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We study the localization properties of Wannier functions composed of Gaussian orbitals and of correspond-
ing ultralocalized functions. In particular, we prove that finding specific ultralocalized functions is equivalent
to solving Lamés equation[S0163-18208)00736-X]

[. INTRODUCTION tions deal with several approximate solutions of L&ne
equation and the corresponding ultralocalized functions. One
In a recent publication we have investigated Bfbelnd ~ of these ultralocalized functions is very remarkable: If we
Wannief functions composed of Gaussian orbithlSince  start with a rather extended Gaussiaﬁﬁxz, where 3 is
these Bloch functions can be expressed in termséof small, then we can construct an ultralocalized function that is

functions>*a detailed analysis of their properties is possiblethe sum of a more localized Gaussian and a small rest:
Let us agree on the following terminology. We call a o~ (s/a) x2+8(x) with a<1

function ¢(k,x) a Bloch function if it has the transformation
propertys(k,x—n)=e'*"y(k,x) (we assume that the lattice
constanta=1). It would be more precise to call such a func- Il. BLOCH AND WANNIER FUNCTIONS
tion a quasi-Bloch function since usually a Bloch function is
meant to be an eigenfunction of a certain periodic Hamil-
tonian. However, to keep the terminology shorter we just say 14
Bloch function instead of quasi-Bloch function. Since we Biyy— | 2P - B2
. . : . GFA(x)= e @

deal only with such quasi-Bloch functions this should not
lead to any confusion. Correspondingly, we call a function
W(x) a Wannier function if it fulfills the usual orthogonality and use them to construct Bloch functicifsThese Bloch
relation”  W(x—n)*W(x—m)dx= &,,,, but againitis not functions may be expressed in termséofunctions ™’
meant to be related to a certain Hamiltonian.

Usually the Wannier functions are not the best localized 1 1 (2,8) 1/4

We start with the one-dimensional Gaussian orbitals

functions for a given band. So one often is interested in ¢E(X):
finding better localized functions, which of course lack the \/; klip
orthogonality properties. As a measure of localization one 3( ’ )
can use the falloff at infinity. From this point of view the
original Gauss functions are already the best localized ones. 5 iB
However, one can also use the uncertaifittyas a measure R 03(——i,8x —)
of localization. It turns out that suitably chosen Wannier 2 ™
functions have the sam&x as the original Gaussians. We ik i
construct several ultralocalized functions, i.e., functions 03(— —+ X —)
whoseAx is smaller than that of the corresponding Gauss — ik B 2 B
functions. We prove that finding ultralocalized functions \/ZT ; '
o545

v

2

2

@

with the minimalAx is equivalent to solving Lame equa- I_W 2|_7T
tion. Since it is not possible to solve this equation exactly, B B
we consider some approximations.

The paper is organized as follows. We start with a shoriThe Bloch functions are normalized in such a way that
review of the most important properties of the Bloch andfgdx| ¢£(x)|>=1/27 holds. We adopt the following conven-
Wannier functions composed of Gaussian orbitslsc. I). tions for the Wannier functionWﬁ:RaR:

In Sec. Il we discuss the localization properties of the Wan-

nier functions. The following sections deal with the ultralo-

calized functions. In Sec. IV A we investigate the ultralocal- WE(x)=
ized functions with the minimalAx. In particular we show

that the problem of finding these ultralocalized functions can

be reduced to solving Larteequation. The following sec- which can be written as

1
(277)1/2

[“astoen @
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For any other Wannier function composed of Gaussian orbit-

1 (= 1
WE(x)= — f e —dk als the uncertaintp\x is larger®
o) 27 J-o ik |27\ Y2
0 _
g | B IV. ULTRALOCALIZED FUNCTIONS
1 (2m\ VA e o (UAB)KP In the preceding section we have discussed the uncer-
=— (—) f e'kxk—_md k. 4 tainty Ax for Gauss and Wannier functions and we have seen
2m\ B ‘°° - f that in both caseax= 1/\y48 is valid. The fact that the
l2|2n Wannier functions are better localized at the origin whereas

the Gauss functions fall off faster for— =~ suggests that
we can find a linear combination of Gauss functions whose
uncertainty Ax is smaller, i.e.,Ax<1/\4B3. This can be
achieved by constructing a function with the following two

It can be showf?® that the Bloch functionspf are analytic
functions ofk in the strip{k:|Im k|</2} and thus the Wan-
nier functions fall off exponentially: |W5(x)]

