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We consider a model Hamiltonian for a dimer of lengthincluding all the electronic one- and two-body
terms consistent with a single orbital per site, a free Einstein phonon term for a frederayd an electron-
phonon couplingy, of the Holstein type. The bare electronic interaction parameters were evaluated in terms of
Wannier functions built from Gaussian atomic orbitals. An effective polaronic Hamiltonian was obtained by an
unrestricted displaced-oscillator transformation, followed by evaluation of the phononic terms over a squeezed-
phonon variational wave function. For the cases of quarter-filled and half-filled orbitals, and over a range of
dimer length values, the ground state for givgnand ) was identified by simultaneously and independently
optimizing the orbital shape, the phonon displacement, and the squeezing effect strengtlvadss, we
generally find discontinuous changes of both electronic and phononic states, accompanied by an appreciable
renormalization of the effective electronic interactions across the transitions, due to the equilibrium shape of
the wave functions strongly depending on the phononic regime and on the type of ground state.
[S0163-182698)06035-4

[. INTRODUCTION present work we explore the consequences of such an ap-
proach in systems with a Holstein-type electron-phonon in-
Much attention has been devoted to materials where struderaction. Our model Hamiltonian includes all the electronic
tural effects deeply influence the electronic phenomena, sudnteraction parameters for one- and two-body terms, whose
as, for instance, ¥ ,Cr,0;,' polyacetylené&;® displacive- dependence om results from their evaluation in terms of
type ferroelectric, the manganites exhibiting colossal Wannier functions built from Gaussian orbitals. We also
magnetoresistanceand the high temperature superconduct-consider the characteristic structural lengtlas free to vary
ing perovskite$-® From the theoretical standpoint, such ef- between reasonable boundaries, in order to model the effects
fects have been studied by adding various kinds of electromef the experimental techniques that allow for a more or less
phonon couplings to different electronic Hamiltonians, continuous tuning of the bond length. We find that both the
mainly of the extended Hubbard t type. However, com- electronic and phononic states significantly depend.oRor
paratively little attention has been paid to the effect of theinstance, on one side, the phonon state, characterized by the
structure(in its simplest form, a variation of the lattice spac- extent of thedisplacementand thesqueezingreflects the
ing a) onto the electronic interactions themselves. Such efelectronic transitions at a deeper level than just a frequency
fects are of great relevance in experiments: consider, for exenormalization. On the other side, as the optimal shape of
ample, the measurements under either external or chemictile Wannier wave functions depends not onlyagrbut also
pressure, and the wealth of interesting phenomena that theyn the phonon state, the renormalization of the electronic
have revealed. The electronic interaction parameters can lparameters by the phonons is actually more complex than
written as integrals of various combinations of Wannierindicated by the standard results of the polaronic mdtel.
functions centered on the lattice sitegs will be detailed in To put into evidence the basic features of our approach,
Sec. Il below. Therefore, a change @af is expected to have avoiding unnecessary complications, our model system in
a non-negligible effect on them. In the realm of electronicthe present paper is a simple dimer with a single orbital per
transitions, to our knowledge, after a pioneering attempt bysite. It can be considered as the basic unit to build clusters
Kawabata only Spatek and Wieik!® focused on such ef- and lattices, and its simplicity allows for a full control on the
fects. They argued that, in a system of fermions undergoingnalytic aspects of the calculations. Also, some unavoidable
a metal-insulator transitioMIT) due to the on-site repul- approximations that have to be introduced are linked to the
sion effect, the wave functions may significantly change theiphysics, and not to the complications of treating larger sys-
shape across the transition, concomitantly to a change of thems. Some new aspects distinguish the present work from
equilibrium lattice spacing. Therefore, different values forthe rich existing literature on the Holstein dimer with various
the hopping amplitude;; and the on-site repulsiod may  types of interelectronic interactiorisee, for instance, Refs.
correspond to the itinerant and the localized regimes. In th@, 12, 13, and the literature cited thereifirst, the effec-
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tive electronic Hamiltonian originates from a first-principles teractions explicitly depending on the dimer length. In Sec.

