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Gauss, Wannier, and ultralocalized functions
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We study the localization properties of Wannier functions composed of Gaussian orbitals and of correspond-
ing ultralocalized functions. In particular, we prove that finding specific ultralocalized functions is equivalent
to solving Lame´’s equation.@S0163-1829~98!00736-X#
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I. INTRODUCTION

In a recent publication we have investigated Bloch1 and
Wannier2 functions composed of Gaussian orbitals.3 Since
these Bloch functions can be expressed in terms ou
functions,3,4 a detailed analysis of their properties is possib

Let us agree on the following terminology. We call
functionc(k,x) a Bloch function if it has the transformatio
propertyc(k,x2n)5eiknc(k,x) ~we assume that the lattic
constanta51). It would be more precise to call such a fun
tion a quasi-Bloch function since usually a Bloch function
meant to be an eigenfunction of a certain periodic Ham
tonian. However, to keep the terminology shorter we just
Bloch function instead of quasi-Bloch function. Since w
deal only with such quasi-Bloch functions this should n
lead to any confusion. Correspondingly, we call a funct
W(x) a Wannier function if it fulfills the usual orthogonalit
relation*2`

` W(x2n)* W(x2m)dx5dnm , but again it is not
meant to be related to a certain Hamiltonian.

Usually the Wannier functions are not the best localiz
functions for a given band. So one often is interested
finding better localized functions, which of course lack t
orthogonality properties. As a measure of localization o
can use the falloff at infinity. From this point of view th
original Gauss functions are already the best localized o
However, one can also use the uncertaintyDx as a measure
of localization. It turns out that suitably chosen Wann
functions have the sameDx as the original Gaussians. W
construct several ultralocalized functions, i.e., functio
whoseDx is smaller than that of the corresponding Gau
functions. We prove that finding ultralocalized functio
with the minimalDx is equivalent to solving Lame´’s equa-
tion. Since it is not possible to solve this equation exac
we consider some approximations.

The paper is organized as follows. We start with a sh
review of the most important properties of the Bloch a
Wannier functions composed of Gaussian orbitals~Sec. II!.
In Sec. III we discuss the localization properties of the Wa
nier functions. The following sections deal with the ultral
calized functions. In Sec. IV A we investigate the ultraloc
ized functions with the minimalDx. In particular we show
that the problem of finding these ultralocalized functions c
be reduced to solving Lame´’s equation. The following sec
PRB 580163-1829/98/58~12!/7681~8!/$15.00
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tions deal with several approximate solutions of Lam´’s
equation and the corresponding ultralocalized functions. O
of these ultralocalized functions is very remarkable: If w
start with a rather extended Gaussiane2bx2

, where b is
small, then we can construct an ultralocalized function tha
the sum of a more localized Gaussian and a small r
e2 (b/a) x2

1«(x) with a,1.

II. BLOCH AND WANNIER FUNCTIONS

We start with the one-dimensional Gaussian orbitals

Gb~x!5S 2b

p D 1/4

e2bx2
~1!

and use them to construct Bloch functions.3,4 These Bloch
functions may be expressed in terms ofu functions5–7

fk
b~x!5

1

A2p

1

Au3S k

2
U ib

2p
D S 2b

p
D 1/4

3e2bx2
u3S k

2
2 ibxU ib

p
D

5eikx
1

A2p

u3S ip

b

k

2
1pxU ip

b
D

Au3S ip

b
kU 2ip

b
D

. ~2!

The Bloch functions are normalized in such a way th
*0

1dxufk
b(x)u251/2p holds. We adopt the following conven

tions for the Wannier functionsWn
b :R→R:

Wn
b~x!5

1

~2p!1/2 E2p

p

dk fk
b~x!e2 ikn, ~3!

which can be written as
7681 © 1998 The American Physical Society
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W0
b~x!5

1

2p
E

2`

`

eikx
1

u3S ipk

b
U 2p i

b
D 1/2dk

5
1

2p
S 2p

b
D 1/4E

2`

`

eikx
e2 ~1/4b! k2

u3S k

2
U ib

2p
D 1/2dk. ~4!

It can be shown8,3 that the Bloch functionsfk
b are analytic

functions ofk in the strip$k:uIm ku,b/2% and thus the Wan-
nier functions fall off exponentially:9 uW0

b(x)u
<e2 (b/2) uxuBb, whereBb is an appropriate constant.