<e (#2MBF, whereB” is an appropriate constant. properties: It is better localized than the Gauss function at

the origin and its exponentially damped oscillating tail is

lll. LOCALIZATION PROPERTIES OF THE WANNIER smaller than that of the Wannier functions. Let us call a
FUNCTIONS function ultralocalized ifAx<1/\/48 holds. Note that these

ultralocalized functions do not have the nice orthogonality
properties of the Wannier functions, but in practical applica-
tions one often does not lay stress on these orthogonality

Although the original Gauss functions fall off much faster
than the Wannier functions, the uncertaimty is the same
for both Gauss and Wannier functions, namely,

properties-
1 In the following sections we need not only the expectation
Axyp= VOWE xPWAY — (WB xWE)2= Axgp= ——. value (x?) for uzltralocalized functions but also the matrix
V4B elements(W# ,x?WE) for the definition of Anderson’s ul-

) tralocalized functions. Thus we compt{tﬁ,xz)() in general,
This is due to the better localization of the Wannier functionsvherey and x are linear combinations of the Wannier func-

near the origin. This can be shown as follows: Due to periliOﬂSWﬁ, namely,
odicity with respect tdk we have

1 T
o= f dk (k) f, (11
/n' —aT

1
B(0)= “raf 8
WE(0) ( fﬁwdk2[¢k(0)+¢k_w(0)]

2 7T) 1/2

1 T
% x()=—= dkgke. (12
>/ 03<o’ '—B) GA(0)>GH(0), (6) V2w f ”
ar

We assume that bot# and y are in the domain of definition

since the following inequality for the integrand is valid: of x2; in particularf andg are periodic and their derivatives
exist and are absolutely continuous. Thus we have
1 1 / 2iB
§[¢E(0)+¢f+w(0)]> \/——G’g(o) 93<0 7) (7 1 (=
2m (v x>—4B2 f dk f*(k)g(k)

which can be proved easily by using the formula

. 2 ) (9f*(k) dg(k)
03(; g) =%[0s(2 IZB)03<0 g) +_J ko ak
i8 iB +—J dk #(K)g(k) azzm 03( "3).
+04(2‘ 277) 04(0 Z” ®) K 2247
and the inequality (13
(CAB+DA?)Y2+ (CAB+DB?)Y2=2(C+ D)I/Z(AB)llz(.g) A. Ultralocalized functions with minimal Ax

o o _ Before we construct some ultralocalized functions we
which is valid if A, B, C, andD are non-negative real num- want to derive an equation for the ultralocalized function that
bers and where the inequality sign is validDf>0 andA  has the minimal uncertaintx. We restrict our discussion

#B. In a similar way one can prove to symmetric functions, thus the uncertainkk is simply
> given by Ax=(x?). In fact, this is no restriction, as we
[ i . ) . )
W€(0)> 03( O‘ )>1_ (10) discuss below. Let these ultralocalized functions be given by

Note in passing that our particularly chosen Wannier func- ubf(x)= E cAWh=——

f dk fA(k)of, (19
tions have minimal uncertaintgx in the following sense: N2
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where we assume that® is properly normalized, i.e., that ) arP(k)
each of the following equations holds: (X >_ + 5 j ( )
- 1 (= 1 (= pP(k)\?
B|| = B2 R B 2 — B 2% 7
lu] 1@n;x lchl?=1e 5— Lf|f (k)[*=1. (15) + 5 fﬁwdk[r (K] ( m
Then(x?) with respect tou” reads 1 (= 9? k|ig
il B(K)12 — —| =
) +87r ,,,dk[r (K] akzln 03 AR (21
2 _* L T
&= 4,8 * 2 dk ok Thus the following inequality is valid:
1 (= 52 k|ip arB(k)
il B(K)|2 — )
+87r f_ﬂdk|f (k)| akzln 03(2 277')' (16) (Ax)2> +_J ( )
Hence the minimum ofx?) is obtained for the functiori” iB
that fulfills the Euler-Lagrange equation t8n f dk[rf(k)]? —In 6’3<2 277),
9*fP(k 1 14 k|i (22)
— (2 )+ 4—+Z—2In 03(52—13) fﬁ(k):)\ﬁfﬁ(k)
ok B ok i where the equality sign holds true if and onlyip?(k)/ ok is

(17 constant. In this case the periodicity & implies thate?(k)