Hamiltonian including the complete set of one- and two-lll the effective electronic Hamiltonian is obtained, while in

body electronic terms consistent with a single orbital per siteSec. IV several correlation functions and other quantities of

To the best of our knowledge, previous studies consideredxperimental interest are explicitly evaluated. The results of

only a more restricted subset of interactions. Second, wéhe numerical analysis of our model are presented and com-

present our results mainly by setting the values of thamented upon in Sec. V. Finally, some general conclusions

electron-phonon coupling, and phonon energyi{) and are presented in Sec. VI.

taking the dimer lengtla as the continuously varying con-

trolling parameter. The dependence of the state of the system

on its length usually receives little attention even though it is Il. THE MODEL

much more easily accessible experimentally than the depen- ] o ) o

dence on the strength of the coupling, which requires deli- For a dimer consisting of identical ions centere&@and

cate chemical manipulations. However, some discussion dR2 We consider the HamiltoniaH = Het Hppt Hep, Where

the case of fixed length and varying coupling will also beHg includes all the electronic one- and two-body terms for a

given. We will discuss the cases of quarter- and half-fillingsingle orbital,H] ph IS the free-phonon term for a single Ein-

of the electron orbitals. stein frequencyﬂ andHg, introduces an electron-phonon
The paper is organized as follows: Sec. Il presents theouplingg, of the Holstein type.

model Hamiltonian and the expressions of the electronic in- In standard notation, we have

He= €02 (N1g+Nag) = 2 [t=X(Ny_oH N ) 1(C],Copt H.C)+U 2 myyny +Vnyn,—23,SiS
o o i=1,2

—J4(ST'S; +H.c)+P(c],c] ey cp +H.C). 1)

The bare electronic parameteeg, t, X, U, V, and I‘/\/—
P (=J,=J,,) were evaluated according to Ref. X=—e’| ———|[1+ 25"+ Fo(l"*a%)
14, using normalized Gaussian ‘“orbitals” ¢;(r) (1-8%?
=(2T'%/ 7)%%exd —-TXr—R,)?] (i=1,2). Their overlap in- _2(1+ S)F(T2a/4)] ©6)

tegral isS=(¢,| ¢,) =exp(—I'%a%2), wherea=|R,—R,| is
the length of the dimer. Then the two orthonormalized Wan-

nier functions are U=e2 = \é: [2— S+ 25+ SPFo(T'%a2)
Wi(r)=A.(S)p1(r)+A_(S)da(r), @ —452F0(F282/4)], (7)
Wo(r)=A_(S)p1(r) +AL(S) (), IRVCR , ) .,
with = m [S7(1+2S°)+(2—S7)Fo(I'“a”)
1 L —4S%F(T%a%/4)], )
A.(S ()
=(5)= \/1+S V1 S 1’*/\/—
J,=Jy=P=¢? 5|[3+Fo(I'?a%) —4Fo(I'?a?/4)].
In order to calculate the parameters one has to evaluate inte- (1-
grals involving Gaussian functions, which have been dis- 9
cussed in Ref. 15. If the ion chargeZse|, and definingd
=#212m, n=—2¢€?, andF(x)=x"2 erf(x*?), we obtain The parts of the Hamiltonian involving phonons are a
free-phonon term-lgh and a Holstein-type interactioH ¢,
214g2 oT\2/m reading
€o=p| 3%+ |+ 7 > |[1+Fq(2a%I'?)
(1-5%) 1-S 1 MQ?
0_ ~ /p2.p2 2,2
—ZSZFo(aZFZ/Z)], (4) th_ZM (P1+P2)+ 2 (U1+U2) (10)
and

arss } (2r J2/m
n

B s
—SFy(2a%T?)], 5

)[2SFO(a2r2/2)—s

Hep=0> (N1,Us+No0Uy), (11)
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whereM is the mass of the ion$) is the phonon frequency, ll. THE EFFECTIVE ELECTRONIC HAMILTONIAN
assumed dispersionless for simplic{&instein phonoj and

= —1A0/9u; is the momentum of the jon at positionWe effective electroni¢polaronig HamiltonianH . by first per-
are considering only longitudinal vibrations of the dimer. . P . Tpol Y P
forming on H a generalized Lang-Firso\displaced-

The standard procedure to quantize the phononic Hamil-

tonian requires the introduction of usual phonon operators osqllator) transformaﬂon. Then, in the transformed Hamil-
tonian, we will take the average of the phononic parts over

a;=(2MaQ) " YAMQu;+iP)) (120  the squeezed-phonon wave function to eliminate the phonon
. o . _ degrees of freedom.
for each site. Actually, it is more convenient to work with  Ag we have two different boson operatossandb, there

