M direction), and the true surface wave

F(G)=

with J;(x) a Bessel function. In addition, AlAs and GaAs
are taken for the cylinderX) and backgroundR) materials,
respectively:* We choose the-y plane(perpendicular to the
cylindrical axe$ to be parallel to thg001) plane of both
AlAs and GaAs, so the fourfold symmetry of the system
within the surface is maintained.

A. Dispersion curves
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FIG. 2. Angular dependences of the frequencies of the bulk fast (a) .
transversé€FT) wave, slow transverseST) wave (thin solid lines, o 1] A o
surface wavéSW, bold solid ling, and pseudosurface wa/@Sw, :'é N ERIRe NS
dot9 (a) at ka/r=0.5 and(b) at ka/7w=1, i.e., along the dashed =08 ‘\\ S Ride GaAs
line in the Brillouin zone shown in the insets. Crosses on the PSW 5 06 | ‘\‘ — o
branches indicate the positions of the true surface waves. The upper o ' \\qul e *\.—_‘#I:
inset of (@) shows the decay parametenf the PSW'’s. The filling g 04| \ x/a
fraction isf=0.564. = \ =0

202l A —_ S2
at this angle appears at the frequency marked by a cross. At 0 2 v Sso
ka/7=1 [Fig. 2(b)] the situation is more complicated. A 0 1 2 3 4
folded surface wave branch appears and its frequency in- 12 z/a
creases as the propagation angléncreases, but it disap- ‘(b) : L\%:
pears at the point where the folded branch intersects a bulk g 1y =il
transverse branch. 208 £ = TG

In Fig. 3 the surface wave frequencies; and ws,, and g i BESNORGGEE
the magnitude of the frequency gam = wg,— v at theX < 06
point are plotted as the function of the filling fractibnBoth 2 04
the surface wave frequencies, and wg; at the upper and g
lower edges of the band gap increase monotonically With E 0.2
but their difference takes a maximum valuefat0.564 (the ok
maximum value of the filling fraction isr/4=0.7854 for the 0 1 2 3 4
square lattice This value of the filling fraction is chosen in z/a

plotting the dispersion curves of Fig. 1. Similar filling frac-
tion dependences of the width of frequency gap are also seef,
for bulk waves.

In Fig. 4 we illustrate the profiles of the displacement

FIG. 4. The lattice displacements, (parallel to the wave vector

ng thex axis) andu, (normal to the surfageat the center of the
cylinder vs distance from the surfacé) at the upper edge«f

) =wg,) and(b) at the lower edged= wg;) of the frequency gap at
amplitudes of the surface mode at the upper edgeand at  the X point. (The component of the lattice displacement alongythe
the lower edgevg; of the band gap at th point. (No shear s is zero,. The inset shows the polarizations of the surface acous-
component with horizontal polarization exists in the surfaceijc waves in a unit cell at th& point. The length of the horizontal
wave at this poin).The selected position is the center of the arrow is proportional t¢ux|/(u§+ ug)l/% which measures the mag-
cylinder consisting of AlAs. Atw=wg, the wave is polar- nitude of the lattice displacement along the surface. The propaga-
ized almost perpendicular to the surfatensverselikeand  tion direction is along the axis.
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at w= wg; the wave is longitudinal. However, additional glo- 4
bal pictures illustrated in the insets show that at the upper
edgews, the displacement vector is predominantly longitu-
dinal in the heavier GaAs substrate, and that it is polarized
rather transversely at the lower edgg;, . :

Here we note that the folded surface wave branch in the g 2f
I'-X direction disappears at the point where the upgoing sur-
face wave branch intersects the dashed line, i.e., before the :
surface wave branch intersects the bulk transverse wave )
propagating parallel to the surface. The reason is understood
in terms of Fig. 5 which shows the lower part of the disper-
sion curves in thd'-X direction as well as th&,-k, section
of the constant-frequency surfaces $urfaceg of the lowest
three bulk branches. At a given low value of the frequency
the wave number of the surface wave indicatedkgy; exists
along thek, axis outside thre@ surfaces of the bulk modes
[Figs. 5a) and §b)]. The key observation is the fact that the
outermost curve of the slow transverse wave is deformed 038 |- .
considerably from a circle due to the anisotropy of the un-
derlying lattice. Thus the tangential line of this curve parallel
to the k, axis intersects thé&, axis at the poinkgt larger
thanky. The relation between andkg defines the dashed
line in Figs. 1 and &). When the wave numbekg,y be-
comes smaller thakgt we can find a real wave vectdt
= (ksw=kpsw:K;) pointing inside the substraféig. 5(c)].
This means if the surface wave couples to the ST mode it is
attenuated by radiating the acoustic energy into the bulk of
the system. The existence of such a coupling leads to the
appearance of new pseudosurface waves or resonances in the
present system considered. k a/n