. . . . . . i — B 7 ;
and is periodic. Note that this implies théff is even. This 1S of the form ¢P(k)=kn+ ¢, neZ. Since the phaskn
equation is Larfis equation, which is well known in math- corresponds just to a shift by a lattice vector we may assume

ematical literature. The usual fofm without any loss of generality that®(k)=r#(k) is a real
function for the best localized ultralocalized functiof(k).
42 It has to fulfill Eq.(17) and hence it has to be even. Thus the
_y(u) n(n+1)P(u)y(u)= my(u) (18  Uultralocalized with minimalAx is indeed symmetric with
du? respect to a lattice point and in particular there is one that is
. ] . ) symmetric with respect to the origin.
is obti;uned if we seti=k/2+ w/2+ ip/4,y(u)=fA(k), and In terms of the coefficients?=(1/27) [™_e*"fA(k)dk

n=—3 and chooseu appropriately. HereP(u) is Weier-  the expectation valugx?) is given by the expression
strass’s elliptic functiort,” which is defined by

m \? o B|2n2
P(U)=P(U; 01, 03) -(Zw) 0= g5+, 2, lealm
16007 d S (s LI
2 ——1n 6,(2]7) |, (19 2 2 (Cp)*Cmin( 1) ——
3 9j(0]7) dZ m n#0 sinh(% [n|)
wherez= 7mu/2w, and 7= w3/w4. In our case we have (23
=i(p/2m) and o, =7/2. Lamés equation is extensively .4 yhe corresponding eigenvalue problem reads
discussed for integan. Also for posmve half integers there
exist some explicit solutions. Far=— 3, however, there
exists no explicit solution, at least to our knowledge. Of CBn2+ CB+ Z B (— 1)m|m| =)\BchB.
course there are some series expansions for genetao, 8 sinh(£|m|) "
but the recursion formulas for these coefficients are too com- (24)
plicated to be useful for our purposes.
Up to now we have discussed only the case wheéres a
symmetric function ofx. Now we want to show that the B. Anderson’s ultralocalized functions
function with the minimum uncertaintjx is indeed sym- Since it is not possible to find an explicit expression

metric. First assume thdf is an arbitrary periodic function for the exact solution of Ed17) or (24), we search for some

that is two times differentiable. Let us writd”(k)  approximations. For large8 we use first-order pertur-

=rf(k)e'*"®. Then we have bation theory: We usel,=— 9/ dk? as the unperturbed op-
erator with eigenvalues\;=n? and we treat W*

i (7 sk 9 s =%(0%19k?)In 05(k/2| i BI27) as a perturbation. Thus we get
(=5 J_de PP)* Z 17 (k) in first-order perturbation theory for the ground state
=5 [[ oMo e, (20 bt :
=" on | AMrOF Ze ek, M=z +0e ), (25)
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o]

1 1 1
o (—1)MH +0(e™#), n#0 (26 S .
ch=(-1) (e f), n (26) (x2)> 4/8 224 (s m P (36)

1
8n r(ﬁ
sinf 5 n
for this particular choice of. Note also that-X/ , is of
B_ -8 O(B 3 for B—0 and thus there is an additional positive
Co=1+0(e 7). 2
0 (&) @ contribution of O(8™!) to the expectation valugx?).
In second-order perturbation theory we get the expression fddence, for sufficiently smalB the corresponding Anderson

the eigenvalue function is less localized than the corresponding Wannier
functions and thus it cannot be called ultralocalized for these
5 1 o1 1 w28, (28 values of.
NP=—— — —+0(e” ). (28 In the case of largg we get the simple expression
4B 1 32[sinhn)? o3 g p p
Let us therefore discuss the ultralocalized function (x%)= i - i ————+0(e” 325, (37)
4B 32 (sinh£)2
d? @ . .
cf= 2 = S 1d4)2, The ultralocalized functions read
&l - b2
800 uh(x)=W5+ (Wf+WFP )+0(e P)
g
(k)= ——, (29)
i N R —
=|— e - (e +e )
o
1 T
o775 | akigPal? @0 o(e "), @9
_ Note that the oscillations ai®(x) are just half in height of
with the oscillations of the corresponding Wannier functions,
1 1 which read in the same approximation
df=(-1)"t————  n#0 (31) 03\ U4 — 2
8n ’ B _a2 © _ 2 12
sink(?n) W5 (x)= 7) (e P (e POt e PO ))
+0(e P). 39
dg=1, (32 S (39
We have already mentioned that for sufficiently small
< _ Anderson’s ultralocalized functions are no longer ultralocal-
gPf(k)= E dﬁe*'k”. (33 ized ones. This can be seen explicitly if one calculates the
n=-= limit 8—0:
Note that this is Anderson’s ultralocalized function since we 2 1 ik | 27
haved?=— (W# x2W5)/n?. This can be easily checked by gPk)=1— — 85 +zin o 3( 3 7)
using Eq.(13) and inserting the Fourier expansion ofégn
We can expresg?(k) in terms of# functions: 1 2 1 B
——In ;| 0| — |+ —<In2— —. (40
12 B 12 96
8 |,8 1 iB .
gr(k)= 1+—In 03 55|~ 1IN 01 0 5 In the limit 3—0 we have
1 IB 2 77_2
o P 9°(k)=— o>+ 52 +0(1) (41
TR g (349 86 248
O . .
The formula for(x?) now readduse Eq.(23) to derive if and thusf™(k) is given by
, 1 3k?
1 1 1 1 fo(k)=+5| - — —|. 42
<X2>:E_<s_z PSR " f(z 2”2) “
n=t [sinh(z n)] o The corresponding “ultralocalized” function®(x) reads
1 1 1 1 -
X O(x)= —— k (k) pp
sinh[ 4 (n+m)] sinn(4 m) sinh(£ n) u N Lwd (k)i

