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Many-body band structure and Fermi surface of the Kondo lattice
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We present a theory for the single-particle excitations and Fermi surface of the Kondo lattice. Thereby we
construct an effective Hamiltonian describing the creation and propagation of single-particle-like charge fluc-
tuations on a ‘‘resonating-valence-bond background’’ of local singlets. The theory may be viewed as a Fer-
mionic version of linear spin-wave theory and is of comparable simplicity so that the calculations for the
strong-coupling limit can be performed analytically. We calculate the single-particle spectral function for the
‘‘pure’’ Kondo lattice as well as for several extended versions: with a Coulomb repulsion between conduction
and f electrons, Coulomb repulsion between conduction electrons, and a ‘‘breathing’’f orbital. In all cases we
study the evolution of the spectrum in going from the Kondo insulator to the heavy electron metal. We
compare our results to exact diagonalization of small clusters and find remarkable agreement in nearly all cases
studied. In the metallic case thef electrons participate in the Fermi surface volume even when they are
replaced by localized Kondo spins and the number of bands, their dispersion and spectral character, and the
nontrivial ~i.e., nonrigid bandlike! doping dependence including a pronounced transfer of spectral weight are
reproduced at least semiquantitatively by the theory.@S0163-1829~98!02236-X#
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I. INTRODUCTION

The theoretical description of the Kondo lattice rema
an outstanding problem of solid-state physics. This mode
variations of it, may be viewed as the appropriate one
understanding such intensively investigated classes of m
rials as the heavy electron metals,1–3 Kondo insulators,4 and
possibly the recently discovered5 transition-metal hydride-
based switchable mirror compounds.6,7 The simplest mode
that incorporates the essential physics may be written as

H5(
k,s

ek ck,s
† ck,s1V(

i ,s
~ci ,s

† f i ,s1H.c.!

2e f(
i ,s

f i ,s
† f i ,s1U f(

i
f i ,↑

† f i ,↑ f i ,↓
† f i ,↓

1U f c (
i ,s,s8

f i ,s
† f i ,sci ,s8

† ci ,s81Uc(
i

ci ,↑
† ci ,↑ci ,↓

† ci ,↓ .

~1!

Here we consider the minimal model, where each unit c
contains two orbitals, one of them for the mobile conduct
electrons the other for the strongly correlatedf electrons.
Then,ci ,s

† ( f i ,s
† ) creates a conduction electron (f electron! in

cell i , andek51/N( i , je
ik•(Rj 2Ri )t i , j is the Fourier transform

of the intercell hopping integralt i , j for c electrons. For later
reference we have already included a Coulomb repulsionU f c
betweenf and conduction electrons in the same cell, an
Coulomb repulsionUc between conduction electrons. Th
latter two parameters are usually taken to be zero, but as
be seen below our formalism allows us to take them i
account without any additional effort. In the so-called sy
PRB 580163-1829/98/58~12!/7599~13!/$15.00
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metric case,U f52e f , and the limitU f→` ~1! can be re-
duced to its strong-coupling limit8

Hsc5(
k,s

ek ck,s
† ck,s1J(

i
Si ,c•Si , f , ~2!

where Si ,c(Si , f) denotes the spin operator for conductio
electrons (f electrons! in cell i andJ54V2/U f .

While the impurity versions of these models, which reta
only a singlef site in a sea of conduction electrons, are w
understood2,3,9–12 and are even amenable to exa
solutions,13,14 much less is known about the lattice mode
One problem that by many is believed to be at the hear
the solution is the way in which the more or less localizedf
electrons, which in the strong-coupling theory are replac
by mere spin degrees of freedom, participate in the forma
of the Fermi surface and the heavy quasiparticle ban
Experiments on heavy Fermion compounds,15 computer
simulations of Kondo lattices,16,17 and theoretical
considerations18,19 suggest that despite their frozen char
degrees of freedom, thef electrons participate in the Ferm
surface volume as if they were uncorrelated. In other wor
the experimental Fermi surface volume corresponds to
caseU f5U f c5Uc50. The limiting casesV50 or J50,
which obviously do not allow for participation of thef elec-
trons in the Fermi surface, therefore represent singu
points, so that a perturbation expansion in the~small! param-
etersV or J may not be expected to give meaningful resul
Rather, the interaction betweenf spins and conduction elec
trons must be incorporated in a nonperturbative way, in
manner similar to that of the single-impurity Kondo effect14