Following the procedure of Ref. 16, we will obtain the

symmetric §) and antisymmetrickf) combinations will be two corresponding generatoR, and R,, and we
—(ay+a,)\2 have to perform a sequence of two unitary transformations
s=(a1tay)/y2, (13)  onH. The generators are defined as
b=(a;~a,)/\2,
P Rb=8¥0(ny—nz)(b'~b) (16
such that the free-phonon Hamﬂtomeh-fﬁh can be decom-
posed as and
0 Ob 0s + 1 + 1 R.= + t_ 1
Hpn=Hpnt+ Hoa=7.0| bTb+ 5| +40| s's+ 5] (14 s= 770(N1+N2)(S'—9), (17)

and the electron-phonon Hamiltoni&h,, has two contribu- where § and » are so far undetermined parameters, whose

tions, value will be fixed later in a convenient way.
Notice that[R,,R;]=0. Then, the transformed phonon
HS =AQ yy(n,+n,)(sT+s), operators are
ep Yo(ny+nz)( ) (15) p
Hey=iQ yo(ny—n2)(b"+b), eRobe Ro=b— §ys(n;—ny) (18)

where we have used the notatio== n;,, and introduced
the coupling energy per unit chargg=gy%/2MQ, which, ~ and
conveniently scaled by the phonon energy, yields the dimen-

sionless quantityy,=go/A€. Equations(15) show explic- efsse Rs=s— ny(n;+ny). (19
itly the coupling ofs with the total charge, anli with the
charge transfer. We transform, therefore 8ﬁ+ ng as
1
eRo(HOP+Hg)e Fo=#0( b'o+ S| +hQ(1- 8) ¥o(n1—ny)(bT+b) =20 8(2— 8) y3(n,—ny)? (20)
and
1
eRs(Hpp+ H)e Rs=h0)| s's+ 5| +AQA= ) yo(ny+ n,)(s'+s)—aQp(2— n) y3(n;+ny)2. (22)

Since the purely electronic terms of the total Hamiltonianwhere we have defined the anti-Hermitian operair
commute with the total number of electrons, they are not=8§(b"—b), and Shk) and Chk) are the hyperbolic sine
affected by exfRy), and are, thus, insensitive to the value of and cosine functions. Notice the asymmetry with respect to
7. We then choose=1 in order to eliminate the interaction site exchange due to the fact that the antisymmetric phonon
of electrons with symmetrical phonons from the transformecdbperator has been defined as a difference of local operators in
Hamiltonian[see Eq.21)]. We cannot do the same with a well defined ordefsee Eq(13)].
since R, does affect the purely electronic terms. Our ap- Using Egs.(22), we can easily work out the transforma-
proach consists in treatinfjas a variational parameter, to be tion of H, underR,,. Notice that electron number operators

determined by minimizing the total energy. remain unchanged, and the only noninvariant term# gf
The Ry-transformed Fermi operators read are
eRoc, e Ro=c, [ Ch(y,B)— Sh y,B)], eRo(cl ci,+H.c)e Ro=Ch(2yB)(c] ci,+H.C)+ - - -
(22) (23

eRoc,,e”Ro=c,,[ Ch(yoB)+Sh yB)], and
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TABLE I. Eigenvalues and eigenvectors of the Hamiltonian of &g.for N=1,2,3,4.D is the degen-
eracy of the state. The labedsb indicateantibondingand bondingcharacter, whileS and T correspond to
singlet and triplet states. ForN=2 we have definedEy=2¢,+U+P, Ey=2¢,+V+J r

Xy
=J(Ey—Ey)?+16(t—X)?, tan(@)=—4(t— X)/(Ey—Ey+r), andT=t—2X.