III. LOCALIZATION PROPERTIES OF THE WANNIER
FUNCTIONS

Although the original Gauss functions fall off much fast
than the Wannier functions, the uncertaintyDx is the same
for both Gauss and Wannier functions, namely,

DxW
n
b5A^Wn

b ,x2Wn
b&2^Wn

b ,xWn
b&25DxGb5

1

A4b
.

~5!

This is due to the better localization of the Wannier functio
near the origin. This can be shown as follows: Due to pe
odicity with respect tok we have

W0
b~0!5

1

~2p!1/2
E

2p

p

dk
1

2
@fk

b~0!1fk2p
b ~0!#

.Au3S 0U 2ib

p
DGb~0!.Gb~0!, ~6!

since the following inequality for the integrand is valid:

1

2
@fk

b~0!1fk1p
b ~0!#>

1

A2p
Gb~0!Au3S 0U 2ib

p
D , ~7!

which can be proved easily by using the formula

Fu3S k

2 U ib

p D G2

5
1

2 Fu3S k

2 U ib

2p D u3S 0U ib

2p D
1u4S k

2 U ib

2p D u4S 0U ib

2p D G ~8!

and the inequality

~CAB1DA2!1/21~CAB1DB2!1/2>2~C1D !1/2~AB!1/2,
~9!

which is valid if A, B, C, andD are non-negative real num
bers and where the inequality sign is valid ifD.0 andA
ÞB. In a similar way one can prove

W0
b~0!.Au3S 0U 2ip

b
D .1. ~10!

Note in passing that our particularly chosen Wannier fu
tions have minimal uncertaintyDx in the following sense:
s
i-

-

For any other Wannier function composed of Gaussian or
als the uncertaintyDx is larger.3

IV. ULTRALOCALIZED FUNCTIONS

In the preceding section we have discussed the un
tainty Dx for Gauss and Wannier functions and we have s
that in both casesDx5 1/A4b is valid. The fact that the
Wannier functions are better localized at the origin wher
the Gauss functions fall off faster forx→6` suggests that
we can find a linear combination of Gauss functions who
uncertaintyDx is smaller, i.e.,Dx,1/A4b. This can be
achieved by constructing a function with the following tw
properties: It is better localized than the Gauss function
the origin and its exponentially damped oscillating tail
smaller than that of the Wannier functions. Let us cal
function ultralocalized ifDx,1/A4b holds. Note that these
ultralocalized functions do not have the nice orthogona
properties of the Wannier functions, but in practical applic
tions one often does not lay stress on these orthogon
properties.10

In the following sections we need not only the expectat
value ^x2& for ultralocalized functions but also the matr
elements^Wn

b ,x2Wm
b & for the definition of Anderson’s ul-

tralocalized functions. Thus we compute^c,x2x& in general,
wherec andx are linear combinations of the Wannier fun
tions Wn

b , namely,

c~x!5
1

A2p
E

2p

p

dk f~k!fk
b , ~11!

x~x!5
1

A2p
E

2p

p

dk g~k!fk
b . ~12!

We assume that bothc andx are in the domain of definition
of x2; in particularf andg are periodic and their derivative
exist and are absolutely continuous. Thus we have

^c,x2x&5
1

4b

1

2p E
2p

p

dk f* ~k!g~k!

1
1

2p E
2p

p

dk
] f * ~k!

]k

]g~k!

]k

1
1

8p E
2p

p

dk f* ~k!g~k!
]2

]k2 ln u3S k

2 U ib

2p D .

~13!

A. Ultralocalized functions with minimal Dx

Before we construct some ultralocalized functions
want to derive an equation for the ultralocalized function th
has the minimal uncertaintyDx. We restrict our discussion
to symmetric functions, thus the uncertaintyDx is simply
given by Dx5A^x2&. In fact, this is no restriction, as we
discuss below. Let these ultralocalized functions be given

ub~x!5(
n

cn
bWn

b5
1

A2p
E

2p

p

dk fb~k!fk
b , ~14!



t

-

O

om

me

he

t is

on

-
-

t

PRB 58 7683GAUSS, WANNIER, AND ULTRALOCALIZED FUNCTIONS
where we assume thatub is properly normalized, i.e., tha
each of the following equations holds:

iubi51⇔ (
n52`

`

ucn
bu251⇔ 1

2p E
2p

p

u f b~k!u251. ~15!

