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Many-body band structure and Fermi surface of the Kondo lattice
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We present a theory for the single-particle excitations and Fermi surface of the Kondo lattice. Thereby we
construct an effective Hamiltonian describing the creation and propagation of single-particle-like charge fluc-
tuations on a “resonating-valence-bond background” of local singlets. The theory may be viewed as a Fer-
mionic version of linear spin-wave theory and is of comparable simplicity so that the calculations for the
strong-coupling limit can be performed analytically. We calculate the single-particle spectral function for the
“pure” Kondo lattice as well as for several extended versions: with a Coulomb repulsion between conduction
andf electrons, Coulomb repulsion between conduction electrons, and a “breathiogital. In all cases we
study the evolution of the spectrum in going from the Kondo insulator to the heavy electron metal. We
compare our results to exact diagonalization of small clusters and find remarkable agreement in nearly all cases
studied. In the metallic case theelectrons participate in the Fermi surface volume even when they are
replaced by localized Kondo spins and the number of bands, their dispersion and spectral character, and the
nontrivial (i.e., nonrigid bandlike doping dependence including a pronounced transfer of spectral weight are
reproduced at least semiquantitatively by the thep®p163-18288)02236-X]

I. INTRODUCTION

The theoretical description of the Kondo lattice remains

metric caselU;=2¢;, and the limitU;—o (1) can be re-
duced to its strong-coupling linfit

an outstanding problem of solid-state physics. This model, or
variations of it, may be viewed as the appropriate one for HSC:E €x Cl +Ck U-}-Jz S.Si, 2)
understanding such intensively investigated classes of mate- ko o P

rials as the heavy electron metai$,Kondo insulator$,and

possibly the recently discoveredransition-metal hydride-
based switchable mirror compourftisThe simplest model
that incorporates the essential physics may be written as

H= E EkangﬁVz (cI ofiotH.C)
—efiE fiT,gfi,aJFUfEi fiT,Tfi,TfiT,ifivl

t +
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D

where S (S ;) denotes the spin operator for conduction
electrons { electron$ in celli andJ=4V?/U;.

While the impurity versions of these models, which retain
only a singlef site in a sea of conduction electrons, are well
understoo®>°12 and are even amenable to exact
solutionst>** much less is known about the lattice models.
One problem that by many is believed to be at the heart of
the solution is the way in which the more or less localized
electrons, which in the strong-coupling theory are replaced
by mere spin degrees of freedom, participate in the formation
of the Fermi surface and the heavy quasiparticle bands.
Experiments on heavy Fermion compouttscomputer
simulations of Kondo lattice$!’ and theoretical
consideration$'® suggest that despite their frozen charge
degrees of freedom, thieelectrons participate in the Fermi

Here we consider the minimal model, where each unit celsurface volume as if they were uncorrelated. In other words,
contains two orbitals, one of them for the mobile conductionthe experimental Fermi surface volume corresponds to the

electrons the other for the strongly correlatecklectrons.
Then, c (f ») creates a conduction electrohélectron in

cell i, and €= 1INZ, ;e (®R~Rit, - is the Fourier transform
of the intercell hopplng integrd| ; for ¢ electrons. For later
reference we have already included a Coulomb repuldign

caseU;=U;.,=U.=0. The limiting casesv=0 or J=0,
which obviously do not allow for participation of theelec-
trons in the Fermi surface, therefore represent singular
points, so that a perturbation expansion in tsal) param-
etersV or J may not be expected to give meaningful results.

betweenf and conduction electrons in the same cell, and &Rather, the interaction betweérspins and conduction elec-
Coulomb repulsionU. between conduction electrons. The trons must be incorporated in a nonperturbative way, in a
latter two parameters are usually taken to be zero, but as withanner similar to that of the single-impurity Kondo effétt.
be seen below our formalism allows us to take them intdt is the purpose of the present manuscript to present a mini-
account without any additional effort. In the so-called sym-mum effort theory for the Kondo lattice that is based on this
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basic requirement and shows how the nominal participation € N % % ¢
of the localized electrons in the Fermi surface can be under-? § @ § k e o o o o

: A f
stood even in the complete absence of any true hybridization

We describe the system by an effective Hamiltonian for the N

fermionlike charge fluctuations on top of a strong-coupling b § \ § ) . vO P u . o
ground state, and show that this treatment leads to remark = T \ \ 1) SN

able agreement with numerical results at least on energy N

scales that are relevant to high-energy spectroscopy. Wt ‘ v w
would also like to point out that the method of calculation is © § \ @ \ § e O o @ o

similar in spirit to the cell-perturbation method developed by
Jefferson and co-workefS.A preliminary report has been

VY
L \ \ v’ w
published elsewherd. 0\ @ @ § @ O e o @' o
i’ i j j

Il. CONSTRUCTION OF THE EFFECTIVE HAMILTONIAN i’ i j j’
~As our starting point we choose the case of vanishing FiG. 1. Charge fluctuations and their propagatiteft pane)
intercell hoppingt; ; (i.e., ,=0). The lattice problem then and their representation in terms of model fermicrght pane).
reduces to single-cell problems so that we first discuss the

eigenstates of a single cell with one, two, and three eIectronthey can be expressed in terms of the wave functions de-
The two-electron ground state is a singlet with wave functiorfined above, e.g.,

B
TN =| of 1§14+ —=(cTfT+ e+ yclcT |lvad  (3) '
(we have suppressed the site index on the fermion creation
operators The ground-state wave function and energy is
then obtained by diagonalizing thex® matrix, , BB,
(Vi eo| W) = aal, f” ©)
—2e+ U J2v 0
H,= \/EV — €+ Use \/EV . 4 where the additional sign in the first equation is due to our
0 J2v U, convention for ordering the two spin directions in E&)%2