1 1 -1 ;
sin X cos X sinwx
><<1+Z e 2) : (35) _ g ST ™ 5™
n#0 N"[sinh(5n)] X (WX)Z (mx)3
where =) means that the terms with=0,m=0, and |t is easily seen thatx=oc in this case. Note thauO(c?i
m+n=0 are excluded from the sum. Note that the term=0, hence it less localized than the limit Wannier function

—3/ m is positive and hence we have V\/O(x)— sin mx/7rx at the origin and in addition the oscilla-
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FIG. 1. Gauss functiofsolid curve, Wannier functiondashed
curve), and Anderson’s ultralocalized functidilotted curve for

B=2.

tions of u’(x) are larger than those (Wg(x). Anderson’s
ultralocalized functions are shown in Figs. 1 and 2 Br
=2 and 0.5, respectively. Numerical calculations yield that
Ax s<1/48 is valid for approximately3>0.5.

C. Other kinds of ultralocalized functions for large B

We rewrite Eq.(17) as

P*FP(k) 1 1 #  [k|ip\Y
'ET+E+_TWmW4ﬂZ)
etite

wzlz)|
L ‘7"—” fA(k)=NPER(K).  (44)
16 klig
erike
Note that
1 (92 ki 1/4
Kl iB 1"‘%‘93(5‘%) =O(e™#%
93(5 z)

FIG. 2. Gauss functiofsolid curve, Wannier functiondashed
curve, and Anderson’s ultralocalized functidielotted curve for
B=0.5.
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whereas
d ig\\?
&ke(_ 77) B s
k—i,B =0(e ?). (45
93(5 z)

Thus the second term is much smaller than the first term. If
we neglect the second term we get the equation

*1A(k) 1 1
[ _+—
Ik? 4B k[ig)|¥
s 2|27
]

1/4
&kzeg( —) fA(k)=\PA(K). (46)

One immediately sees thaf=1/43 is an eigenvalue whose
correspondlng eigenfunction is given by
|,8 1/4
277) , (47)
wheren” is the normalization constant. In fact, this is the
ground state of Eq46), i.e.,\?=1/48 is the smallest eigen-
value of Eq.(46), which follows from the fact that the eigen-
function fA(k)=nf0,(k/2|ipB/2m)Y* has no zero(on the
real ling. The corresponding ultralocalized function is again
denoted byu?(x). In first-order perturbation we obtain

d (k i,B) 2
w22,
iB

k 3/2
0 —_ —
3( 2 ’ 27

fB(k)=nfo (2

2 1 1 m )
O == j dk(nf)

(48)

Using patrtial integration and the differential equation for the
6 function we arrive at

1 1/2
2 —_———_—
(X*)ys= a3 2(wln J dk03( ’ ) } (49)
_ 1 109
88 2B
ik | 2ri | 2
xInl \/ 75 f dk e kB¢ ( —) .
Bl B
(50)
For large and small values ¢@f we have the approximations
(x?) B=i—£e P+0(e 2P) for large B, (51)
u 4ﬁ 8 1

(X®)ye= 8%8+O(,6’ 326~ m*146)  for small B. (52)

Hence these functions are ultralocalized not only for IgBge
but also for smalls. For largeg the ultralocalized functions
are given by
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D. An ultralocalized function for small 8