We are also interested in how far the surface wave fre- 002 04 06 08 1
guency is separated from the frequency of the lowest bulk ST =0
wave with the same wave vector. This separation is sensitive 0s L .
to the acoustic mismatch between the materials composing ’ FT =1
the cylinders and background, and also to the filling fraction i
f. To obtain an idea of this, we have changed the dempsity 0.6 F Y
of the cylinders relative tpg (=pgaad Of the background
material, but kept their elastic constants the same. The results 0.4 |
at theX point are plotted in Fig. 6. A remarkable feature is
the fact that the upper-edge frequeney, of the folded 02
branch of the surface mode depends strongly gfpg. No k
folded branch appears far, /pg=<0.3. (c) FSW

k a/m

k a/m
z
—
~

kL kT
B. Pseudosurface waves ST

Figure {a) displays the magnitude of boundary-condition G. 5 @ o e |  the d )
. ~ . . . . FIG. 5. (a) Magnification of the lower part of the dispersion
determinantdet H| along the vertical dot-dashed line of Fig. relations in thel'-X direction of Fig. 1. The pointk, , kr, ker.

1. In addition to the deep minimum associated with the Surhndkswindicate the wave numbers in they plane of the bulk and

face wave, two local minima dtletH| are found. The mini-  syrface waves of a given frequeney. (b) The section of the
mum at the lower frequency is the bulk transverse wave, angonstant-frequency = w,) surfaces of the bulk waves by the
the one at the higher frequency corresponds to the resonanggk, plane. The wave numbeks , ky, ks, andks,y correspond
which Every studied for the surfaces of bulk solfs. to those shown in@). (c) The section of the constant-frequency
The open circles of Fig. 1 indicate the positions of the(w=w,) surfaces of the bulk waves by ttkg-k, plane. The wave
local minima of |detﬁ| satisfying |detﬁ|/|detﬁ|max numbersk, , k1, kpsw, andkst are defined by the intersections of

<1074 for eachk, Where|detﬁ|max is the maximum value the dlsperspn curves with the horizontal dashed line=(,) in
(a). We can find a real wave vectér whose component parallel to

of |detH| in the range &< wa/v,<5.'" These minima occur ihe surface i&pswand the corresponding group-velocity direction

either on the bulk transverse branches or along the linegutward normal of the surface plotted by the short dashed line
above the lowest bulk wave branches, i.e., inside the bullgoints in the directioz>>0. This means that the PSW branch shown
band. In thel’-X direction, for example, we find the reso- by the dotted line of@ radiates the energy into the bulk of the

nances along the line continuing from the folded branch okystem.
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FIG. 6. Surface wave frequencieg; andws, at theX point vs ,.8
the relative density of constituent materials. Frequencies are nor- — 10°
malized by wy, i.e., the frequency of the lowest transverse (
branch at the same point. The cross shows the point at which the 3
upper frequencyw, touches the bulk transverse branch, and no 10
folded branch appears fgr,/pg=<0.3. The inset shows a similar o
plot, but the frequency is not normalized by . pg=pgaas, and 10° ! |
the elastic constants of GaAs are assumed for both the cylinder and ar : SW | :T PSW|
substrate. 107 Lo cdl e Loy 1 p by iy
22 24 26°°28 3 32 34
. : _ walv
the surface mode and their frequencies are inside the bulk t

band. Hence they possess bulk wave components, and the g 7. The normalized magnitude of the boundary condition

amplitudes at the surface S_hOUId decay a_s they prOpaga&%terminaanetm vs frequency along the dot-dashed line
along the surface, as noted in Sec. Ill A. This can be explic{ka/7=0.857 along tha™-X direction in Fig. 1. (a) For the real
itly seen from the fact that the dip of the boundary-conditionwave vector parallel to the surface, wigh=0. (b) For the complex
determinant goes down furthéssentially to zeroif we add  wave vector parallel to the surface, i.e=2.48<10™ 4. The fre-
a small imaginary part to the two-dimensional wave ve&tor quencies at which the four branches intersect the dot-dashed line
ask(1+ie), wheree is a real, positive number and its mag- (Fig. 1) are labeled(The cross indicates the frequency at which the
nitude is typically~10"2 or less[see Fig. T)]. In a semi- dashed line of Fig. 1 intersects the dot-dashed_)liiﬁbe number Qf
infinite solid with a free surface, these waves are known a&e@! M (the wave number normal to the surfade also shown in
pseudosurface wavéBSW'g 151819 @.