Then ^x2& with respect toub reads

^x2&5
1

4b
1

1

2p E
2p

p

dkU] f b~k!

]k U2

1
1

8p E
2p

p

dk u f b~k!u2
]2

]k2
ln u3S k

2 U ib

2p D . ~16!

Hence the minimum of̂x2& is obtained for the functionf b

that fulfills the Euler-Lagrange equation

2
]2f b~k!

]k2
1F 1

4b
1

1

4

]2

]k2
ln u3S k

2 U ib

2p D G f b~k!5lb f b~k!

~17!

and is periodic. Note that this implies thatf b is even. This
equation is Lame´’s equation, which is well known in math
ematical literature. The usual form7

d2y

du2
~u!2n~n11!P~u!y~u!5my~u! ~18!

is obtained if we setu5 k/21 p/21 ib/4, y(u)5fb(k), and
n52 1

2 and choosem appropriately. HereP(u) is Weier-
strass’s elliptic function,5,7 which is defined by

P~u!5P~u;v1 ,v3!ªS p

2v1
D 2

3F1

3

u1-~0ut!

u18~0ut!
2

d2

dz2
ln u1~zut!G , ~19!

wherez5 pu/2v1 and t5 v3 /v1 . In our case we havet
5 i (b/2p) and v15p/2. Lamé’s equation is extensively
discussed for integern. Also for positive half integers there
exist some explicit solutions. Forn52 1

2 , however, there
exists no explicit solution, at least to our knowledge.
course there are some series expansions for generaln too,
but the recursion formulas for these coefficients are too c
plicated to be useful for our purposes.

Up to now we have discussed only the case whereub is a
symmetric function ofx. Now we want to show that the
function with the minimum uncertaintyDx is indeed sym-
metric. First assume thatf b is an arbitrary periodic function
that is two times differentiable. Let us writef b(k)
5r b(k)eiwb(k). Then we have

^x&5
i

2p E
2p

p

dk fb~k!*
]

]k
f b~k!

52
1

2p E
2p

p

dk@r b~k!#2
]

]k
wb~k!, ~20!
f

-

^x2&5
1

4b
1

1

2p E
2p

p

dkS ]r b~k!

]k D 2

1
1

2p E
2p

p

dk@r b~k!#2S ]wb~k!

]k D 2

1
1

8p E
2p

p

dk@r b~k!#2
]2

]k2
ln u3S k

2 U ib

2p D . ~21!

Thus the following inequality is valid:

~Dx!2>
1

4b
1

1

2p E
2p

p

dkS ]r b~k!

]k D 2

1
1

8p E
2p

p

dk@r b~k!#2
]2

]k2
ln u3S k

2 U ib

2p D ,

~22!

where the equality sign holds true if and only if]wb(k)/]k is
constant. In this case the periodicity off b implies thatwb(k)
is of the formwb(k)5kn1w0

b , nPZ. Since the phasekn
corresponds just to a shift by a lattice vector we may assu
without any loss of generality thatf b(k)5r b(k) is a real
function for the best localized ultralocalized functionub(k).
It has to fulfill Eq.~17! and hence it has to be even. Thus t
ultralocalized with minimalDx is indeed symmetric with
respect to a lattice point and in particular there is one tha
symmetric with respect to the origin.

In terms of the coefficientscn
b5(1/2p) *2p

p eiknf b(k)dk
the expectation valuêx2& is given by the expression

^x2&5
1

4b
1 (

n52`

`

ucn
bu2n2

1 (
m52`

`

(
nÞ0

~cm
b !* cm1n

b ~21!n
unu

8

1

sinh~ b
2 unu!

~23!

and the corresponding eigenvalue problem reads

cn
bn21

1

4b
cn

b1 (
mÞ0

cm1n
b ~21!m

umu
8

1

sinh~ b
2 umu!

5lbcn
b .

~24!

B. Anderson’s ultralocalized functions

Since it is not possible to find an explicit expressi
for the exact solution of Eq.~17! or ~24!, we search for some
approximations. For largeb we use first-order pertur
bation theory: We useH052 ]2/]k2 as the unperturbed op
erator with eigenvaluesln

`5n2 and we treat Wb

5 1
4 (]2/]k2)ln u3(k/2 u ib/2p) as a perturbation. Thus we ge

in first-order perturbation theory for the ground state

lb5
1

4b
1O~e2b!, ~25!
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cn
b5~21!n11

1

8n

1

sinhS b

2
nD 1O~e2b!, nÞ0 ~26!

c0
b511O~e2b!. ~27!

