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Electronic and phononic states of the Holstein-Hubbard dimer of variable length
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We consider a model Hamiltonian for a dimer of lengtha including all the electronic one- and two-body
terms consistent with a single orbital per site, a free Einstein phonon term for a frequencyV, and an electron-
phonon couplingg0 of the Holstein type. The bare electronic interaction parameters were evaluated in terms of
Wannier functions built from Gaussian atomic orbitals. An effective polaronic Hamiltonian was obtained by an
unrestricted displaced-oscillator transformation, followed by evaluation of the phononic terms over a squeezed-
phonon variational wave function. For the cases of quarter-filled and half-filled orbitals, and over a range of
dimer length values, the ground state for giveng0 andV was identified by simultaneously and independently
optimizing the orbital shape, the phonon displacement, and the squeezing effect strength. Asa varies, we
generally find discontinuous changes of both electronic and phononic states, accompanied by an appreciable
renormalization of the effective electronic interactions across the transitions, due to the equilibrium shape of
the wave functions strongly depending on the phononic regime and on the type of ground state.
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I. INTRODUCTION

Much attention has been devoted to materials where st
tural effects deeply influence the electronic phenomena, s
as, for instance, V22xCrxO3,1 polyacetylene,2,3 displacive-
type ferroelectrics,4 the manganites exhibiting coloss
magnetoresistance,5 and the high temperature supercondu
ing perovskites.6–8 From the theoretical standpoint, such e
fects have been studied by adding various kinds of elect
phonon couplings to different electronic Hamiltonian
mainly of the extended Hubbard ort-J type. However, com-
paratively little attention has been paid to the effect of
structure~in its simplest form, a variation of the lattice spa
ing a) onto the electronic interactions themselves. Such
fects are of great relevance in experiments: consider, for
ample, the measurements under either external or chem
pressure, and the wealth of interesting phenomena that
have revealed. The electronic interaction parameters ca
written as integrals of various combinations of Wann
functions centered on the lattice sites~as will be detailed in
Sec. II below!. Therefore, a change ofa is expected to have
a non-negligible effect on them. In the realm of electron
transitions, to our knowledge, after a pioneering attempt
Kawabata,9 only Spałek and Wo´jcik10 focused on such ef
fects. They argued that, in a system of fermions undergo
a metal-insulator transition~MIT ! due to the on-site repul
sion effect, the wave functions may significantly change th
shape across the transition, concomitantly to a change o
equilibrium lattice spacing. Therefore, different values
the hopping amplitudet i j and the on-site repulsionU may
correspond to the itinerant and the localized regimes. In
PRB 580163-1829/98/58~12!/7626~11!/$15.00
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present work we explore the consequences of such an
proach in systems with a Holstein-type electron-phonon
teraction. Our model Hamiltonian includes all the electron
interaction parameters for one- and two-body terms, wh
dependence ona results from their evaluation in terms o
Wannier functions built from Gaussian orbitals. We al
consider the characteristic structural lengtha as free to vary
between reasonable boundaries, in order to model the eff
of the experimental techniques that allow for a more or l
continuous tuning of the bond length. We find that both t
electronic and phononic states significantly depend ona. For
instance, on one side, the phonon state, characterized b
extent of thedisplacementand thesqueezing, reflects the
electronic transitions at a deeper level than just a freque
renormalization. On the other side, as the optimal shape
the Wannier wave functions depends not only ona, but also
on the phonon state, the renormalization of the electro
parameters by the phonons is actually more complex t
indicated by the standard results of the polaronic model.11

To put into evidence the basic features of our approa
avoiding unnecessary complications, our model system
the present paper is a simple dimer with a single orbital
site. It can be considered as the basic unit to build clus
and lattices, and its simplicity allows for a full control on th
analytic aspects of the calculations. Also, some unavoida
approximations that have to be introduced are linked to
physics, and not to the complications of treating larger s
tems. Some new aspects distinguish the present work f
the rich existing literature on the Holstein dimer with vario
types of interelectronic interactions~see, for instance, Refs
2, 12, 13, and the literature cited therein!. First, the effec-
7626 © 1998 The American Physical Society
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tive electronic Hamiltonian originates from a first-principl
Hamiltonian including the complete set of one- and tw
body electronic terms consistent with a single orbital per s
To the best of our knowledge, previous studies conside
only a more restricted subset of interactions. Second,
present our results mainly by setting the values of
electron-phonon couplingg0 and phonon energy\V and
taking the dimer lengtha as the continuously varying con
trolling parameter. The dependence of the state of the sys
on its length usually receives little attention even though i
much more easily accessible experimentally than the de
dence on the strength of the coupling, which requires d
cate chemical manipulations. However, some discussio
the case of fixed length and varying coupling will also
given. We will discuss the cases of quarter- and half-filli
of the electron orbitals.