Filling and energy D S,S, Eigenvectors
(N=1)
E —en— 2 112,112 1
1=eo—t 12,1/ |1b,T>=E[cL+c£T]IO>
1/2,-1/2 1
|1b,1>=ﬁ[ch+c£i]|0>
Ex=e€ptt 2 1/2,1/2 1
' |1a,T>:E[CL—C§T]|0>
1/2,-1/2 1
|1a,l>=ﬁ[CL—CL]IO>
(N=2)
_1 1
= L(E,+Ey— 1 ,
Espy=3(Eu+Ey—r) 0,0 |Sb>=—2[sm(9(chL+c£lc§T)
—cosé(c] ¢} +¢5,c1))][0)
Er.1=2€+V—J, 2 1,1(-1) T, 1)=c1;())C3()|0)
Ero=2eg+V—J 1 1,0 1
7.0~ 2€0 xy |T,O>:E[CELCL—CLCET:HO)
Ecr=2€,+U—P 1 0,0 L
T 20 |CT>:ﬁ[CLCL_CZLC£T]|O>
_1 1
=3(Ey+Ey+ 1
Esa=3(Ey+Ey+tr) 0,0 |Sa>:—2[cos¢9(chIT+c§lc})
+sin g(c} ¢}, +ch;c])]|0)
(N=3)
Eap,=3€,+U+2V—J,—T 2 1/2,1/2 1
3bs= 3€p z |3b,T>:E[CITCLC;T+C£TC£lCL]|O>
1/2,-1/2 1
|3bvl>:E[CITCLCL+C£TC£¢CL]|O>
Es,=3€p+U+2V—J,+T 2 1/2,1/2 1
=360 : [3a,1)= el el ch —chichicl 110)
1/2,-1/2 1
|3a,l>:E[CITCLCEL_CETC£1C11]|0>
(N=4)
Ey=deg+2U+4V—2J, 1 0,0 |4)=c],c],c}ic},|0)
_ _ _hipt
e"o(cii¢],C5Cop+H.c)e™Ro N e N (VP (29

_ t ot .
= Ch(4%0B)(C11C1 C21Coi FHC)F -0y (24 1 ie e straightforward to show that

where the dots stand for terms that contain Sh(coBdt,
which average to zero in the squeezed-phonon state, as dis- (V¢ JShnyeB)| sy =0,
cussed below. 9
To eliminate the phonon operators, we take the average of 1
the transformed Hamiltonian over the squeezed-phonon <‘1’5JCh(n’)’oB)|‘I’so>:eXF{ 20— 4

(26)

T 22
wave function 2" o"voe
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The result is a polaronic effective Hamiltoniahi . ‘
= Hal( €l 1, X* ,U* V¥, %, 05 |P*) + E,p,, where t2 (81,82, a5,a1,)
Fkln_

=
[(I |t2 a'(azlr_a'a20+ a;zralo)“)

Y070

= QY1+ 62— 8)], th=1t, X*=rX, (3D

U*=U-2aQy 1+ 8(2-6)], 7%0=0

(27 ForN=1, F}" is just the hopping reduction factar. For

V*=V-2iQyi[1-8(2-5)], P*=7*P, N=2, F[{l' vanishes, except in the stalb), for which,
defining 6* like # in Table I, but using the renormalized
Epn=hQ[SH(2a)+1], interactions, we obtain
with r=exd —28*yZe **]. The parameters, andJ,, remain  rsin(26%)
unchangedthus, they are no longer equal ®*). Notice F,kg“b>=w. (32
that the energy of the phonons in the ground state is given by
the last term in Eq(27). Leaving asidei(2/2, coming from To measure the relation between the charge and the pho-
the s phonons, the contribution of the phonons to this oy number on each siteelated to the polarizability of the
energy can be written as medium, Ref. 13 introduced, for the case of one electron,
1 the “electron-phonon CF.” In our case it has to be defined as
b _—
Epn= g Chida). 29 FP=((nblbd) (1.k=1.2). 33

Thus, due to the squeezing effect, we find an increase of th&s k can coincide or not witlj, we will consider both on-
zero-pointb-phonon energy, as if the frequency of the lattersite (j=k) and intersite [#k) electron-phonon CF’'s. The
wereQ)* =0 Ch(4a). This renormalization effect is not di- intersite charge CF is defined #§(n;n,)), and the longitu-
rectly due to the electronic interactions, since it does notlinal and transverse spin CF's a§S;S5)) and((S; S, )),
depend explicitly on them. There is, however, an indirectrespectively. The bipolaron “mobility” or singlet-
influence due tax being determined by minimization of the superconductoiICF (Ref. 20 describes the hopping of two

total energy, which includes the electronic part. particles occupying the same site, namely,
The polaronic Hamiltonian is easily diagonalized, and its
energy eigenvalues and eigenvectors are listed in Table I.  ({(C2;C2;C1,¢])))=(WsJCH 4¥,8(bT—0)]| Wy
Leaving aside differences in notation, these results are con- + ot
sistent with those obtained by other autht¥&’ X(Ilez ezeqiey 1)
=7%(I|ca o] e 1) (34)