In second-order perturbation theory we get the expression
the eigenvalue

lb5
1

4b
2 (

n51

` 1

32

1

@sinh~ b
2 n!#2

1O~e2 ~3/2! b!. ~28!

Let us therefore discuss the ultralocalized function

cn
b5

dn
b

idbi , idbi25 (
n52`

`

udn
bu2,

f b~k!5
gb~k!

igbi
, ~29!

igbi25
1

2p E
2p

p

dkugb~k!u2, ~30!

with

dn
b5~21!n11

1

8n

1

sinhS b

2
nD , nÞ0 ~31!

d0
b51, ~32!

gb~k!5 (
n52`

`

dn
be2 ikn. ~33!

Note that this is Anderson’s ultralocalized function since
havedn

b52 ^Wn
b ,x2W0

b&/n2. This can be easily checked b
using Eq.~13! and inserting the Fourier expansion of lnu3.

We can expressgb(k) in terms ofu functions:

gb~k!511
1

4
ln u3S k

2 U ib

2p D2
1

12
ln u18S 0U ib

2p D
1

1

12
ln 22

b

96
. ~34!

The formula for^x2& now reads@use Eq.~23! to derive it#

^x2&5
1

4b
2S 1

32 (
n51

` 1

@sinh~ b
2 n!#2

1229(
n,m

8
1

n1m

3
1

sinh@ b
2 ~n1m!#

1

sinh~ b
2 m!

1

sinh~ b
2 n!

D
3S 11 (

nÞ0

1

n2

1

@sinh~ b
2 n!#2D 21

, ~35!

where (n,m8 means that the terms withn50, m50, and
m1n50 are excluded from the sum. Note that the te
2(n,m8 is positive and hence we have
or

^x2&.
1

4b
2

1

32 (
n51

`
1

@sinh~ b
2 n!#2

~36!

for this particular choice off b. Note also that2(n,m8 is of
O(b23) for b→0 and thus there is an additional positiv
contribution of O(b21) to the expectation valuêx2&.
Hence, for sufficiently smallb the corresponding Anderso
function is less localized than the corresponding Wann
functions and thus it cannot be called ultralocalized for th
values ofb.

In the case of largeb we get the simple expression

^x2&5
1

4b
2

1

32

1

~sinh b
2 !2

1O~e2 ~3/2! b!. ~37!

The ultralocalized functions read

ub~x!5W0
b1

e2 b/2

4
~W1

b1W21
b !1O~e2b!

5S 2b

p D 1/4Fe2bx2
2

e2 b/2

4
~e2b~x11!2

1e2b~x21!2
!G

1O~e2b!. ~38!

Note that the oscillations ofub(x) are just half in height of
the oscillations of the corresponding Wannier function
which read in the same approximation

W0
b~x!5S 2b

p D 1/4S e2bx2
2

e2 b/2

2
~e2b~x11!2

1e2b~x21!2
! D

1O~e2b!. ~39!

We have already mentioned that for sufficiently smallb
Anderson’s ultralocalized functions are no longer ultraloc
ized ones. This can be seen explicitly if one calculates
limit b→0:

gb~k!512
k2

8b
1

1

4
ln u3S ipk

b U 2p i

b D
2

1

12
ln u18S 0U 2p i

b D1
1

12
ln 22

b

96
. ~40!

In the limit b→0 we have

gb~k!52
k2

8b
1

p2

24b
1O~1! ~41!

and thusf 0(k) is given by

f 0~k!5A5S 1

2
2

3k2

2p2D . ~42!

The corresponding ‘‘ultralocalized’’ functionu0(x) reads

u0~x!5
1

A2p
E

2p

p

dk f0~k!fk
0

5A5S 2
sin px

px
23

cospx

~px!2
13

sin px

~px!3 D . ~43!

It is easily seen thatDx5` in this case. Note thatu0(0)
50, hence it less localized than the limit Wannier functio3

W0
0(x)5 sinpx/px at the origin and in addition the oscilla
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tions of u0(x) are larger than those ofW0
0(x). Anderson’s

ultralocalized functions are shown in Figs. 1 and 2 forb
52 and 0.5, respectively. Numerical calculations yield th
Dxub,1/4b is valid for approximatelyb.0.5.