The paper is organized as follows: Sec. II presents
model Hamiltonian and the expressions of the electronic
f.
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teractions explicitly depending on the dimer length. In S
III the effective electronic Hamiltonian is obtained, while
Sec. IV several correlation functions and other quantities
experimental interest are explicitly evaluated. The results
the numerical analysis of our model are presented and c
mented upon in Sec. V. Finally, some general conclusi
are presented in Sec. VI.

II. THE MODEL

For a dimer consisting of identical ions centered atR1 and
R2 we consider the HamiltonianH[Hel1Hph

0 1Hep, where
Hel includes all the electronic one- and two-body terms fo
single orbital,Hph

0 is the free-phonon term for a single Ein
stein frequencyV, and Hep introduces an electron-phono
couplingg0 of the Holstein type.

In standard notation, we have
Hel5e0(
s

~n1s1n2s!2(
s

@ t2X~n1,2s1n2,2s!#~c1s
† c2s1H.c.!1U (

i 51,2
ni↑ni↓1Vn1n222JzS1

zS2
z

2Jxy~S1
1S2

21H.c.!1P~c1↑
† c1↓

† c2↓c2↑1H.c.!. ~1!
a

The bare electronic parameterse0 , t, X, U, V, and
P (5Jz5Jxy) were evaluated according to Re
14, using normalized Gaussian ‘‘orbitals’’ f i(r )
5(2G2/p)3/4exp@2G2(r2Ri)

2# ( i 51,2). Their overlap in-
tegral isS[^f1uf2&5exp(2G2a2/2), wherea5uR12R2u is
the length of the dimer. Then the two orthonormalized Wa
nier functions are

C1~r !5A1~S!f1~r !1A2~S!f2~r !,
~2!

C2~r !5A2~S!f1~r !1A1~S!f2~r !,

with

A6~S!5
1

2F 1

A11S
6

1

A12S
G . ~3!

In order to calculate the parameters one has to evaluate
grals involving Gaussian functions, which have been d
cussed in Ref. 15. If the ion charge isZueu, and definingb
5\2/2m, h52Ze2, andF0(x)[x21/2 erf(x1/2), we obtain

e05bF3G21
a2G4S2

~12S2!G1hS 2GA2/p

12S2 D @11F0~2a2G2!

22S2F0~a2G2/2!#, ~4!

t5bF a2G4S

~12S2!G2hS 2GA2/p

12S2 D @2SF0~a2G2/2!2S

2SF0~2a2G2!#, ~5!
-

te-
-

X52e2F G/ApS

~12S2!2G @112S21F0~G2a2!

22~11S2!F0~G2a2/4!#, ~6!

U5e2F G/Ap

~12S2!2G @22S212S41S2F0~G2a2!

24S2F0~G2a2/4!#, ~7!

V5e2F G/Ap

~12S2!2G @S2~112S2!1~22S2!F0~G2a2!

24S2F0~G2a2/4!#, ~8!

Jz5Jxy5P5e2F G/ApS2

~12S2!2G @31F0~G2a2!24F0~G2a2/4!#.

~9!

The parts of the Hamiltonian involving phonons are
free-phonon termHph

0 and a Holstein-type interactionHep,
reading

Hph
0 5

1

2M
~P1

21P2
2!1

MV2

2
~u1

21u2
2! ~10!

and

Hep[g(
s

~n1su11n2su2!, ~11!
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7628 PRB 58ACQUARONE, IGLESIAS, GUSMÃO, NOCE, AND ROMANO
whereM is the mass of the ions,V is the phonon frequency
assumed dispersionless for simplicity~Einstein phonon!, and
Pi[2 i\]/]ui is the momentum of the ion at positioni . We
are considering only longitudinal vibrations of the dimer.

The standard procedure to quantize the phononic Ha
tonian requires the introduction of usual phonon operato

ai[~2M\V!21/2~MVui1 iPi ! ~12!

for each site. Actually, it is more convenient to work wi
symmetric (s) and antisymmetric (b) combinations

s5~a11a2!/A2,
~13!

b5~a12a2!/A2,

such that the free-phonon HamiltonianHph
0 can be decom-

posed as

Hph
0 [Hph

0b1Hph
0s5\VS b†b1

1

2D1\VS s†s1
1

2D ~14!

and the electron-phonon HamiltonianHep has two contribu-
tions,

Hep
s 5\Vg0~n11n2!~s†1s!,

~15!