We now return to the lattice problem and consider the
For the strong-coupling model2) the problem becomes case of half-filling(i.e., two electrons/unit cell, correspond-

trivial with «=y=0, B=1, the energy of the two-electron ing to the Kondo insulator For vanishingt; ; the lattice
ground state is-(3J/4). ground state is simply the product df single-cell ground
The single- or three-electron states can be written as  states of type3) (see the state labele in Fig. 1). In the

(DN /ety 1t following, this state will be referred to as the vacuum. Then,

(W0 = (BT v,C,0) vag, switching ont; ; produces charge fluctuations in the vacuum
state: an electron can hop from cello another celj, leav-

|\Iffj)g>=(a;’LchTfHB;’Lﬂcffl)lvac), () ing the celli in a single-electron eigenstate with number
and the wave functions and energies are obtained by diag§nd the cellj in a three-electron eigenstate with number
nalizing the matrices (see statd in Fig. 1). In a further step an electron from the
threefold occupied cell can hop to another neighbpileav-
—€; \% ing cell j in a two-hole eigenstate arjdn a three-hole state
le( v O) (6) (see Fig. 1, state) or, alternatively, an electron can hop
from another neighbor into cell i, leavingi in a two-
and electron state, in a single electron state. Finally, an electron

from j can hop intai, leaving bothi andj in two-electron

[ —2e+ Ui+ 22U -V states. In this picture the intercell kinetic energy may be

Hs= -V — e+ Ugt2Uq) @) viewed of as a perturbation that has a twofold effect: the pair

_ o ) creation of charge fluctuations and the propagation of these.

For the strong-coupling limit the index takes only one |t therefore plays a completely analogous role as the trans-
value and we havg=a=0, ands=p=1. Both the single- yerse part of the Heisenberg exchange in the linear spin-
and three-electron states have zero energy in this case. \yave theory for the Heisenberg antiferromagnet, and in the

~ For later refere_ncg, we also deflne the photoemission angjjowing we want to exploit this analogy. To that end we
inverse photoemission(IPES matrix elements(here @  make the additional assumption that a cell containing two
=c,f) electrons must always be in the two-electron ground state
; =<‘I'(1Ha |‘1’82)> |‘If§)2)). This_means that after a charge fluctuation has passed

a0 vl %o ' through a given cell, the cell must return to the two-electron

31t a(2) gro_und state. In other \_Nords, under this constraint the propa-
Sa,ﬂ,a—<‘1’;¢,g|%|‘1’o )- €S) gating charge fluctuations do not leave a trace of excited
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cells—their propagation becomes coherent. Ways to relathis corresponds to the quite intuitive picture that the propa-
this constraint and take into account incoherent processeagtion of ac electron is equivalent to photoemisson in one
will be discussed below. cell, and inverse photoemission in the neighboring one. The
As a last important step, we note that the pair creatiorrespective matrix elements give the renormalization of the
process in Fig. 1 changes the energy By+E,—2E, inter-cell hopping due to intracell.e. loca) correlation ef-
(which is nothing but the conductivity gap of a single gell fects. Also, as long as the interaction between electrons con-
and that the switching of, e.g., a holelike charge fluctuatiortains only intra-cell terms the entire strong-correlation phys-
from speciesy to speciesy’ changes the energy [ﬁ(l) ics obviously is completely taken care of by the calculation
— E(l) To keep track of these changes in energy, we interof the single- celll statzes and only 3enterg via the smglle-cell
pret the differences, = E(V—E®@ as the “energy of forma- ENergiese, =E})—E¢” and e,=E)—E(Y. Thus, while
tion” of the hole species (and analogously for electronlike we are presently only using Coulomb repulsmns as intracell

fluctuations. infceractions, Hund’s rule exphange or electron-phonon cou-
We now define our restricted set of basis states: pling could also be treated in the same way. o
Having computed the matrix elements and excitation en-
i=N ergies the most obvious next step thefinsanalogy to linear
Inyvq,Novsy, .. .anN)zl_[ |‘lf(y'_”)) (10 spin-wave theory to relax the constraint enforced by,
=1 ' whereupon the Hamiltonia(lL1) is readily solved by Bogo-
with the side condition thah;=2 automatically impliesy;  llubov transformation. This gives us the energies and disper-

=0. In the following, we will diagonalize the Hamiltonian in Sion, and for the full Kondo lattice Hamiltonian we obtain

the subspace of the staté®). To that end, we represent the four bandswe have two holelike and two electronlike model

basis state&L0) in terms of “model fermions:” if a cell with Fermiong, whereas for the strong-coupling version we have
numberi is in the two-hole ground state we say it is empty; ONly two. For the latter case, E(L1) takes the form

if the cell is in thewvth single-electron state withspin o we 33

model this by the presence of a holelike fermion, created by H ff__E ( — &t —
a,T,,U; and if there are three electrons forming tlsh 2

single-cell state wittz-spin o we say that the cell is occu- 1
pied by an electronlike model fermion, created lhq&/ﬂ,(,. - 52 sigr(a)ek(bl‘;aaik;+ H.c). (13
Then, solvingH in the restricted basi$10) obviously is ko '

e%uiveﬂent to diagona”Zing the Hamiltoniaﬁeff:PHP This is read”y solved by the ansatz

where

allaak’g-l— ( €k+ b bk,o—}

+
’YK,l,(r:uk,(rbk,(r+vk,(ra_k,;a
+
H= 2 eval VO'aI,V,U'+2 z e,ubi,,u,o'bi,/./.,a