C. Other kinds of ultralocalized functions for large b

We rewrite Eq.~17! as

2
]2f b~k!

]k2 1F 1

4b
1

1

u3S k

2
U ib

2p
D 1/4

]2

]k2 u3S k

2
U ib

2p
D 1/4

2
1

16 S ]

]k
u3S k

2
U ib

2p
D

u3S k

2
U ib

2p
D D 2G f b~k!5lb f b~k!. ~44!

Note that

1

u3S k

2
U ib

2p
D 1/4

]2

]k2 u3S k

2
U ib

2p
D 1/4

5O~e2 b/2!

FIG. 1. Gauss function~solid curve!, Wannier function~dashed
curve!, and Anderson’s ultralocalized function~dotted curve! for
b52.

FIG. 2. Gauss function~solid curve!, Wannier function~dashed
curve!, and Anderson’s ultralocalized function~dotted curve! for
b50.5.
t

whereas

S ]

]k
u3S k

2
U ib

2p
D

u3S k

2
U ib

2p
D D 2

5O~e2b!. ~45!

Thus the second term is much smaller than the first term
we neglect the second term we get the equation

2
]2f b~k!

]k2 1F 1

4b
1

1

u3S k

2
U ib

2p
D 1/4

3
]2

]k2u3S k

2
U ib

2p
D 1/4G f b~k!5lb f b~k!. ~46!

One immediately sees thatlb51/4b is an eigenvalue whose
corresponding eigenfunction is given by

f b~k!5nbu3S k

2 U ib

2p D 1/4

, ~47!

wherenb is the normalization constant. In fact, this is th
ground state of Eq.~46!, i.e.,lb51/4b is the smallest eigen
value of Eq.~46!, which follows from the fact that the eigen
function f b(k)5nbu3(k/2 u ib/2p)1/4 has no zero~on the
real line!. The corresponding ultralocalized function is aga
denoted byub(x). In first-order perturbation we obtain

lb5^x2&ub5
1

4b
2

1

32p
E

2p

p

dk~nb!2

F ]

]k
u3S k

2
U ib

2p
D G2

u3S k

2
U ib

2p
D 3/2 .

~48!

Using partial integration and the differential equation for t
u function we arrive at

^x2&ub5
1

4b
2

1

2

]

]b
lnF 1

2p E
2p

p

dk u3S k

2 U ib

2p D 1/2G ~49!

5
1

8b
2

1

2

]

]b

3 lnFA p

4b E
2p

p

dk e2 k2/4bu3S ipk

b U 2p i

b D 1/2G .

~50!

For large and small values ofb we have the approximation

^x2&ub5
1

4b
2

1

8
e2b1O~e22b! for large b, ~51!

^x2&ub5
1

8b
1O~b2 3/2e2 p2/4b! for small b. ~52!

Hence these functions are ultralocalized not only for largeb
but also for smallb. For largeb the ultralocalized functions
are given by
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ub~x!5S 2b

p D 1/4Fe2bx2
2

e2 b/2

4
~e2b~x11!2

1e2b~x21!2
!G

1O~e2b!. ~53!

Note that this is the same as Anderson’s function, which a
follows from the fact that both ultralocalized functions a
exact solutions of Eq.~17! up toO(e2b). The ultralocalized
function is shown forb52 in Fig. 3. Compare it with
Anderson’s ultralocalized function in Fig. 1.

It is also possible to calculate an approximation for sm
b. The ultralocalized functions read

ub~x!5S 4b

p D 1/4

e22bx2
1O~b3/4e2 p2/8b!. ~54!

However, we have to stress thatub(x) decreases only expo
nentially, i.e., uub(x)u,Abe2 (b/2) uxu, which is due to the
term of O(b3/4e2 p2/8b). The L2(R) norm of this term is of
O(e2 p2/8b). Note that the parameterb has been ‘‘doubled,’’
i.e., we have started with a Gaussiane2bx2

and ended up
with a ultralocalized functionub(x) that is approximately a
Gaussiane22bx2

. See Fig. 4, which shows the ultralocalize
function for b50.5.