Hep
b 5\Vg0~n12n2!~b†1b!,

where we have used the notationni[(snis , and introduced
the coupling energy per unit chargeg0[gA\/2MV, which,
conveniently scaled by the phonon energy, yields the dim
sionless quantityg0[g0 /\V. Equations~15! show explic-
itly the coupling ofs with the total charge, andb with the
charge transfer.
an
no
o
n
e

p
e

il-

n-

III. THE EFFECTIVE ELECTRONIC HAMILTONIAN

Following the procedure of Ref. 16, we will obtain th
effective electronic~polaronic! HamiltonianHpol by first per-
forming on H a generalized Lang-Firsov~displaced-
oscillator! transformation. Then, in the transformed Ham
tonian, we will take the average of the phononic parts o
the squeezed-phonon wave function to eliminate the pho
degrees of freedom.

As we have two different boson operators,s andb, there
will be two corresponding generatorsRs and Rb , and we
have to perform a sequence of two unitary transformati
on H. The generators are defined as

Rb5dg0~n12n2!~b†2b! ~16!

and

Rs5hg0~n11n2!~s†2s!, ~17!

whered and h are so far undetermined parameters, who
value will be fixed later in a convenient way.

Notice that @Rb ,Rs#50. Then, the transformed phono
operators are

eRbbe2Rb5b2dg0~n12n2! ~18!

and

eRsse2Rs5s2hg0~n11n2!. ~19!

We transform, therefore,Hph
0b1Hep

b as
eRb~Hph
0b1Hep

b !e2Rb5\VS b†b1
1

2D1\V~12d!g0~n12n2!~b†1b!2\Vd~22d!g0
2~n12n2!2 ~20!

and

eRs~Hph
0s1Hep

s !e2Rs5\VS s†s1
1

2D1\V~12h!g0~n11n2!~s†1s!2\Vh~22h!g0
2~n11n2!2. ~21!
t to
non
rs in

-
rs
Since the purely electronic terms of the total Hamiltoni
commute with the total number of electrons, they are
affected by exp(Rs), and are, thus, insensitive to the value
h. We then chooseh51 in order to eliminate the interactio
of electrons with symmetrical phonons from the transform
Hamiltonian@see Eq.~21!#. We cannot do the same withd,
since Rb does affect the purely electronic terms. Our a
proach consists in treatingd as a variational parameter, to b
determined by minimizing the total energy.

The Rb-transformed Fermi operators read

eRbc1se2Rb5c1s@Ch~g0B!2Sh~g0B!#,
~22!

eRbc2se2Rb5c2s@Ch~g0B!1Sh~g0B!#,
t
f

d

-

where we have defined the anti-Hermitian operatorB
[d(b†2b), and Sh(x) and Ch(x) are the hyperbolic sine
and cosine functions. Notice the asymmetry with respec
site exchange due to the fact that the antisymmetric pho
operator has been defined as a difference of local operato
a well defined order@see Eq.~13!#.

Using Eqs.~22!, we can easily work out the transforma
tion of Hel underRb . Notice that electron number operato
remain unchanged, and the only noninvariant terms ofHel
are

eRb~c1s
† c1s1H.c.!e2Rb5Ch~2g0B!~c1s

† c1s1H.c.!1•••

~23!

and
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TABLE I. Eigenvalues and eigenvectors of the Hamiltonian of Eq.~1! for N51,2,3,4.D is the degen-
eracy of the state. The labelsa,b indicateantibondingandbondingcharacter, whileS andT correspond to
singlet and tr iplet states. For N52 we have definedEU[2e01U1P, EV[2e01V1Jxy , r
[A(EU2EV)2116(t2X)2, tan(u)[24(t2X)/(EU2EV1r ), andT5t22X.

Filling and energy D S,Sz Eigenvectors

(N51)

E15e02t 2 1/2,1/2 u1b,↑&5
1

A2
@c1↑

† 1c2↑
† #u0&

1/2,21/2 u1b,↓&5
1

A2
@c1↓

† 1c2↓
† #u0&

E25e01t 2 1/2,1/2 u1a,↑&5
1

A2
@c1↑

† 2c2↑
† #u0&

1/2,21/2 u1a,↓&5
1

A2
@c1↓

† 2c2↓
† #u0&

(N52)

ESb5
1
2 (EU1EV2r ) 1 0,0 uSb&5

1

A2
@sinu(c1↓

† c1↑
† 1c2↓

† c2↑
† )