To obtain the PSW’s solutions we have to assign, at the
same time, a negative imaginary péristead of a positive
imaginary part for the surface modes one or two\,’s of i
the dominant partial waves. This is required because the de- 107! PSW |
cay of the amplitude along the surface should be balanced by
the growth of the amplitude into the bulk of the system. In
the present work we call the resonances PSW's if the
boundary-condition determinant decreases to a value as large
as that of the surface waves by introducing the decay param-
eter e as well as the bulk wave components radiating the
acoustic energy into the substrate. Because of the small de-
cay parametere, PSW’s can propagate along the surface
almost unattenuated, and should be observed experimentally
just like true surface wavés. B

In Fig. 8 we show the decay parameteof PSW's in the
I'-X direction. The magnitude is about<110~? or less, as 107 L
expected, so they should behave like surface waves for a 0 02 04 06 038 1
traveling distance of ten wavelengths or longer. An interest- ka/nt

Ing observathn is that vanishes aka/7~0.73 (point A)_ FIG. 8. Decay parameterof the pseudosurface wavé3SW'’9

and ~0.9 (point B). At the latter value ofk the PSW is  5iong ther-X direction. For the value ok at which e vanishes
degenerate to the bulk transverse wasee Fig. 1 How-  (pointA), PSW becomes a true surface wasecluded supersonic
ever, at the former value & the PSW becomes a true sur- surface wavk At point B, PSW is degenerate to the bulk transverse
face wave with the polarization vector out of the symmetrywave propagating along the surface. The lattice displacements vs
plane. Such a surface wave in a semi-infinite solid is called alistance from the surface at poiatare plotted in the inset.
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secluded supersonic surface wave. Secluded supersonic sur- 5
face waves in a germanium surface were recently studied by
Maznev and Ever§®

Another characteristic feature of the PSW's is found by
changing the propagation angtefor a fixed magnitude of L
the wave vectok. The angular dependences of the disper- 41
sion relations forka/7=0.5 and 1 are shown in Fig. 2 by
dotted lines. In particular, two PSW branches can be seen in
Fig. 2b), plotted for the larger value df. The lower line
[also the line in Fig. @)] is quite similar to the one in the
free surface of bulk GaA%: and the upper branch seems to
continue from the folded surface wave branch. The magni- 015 deg)
tude of the decay parameteis again about X 102 or less, 05 1y
and the secluded supersonic surface waves are found in the oo inuenbenbeebechon sl d e
PSW branchegcrosses in Fig. 2 as explicitly shown in the -180 -120 60 0 60 120 180
inset of Fig. Za). Angle from ['-X Direction 6 (deg.)

wa/v

FIG. 9. Distributions of the stop bands of the bulk wayies-
C. Stop band distribution gitudinal (L), fast transverséT), slow transvers€ST) waves, and

. . . . the coupled longitudinal and transverde-T) waves, smeared re-
A possible experiment to verify the propagation of the yiong the surface wavesSw, vertically hatched regionsand

surface waves and the PSW's would make use of point- Opseydosurface wavéBSW, horizontally hatched regiondhe FT
line-focus ultrasonic immersion transducers, which act as @nd ST stop bands are overlapped in the regions surrounded by the
transmitter and a receiver for an acoustic signal. This ultragashed lines. The horizontal axis is the angle in wave-vector space.
sonic method has been developed by Vines, Hauser, anthe inset shows the relevant part of the dispersion relations at
Wolfe for characterizing the propagation of coherent surfacey=15°, where the intrazone-T stop band is created.