It is the purpose of the present manuscript to present a m
mum effort theory for the Kondo lattice that is based on t
7599 © 1998 The American Physical Society
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basic requirement and shows how the nominal participa
of the localized electrons in the Fermi surface can be un
stood even in the complete absence of any true hybridizat
We describe the system by an effective Hamiltonian for
fermionlike charge fluctuations on top of a strong-coupli
ground state, and show that this treatment leads to rem
able agreement with numerical results at least on ene
scales that are relevant to high-energy spectroscopy.
would also like to point out that the method of calculation
similar in spirit to the cell-perturbation method developed
Jefferson and co-workers.20 A preliminary report has been
published elsewhere.21

II. CONSTRUCTION OF THE EFFECTIVE HAMILTONIAN

As our starting point we choose the case of vanish
intercell hoppingt i , j ~i.e., ek50). The lattice problem then
reduces to single-cell problems so that we first discuss
eigenstates of a single cell with one, two, and three electr
The two-electron ground state is a singlet with wave funct

uC0
~2!&5Fa f ↑

†f ↓
†1

b

A2
~c↑

†f ↓
†1 f ↑

†c↓
†!1gc↑

†c↓
†G uvac& ~3!

~we have suppressed the site index on the fermion crea
operators!. The ground-state wave function and energy
then obtained by diagonalizing the 333 matrix,

H25S 22e f1U f A2V 0

A2V 2e f1U f c A2V

0 A2V Uc

D . ~4!

For the strong-coupling model~2! the problem become
trivial with a5g50, b51, the energy of the two-electro
ground state is2(3J/4).

The single- or three-electron states can be written as

uCn,s
~1! &5~bn8 f s

†1gn8cs
† !uvac&,

uCm,s
~3! &5~am9 cs

† f ↑
†f ↓

†1bm9 c↑
†c↓

†f s
† !uvac&, ~5!

and the wave functions and energies are obtained by di
nalizing the matrices

H15S 2e f V

V 0 D ~6!

and

H35S 22e f1U f12U f c 2V

2V 2e f1Uc12U f c
D . ~7!

For the strong-coupling limit the indexn takes only one
value and we haveg5a50, andb5b51. Both the single-
and three-electron states have zero energy in this case.

For later reference, we also define the photoemission
inverse photoemission~IPES! matrix elements~here a
5c, f )

r a,n,s5^Cn,s̄
~1! uasuC0

~2!&,

sa,m,s5^Cm,s
~3! uas

† uC0
~2!&. ~8!
n
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They can be expressed in terms of the wave functions
fined above, e.g.,

^Cn,s̄
~1! ucsuC0

~2!&5sign~s!S ggn81
bbn8

A2
D ,

^Cm,s
~3! ucs

† uC0
~2!&5aam9 2

bbm9

A2
, ~9!

where the additional sign in the first equation is due to o
convention for ordering the two spin directions in Eq.~3!22.

We now return to the lattice problem and consider t
case of half-filling~i.e., two electrons/unit cell, correspond
ing to the Kondo insulator!. For vanishingt i , j the lattice
ground state is simply the product ofN single-cell ground
states of type~3! ~see the state labeleda in Fig. 1!. In the
following, this state will be referred to as the vacuum. The
switching ont i , j produces charge fluctuations in the vacuu
state: an electron can hop from celli to another cellj , leav-
ing the celli in a single-electron eigenstate with numbern,
and the cellj in a three-electron eigenstate with numberm
~see stateb in Fig. 1!. In a further step an electron from th
threefold occupied cellj can hop to another neighborj leav-
ing cell j in a two-hole eigenstate andj in a three-hole state
~see Fig. 1, statec) or, alternatively, an electron can ho
from another neighbori into cell i , leaving i in a two-
electron state,i in a single electron state. Finally, an electro
from j can hop intoi , leaving bothi and j in two-electron
states. In this picture the intercell kinetic energy may
viewed of as a perturbation that has a twofold effect: the p
creation of charge fluctuations and the propagation of the
It therefore plays a completely analogous role as the tra
verse part of the Heisenberg exchange in the linear s
wave theory for the Heisenberg antiferromagnet, and in
following we want to exploit this analogy. To that end w
make the additional assumption that a cell containing t
electrons must always be in the two-electron ground s
uC0