2cosu(c1↓
† c2↑

† 1c2↓
† c1↑

† )]u0&

ET,6152e01V2Jz 2 1,1(21) uT,61&5c1↑(↓)
† c2↑(↓)

† u0&

ET,052e01V2Jxy 1 1,0 uT,0&5
1

A2
@c2↓

† c1↑
† 2c1↓

† c2↑
† #u0&

ECT52e01U2P 1 0,0 uCT&5
1

A2
@c1↓

† c1↑
† 2c2↓

† c2↑
† #u0&

ESa5
1
2 (EU1EV1r ) 1 0,0 uSa&5

1

A2
@cosu(c1↓

† c1↑
† 1c2↓

† c2↑
† )

1sinu(c1↓
† c2↑

† 1c2↓
† c1↑

† )]u0&

(N53)

E3bs53e01U12V2Jz2T 2 1/2,1/2 u3b,↑&5
1

A2
@c1↑

† c1↓
† c2↑

† 1c2↑
† c2↓

† c1↑
† #u0&

1/2,21/2 u3b,↓&5
1

A2
@c1↑

† c1↓
† c2↓

† 1c2↑
† c2↓

† c1↓
† #u0&

E3a53e01U12V2Jz1T 2 1/2,1/2 u3a,↑&5
1

A2
@c1↑

† c1↓
† c2↑

† 2c2↑
† c2↓

† c1↑
† #u0&

1/2,21/2 u3a,↓&5
1

A2
@c1↑

† c1↓
† c2↓

† 2c2↑
† c2↓

† c1↓
† #u0&

(N54)

E454e012U14V22Jz 1 0,0 u4&5c1↑
† c1↓

† c2↑
† c2↓

† u0&
d

e
no
eRb~c1↑
† c1↓

† c2↓c2↑1H.c.!e2Rb

5Ch~4g0B!~c1↑
† c1↓

† c2↓c2↑1H.c.!1•••, ~24!

where the dots stand for terms that contain Sh(const3B),
which average to zero in the squeezed-phonon state, as
cussed below.

To eliminate the phonon operators, we take the averag
the transformed Hamiltonian over the squeezed-pho
wave function
is-

of
n

uCsq&5e2a~bb2b†b†!u0&ph. ~25!

It is then straightforward to show that

^CsquSh~ng0B!uCsq&50,
~26!

^CsquCh~ng0B!uCsq&5expF2
1

2
n2d2g0

2e24aG .
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The result is a polaronic effective HamiltonianHpol

5Hel(e0* ,t* ,X* ,U* ,V* ,Jxy* ,Jz* ,P* )1Eph, where

e0* 5e2\Vg0
2@11d~22d!#, t* 5tt, X* 5tX,

U* 5U22\Vg0
2@11d~22d!#,

~27!
V* 5V22\Vg0

2@12d~22d!#, P* 5t4P,

Eph5\V@Sh2~2a!11#,

with t[exp@22d2g0
2e24a#. The parametersJz andJxy remain

unchanged~thus, they are no longer equal toP* ). Notice
that the energy of the phonons in the ground state is given
the last term in Eq.~27!. Leaving aside\V/2, coming from
the s phonons, the contribution of theb phonons to this
energy can be written as

Eph
b 5

1

2
\V Ch~4a!. ~28!

Thus, due to the squeezing effect, we find an increase of
zero-pointb-phonon energy, as if the frequency of the lat
wereV* [V Ch(4a). This renormalization effect is not di
rectly due to the electronic interactions, since it does
depend explicitly on them. There is, however, an indir
influence due toa being determined by minimization of th
total energy, which includes the electronic part.17

The polaronic Hamiltonian is easily diagonalized, and
energy eigenvalues and eigenvectors are listed in Tab
Leaving aside differences in notation, these results are c
sistent with those obtained by other authors.18,19

IV. CORRELATION FUNCTIONS

The quantities accessible to measurement, besides th
ergy eigenvalues, are expressed in the form of various
relation functions~CF!, which can be evaluated through th
eigenstates of the effective Hamiltonian, listed in Table
We will indicate by^^X&& u l & the CF for a generic operatorX
in one of the eigenstatesu l & of the effective Hamiltonian. The
double averagê^X&& u l & has to be understood as follows:

^^X&& u l &[^ l u^CsqueRbeRsXe2Rse2RbuCsq&u l &. ~29!

In particular,^^H&& u l &5El* . We will evaluate a number o
correlation functions that have been considered in the lite
ture, whose definitions are briefly clarified below.