acoustic waves in anisotropic media.By rotating the

sample about an axis normal to the surface, the propagatiadence they should be observed in a wave-vector-scanning
of waves along any direction in the surface can be recordedechnique in which an ultrasonic wave is focused on a line
When point-focus transducers are used, ultrasonic wavessing a cylindrical acoustic lens and a receiving transducer is
with a broad angular distribution of wave vectors are excitedgylindrically focused on a parallel line some distance away
so the measurement reveals the acoustic energy flux or groum the surface. Such a preliminary experiment with a poly-
velocity along a given direction. On the other hand, ultra-mer filling periodically drilled holes in an aluminum sub-
sonic waves with a well-defined wave vector are produced iktrate was done by Vines and Woﬁend the existence of a
line-focus transducers are employed. In these experimentsop band distribution similar to that in Fig. 8 has been ob-
the occurrence of band gaps in the transmission spectrum ca&erved in the transmitted acoustic signal.

be detected.

In view of these possible experiments, we in Fig. 9 have
plotted the distributions of the lowest four frequency gaps of
the surface, pseudosurface, and bulk waves as a function of In the present work we have calculated the dispersion
wave-vector direction. The lowest distributions arowse°®  relations of surface and pseudosurface acoustic waves in
and their equivalent directions are the stop bands of surfacevo-dimensional phononic crystals consisting of periodic ar-
waves, and the hatched regions continuing from these distriays of circular cylinders embedded in a background sub-
butions are the stop bands of PSW’s. The upper distributionstance. The surface is a plane perpendicular to the cylinder
are the stop bands of the bulk waves. axes, and we find folding effects of the surface-wave disper-

An interesting observation is the fact that the width of thesion relations which are characteristic of a periodic system.
stop band labeledl.-T vanishes in thd™-X direction. The The folded dispersion curves continue to go up into the bulk
corresponding frequency is shown by the horizontal arrow irband as PSW branches. A similar continuation of the PSW
Fig. 1, where the dispersion curves of the longitudinal ancbranch from the surface wave branch was recently also pre-
(folded transverse branches intersect each other. As thdicted for 1D periodic superlattices with a free surfat&he
propagation direction is rotated from tlheX direction, the secluded supersonic surface waves are found at some iso-
frequency gap is open and increases due to the mixing of thiated points on the pseudosurface branches. The distributions
polarization vectors of these modesee the inset of Fig.)9  of frequency gaps, i.e., stop bands, of surface acoustic waves
Thus this stop band exists inside the Brillouin zone, and isare well separated from those of bulk waves, and they should
physically interpreted as an intermode Bragg reflection obe observed, for example, by ultrasound imaging experi-
acoustic waves, which has been predicted theoretically anghents.
also verified experimentally in one-dimensional periodic In the present calculation a square lattice is considered for
superlattice$?~2* The other two kinds of stop bands of the the configuration of cylinders in the host material. This lat-
bulk transverse and surface waves are due to the intramodiee structure is accommodated by the fourfold symmetry in
Bragg reflections characteristic of a periodic system. the surfaces under consideration owing to the mateféls

All these stop bands are related to the waves with wavéic crystalg taken for the cylinders and background. How-
vectors parallel to the surface, and have sizable magnitudesver, other lattice structures with lower symmetry such as
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hexagonal, graphite structure, etc., would be worth studyingn a metallic substrate. The elastic constants of polymers are
It would be also interesting to study the surface acoustigenerally frequency dependent in the MHz range appropriate
waves in a 2D phononic crystals with larger acoustic misto the experiment, and at the same time the ultrasonic ab-
match, in which complete frequency gaps common to thresorption is very large. We plan to extend our theory to such
bulk modes are formed in the lower part of the dispersiorsystems with frequency-dependent, complex elastic con-
relations. stants.
A preliminary ultrasound imaging experiment with 2D
phononic crystafssuggests at least two subjects for further
study. The first one is the effect of liquid loading on the
surface of phononic crystals. In the imaging experiment im- The authors are grateful to R. E. Vines and J. P. Wolfe for
mersion transducers are used to generate and detect ultrgending preliminary data of their imaging experiment. They
sound signals, so the sample surface is covered with liquidalso acknowledge O. B. Wright for a critical reading of the
The second one is the frequency dependence of the elasticanuscript. This work was supported in part by a Grant-in-
constants of the material composing the cylinders. In theéid for Scientific Research from the Ministry of Education,
experiment a polymer is filled in the circular cylinders drilled Science and Culture of Jap&Brant No. 09640385
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