(2)&. This means that after a charge fluctuation has pas
through a given cell, the cell must return to the two-electr
ground state. In other words, under this constraint the pro
gating charge fluctuations do not leave a trace of exc

FIG. 1. Charge fluctuations and their propagation~left panel!
and their representation in terms of model fermions~right panel!.
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cells—their propagation becomes coherent. Ways to re
this constraint and take into account incoherent proce
will be discussed below.

As a last important step, we note that the pair creat
process in Fig. 1 changes the energy byEn1Em22E0
~which is nothing but the conductivity gap of a single cel!,
and that the switching of, e.g., a holelike charge fluctuat
from speciesn to speciesn8 changes the energy byEn8

(1)

2En
(1) . To keep track of these changes in energy, we in

pret the differenceen5En
(1)2E0

(2) as the ‘‘energy of forma-
tion’’ of the hole speciesn ~and analogously for electronlik
fluctuations!.

We now define our restricted set of basis states:

un1n1 ,n2n2 , . . .nNnN&5)
i 51

i 5N

uCn i

~ni !& ~10!

with the side condition thatni52 automatically impliesn i
50. In the following, we will diagonalize the Hamiltonian i
the subspace of the states~10!. To that end, we represent th
basis states~10! in terms of ‘‘model fermions:’’ if a cell with
numberi is in the two-hole ground state we say it is emp
if the cell is in thenth single-electron state withz-spins we
model this by the presence of a holelike fermion, created
ai ,n,s

† ; and if there are three electrons forming themth
single-cell state withz-spin s we say that the cell is occu
pied by an electronlike model fermion, created bybi ,m,s

† .
Then, solvingH in the restricted basis~10! obviously is
equivalent to diagonalizing the HamiltonianHe f f5PHP
where

H5(
i ,s

(
n

enai ,n,s
† ai ,n,s1(

i ,s
(
m

embi ,m,s
† bi ,m,s

1 (
i , j ,s

(
n,m

~ t i ,n, j ,mbj ,m,s
† ai ,n,s̄

†
1H.c.!

1 (
i , j ,s

(
n,n8

t̃ i ,n, j ,n8aj ,n,s
† ai ,n8,s

1 (
i , j ,s

(
m,m8

t̃̃ i ,m, j ,m8bj ,m,s
† bi ,m8,s ~11!

with

t i ,n, j ,m5t i , j r c,n,ssc,m,s ,

t̃ i ,n, j ,n52t i , j r c,n8,s
* r c,n,s ,

t̃̃ i ,m, j ,m5t i , j sc,m8,s
* sc,m,s . ~12!

HereP projects onto the subspace of states where no si
occupied by more than one fermion. This kinematic co
straint reflects the fact that the state of a given cell mus
unique. Due to the product nature of the basis states~10!, the
evaluation of the matrix elements of the intercell kinetic e
ergy ~12! reduces to the calculation of matrix elements b
tween products of no more than two single cell states. T
matrix elements on the right-hand side~r.h.s.! of Eq. ~12! are
therefore simply products of thec-like photoemission and
inverse photoemission matrix elements for a single cell~8!;
x
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n

n
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this corresponds to the quite intuitive picture that the pro
gation of ac electron is equivalent to photoemisson in o
cell, and inverse photoemission in the neighboring one. T
respective matrix elements give the renormalization of
inter-cell hopping due to intracell~i.e. local! correlation ef-
fects. Also, as long as the interaction between electrons c
tains only intra-cell terms the entire strong-correlation ph
ics obviously is completely taken care of by the calculati
of the single-cell states, and only enters via the single-
energiesen5En

(1)2E0
(2) and em5Em

(3)2E0
(2) . Thus, while

we are presently only using Coulomb repulsions as intra
interactions, Hund’s rule exchange or electron-phonon c
pling could also be treated in the same way.