So far we have mainly discussed approximations of Eq.
(17) for large 8. Now we want to discuss also ultralocalized
functions for smallB. To this end we first discuss the case
B=0, which can be solved exactly. If one tries to calculate
the limit 3—0 of Eq. (17), one encounters the following
problem: The expression

1 14° k
s\2| 2w

— s
....-)’ 2 4 4ﬂ 4 ak2 In 6

i,B)

1 14 im |27
=—+>—lInle” k2’2""¢93<—k —”
FIG. 3. Gauss functiogsolid curve, Wannier functiondashed 4B 4 dk Bl B
curve, and ultralocalized functiofdotted curve for g=2. 1 2 o i |2 s
“aae" %N =9

UB(X) =

1 - B2
2_'3) Ale,exz_ © (e A0 B 1)
m “converges” to “(1/0)X,_ _..8(k—2mn).” Thus we calcu-
+0(e P). (53 late(x?) for u%(x) directly. We have

Note that this is the same as Anderson’s function, which also

follows from the fact that both ultralocalized functions are 0o 1 (= 0 ik

exact solutions of Eq:17) up toO(e™#). The ultralocalized U =5- fﬁ de ke’ (56)
function is shown forg=2 in Fig. 3. Compare it with

Anderson’s ultralocalized function in Fig. 1. . 0 . .
It is also possible to calculate an approximation for smallSince at leasku’(x) has to be square integrable, we require

0Ly i : _
B. The ultralocalized functions read that fO(k) is absolutely continuous arfd(+ 7)=0. Thus
v | 2P e —2px2 3l4,— w2I8p =i (= Jd .
uP(x)={—| e +0(Be ). (54 xuo(x)z—f dk (k) —e'kx
™ 27 ) ok
However, we have to stress that(x) decreases only expo- i - d _
nentially, i.e.,|uf(x)|<APe™ B2X which is due to the 5 f dka(fo(k)e'kx (57)

term of O(8%¥%~ /). The LZ(R) norm of this term is of
O(e™ 772’85). Note that the parametghas been “doubled,”

i.e., we have started with a Gaussian®” and ended up
with a ultralocalized functionui?(x) that is approximately a
Gaussiare 2%, See Fig. 4, which shows the ultralocalized
function for 8=0.5.

Note also that all the ultralocalized functions that we have
discussed so far fall off exponentially at infinity, namely,
[uf(x)|<e P?A. This is due to the fact th&#(k) is ana-
lytic for |Im k|< /2 in all these cases.

and hence

2

(x?y=(xu0,xu)= L fﬂ dk’ifo(k) (58)

27 dk

has to be minimized with the constraint
(1/2m) [ _dk|f°(k)|?>=1 and the boundary conditions
fO(= ) =0. The corresponding Euler-Lagrange equation

2

d—fo(k)—i-)\ofo(k):O (59

U
I

can be solved immediately and we obtain

fO(k)=v2 K No=— 60
(k) cosz, 7 (60)

It seems as if it were necessary to assume that
(d?/dk?) fO(k) exists, but one can prove that the function

FIG. 4. Gauss functiofsolid curve, Wannier functiondashed  f°(k) that minimizes Eq(58) is two times differentiable.
curve, and ultralocalized functiofdotted curve for 5=0.5. The corresponding ultralocalized function reads
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FIG. 5. Wannier function(dashed curveand ultralocalized
function (dotted curve for 8=0.

ul(x)= 1 fﬂ dkv2 cosEe”‘X
27 ) 2
. 1 i 1
_‘/2 Sin X+E SN 7| X 5
27 1 1
X+ E X E
3 v2 cos X 6
2w 2 E
4

and we havegx?)=1%;

see Fig. 5. Note that® falls off as

1/x? for x— =, whereas the corresponding Wannier func-

tions fall off as 1x.

We are interested in ultralocalized functions not only for

B=0 but also for smallg. A possible approximation for
small B is to takefA(k)=f°(k), but this choice has the dis-
advantage that®(k) is not differentiable ak= =+ 7 if it is

continued periodically. However, this would imply that the

corresponding ultralocalized functions would not fall off ex-
ponentially. Hence we look for an analytic functiéf(k),

which givesf®(k) in the limit 3—0. A function with these
properties is

9”(k)
fA(k) = :
lg”l
kiip i7T | 2i7
"\ 202) BN
(k)=cos— - =C0S— - —
2 klip 2 im | 2im
0 _ — JR— _
\ 2| 27 bs 8 | B
(62
Note that this function has periodr2and that
32
0 =| —
2| 2w
lim
18

d k i
o2
2|2
[1

if ke[27n—m,27n+7],n even
-1

if ke[2mn—7,27n+7],n odd. (63
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Here it seems rather heuristic to use this particular choice of

fA(k), so we give another motivation for it. We expand
(k) into a Fourier series. We have