IV. CORRELATION FUNCTIONS . . .
Finally, the (phonon-inducedaverage charge transfer is de-

The quantities accessible to measurement, besides the efihed, following Ref. 16, as
ergy eigenvalues, are expressed in the form of various cor-
relation functions(CF), which can be evaluated through the 3 (((ny—=nx)(b+b)))y

eigenstates of the effective Hamiltonian, listed in Table |I. |C|>T W
We will indicate by((X));, the CF for a generic operatt (((BT+Db)%))p)
in one of the eigenstatégl of the effective Hamiltonian. The —268y5(1|(n1—n)2|1)

double averagé(X)));, has to be understood as follows: (35

B \/Ch(4a)+45273<||(n1—n2)2||>'

The analytical expressions of various CF's are collected in
In particular,((H))y=E" . We will evaluate a number of Table II.
correlation functions that have been considered in the litera-
ture, whose definitions are briefly clarified below. V. RESULTS

The squeezing parameter is directly accessible to experi-
mental measure through the Debye-Waller factor, defined as The ground state oH,, for several values ofj, was
FOW=((u?))—((u;))2. Indeed, by using the time-dependent identified by searching the minimum of the total, i.e., elec-

representation of the displacement through the effectivd’onic plus phononic, energy upon independent, and simulta-
Hamiltonian H*, i.e., u;(t)=exp(H*tA)y exp(—iH*t/4), ~ Neous optimization of the parameters that define the shape of

(XN =(I(¥JeeXe Re Tl w|l). (29

one obtains the orbitals "), the displaced-oscillator strengtt$), and
the squeezing-effect strengtr). Given a and &, then the
ow L2 " optimal hopping reduction factor=exp(—2&83e *%) fol-

F=>[1+e™], (30 |ows. Specifically, the optimization proceeded in three steps.

First, the total energy for each eigenvalue was separately
whereL=#/2MQ is the characteristic phonon length. optimized with respect td', 5, anda. Second, the minimal
An important quantity is the ratio of the kinetic energy of total energy was selected with the corresponding values of
the interacting system to that on the noninteracting one, dethe variational parameters. Third, the higher-lying eigenval-
fined as ues were recalculated with, §, anda set by the optimiza-
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TABLE Il. Analytic expressions of some correlation functiof%)) in the indicated eigenstates.

X |10) |Sb) IT,*=1) |T,0) |cT)

n;b/b; [ sint(2) 7 sinf(2a)+ 2 3 sint?(2a) 3 sint(2q) % sint(2q)

(j=1,2) +y3(1+6)2 +y28(2+ 8)sir? 6 +y2 +v2 +y3(1+ 6)?

n;bjby [ sint?(2a) 7 sinl’(2a)+ 3 1 sint(2a) 7 sint?(2a) 3 sintf(2q)

(i#k=12) +75(1-6)%] ~¥58(2— 8)sir’ 6 +7% +7% +75(1-6)?

Fnin, 0.0 3 cod 6 3 : 0.0

Sisg 0.0 —%cog g 3 —fcod e 0.0

SIS, 0.0 —3cof 6 0.0 -1 0.0

€2,C21C](C) 0.0 374 sir? 9 0.0 0.0 —37

(n;—ny)(b™—b) —268y, — 168y, Sirf 9 0.0 0.0 —1668y,

V({((bT—b2)) Jeosh4a)+(28y,)2 Veost{4a) + (48y,sind)2 JcOsh4a) +(48y,)2

tion of the lowest-lying one. This procedure gave us the trueshown in Fig. 2. We notice that the discontinuitiesdrand
full spectrum of eigenvalues for each ground state. We willexp(—4a) ata, correspond to the localization of the polaron,

now discuss the results fad=1 (quarter-filled caseand

N=2 (half-filled casé.