o bk Yk20= " Uk oDk Uk,gaik; (14
+.2 (tiin J#oaTVﬁH-C-) and,_ introducingA = 3J/2, we obtain the quasiparticle dis-
.0 vu persion
S 2 Toviwdl ol o E.(k)=(1/2)[ e Vet +A?], (15)
REAY shown in Fig. 2a). At half-filling, particle-hole symmetry
requires the chemical potential to be zero, so that the lower
+ 2 2 T, PRI I T (1)  of the two band¥(15) is completely filled, the upper one
bt completely empty. We note that formally E(L5) is com-
with pletely equivalent to the hybridization of a dispersionless
effectivef level in the band center with a free-electron band
G =t evoSe o with dispersione, the strength of the nominal mixing ele-
_ ment beingA. This results in the heavy, i.e., almost disper-
= —tiyjr:'y,yorcyyyg, sionless bands immediately above and below the Fermi en-
ergy in Fig. 2—the slope of these bands decreases strongly
“ti]M’j’#:ti]jszwlasc’ﬂﬂ_ (12) with decreasingl. It should be noted, however, that the re-

sulting energy gap oA doesnot arise from the formation of
Here P projects onto the subspace of states where no site i8 bonding and antibonding combination @fike and f-like
occupied by more than one fermion. This kinematic con-Bloch states, as in the hybridization model; rather, this gap
straint reflects the fact that the state of a given cell must beriginates from the energy cost to break two intracell singlets
unique. Due to the product nature of the basis st the  in the first step of a charge fluctuation. This gap, therefore, is
evaluation of the matrix elements of the intercell kinetic en-of a very similar nature to that of the energy gap in a super-
ergy (12) reduces to the calculation of matrix elements be-conductor: the minimum energy for moving an electron from
tween products of no more than two single cell states. Theaome sitei to a distant sitej (which by definition is the
matrix elements on the right-hand si@eh.s) of Eq.(12) are  single-particle gap of the systens two times the energy
therefore simply products of the-like photoemission and required to break a paiwhich may be either a Kondo sin-
inverse photoemission matrix elements for a single @ll  glet or a Cooper pair: the first pair is broken at $itbecause
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S L e e L AL B A Let us assume tha>A and letk be in the outer part of the
5 [(2) [ (b) ] Brillouin zone; i.e., we assume that we are deep in the heavy
1 ;/j C ] portion of the occupied bandee Fig. 23)]. Then, we find
’,Q L 4L i
B oor - —/—— W=1(Ale)?<1,
-1 :/—_ L ] i.e., the heavy band does have an extremely small spectral
_2 J Iy - —

weight[see the lower part of Fig.(2)]. This will turn out to
be of considerable importance, as we will demonstrate.

To proceed to the doped case, we need an expression for
the electron number operator. While at first sight this may
appear a triviality, we will now see that one thereby runs into
a rather deep-rooted problem, which reflects the special fea-
tures of the strong-correlation problem. In the vacuum state

D LN the number of electrongountingc and f electrons is 2N
0 0.5 0.5 1 and the presence of anfermion (b fermion) decreasesin-
k/m k/m creasepthe electron number by 1, so that for the full Kondo
lattice the electron number operator should be simply

0.5

Spectral weight

<o
o

FIG. 2. Quasiparticle dispersiamop panels and dispersion of
the c-like spectral weight along the lower bafibttom panelsfor + +
the 1D strong-coupling model with= 0.5, ,= — 2cosK). The den- Ne= k;(r A, v,0%, v,0 T k;(r by 1, oP .0~ 2N
sity of conduction electrons is 1 i@ and 0.8 in(b). Y o

4
- - _ +
one member of the pair is removed—the second pair is bro- —kE 21 Yo Ve~ 2N. (19
o . . . , T u=
ken at sitej because the surpuls electron interferes with the a
pair formation around this site. For the strong-coupling limit, we obtain, in an analogous
fashion,
. SINGLE-PARTICLE GREEN S FUNCTION 2
_ , . Ne= >, Ve LoV (20
To compute the full single-particle spectral function we ¢ & s ke kip,o -

need to resolve the ordinary electron creation and annihila- )
tion operators in terms of the model fermioasandb. Tak- ~ The extra—2N on the r.h.s. of Eq(19) simply cancels the
ing into account our basic assumption, namely, that a singlowest of the four bands obtained in the full Kondo lattice.

cell with two electrons can only be in its ground state, weAs Will be seen below, this is a practically dispersionless
can expand the electron annihilation operatohere «  lower Hubbard band for thé electrons, which is absent in

=c,f) the strong-coupling limit(or better: pushed to-«). The
Fermi surfaces of both models thus are completely equiva-
lent, and e.g. for the case of hole doping in one dimension
@ o= U U+ v, [TPN PP ), one would obtain a Fermi momentuky= (/2)(p.+1)
v ' IS (wherep.<1 denotes the density of conduction electjans
the lower hybridization band. This implies that we have a
Fermi surface that satisfies a nominal Luttinger theorem, i.e.,
To=2 iV NTP [+ U§|‘P§)2)><‘I’(V?ﬂ (16)  thef electrons are treated as participating in the Fermi sur-
’ ’ face. The physical origin, however, is the fact that we have a
density 1-p. of holes in the singlet background, which
forms the vacuum for our treatment. This results in a hole
'l 2) P _ _ pocket centered ofk=m with Fermi momentum £/2)(1
¥, (Y5 |—a ,and thus have the desired resolution of _ , y ‘The resulting Fermi surface thenrisminallyequiva-
the photoemission operator. Specializing to the strongtent to a Luttinger Fermi surfacicluding the f electrons
coupling limit, the annihilation operator farelectrons takes and obviously this equivalence holds true irrespectively of
the form dimensionality and Fermi surface topology. We believe that
this is the reason why the electronsseem toparticipate in
1 R the Fermi surface volume despite the fact that they are local-
Cko=—=Lsigno)a_, ——by ,]. 7 ized. At half-filling, we do not have a half-filled band of
2 ' single-particle-like mixtures ot and f electrons—such a
picture is obviously completely wrong for the strong-
Using Eq.(14) we can now resolve the annihilation operator coupling model. Rather, the half-filled ground state should
in terms of the qyasiparticles, obtajn its_, matrix el_ement, anghe viewed as an array of local singlets, where e@pin
square it to obtain the spectral weight in the lowiee., oc-  captures one conduction electron to form an immobile sin-
cupied band as glet. The system has a single particle gap because removing
an electron and reinserting it at a far-away site breaks two of
W= 2[1-2sign o) Uy o o ]- (18  the local singlets, in a completely analogous fashion as in a