Note also that all the ultralocalized functions that we ha
discussed so far fall off exponentially at infinity, name
uub(x)u<e2 b/2Ab. This is due to the fact thatf b(k) is ana-
lytic for uIm ku< b/2 in all these cases.

FIG. 3. Gauss function~solid curve!, Wannier function~dashed
curve!, and ultralocalized function~dotted curve! for b52.

FIG. 4. Gauss function~solid curve!, Wannier function~dashed
curve!, and ultralocalized function~dotted curve! for b50.5.
o

ll

e

D. An ultralocalized function for small b

So far we have mainly discussed approximations of E
~17! for largeb. Now we want to discuss also ultralocalize
functions for smallb. To this end we first discuss the cas
b50, which can be solved exactly. If one tries to calcula
the limit b→0 of Eq. ~17!, one encounters the following
problem: The expression

1

4b
1

1

4

]2

]k2 ln u3S k

2 U ib

2p D
5

1

4b
1

1

4

]2

]k2 lnFe2 k2/2bu3S ip

b
kU 2ip

b D G
5

1

4

]2

]k2 ln u3S ip

b
kU 2ip

b D ~55!

‘‘converges’’ to ‘‘(1/0)(n52`
` d(k22pn). ’’ Thus we calcu-

late ^x2& for u0(x) directly. We have

u0~x!5
1

2p E
2p

p

dk f0~k!eikx. ~56!

Since at leastxu0(x) has to be square integrable, we requ
that f 0(k) is absolutely continuous andf 0(6p)50. Thus

xu0~x!5
2 i

2p E
2p

p

dk f0~k!
]

]k
eikx

5
i

2p E
2p

p

dk
d

dk
f 0~k!eikx ~57!

and hence

^x2&5^xu0,xu0&5
1

2p E
2p

p

dkU d

dk
f 0~k!U2

~58!

has to be minimized with the constrain
(1/2p) *2p

p dku f 0(k)u251 and the boundary condition
f 0(6p)50. The corresponding Euler-Lagrange equation

d2

dk2
f 0~k!1l0f 0~k!50 ~59!

can be solved immediately and we obtain

f 0~k!5& cos
k

2
, l05

1

4
. ~60!

It seems as if it were necessary to assume t
(d2/dk2) f 0(k) exists, but one can prove that the functio
f 0(k) that minimizes Eq.~58! is two times differentiable.

The corresponding ultralocalized function reads
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u0~x!5
1

2p E
2p

p

dk& cos
k

2
eikx

5
&

2p S sin pS x1
1

2D
x1

1

2

2

sin pS x2
1

2D
x2

1

2

D
5
&

2p

cospx

x22
1

4

~61!

and we havê x2&5 1
4 ; see Fig. 5. Note thatu0 falls off as

1/x2 for x→6`, whereas the corresponding Wannier fun
tions fall off as 1/x.

We are interested in ultralocalized functions not only
b50 but also for smallb. A possible approximation for
small b is to takef b(k)5 f 0(k), but this choice has the dis
advantage thatf 0(k) is not differentiable atk56p if it is
continued periodically. However, this would imply that th
corresponding ultralocalized functions would not fall off e
ponentially. Hence we look for an analytic functionf b(k),
which givesf 0(k) in the limit b→0. A function with these
properties is

f b~k!5
gb~k!

igbi
,

gb~k!5cos
k

2

u2S k

2
U ib

2p
D

u3S k

2
U ib

2p
D 5cos

k

2

u4S ip

b
kU 2ip

b
D

u3S ip

b
kU 2ip

b
D .

~62!

Note that this function has period 2p and that

lim
b→0

u2S k

2
U ib

2p
D

u3S k

2
U ib

2p
D

5H 1 if kP@2pn2p,2pn1p#,n even

21 if kP@2pn2p,2pn1p#,n odd.
~63!

FIG. 5. Wannier function~dashed curve! and ultralocalized
function ~dotted curve! for b50.
-

r

Here it seems rather heuristic to use this particular choice
f b(k), so we give another motivation for it. We expan
f 0(k) into a Fourier series. We have

1

2p E
2p

p

dk f0~k!eikn5
1

2p E
2p

p

dk& cos
k

2
eikn

5
1

&p
~21!n11S 1

n1
1

2

2
1

n2
1

2
D

5
1

&p
~21!n

1

n22
1

4

~64!

and thus

f 0~k!5
1

&p
(

n52`

`

~21!n11S 1

n1
1

2

2
1

n2
1

2
D eikn

5
1

&p
(

n52`

`

~21!n
1

n22
1

4

eikn. ~65!