The interplay between the electronic and phononic su
systems is evidenced in Fig. 1, which shoaFE, s, and
exp(—4«) as functions ofa, for gy=0.447 eV andh()
=0.1 eV. The displacement paramet@&rgrows smoothly
with a, until, at a critical lengtra,~2.1 A, it jumps discon-

A. Quarter-filled case

as signaled by the fact that fa=a. the kinetic energy

vanishes(discontinuously and the on-site electron-phonon
correlation jumps to a very high value. The localization is
driven by 7=ex{ —285e **], which renormalizes the ef-

factore

—4a

bfective hoppind see Eq(27)]. The sudden changes observed
in Fig. 1 can be attributed to the competition between the
squeezing effect, which tends to keepfinite through the

, and the polaron effect, which tends to reduce

through the factors? in the exponent ofr. As & increases

tinuously up to 6=1. The squeezing-related quantity with a (Fig. 1), « also increases to gain electronic energy by

exp(—4«) decreases witla up to a., indicating that the

keepingt at a nonvanishing valugsee Table). The price to

squeezing effect becomes stronger to counteract the growirigay is an increase of the phonon energy, &§). The be-

displacement. Ata=a;, exp(4a) recovers abruptly a
rather large value. The orbital-shape paramaterrises al-

most linearly witha, except around, where it suffers a
small, sharp increase. Therefore, fdr=1, the changes of
the phononic parameters have only a small effect’on

havior shown fora<a, by all quantities in Fig. 2 clearly
reflects the continuous variations of the phononic parameters
of Fig. 1. When the phonon energy becomes too large, at
=a., the system jumps to a state with a smalland zero
hopping. However, if théare hopping amplitude is by itself

The changes in the electron and phonon subsystems demall (which happens for large values @af, the loss in
picted in Fig. 1 are mirrored by the correlation functionselectronic energy whenis reduced is not very important,

3
N=1

25 -

Parameters
-
o
T

05

0.5

25

FIG. 1. The Wannier-function-shape param-
eter al’, the displaced-oscillator parameteét
and the squeezing parameter exga) as func-
tions of a, for N=1, A0=0.1 eV, andg
=0.447 eV.
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Kinetic energy (10'1 eV) —

Charge transfer -------

On-site EP CF --------

Inter—site EP CF e

Indicated functions

-5

N=1

FIG. 2. Variation of the reduced kinetic en-
ergy, the charge transfer, and the on-site and in-
tersite EP CF’s witha, for N=1,20=0.1 eV,
andgy=0.447 eV.

0.5

a (A)

remains small, and there is no sudden change of state. Thisagram” for the system, as shown in Fig. 4. In both panels,
can be seen in Fig. 3, where the kinetic energy and th¢he region to the leffright) of each line corresponds to itin-
electron-phonon correlation functions are plotted as funcerant(localized states. On the left panel we have chosen to
tions of gy for two values ofa, the largea case showing a plot the bare hopping parameter calculated ata., as a
continuous transition.
The localization critical length depends on the strength ogood scaling variable for not too large dimer lengths, as the
the electron-phonon interaction. We can then draw a “phasecurves for different phonon frequencies coincide. For large

10

Kinetic energy (1 0! eV)

20

15

10

On-site EP CF

120f

100

Inter-site EP CF

20)

o]

FIG. 3. The same quantities as in Fig. 2 as functiongQffor

80|
60)
40|

.

0

0.05 0.1

015 02 025 03 035 04 045 05 055

g, (V)

function ofg,. We also show, on the right, thgﬁ/ﬁﬂ is a

a, the curves tend to separate, enhancing the curvature so as
to avoid crossing the axis. This implies that the polaronic
transition asa increases becomes a continuous crossover for
small values ofyg.

B. Half-filled case

The half-filled case presents a more complex behavior
than the quarter-filled one, due to the electron-electron inter-
actions that become effective in this case. We first discuss
the “phase diagram,” Fig. 5, in order to give an overall view
of the physics. Again there are two dominant regimes, local-
ized and nonlocalized, respectively, above and below the
continuous line in Fig. 5. The physics of the system is domi-
nated by the singlet bonding std®@b) (see Table), which
is always the lowest-lying energy level. However, for large
a |Shy becomes degenerate with either the triplet stifes
(Fig. 6, top panelor the charge transfer statgsT) (Fig. 6,
middle and bottom panelsdepending on the value .
These degeneracies just mean that these states are no longer
appropriate to describe the system, which has become a pair
of isolated atoms. For smali;, as the dimer length in-
creases, the system evolves continuously from an extended
singlet state to a localized state with one electron per site,
which occurs for very large values af. For largegq, a
bipolaron is formed(in the |CT) state, which eventually
localizes in one of the sites, leaving the other one empty.