[¢%

Taking matrix elements of both sides we readily find that
u,=r v,=S, Next, we can replace, e.g.,

a,v,0 a0t
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superconductor. Unlike a superconductor, the two membergature of strongly correlated electrons, namely, that they
of each pair do belong to different species, whereby the nummay have quasiparticle weights that substantially deviate
ber of one of the species, tlieclectrons, is essentially inde- from unity.

pendent of the total electron density. Removing electrons In order to cope with this problem, we try the simplest
from the system thus produces holes in the singlet backpossible solution and enforce the consistency of the ordinary
ground and leaves behind unpairédcelectrons. Unlike the electron count and spectral weight integration by adding both
actualf electrons, which are largely immobileompletely  expressiong20) and (22) for the electron number to the
immobile for the strong-coupling modethe holes are mo- Hamiltonian, each one with a separate Lagrangian multiplier:
bile, because ah electron can form a pair with @ electron

from a nearby pair, thereby leaving anotHeelectron un- H—H—uNe—ANg. 23
paired.

However, there is still a major complication: the electron
number must also equal theand w integrated photoemis-
sion weight, which is given by the expectation value of the
operator

The notion of two chemical potentials may seem awkward at
first sight, but as will be shown now, this approach results in
a remarkable consistency with the numerical results. Let us
again consider the strong-coupling limit. The spectral weight
operatorN, takes the same form as the kinetic energy, but
with the replacement,—1 or, equivalentlyt; ;—1. The
Ne=2 (cf oCrot Tl ofk o) (2)  Hamiltonian thus becomes

k,o

3J
_(Ek_)\)+—+2/.L

Inserting the expansiofl6) of thec andf electrons in terms H _EE
eff™ 2 “~ 2

of the model Fermions into this expression it is easy to see
that in generaN.# N,. For example, in the strong-coupling
limit we find, using Eq.(17)

+
ak,(rak,(r

+

3J +
(Ek_)\) + ? _2/.L bk,o-bk,o'
1
NéZEZ [(ak,oal,a—i_bl,obk,o’) 1 +
ko — 52 signo) (ex—N)(bf ,a, —+H.c), (24
k,o ’ 7
. t )
=sign(o) (b ,a_, ;+a bk ]+N. (22
Ko~k Kok so that, using again E@14), we find the dispersion
We thus arrive at the, at first sight, devastating conclusion

that counting the electrons in real space on one hand and E.(K=3[(e—N)=V(ex—N)?+A%]—u. (25
integrating the spectral weight knspace on the other gives

us different results for the electron number. On the otheiJSing the representation of the spectral operators, we obtain
hand, this is not an indication for a qualitative flaw in our the momentum distribution/spin direction of the conduction

theory, but has a very clear and simple physical origingl€ctrons:
namely, the fact that in a strongly correlated electron system
spectral weight and band structure are completely decoupled. nc:E _ ek (26)
As an example, let us consider the band structure shown in ) V(ee—N)2+AZ)"
Fig. 2(a). If one simply were to introduce a chemical poten- _
tial corresponding to the real-space electron ca@® the  Then, for|e,—\|>A we may replace the denominator on
Fermi energy would necessarily cut into the heavy part of théhe r.h.s. by—|e,—\| and obtainng=3[1—sign(e,—\)].
lower band. Let us assume that the only effect of dopingThis is simply the free-electron result. Fey—\=0, on the
were thatkg progressively cuts deeper into the heavy bandother hand, we finchi=1/2. Let us now discuss these re-
portion of the otherwise completely rigid quasiparticle bandsults. To begin with, the real-space chemical potentialcts
structure calculated above. Trivially, for the one-dimensionalike a standard chemical potential, which cuts into the heavy
chain the number of occupied momenity,.. would change band and, as discussed above, produces a Fermi surface con-
with ke as sistent with the nominal Luttinger theorem. On the other
hand, the chemical potential for the spectral weigtgives
3Nocc:4 rise to a pseudo-Fermi-surface for the conduction electrons,
K ' whereng drops sharply but continuously from a vale€l to
nearly O[see Fig. b)]. Since the integrated distribution
must equal the number of conduction electrons, it is clear
that A~ e(k2), with k¥ the Fermi momentum founhybrid-
INpEgs 2 izedconduction electrons. Carrying on the formal analogy of
IKe A= @ | Eg. (25 with a hybridization gap picturey obviously plays
F the role of an on-site energy of the effectivelevel, and
Introducing a simple chemical potential following Eg. therefore the line,=\ marks the locus itk space where the
(20) into an otherwise rigid quasiparticle band structure thusstrongly dispersive conduction band bends over into the
inevitably leads to the breakdown of the sum rule for thenearly flat heavy bandisee Fig. 2)] In other words, the
integrated photoemission weight. The breakdown of rigid-band structure of the Kondo lattice is equivalent to an effec-
band behavior and the failure of a simple electron count aréive f level, which is pinned near the frozen core Fermi
therefore a completely natural consequence of the specighnergy for conduction electrons of denspy, and which

On the other hand, the integrated photoemission weigh
Npes, Would change as
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mixes into the conduction band with a matrix element of H—H—uNg—N(NL+Nf)—A(N—Nj). (28)
strength 3/4. We note that this is very much what one _ N

would expect intuitively: in the limit>J the kinetic energy We determinex from the conditior{ N;+N{)=N, (\ thus

of the ¢ electrons is by far the dominant energy contributionhas precisely the same meaning as for the strong-coupling

of the system. This can be expressed as limit discussed aboveand \; from the requirementN;
—N¢)=0. This implies that automatically als¢N.—N()
(Hu >:f dknCe =0, therefore we have reached “specieswise” consistency
kin k€k .
between real-space electron count and integrated spectral

and obviously the minimum value compatible with the Pauliweight.
principle is obtained by the free-electron distribution for the
conduction electrons. Then, in order to recovesmall) ad- IV. COMPARISON WITH EXACT DIAGONALIZATION
ditional energy~J from the Kondo hybridization, the sys-
tem will not sacrifice much kinetic energy, i.a%(k) will
stay close to its free-electron shape. We also note that
similar shape fom®(k) was obtained previously by Shiba
and Fazekas in a variational treatment.