The squeezing parameter is directly accessible to exp
mental measure through the Debye-Waller factor, define
FDW[^^ui

2&&2^^ui&&
2. Indeed, by using the time-depende

representation of the displacement through the effec
Hamiltonian H* , i.e., ui(t)[exp(iH* t/\)ui exp(2iH* t/\),
one obtains

FDW5
L2

2
@11e4a#, ~30!

whereL[A\/2MV is the characteristic phonon length.
An important quantity is the ratio of the kinetic energy

the interacting system to that on the noninteracting one,
fined as
y

he
r

t
t

s
I.
n-

en-
r-

.

a-

ri-
as

e

e-

F u l &
kin[

K K t(s~a1s
† a2s1a2s

† a1s!L L
g0Þ0

F ^ l ut( s~a1s
† a2s1a2s

† a1s!u l &G
g050

. ~31!

For N51, F u l &
kin is just the hopping reduction factort. For

N52, F u l &
kin vanishes, except in the stateuSb&, for which,

defining u* like u in Table I, but using the renormalize
interactions, we obtain

F uSb&
kin 5

t sin~2u* !

sin~2u!
. ~32!

To measure the relation between the charge and the
non number on each site~related to the polarizability of the
medium!, Ref. 13 introduced, for the case of one electro
the ‘‘electron-phonon CF.’’ In our case it has to be defined

F jk
ep[^^njbk

†bk&& ~ j ,k51,2!. ~33!

As k can coincide or not withj , we will consider both on-
site (j 5k) and intersite (j Þk) electron-phonon CF’s. The
intersite charge CF is defined as1

4 ^^n1n2&&, and the longitu-
dinal and transverse spin CF’s are^^S1

zS2
z&& and ^^S1

2S2
1&&,

respectively. The bipolaron ‘‘mobility’’ or singlet-
superconductorCF ~Ref. 20! describes the hopping of two
particles occupying the same site, namely,

^^~c2↓c2↑c1↑
† c1↓

† !&&5^CsquCh@4g0d~b†2b!#uCsq&

3^ l uc2↓c2↑c1↑
† c1↓

† u l &

5t4^ l uc2↓c2↑c1↑
† c1↓

† u l &. ~34!

Finally, the~phonon-induced! average charge transfer is d
fined, following Ref. 16, as

F u l &
CT[

^^~n12n2!~b†1b!&& u l &

A^^~b†1b!2&& u l &

5
22dg0^ l u~n12n2!2u l &

ACh~4a!14d2g0
2^ l u~n12n2!2u l &

. ~35!

The analytical expressions of various CF’s are collected
Table II.

V. RESULTS

The ground state ofHpol for several values ofg0 was
identified by searching the minimum of the total, i.e., ele
tronic plus phononic, energy upon independent, and simu
neous optimization of the parameters that define the shap
the orbitals (G), the displaced-oscillator strength (d), and
the squeezing-effect strength (a). Given a andd, then the
optimal hopping reduction factort[exp(22d2g0

2e24a) fol-
lows. Specifically, the optimization proceeded in three ste
First, the total energy for each eigenvalue was separa
optimized with respect toG,d, anda. Second, the minima
total energy was selected with the corresponding value
the variational parameters. Third, the higher-lying eigenv
ues were recalculated withG,d, anda set by the optimiza-
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TABLE II. Analytic expressions of some correlation functions^^X&& in the indicated eigenstates.

X u1s& uSb& uT,61& uT,0& uCT&

njbj
†bj

1
4 @sinh2(2a) 1

4 sinh2(2a)1g0
2 1

4 sinh2(2a) 1
4 sinh2(2a) 1

4 sinh2(2a)
( j 51,2) 1g0

2(11d)2] 1g0
2d(21d)sin2 u 1g0

2 1g0
2 1g0

2(11d)2

njbk
†bk

1
4 @sinh2(2a) 1

4 sinh2(2a)1g0
2 1

4 sinh2(2a) 1
4 sinh2(2a) 1

4 sinh2(2a)
( j Þk51,2) 1g0

2(12d)2] 2g0
2d(22d)sin2 u 1g0

2 1g0
2 1g0

2(12d)2

1
4 n1n2 0.0 1

4 cos2 u 1
4

1
4 0.0

S1
zS2

z 0.0 2
1
4 cos2 u 1

4 2
1
4 cos2 u 0.0

S1
2S2

1 0.0 2
1
2 cos2 u 0.0 2

1
2 0.0

c2↓c2↑c1↑
† c1↓

† 0.0 1
2 t4 sin2 u 0.0 0.0 2

1
2 t4

~n12n2!~b
†2b!