While one can draw af2-independent phase diagram, the
correlation functions do depend dn. We have therefore
selectedri()=0.1 eV, which might be realistic in HTSC's
and colossal magnetoresistance materials. We will present
the results forgé/ﬁ(2=2.0, 2.2, and 2.5 eV, corresponding
to go=0.447, 0.470, and 0.500 eV, respectively. The dotted

fixed length values=2.3 A anda=4.0 A. The intersite EP CF horizontal lines in Fig. 5 visualize the sections of the phase
for a=4.0 A has vanishingly small values on the scale of the fig-diagram that we are going to discuss in detail in Fig. 6,

ure.

where the full eigenvalue spectrum is shown as a function of
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thatg3/4 Q) is a good scaling variable for small

as the two curves coincide.
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range of values of in which a rearrangement of the full
spectrum occurs. Finally, in the cagd/AQ=2.5 eV one
crosses the region of the phase diagram in Fig. 5 bounded by
the broken line, where, as we will see below, both (teti-
ferromagnetic CF and the charge transfer have large values
in the|Sh) state. Correspondingly, one sees from the bottom
panel of Fig. 6 that inside this CT-AF region the stg@d)
N= becomes lower in energy thdf).

The changes in the electronic and phononic parameters
underlying the level crossing in Fig. 6 are shown in Fig. 7. In

a for the three mentioned values a@f,. When g%/ﬁQ
=2.0 eV,|Sb) is always the ground state, with thE) state
approaching it asymptotically for large (top panel of Fig.
6). For g%/ﬁQ=2.2 eV, we find a reentrant behavior in a

7 T T T T T T

T T
go= 0.447 eV N=2 —

< 4 4
2
G
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=
]
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[
2
°
5
2 @
=
w
1k _
o 1 1 1 1 1 1
0.5 1 1.5 2 2.5 3 3.5 4

a (A)

FIG. 5. The “phase diagram” foN=2. The electrons are non-
localized below the full line, and localized in the region above it. 05 1 15 2 o5 3 35 4
The broken line delimits the region where both the magnetic CF
and the CT are large. The horizontal lines correspdiod 7 ()
=0.1 eV) to the values ogg/m considered in the numerical
analysis.

FIG. 6. Dependence of the full eigenvalue spectrumNer 2
with a, for #Q=0.1 eV, and the indicated values @f.
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FIG. 8. The effective hopping parameter (top), the on-site
interactionU* (middle), and the intersite interactiod* (bottom)
t as functions ofy, for N=2, #Q=0.1 eV, and the indicated values

FIG. 7. Microscopic electronic and phononic parametersNfor
=2 vsa for the indicated values af,. Top: the Wannier wave-
function shape parametad”; middle: the oscillator displacemen
5, bottom: the squeezing parameter exgg). O Go-

steeper forgd/A0=2.0 eV than forg2/4Q=2.5 eV. This Sense thatthe latter are completely screened out, even though

can be explained by anticipating that, in the latter case, evefio is not small. Larges values in thgSh) state can only be
when, fora<1.60 A, the stable state [Sb), still thereisan found in the CT-AF region, which, however, is located
appreciable charge transfer, indicating that the electrons ter@pove the threshold.