As can be seen from EqR6) the steepness of the drop of
n.(k) at kg depends on the pair breaking eneryyJ. For
(unphysical values J~t the drop is almost completely
smeared out, and only upon decreasintpe pseudo-Fermi-
surface becomes sharper and shafpee Ref. 2. The be- 1
havior of n,(k) found in Ref. 21 is in almost quantitative A(a_)(kyw)=—|m<‘1’o
agreement with the density matrix renormalization group re- ™
sults of Moukuri and Caroff which shows the quality of
our simple analytical calculation.

Having discussed the strong-coupling version, we now
turn to the full Kondo-lattice problem. Thereby we encounter A(j)(k,w): %Im< v,

Using the eigenenergies obtained by diagonalizing the ef-
E?ctive Hamiltonian(28) with the self-consistently deter-
mined values of the Lagrange multiplietsand ; we obtain
the band dispersions. Combining the resolutiti® of thec
and f operators in terms of the model fermions and the
eigenvectors obtained by diagonalizing E28) we can com-
pute the photoemission and inverse photoemission matrix el-
ements, so that we can obtain the photoemission spectrum

1

¥ o

ak,o’

k,o

and the inverse photoemisison spectrum

1 T
. Ay
w—(H—Eg)—i0*t ©

Ay o

. : ! W, ),

a new problem. In the strong-coupling version, we have in-
troduced the pseudo-chemical-potenkiah order to enforce
the consistency of real-space electron count and integratetiherea=c,f. Thereby| W) denotes the ground-state wave
photoemission weight; clearly we will have to do the samefunction, Eq the ground-state energy. We have carried out
thing for the full Kondo lattice. For the full model, however, this calculation for several one-dimensional versions of the
there is an additional distinction to be made because now wiondo lattice and in the following we compare them to the
havec-like andf-like spectral weight, and we need to make results of Lanczos diagonalization. For the Lanczos studies
sure that the total spectral weight is distributed between thwe used a six-unit-cell chain. To simulate longer chains, we
two species in a proper version. We will see that this comcombine spectra calculated with periodic and antiperiodic
pels us to introduce yet another Lagrange multiplier that esboundary conditiongsee Ref. 17 for a detailed discussion
sentially governs the ratio af-like to f-like weight. While there is no rigorous justification for this procedure,

To that end, let us first construct an operator that count§ispection of the numerical spectra shows that one can obtain
the total number ofa-type electronsiwhere a=c,f). To  remarkably smooth band structures in this way.
begin with, we define the expectation values of the electron TO begin with, Fig. 3 shows the Lanczos result for the

numbers in the single-cell states: single-particle spectral function for a one-dimensional chain
_ _ _ of the “pure” Kondo lattice, i.e.,U;;=U.=0, Figure 4
N0 =W Ing+n, [0, shows the result obtained from the thedsymilar Lanczos

These expectation values are readily computed from th pectra with slightly different parameters have also been ob-

single-cell wave functions, e.gn$2'°)=2a2+ﬂz. By anal- ained by Tsutsuet al.*’) To begin with, in contrast to any

. . . band theory approach, our theoretical spectrum correctly re-
ogy with Eq.(22) we may thus write down the following produces the four well-distinguishable bands in the numeri-
operator to count the total number efelectrons:

cal spectra: the practically dispersionless upper and lower
. 1) 20t Hubbard band, which have almost pureharacter, and the
No=NnZ2+ > (0" —nZ%af, a,., two hybridization bands, which resemble the strong-coupling
K,v,o .
result (15). The basic idea of our approach, namely, to
B 2Okt broaden the ionization and affinity states of a single cell into
+ > (P —nZNby by (27)  bands, thus obviously works quite well. The spectra nicely
K,u,o ) . .
_ _ show the pseudo-fermi-surface for theslectrons: while the
Using n{"”+n{")=i we find N;+N;=N,, with N, given  true Fermi momentum in the doped case iskat 5/6,
by Eqg.(19) (as it has to be On the other hand, by using the where the heavy band intersedts: (although this is not
resolutiong16) of the @ operators we can form the operators easily recognized in the theoretical spegtthere is a pro-
N;:Ekvgalvgakvg, which give the integrated spectral nounced transfer ot-like spectral weight from below to
weight for thea electrons alone. We then replace the Hamil-aboveEr atk®= /2. This means that doping shifts the drop
tonian, of the momentum distribution for the electrons(which is
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FIG. 3. Single-particle spectral function for the 1D Kondo lat-

FIG. 4. Theoretical spectrum for the sam

tice, obtained by Lanczos diagonalization of a six-unit-cell systemFig. 3.