A^^~b†2b2&&

22dg0

Acosh~4a!1~2dg0!2

216dg0 sin2 u

Acosh~4a!1~4dg0sinu!2

0.0 0.0 216dg0

Ac0sh~4a!1~4dg0!2
ru
i

ub

ty

wi

f

d
ns

n,

n
is

-
ed
the

by

ters
t

tion of the lowest-lying one. This procedure gave us the t
full spectrum of eigenvalues for each ground state. We w
now discuss the results forN51 ~quarter-filled case! and
N52 ~half-filled case!.

A. Quarter-filled case

The interplay between the electronic and phononic s
systems is evidenced in Fig. 1, which showsaG,d, and
exp(24a) as functions ofa, for g050.447 eV and\V
50.1 eV. The displacement parameterd grows smoothly
with a, until, at a critical lengthac'2.1 Å, it jumps discon-
tinuously up to d.1. The squeezing-related quanti
exp(24a) decreases witha up to ac , indicating that the
squeezing effect becomes stronger to counteract the gro
displacement. Ata5ac , exp(24a) recovers abruptly a
rather large value. The orbital-shape parameteraG rises al-
most linearly witha, except aroundac , where it suffers a
small, sharp increase. Therefore, forN51, the changes o
the phononic parameters have only a small effect onG.

The changes in the electron and phonon subsystems
picted in Fig. 1 are mirrored by the correlation functio
e
ll

-

ng

e-

shown in Fig. 2. We notice that the discontinuities ind and
exp(24a) at ac correspond to the localization of the polaro
as signaled by the fact that fora5ac the kinetic energy
vanishes~discontinuously! and the on-site electron-phono
correlation jumps to a very high value. The localization
driven by t5exp@22d2g0

2e24a#, which renormalizes the ef
fective hopping@see Eq.~27!#. The sudden changes observ
in Fig. 1 can be attributed to the competition between
squeezing effect, which tends to keept finite through the
factor e24a, and the polaron effect, which tends to reducet
through the factord2 in the exponent oft. As d increases
with a ~Fig. 1!, a also increases to gain electronic energy
keepingt at a nonvanishing value~see Table I!. The price to
pay is an increase of the phonon energy, Eq.~28!. The be-
havior shown fora<ac by all quantities in Fig. 2 clearly
reflects the continuous variations of the phononic parame
of Fig. 1. When the phonon energy becomes too large, aa
5ac , the system jumps to a state with a smalla and zero
hopping. However, if thebarehopping amplitude is by itself
small ~which happens for large values ofa), the loss in
electronic energy whent is reduced is not very important,a
-
FIG. 1. The Wannier-function-shape param
eter aG, the displaced-oscillator parameterd,
and the squeezing parameter exp~24a! as func-
tions of a, for N51, \V50.1 eV, and g0

50.447 eV.
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FIG. 2. Variation of the reduced kinetic en
ergy, the charge transfer, and the on-site and
tersite EP CF’s witha, for N51, \V50.1 eV,
andg050.447 eV.
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remains small, and there is no sudden change of state.
can be seen in Fig. 3, where the kinetic energy and
electron-phonon correlation functions are plotted as fu
tions of g0 for two values ofa, the large-a case showing a
continuous transition.

The localization critical length depends on the strength
the electron-phonon interaction. We can then draw a ‘‘pha

FIG. 3. The same quantities as in Fig. 2 as functions ofg0 , for
fixed length valuesa52.3 Å anda54.0 Å. The intersite EP CF
for a54.0 Å has vanishingly small values on the scale of the fi
ure.
his
e
-

f
e-

diagram’’ for the system, as shown in Fig. 4. In both pane
the region to the left~right! of each line corresponds to itin
erant~localized! states. On the left panel we have chosen
plot the bare hopping parametert, calculated atac , as a
function of g0 . We also show, on the right, thatg0

2/\V is a
good scaling variable for not too large dimer lengths, as
curves for different phonon frequencies coincide. For la
a, the curves tend to separate, enhancing the curvature s
to avoid crossing thex axis. This implies that the polaroni
transition asa increases becomes a continuous crossover
small values ofg0 .