1 Jﬁ dk ©(k)e = f” dkv3 cos ek
27 J_» 27 J_» 2

1
__(_ )n+1 _1__1
zm n+-z n—z
2 2
- (=" ! (64)
\/277 2 1
n —_
and thus
1 1 _
0 Ky= — 1 n+1 _ e|kn
(k) WWH_EJ ) N
T2 "2
_ Ly captoem (65)
V2 n=—w= n2_ =
4
Now we choose
hﬁ k - 1 n+1
(k) anw( )
X B — ﬁ eikn
B B 1 ’
25|nh§(n+§ Zsth(n—E)
(66)
for which limg_, hf(k)=f%k) is obvious. Then
one can easily show thath?(k) is equal to

[6,(k/2|iBl27)] 05(k/2|iB/27)]cosk/2) up to a constant.
Note that 6,(k/2|iB/2m)/65(k/2|iB/27) is a multiple of
one of Jacobi’s elliptic functions, namely, eg( where
u= (k/2) 65(0| iB/2m)?, and the Fourier transforms of the
Jacobian elliptic functions are well known.

E. Other kinds of ultralocalized functions for small B

Here we consider a family of different ultralocalized func-
tions. We choosé?(k) as
B\
2 y

2a\ — 12
i
o [Laeds )
whereca is a real parameter that is assumed to vary between
0 and3, respectively. Note that=0 gives the symmetric
Wannier functions, whereas= % corresponds to the ultralo-

calized functions of Sec. IV C, and the choiae=3 yields
the original Gaussian.

f§<k>=n§63<

> (67)

with

(68)
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FIG. 6. Gauss functiogsolid curve, Wannier function(dashed
curve), and the ultralocalized functioruﬁ for =0.01 anda= ﬁ;
(dotted curv, o= g5 (dot-dashed curyeanda = 55z (double-dot—
dashed curve

The corresponding expectation valueg),s read

N 19
b 25298
1 T fakz/,B (|’7Tk 27Ti>2a:|
XIn \/4’3 wdke ANE

(69)
For small and large values we get the approximations

1
<x2>u§= E—a(l—Za)e_m— O(e 2% for B—w,

(70)
o all 1 2
x2 B=—+O(\/: —+—|e” o7 /B) for p—0.
< >Ua Zﬁ B :8 a ﬁ
(71
The ultralocalized functions read for large
1/4 _
ub(x)= 2—'8) e - ﬂe* plz
T 2
X (e B0+D? 4 a=B-D | L O(e F). (72
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For small B the calculations are analogous to those of Sec.
IV C:

1
(2,”_)1/2

1/4
= (ﬁ) e (Bl2a)x* | O(

uB(x) = f " dk (k) of

a

3/4
ﬁ e aﬂ'Z/Zﬁ’)
T '

(73

Thus the ultralocalized function is the sum of a Gaussian and
a small rest if 8 is sufficiently small. By an appropriate
choice of@ one can make the Gaussian fall off much faster
than the original Gaussian. However, note that one cannot
choose « arbitrarily small since the term of

O((B/ @)%~ *™12P) is no longer small for too small values
of a. More preciselyg can only be chosen such that 3 if

one wants an ultralocalized function that does not differ
much from a Gaussian. These ultralocalized functions are
shown for various values af in Fig. 6.

V. CONCLUSION

We have studied the localization properties of Wannier
functions composed of Gaussian orbitals and of correspond-
ing ultralocalized functions. In particular, we have shown
that the Wannier functions are better localized than the origi-
nal Gauss functions near the origin, whereas the Gaussians
fall off faster at infinity. Thus, it is possible to construct
ultralocalized functions whose uncertainty is smaller than
the uncertaintyAx of the corresponding Wannier functions
and the original Gaussians. We have proved that the ultralo-
calized functions that have the minimal uncertaidty can
be found by solving Lanie equations. Since this equation
cannot be solved exactly, we have discussed several approxi-
mate solutions. One of these ultralocalized functions is very
remarkable: If we start with a rather extended Gaussian

a2 .
e #*°, whereg is small, then we can construct an ultralocal-
ized function that is the sum of a more localized Gaussian

and a small rese(” #9%* 1 ¢(x) with a<1.
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