Full lines (dashed lines correspond toc-like (f-like) spectral
weight. The vertical dashed line gives the Fermi endfgy peaks
to the right(left) of this line correspond to electron creati@nni-
hilation). Parameter values aré)=8, e;=4, V=1, e(k)=
—2 cosk).

nothing but the integrated weight belowEg) from /2 to
/3—this is preciseley the pseudo-Fermi-surface discusset
above for the strong-coupling limisee Fig. 2 The theoret-
ical spectra somewhat overestimate the weight of the heaw
f-like portions in the hybridization bands; moreover, the po-
sition of the f-like Hubbard bands is shifted to slightly too
high (binding) energies. On the other hand, the Fermiology is
reproduced quite well. It is interesting to note that qualita-
tively identical results for smaller values &f; and ¢; and
lower electron filling have been obtained by Tahvildar-Zadeh
et al?* using theD— technique—quite obviously there is
overall agreement between different numerical approaches
for quite different parameters values and fillingend our
analytical results

Figure 5 shows a more asymmetric case; more precisely
we sete;=U. As expected, the upper Hubbard band for the
f electrons is virtually absent. Interestingly, the theoretical
spectrum shows a very weak band~aBt above the Fermi
energy, the intensity of which shows a weak increase with
doping. The Lanczos spectrum for half-filling shows some
diffuse f weight roughly in this area, and even some indica-
tion of peaks in the doped case. Next, the dispersion of the
hybridization bands shows a quite pronounced asymmetry
between photoemisison and inverse photoemission, which i
nicely reproduced by the theofgee Fig. 6. The explanation
is simple: due to the reduced energy of the ptirstate

f}‘fﬂvac) the weight of this state in the single-cell ground

e parameter values as

the two remaining states therefore must decrease, so that the
overall probability of finding a electron in the ground state

is reduced(this manifests itself also in the significantly
smaller integrated weight in the photoemission spectrum

T T ' :' T " T T
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FIG. 5. Lanczos spectrum fdt;=4; all other parameter values
state for two electrong¥{?)) must increase. The weight of as in Fig. 3.
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FIG. 6. Theoretical spectrum for the parameter values as in Fig. FIG. 7. Lanczos spectrum for conduction electrons with the dis-

5.

persion(29); all other parameter values as in Fig. 3.

Since only thec electrons can hop between cells, the band-retical data. It is quite obvious that the theory remains valid
width seen in photoemission therefore will be reduced. Nextalso in this case. The relatively complicated band structure
since thec weight that disappears from the photoemissionpredicted by the rule of thumb can indeed be seen quite well
part must reappear in the inverse photoemission spectrum, i the Lanczos spectra: teshaped conduction band, with a

follows from analogous considerations that the dispersion in

the IPES part will be enhanced. As in the symmetric case,
doping causes a shift of the chemical potential into the lower
hybridization band, but there is now also some change of the
spectral character of the upper hybridization band rear

= there thec character increases, thfe character de-

creases with doping, and the theoretical spectra obviously d«

correctly reproduce this trend.

Next, we study a more complicated form of the hopping
term for conduction electrons. More precisley, we introduce

a hopping integral between second-nearest neighbors, and

have a pronounced effect we choose this to be of equal mag
nitude, but opposite sign to the nearest-neighbor hopping. Ir

other words, the conduction electrons now have the disper®

sion relation

€= —2t(cog k) —cog 2k)). (29

For the band fillings under consideration, a system of nonin-

teracting electrons thus would have four Fermi points rather [

than 2, and we want to see if our simple “rule of thumb”

deduced above for the band structure in the strong-coupling
limit continues to be valid also in this more complicated

situation. Namely, the band structure of the Kondo lattice

should be qualitatively given by the one obtained for mixing

with a dispersionles$ level, that is, pinned to the “frozen
core” Fermi energy of the nonhybridizing conduction band,
see Fig. 2. Then, Fig. 7 shows the Lanczos result for the
single-particle spectral function and Fig. 8 shows the theo7.

2 w/t

FIG. 8. Theoretical spectrum for the parameter values as in Fig.
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FIG. 9. Lanczos spectrum witl;.=4; all other parameter val-

FIG. 10. Theoretical spectrum for the parameter values as in
ues as in Fig. 3.

Fig. 9.

local maximum at=0, which crosses from inverse photo- fluctuation: transferring a electron from one cell to another
emission and back again and thereby mixes with the dispersee the process of Fig. 4,—b) does not change the energy
sionless, low-intensityf band (it should be noted that the due tof-c repulsion as long as the occupation is nearly
low-intensity f-like peaks at 5r/6 and 7 in the Lanczos constant at {which is almost certainly the case for the large
spectra for{n)=2 are actually on the photoemission gide e; we are using It is straightforward to see, however,
With doping away from half-filling the heavy band near that the opening of the gap is due to a loss kirfietic
k= develops a Fermi edge, and tiwo pseudo-Fermi- energy switching onU;. increases the energy of the state
surfaces for the electrons atr/6 and 27/3 shift as expected  (1/y2)(c!f]+f]c]) by Uy, so that the energy difference
for free, nonhybridizingc electrons. In the doped case, the relative to the other two basis states is decreased by this
flat low-intensity band that skims belok: and crosse&g amount [see the Hamilton matrix4)]. This means that
at ke=5w/6 can be identified particularly well. Also the charge fluctuations in the two-electron ground state are en-
heavy part in the inverse photoemissiorkat7/3 andw/2,  hanced, thus the kinetic energy for this state becomes more
which is predicted by the theory can be identified reasonablyegative. On the other hand, this mechanism for enhancing
well. Again, the theoretical spectra somewhat overestimatéhe charge fluctuations is operative neither for one nor for
the spectral weight of these heavy band portions, and théhree electrons in a cdléee the respective Hamilton matrices
relative position of the lower Hubbard band is not com-Egs.(6) and(7)], so that there is no gain in kinetic energy in
pletely correct. Our simple picture of the Fermiology, how- these cases. The charge fluctuation thus is accompanied by a
ever, obviously remains valid also with this more compli- net loss of kinetic energy, which in turn results in a larger
cated Fermi-surface topology. charge gap. Moreover, it follows from expressi6) for