Now we choose

hb~k!5
1

&p
(

n52`

`

~21!n11

3S b

2 sinh
b

2 S n1
1

2D 2
b

2 sinh
b

2 S n2
1

2D D eikn,

~66!

for which limb→0 hb(k)5 f 0(k) is obvious. Then
one can easily show that hb(k) is equal to
@u2(k/2 u ib/2p)/u3(k/2 u ib/2p)#cos(k/2) up to a constant.
Note that u2(k/2 u ib/2p)/u3(k/2 u ib/2p) is a multiple of
one of Jacobi’s elliptic functions, namely, cd(u), where
u5 (k/2) u3(0u ib/2p)2, and the Fourier transforms of th
Jacobian elliptic functions are well known.7

E. Other kinds of ultralocalized functions for small b

Here we consider a family of different ultralocalized fun
tions. We choosef b(k) as

f a
b~k!5na

bu3S k

2 U ib

2p D a

, ~67!

with

na
b5S 1

2p E
2p

p

dk u3S k

2 U ib

2p D 2aD 2 1/2

, ~68!

wherea is a real parameter that is assumed to vary betw
0 and 1

2 , respectively. Note thata50 gives the symmetric
Wannier functions, whereasa5 1

4 corresponds to the ultralo
calized functions of Sec. IV C, and the choicea5 1

2 yields
the original Gaussian.
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The corresponding expectation values^x2&u
a
b read

^x2&u
a
b5

a

2b
2

1

2

]

]b

3 lnFA p

4b E
2p

p

dk e2 ak2/bu3S ipk

b U 2p i

b D 2aG .

~69!

For small and large values we get the approximations

^x2&u
a
b5

1

4b
2a~122a!e2b1O~e22b! for b→`,

~70!

^x2&u
a
b5

a

2b
1OXAa

b S 1

b
1

1

a De2 ap2/bC for b→0.

~71!

The ultralocalized functions read for largeb

ua
b~x!5S 2b

p D 1/4Fe2bx2
2

122a

2
e2 b/2

3~e2b~x11!2
1e2b~x21!2

!G1O~e2b!. ~72!

FIG. 6. Gauss function~solid curve!, Wannier function~dashed
curve!, and the ultralocalized functionsua

b for b50.01 anda5
1

16

~dotted curve!, a5
1

64 ~dot-dashed curve!, anda5
1

256 ~double-dot–
dashed curve!.
ca
For smallb the calculations are analogous to those of S
IV C:

ua
b~x!5

1

~2p!1/2 E2p

p

dk fa
b~k!fk

b

5S b

pa D 1/4

e2 ~b/2a! x2
1OXS b

a D 3/4

e2 ap2/2bC.
~73!

Thus the ultralocalized function is the sum of a Gaussian
a small rest ifb is sufficiently small. By an appropriate
choice ofa one can make the Gaussian fall off much fas
than the original Gaussian. However, note that one can
choose a arbitrarily small since the term o
O„(b/a)3/4e2 ap2/2b

… is no longer small for too small value
of a. More precisely,a can only be chosen such thata*b if
one wants an ultralocalized function that does not dif
much from a Gaussian. These ultralocalized functions
shown for various values ofa in Fig. 6.

V. CONCLUSION

We have studied the localization properties of Wann
functions composed of Gaussian orbitals and of correspo
ing ultralocalized functions. In particular, we have show
that the Wannier functions are better localized than the or
nal Gauss functions near the origin, whereas the Gauss
fall off faster at infinity. Thus, it is possible to constru
ultralocalized functions whose uncertaintyDx is smaller than
the uncertaintyDx of the corresponding Wannier function
and the original Gaussians. We have proved that the ultr
calized functions that have the minimal uncertaintyDx can
be found by solving Lame´’s equations. Since this equatio
cannot be solved exactly, we have discussed several app
mate solutions. One of these ultralocalized functions is v
remarkable: If we start with a rather extended Gauss
e2bx2

, whereb is small, then we can construct an ultraloca
ized function that is the sum of a more localized Gauss
and a small rest,e(2b/a)x2

1«(x) with a,1.
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