B. Half-filled case

The half-filled case presents a more complex behav
than the quarter-filled one, due to the electron-electron in
actions that become effective in this case. We first disc
the ‘‘phase diagram,’’ Fig. 5, in order to give an overall vie
of the physics. Again there are two dominant regimes, loc
ized and nonlocalized, respectively, above and below
continuous line in Fig. 5. The physics of the system is dom
nated by the singlet bonding stateuSb& ~see Table I!, which
is always the lowest-lying energy level. However, for lar
a uSb& becomes degenerate with either the triplet statesuT&
~Fig. 6, top panel! or the charge transfer statesuCT& ~Fig. 6,
middle and bottom panels!, depending on the value ofg0 .
These degeneracies just mean that these states are no l
appropriate to describe the system, which has become a
of isolated atoms. For smallg0 , as the dimer length in-
creases, the system evolves continuously from an exten
singlet state to a localized state with one electron per s
which occurs for very large values ofa. For largeg0 a
bipolaron is formed~in the uCT& state!, which eventually
localizes in one of the sites, leaving the other one empty

While one can draw anV-independent phase diagram, th
correlation functions do depend onV. We have therefore
selected\V50.1 eV, which might be realistic in HTSC’s
and colossal magnetoresistance materials. We will pre
the results forg0

2/\V52.0, 2.2, and 2.5 eV, correspondin
to g050.447, 0.470, and 0.500 eV, respectively. The dot
horizontal lines in Fig. 5 visualize the sections of the pha
diagram that we are going to discuss in detail in Fig.
where the full eigenvalue spectrum is shown as a function

-
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FIG. 4. The ‘‘phase diagram’’ forN51 and
two values of\V. The vertical coordinate is the
bare hopping parametert, and the horizontal one
is the electron-phonon couplingg0 ~left panel!.
The electron is itinerant on the left of each curv
and localized on the right. The right panel show
thatg0

2/\V is a good scaling variable for smalla,
as the two curves coincide.
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a for the three mentioned values ofg0 . When g0
2/\V

52.0 eV, uSb& is always the ground state, with theuT& state
approaching it asymptotically for largea ~top panel of Fig.
6!. For g0

2/\V52.2 eV, we find a reentrant behavior in

FIG. 5. The ‘‘phase diagram’’ forN52. The electrons are non
localized below the full line, and localized in the region above
The broken line delimits the region where both the magnetic
and the CT are large. The horizontal lines correspond~for \V
50.1 eV) to the values ofg0

2/\V considered in the numerica
analysis.
range of values ofa in which a rearrangement of the fu
spectrum occurs. Finally, in the caseg0

2/\V52.5 eV one
crosses the region of the phase diagram in Fig. 5 bounde
the broken line, where, as we will see below, both the~anti-
ferro!magnetic CF and the charge transfer have large va
in the uSb& state. Correspondingly, one sees from the bott
panel of Fig. 6 that inside this CT-AF region the stateuCT&
becomes lower in energy thanuT&.

The changes in the electronic and phononic parame
underlying the level crossing in Fig. 6 are shown in Fig. 7.

.
F

FIG. 6. Dependence of the full eigenvalue spectrum forN52
with a, for \V50.1 eV, and the indicated values ofg0 .
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the top panelaG shows an approximately linear tren
steeper forg0

2/\V52.0 eV than forg0
2/\V52.5 eV. This

can be explained by anticipating that, in the latter case, e
when, fora,1.60 Å, the stable state isuSb&, still there is an
appreciable charge transfer, indicating that the electrons
to keep apart. Their charge-density clouds can, theref
spread out more largely around the ions~i.e.,G can decrease!
without too much increase in the Coulomb energy. In
intermediate caseg0

2/\V52.2 eV, aG jumps between the
two lines. The jumps mark the reentrant transition betwe
the localized and the nonlocalized regime, which theref
implies marked modifications in the Wannier functio
shape. The middle panel shows the corresponding beha
of the phonon displacement parameterd. We see that the
passage from the nonlocalized regime to the localized on
accompanied, as expected, by an abrupt jump fromd.0 to
d.1. Only for g0

2/\V52.5 eV is the limiting valued51
reached by two jumps connected by a range of gradua
crease, associated with the crossing of the CT-AF regio
Fig. 5. The behavior of the squeezing-related param
exp(24a), shown in the bottom panel, is also characteriz
by sudden transitions at the line boundaries. Its depende
on a, combined with the negligible value thatd takes when
uSb& is the nondegenerate ground state, implies the existe
of a threshold value forg0

2/\V below which the electrons

FIG. 7. Microscopic electronic and phononic parameters foN
52 vs a for the indicated values ofg0 . Top: the Wannier wave-
function shape parameteraG; middle: the oscillator displacemen
d; bottom: the squeezing parameter exp(24a).
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influence the phonons, but the converse is not true, in
sense that the latter are completely screened out, even th
g0 is not small. Larged values in theuSb& state can only be
found in the CT-AF region, which, however, is locate
above the threshold.