to keep apart. Their charge-density clouds can, therefore, In Fig. 8 we show the three largest effective electronic
spread out more largely around the idhe., T can decreage interactionst®, U*, andV* (top, middle, and bottom panel,
without too much increase in the Coulomb energy. In therespectively, for the chosen values @f,. Besides showing
intermediate casg3/2Q=2.2 eV, al' jumps between the sharp discontinuities at the critical valuesagftheir behavior

two lines. The jumps mark the reentrant transition betweertlarifies the nature of the CT-AF region of the phase dia-
the localized and the nonlocalized regime, which thereforggram. Indeed, we can see that this region is characterized by
implies marked modifications in the Wannier functionsa significant reduction of the on-site effective Coulomb re-
shape. The middle panel shows the corresponding behavigiilsion and an increase of the intersite one, which are nec-
of the phonon displacement parameter We see that the essary conditions for the stabilization of a local bipolaron,
passage from the nonlocalized regime to the localized one iwhile the effective hopping is only slightly reduced. Con-
accompanied, as expected, by an abrupt jump f&a0 to  comitantly, the bipolaron mobility remains finit€ig. 9, bot-
8=1. Only for g5/ =2.5 eV is the limiting value=1  tom panel while charge-transfer fluctuations build @pig.
reached by two jumps connected by a range of gradual ini0, top panel and the intersite spifor magneti¢ correla-
crease, associated with the crossing of the CT-AF region itions are still importantFig. 10, bottom pangl We would

Fig. 5. The behavior of the squeezing-related parametdike to remark that the existence of this region of the phase
exp(—4a), shown in the bottom panel, is also characterizeddiagram(probably the most interesting one as far as high-

by sudden transitions at the line boundaries. Its dependen&iperconductors are concerpedepends strongly on the
on a, combined with the negligible value thattakes when squeezing of the phonon states, as can be seen in the bottom
|Sb) is the nondegenerate ground state, implies the existengganel of Fig. 7. In other words, the squeezing effect counter-
of a threshold value fog3/%Q below which the electrons acts the oscillator displacement, and succeeds in preserving a
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FIG. 9. The on-site electron-phonon Qfop), the intersite
electron-phonon CRmiddle), and the singlet-superconductor CF
(bottom as functions ofa, for N=2, AQ)=0.1 eV, and the indi-
cated values 0§ .

FIG. 10. The charge transféop) and the absolute value of the
magnetic CF|((S;S5))|, (bottom) vs a, for N=2, #Q=0.1 eV,
and the indicated values @f,.

rather itinerant character even in the presence of both appré&igs. 4 and 5 cannot be viewed pkase diagramswe be-
ciable charge transfer and magnetic correlations. lieve that they allow us to speculate on the nature of the
corresponding states in a lattice. Remaining in the half-filled
case, the region where the extended bonding singlet is stable
should show the antiferromagnetic order characteristic of the
We have presented here a variational study of a dimeusual Hubbard model, with a continuous evolution towards a
where interacting electrons occupy a single orbital per sitdocal-moment paramagnet as the interatomic distance is in-
and are coupled to Holstein phonons. We have put into eviereased. For a doped system, one could expect the two-site
dence that the variation of the dimer length and/or thesinglets to build up a RVB-like state, or an intersite bipo-
strength of the electron-phonon coupling yield a stronglaron, in the lattice. On the other hand, {i&T) state should
renormalization of the interaction constants as well as theorrespond to a charge density wave in the lattice. In con-
width of the Wannier functions describing the local orbitals,nection to the HTSC materials, our most significant finding
which establishes a link between the electronic interactiongs that there is a region in the parameter space where the
and the phonons at a deeper level than predicted by the stakinetic energy, the charge transfer, and the magnetic corre-
dard polaron approach. The squeezing of the phonon statéations are simultaneously large, while the phonon state is
has been shown to be particularly relevant, yielding sharpartially displaced and strongly squeezed. This result sug-
changes in the state of the system as the dimer length gests that it is perhaps not necessary to set a sharp alternative
varied at fixed electron-phonon coupling. The experimentabetween either magnetic or charge instabilities. Based on our
interest of this finding is that situations where the interatomiaesults, one might speculate that, in the normal state, those
distances can be varied, even by a small amount, either uniaterials might be in a situation corresponding to the one in
formly by an external pressure, or inhomogeneously bythe dimer, where both types of fluctuations can be simulta-
dimerization in a chain compound, can lead to importantneously large. It is interesting to notice that the existence of
changes in the system'’s behavior. this narrow regior(between the dashed and continuous lines
Obviously one has to be careful in making predictionsin Fig. 5 in our model is entirely due to the squeezing of the
about the behavior of an extended system based on calculphonon states. Indeed, we checked that it disappears if one
tions for a two-site cluster. Nevertheless, despite the fact thdteeps the squeezing parameiefixed at zero, giving rise to

VI. CONCLUSIONS
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