We proceed to the case of nonvanishing,, i.e., a Cou- the c-type spectral weight of the lower hybridization band
lomb repulsion betweerf and conduction electrons. The that the distance itk space over which the weight drops is
Lanczos spectra for this case are shown in Fig. 9, the the@pproximately given byA./vg, with A, the charge gap and
retical spectra in Fig. 10. The main effectsWf; is to open v the Fermi velocity. It is thus immediately obvious that an
a wider gap at half-filling, to enhance the weight of theincrease of the charge g&for whatever reasgnwill give a
heavy bands, and to shift the Hubbard bands to higher eri‘more homogeneous”c weight along the hybridization
ergy. All in all, the total width of the spectrum is now bands. While at half-filling the agreement between Lanczos
~12=U;+ Uy rather tharlJ; as it used to be in the preced- and theoretical spectra is very good, the situation changes for
ing cases. As compared to the preceding cases, the Hubbatite doped case. The lower of the two hybridization bands is
bands, moreover, acquire an appreciable dispersion, and dogkill well described, but the weights and dispersions of the
ing causes a pronounced spectral weight transfer from thether bands, as well as the weight shift between the Hubbard
upper to the lower Hubbard band. The widening of the gap abands, are not reproduced well. Actually the Lanczos spectra
half-filling appears hard to understand at first sight, becausshow a rather strong reduction of the gap between the two
Us. by itself does not increase the energy cost for a chargeentral bands upon doping—we believe that this indicates a
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FIG. 12. Theoretical spectra for the parameters of Fig. 11; all
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rather profound doping-induced reconstruction of the elec- f

tronic structure an(_d since our theory corr_esponds more QRith V,>V,. Such a model may be relevamo describe the
less to an “expansion around the Kondo insulator” it may recently discoveredtransition-metal hydrides with switch-
not be expected to reproduce this. able mirror properties, such as ¥HiIn this case, the yttrium
The situation is actually quite similar if we introduce a 4d electrons would play the role of the conduction electrons;
Coulomb repulsion between conduction electrbi$] U, the hydrogen corresponds to thelectrons. The conditional
see Figs. 11 and 12. Again, this opens a wider quasiparticlaopping term is supposed to describe the relaxation of the
gap in the spectrum and the hybridization bands now have aerbital wave function on hydrogen as a function of electron
predominantc character over their entire width. At half- occupatior. This is manifested, e.g., by the dramatically
filling the upper hybridization band intersects and mixes withlarger radius of the free Hion as compared to the neutral
the upper Hubbard band for tHeelectrons. The upper and free H atom(for a detailed discussion see Ref. 7; for a dis-
lower Hubbard bands for the electrons remain unaffected cussion of such an “orbital Kondo effect” in the context of
and are dispersionless; the lower one has practically purguprate superconductors see Refs. 2B,2@re we are not so
f-like character. At half-filling, there is again good agree-much interested in the details of the correspondence with
ment between Lanczos and theory but for the doped case thd1s. but rather in the applicability of our theory to this
situation is again different. The Lanczos spectra show &1°del. The conditional hopping is easily incorporated by
rather dramatic collapse of the gap between the hybridizatiofFP!acing the Hamiltoniard) for two electrons in a cell by
bands; the upper hybridization band, which intersected the

upper Hubbard band at half-filling, is now at leastt®low. — 26t Uy Vv, 0
Again, this suggests a strong doping-induced reconstruction H,= \/EVl — €5+t Uge \/EVZ (30
of the entire electronic structure, and our theory naturally 0 J2V U

2 c

fails to reproduce this.
The effect ofU, at half-filling can be understood already and analogous replacements in the single- and three-electron
in the context of the strong-coupling model limit, where we subspaces. It is quite obvious that the conditional hopping
simply would have to replacA— A+ U_.. The more homo- will lead to a dramatic increase of the charge gap: in our
geneous character of the hybridization bands then follows picture, the magnitude of the gap is determined by the energy
in an analogous fashion as fok;. difference between two cells with two electrons on one hand,
As a last example, we turn to a somewhat exotic versiorand on the other, a cell with one electron and another with
of the Kondo lattice model, where the magnitude of the  three electrons. Then, the electron in the singly occupied cell
hybridization depends on the occupation of fHevel. More  can mix with the conduction band only by using ttmeuch
precisely, we replace smalle)y hybridization integraV,, which corresponds to the
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FIG. 13. Lanczos spectrum for the breathihgrbital. Param- FIG. 14. Theoretical spectra for the parameters of Fig. 13.
p

eter values ar® =¢;=2, V,=2.0, V,=0.2, €= —2c0sK).