In Fig. 8 we show the three largest effective electron
interactionst* , U* , andV* ~top, middle, and bottom pane
respectively!, for the chosen values ofg0 . Besides showing
sharp discontinuities at the critical values ofa, their behavior
clarifies the nature of the CT-AF region of the phase d
gram. Indeed, we can see that this region is characterize
a significant reduction of the on-site effective Coulomb
pulsion and an increase of the intersite one, which are n
essary conditions for the stabilization of a local bipolaro
while the effective hopping is only slightly reduced. Co
comitantly, the bipolaron mobility remains finite~Fig. 9, bot-
tom panel! while charge-transfer fluctuations build up~Fig.
10, top panel!, and the intersite spin~or magnetic! correla-
tions are still important~Fig. 10, bottom panel!. We would
like to remark that the existence of this region of the pha
diagram~probably the most interesting one as far as highTc
superconductors are concerned! depends strongly on the
squeezing of the phonon states, as can be seen in the bo
panel of Fig. 7. In other words, the squeezing effect coun
acts the oscillator displacement, and succeeds in preserv

FIG. 8. The effective hopping parametert* ~top!, the on-site
interactionU* ~middle!, and the intersite interactionV* ~bottom!
as functions ofa, for N52, \V50.1 eV, and the indicated value
of g0 .
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rather itinerant character even in the presence of both ap
ciable charge transfer and magnetic correlations.

VI. CONCLUSIONS

We have presented here a variational study of a dim
where interacting electrons occupy a single orbital per
and are coupled to Holstein phonons. We have put into
dence that the variation of the dimer length and/or
strength of the electron-phonon coupling yield a stro
renormalization of the interaction constants as well as
width of the Wannier functions describing the local orbita
which establishes a link between the electronic interacti
and the phonons at a deeper level than predicted by the
dard polaron approach. The squeezing of the phonon s
has been shown to be particularly relevant, yielding sh
changes in the state of the system as the dimer lengt
varied at fixed electron-phonon coupling. The experimen
interest of this finding is that situations where the interatom
distances can be varied, even by a small amount, either
formly by an external pressure, or inhomogeneously
dimerization in a chain compound, can lead to import
changes in the system’s behavior.

Obviously one has to be careful in making predictio
about the behavior of an extended system based on cal
tions for a two-site cluster. Nevertheless, despite the fact

FIG. 9. The on-site electron-phonon CF~top!, the intersite
electron-phonon CF~middle!, and the singlet-superconductor C
~bottom! as functions ofa, for N52, \V50.1 eV, and the indi-
cated values ofg0 .
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Figs. 4 and 5 cannot be viewed asphase diagrams, we be-
lieve that they allow us to speculate on the nature of
corresponding states in a lattice. Remaining in the half-fil
case, the region where the extended bonding singlet is st
should show the antiferromagnetic order characteristic of
usual Hubbard model, with a continuous evolution toward
local-moment paramagnet as the interatomic distance is
creased. For a doped system, one could expect the two
singlets to build up a RVB-like state, or an intersite bip
laron, in the lattice. On the other hand, theuCT& state should
correspond to a charge density wave in the lattice. In c
nection to the HTSC materials, our most significant findi
is that there is a region in the parameter space where
kinetic energy, the charge transfer, and the magnetic co
lations are simultaneously large, while the phonon state
partially displaced and strongly squeezed. This result s
gests that it is perhaps not necessary to set a sharp altern
between either magnetic or charge instabilities. Based on
results, one might speculate that, in the normal state, th
materials might be in a situation corresponding to the one
the dimer, where both types of fluctuations can be simu
neously large. It is interesting to notice that the existence
this narrow region~between the dashed and continuous lin
in Fig. 5! in our model is entirely due to the squeezing of t
phonon states. Indeed, we checked that it disappears if
keeps the squeezing parametera fixed at zero, giving rise to

FIG. 10. The charge transfer~top! and the absolute value of th
magnetic CF,u^^S1

zS2
z&&u, ~bottom! vs a, for N52, \V50.1 eV,

and the indicated values ofg0 .
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a direct transition from the extended singlet ground stated
'0.0) to the charge transfer one (d51.0). We thus sugges
that the competition between magnetic and charge insta
ties in HTSC materials might be driven by electron-phon
interactions in the presence of strongly squeezed pho
states. It would be interesting to use the dimer solutions
tained here as building blocks for lattice states, with the a
of obtaining quantitative support for our qualitative analy
of the lattice case. Work along these lines is now in progre
ar
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