one given by our theodyand A, the superconducting gap.
collapsedf orbital. Only the single hole in the cell occupied The latter appears to be quite small in the numerical spectra.
by three electrons can delocalize using the large hoppingve defer a detailed discussion of superconductivity to a
integral V,. A charge fluctuation thus will result in a huge separate publication, but we note that our theory does not
loss ofkinetic energyand thus open a substantial gap in theencompass superconductivity, so that the absence of this
band structurdthe effect is thus similar, but much stronger band in the theroretical spectra can be no surprise.
than theU;. discussed aboyeThis gap will be opened even Summarizing this section, our theory gives a remarkably
in the complete absence of any Coulomb repulsion orfthe good description of sometimes rather complicated and unex-
orbital, so that the breathin§ orbital can lead to strong- pected features of a wide variety of extended versions of the
correlationlike behavior even if there is no really strong Cou-Kondo lattice. Moreover, it allows us in all cases to extract
lomb repulsion at play. In fact, comparing the Lanczos andsimple physical pictures in order to understand the overall
theoretial resultgFigs. 13 and 1¥one can note first of all a trends. The main inaccuracy concerns the positions of the
good agreement between the two, and in addition a very-like Hubbard bands, but we believe that this is not a severe
substantial correlation gap in the spectrum. Also, there aréeficiency because this is an extreme high-energy feature. In
low-intensity “Hubbard bands,” the positions and spectralthe cases of extra intracell repulsions the Lanczos spectra
weights of which are reproduced quite well by the theory. Anshowed some indications of a doping-induced reconstruction
interesting feature in the Lanczos data is the exXtlike  of the electronic structure—this could not be reproduced by
band in the inverse photoemission spectrum that dispersesur theory. Also, superconductivity in the doped “breathing
from just aboveEr atk=m to ~2t aboveEg atk=0, and f model” naturally could not be described.
that is completely absent in the theory. We believe that this
band is a consequence of superconducting pairing correla- V. CONCLUSION
tions in the doped ground state. As discussed by various
researchers, the breathirffgorbital presents a very strong  In summary, we have presented a “nearly analytical”
pairing mechanisfi*for electrons in the doped material, in theory for the Kondo lattice. In simplest terms it may be
that the electrons will always pair up around oheite to ~ viewed as a Fermionic version of linear spin-wave theory, in
hybridize by the large hopping parametér. In the spectral  that we constructed an effective Hamiltonian describing the
function the presence of such pairing correlations will mani-Pair creation and propagation of Fermionic charge fluctua-
fest itself as a Bogoliubov-type “mirror image” of the top- tions on a strong-coupling resonating-valence-bond—type

most band, i.e., the replacement vaccuum. This gives us a systematic way to broaden the
ionization and affinity states of a single cell into bands, remi-
— /(;k W)+ ASC, niscent of the cell perturbation theory developed by Jefferson

~ and co-worker€® For quite a number of different versions of
where ¢, is the “nonsuperconducting dispersion” of the the Kondo-lattice model, the theoretical results for the single
lower hybridization bandwhich should correspond to the particle spectral function were found to be in overall excel-
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lent agreement with exact diagonalization of small clustersporate these singlet-triplet excitations into the present
as far as the dispersion of energy and spectral weight is cortheory?! the three components of a triplet state in é¢etian
cerened. It is a particularly encouraging fact the rather nonbe grouped into an S@) vectort;. Then, we would model
trivial evolution of the spectra with electron density in many the celli being in theath triplet state by the presence of a
cases is reproduced in detail. This gives us some confiden®osonic excitation, created by{a, In addition to a term
that despite some uncontrolled approximations the theory igescribing the on-site energies of these triplets we would
already very close to the correct picture. Given its extraordiobtain terms that describe the coupling between the Fermi-
nary simplicity (all results are obtained by an elementaryonic charge fluctuations and the Bosonic spin fluctuations.
Bogoliubov transformation we believe that the theory Their form can be inferred from rotational invariance: for
should easily be amenable to systematic improvement to d%xample,t;r- (ai‘f .0, 8 1) (with o the vector of Pauli ma-
scribe as yet neglected processes. trices describes the hopping of a hole from-j while
_The emerging picture of the Kondo insulator then is quitecreating a spin excitation in celli; the terms
different from that of a conventional band .|nsulator, and in th‘ti) . EfaiTTaj,T and (aiTTUT,T'aj,T') ) (tfxti) represent two
fact more reminiscent of a superconductor: the ground statg;¢

at half-filling corresponds to an array @verlapping local  \yith 5 hole. The actual prefactors of these terms can be com-
singlets, where each Kondo spin forms a bound state withtaq in an entirely analogous fashion as the hopping inte-
one conduction electron. The system has a single-particlg g for the charge fluctuations themselves, and these terms
gap for precisely the same reason as in a superconductqtyn he incorporated into the formalism by using standard
removing a conduction electron from some sitand rein-  Green's-function techniques. Details will be  reported
serting it at a remote sifebreaks twof -c pairs; thus there is  g|sewherd? Since already the simplest version of the theory
an increase in energy of twice the binding energy of a S'ngl%pparently gives a quite good description of the physics, one
pair. . . ) _may expect that such an extension is actually “convergent”
A key ingredient for the construction of the effective g gives a good description of the spin dynamics as well.
Hamiltonian was the existence of a unique RVB-type "sin-  Ag 3 final remark, we note that the “vaccum” in the case
glet background,” which sets the stage for the pair creation,f the simple Kondo lattice was a unique product of singlet
and propagation of the fermionic charge fluctuations. Theiates, and that the charge fluctuations did have precisely the
basic idea of the present work, therefore, is not restricted t?]uantum numbers of electrons or holes. For systems with a
the Kondo lattice. Rather, once such an “RVB vacuum” has|grger unit cell, however, one can envisage situations where

been identified, an essentially analogous construction can ks is very different: one example would be a twofold orbit-
carried ogt also for othgr strongly correlated systems. Th%”y degeneratef-level mixing with a nondegenerate
most obvious example is the doped ladder, where the  orita33 For one electron/orbital the number of electrons/
“rung singlet RVB state” may replace the product of single- it cell then would be 3, and th@&ermionio charge fluc-

cell states, and for which a very similar construction canyations would correspond to cells with an even number of
indeed been carried otf. o electrons. Thereby Hund'’s rule coupling between the degen-
. Perhaps the most important approximation we have madgraie f orbitals would favor high-spin states, so that one
is the neglect of any excited states of two electrons in a Ce"might actually obtain “high-spin quasiparticles.” From the
This means that we have negelected single-cell states Wheé%od success for the simple Kondo lattice one might expect

one conduction electron and ofieelectron couple to a trip-  {hat the present formalism would continue to give a good
let. Such states do in fact have a very small excitation energyescription even in this more complicated situation.

«V2/U. As we have already mentioned, this restriction for-
bids the propagating charge fluctuations to “radiate off”
tripletlike spin excitations and thus makes their propagation
completely coherent. The good agreement with the numerics,

erent ways for a spin excitation to exchange its position
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