Having computed the matrix elements and excitation
ergies the most obvious next step then is~in analogy to linear
spin-wave theory! to relax the constraint enforced byP,
whereupon the Hamiltonian~11! is readily solved by Bogo-
liubov transformation. This gives us the energies and disp
sion, and for the full Kondo lattice Hamiltonian we obta
four bands~we have two holelike and two electronlike mod
Fermions!, whereas for the strong-coupling version we ha
only two. For the latter case, Eq.~11! takes the form

He f f5
1

2 (
k,s

F S 2ek1
3J

2 Dak,s
† ak,s1S ek1

3J

2 Dbk,s
† bk,sG

2
1

2(k,s
sign~s!ek~bk,s

† a
2k,s̄
†

1H.c.!. ~13!

This is readily solved by the ansatz

gk,1,s5uk,sbk,s1vk,sa
2k,s̄
† ,

gk,2,s52vk,sbk,s1uk,sa
2k,s̄
†

~14!

and, introducingD53J/2, we obtain the quasiparticle dis
persion

E6~k!5~1/2!@ek6Aek
21D2#, ~15!

shown in Fig. 2~a!. At half-filling, particle-hole symmetry
requires the chemical potential to be zero, so that the lo
of the two bands~15! is completely filled, the upper one
completely empty. We note that formally Eq.~15! is com-
pletely equivalent to the hybridization of a dispersionle
effective f level in the band center with a free-electron ba
with dispersionek , the strength of the nominal mixing ele
ment beingD. This results in the heavy, i.e., almost dispe
sionless bands immediately above and below the Fermi
ergy in Fig. 2—the slope of these bands decreases stro
with decreasingJ. It should be noted, however, that the r
sulting energy gap ofD doesnot arise from the formation of
a bonding and antibonding combination ofc-like and f -like
Bloch states, as in the hybridization model; rather, this g
originates from the energy cost to break two intracell singl
in the first step of a charge fluctuation. This gap, therefore
of a very similar nature to that of the energy gap in a sup
conductor: the minimum energy for moving an electron fro
some sitei to a distant sitej ~which by definition is the
single-particle gap of the system! is two times the energy
required to break a pair~which may be either a Kondo sin
glet or a Cooper pair: the first pair is broken at sitei , because
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one member of the pair is removed—the second pair is b
ken at sitej because the surpuls electron interferes with
pair formation around this site.

III. SINGLE-PARTICLE GREEN S FUNCTION

To compute the full single-particle spectral function w
need to resolve the ordinary electron creation and annih
tion operators in terms of the model fermions,a andb. Tak-
ing into account our basic assumption, namely, that a sin
cell with two electrons can only be in its ground state,
can expand the electron annihilation operator~where a
5c, f )

a i ,s5(
n

unuCn,s̄
~1!

&^C0
~2!u1(

m
vmuC0

~2!&^Cm,s
~3! u,

a i ,s
† 5(

n
vm* uCm,s

~3! &^C0
~2!u1(

n
un* uC0

~2!&^Cn,s̄
~1! u ~16!

Taking matrix elements of both sides we readily find th
un5r a,n,s , vm5sa,m,s* . Next, we can replace, e.g
uCn,s̄

(1)
&^C0

(2)u→ai ,n,s̄
† and thus have the desired resolution

the photoemission operator. Specializing to the stro
coupling limit, the annihilation operator forc electrons takes
the form

ck,s5
1

A2
@sign~s!a

2k,s̄
†

2bk,s#. ~17!

Using Eq.~14! we can now resolve the annihilation operat
in terms of the quasiparticles, obtain its matrix element, a
square it to obtain the spectral weight in the lower~i.e., oc-
cupied! band as

W5 1
2 @122sign~s!uk,svk,s#. ~18!

FIG. 2. Quasiparticle dispersion~top panels! and dispersion of
thec-like spectral weight along the lower band~bottom panels! for
the 1D strong-coupling model withJ50.5,ek522cos(k). The den-
sity of conduction electrons is 1 in~a! and 0.8 in~b!.
o-
e

a-

le

t
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Let us assume thatek@D and letk be in the outer part of the
Brillouin zone; i.e., we assume that we are deep in the he
portion of the occupied band@see Fig. 2~a!#. Then, we find

W5 1
4 ~D/ek!

2!1,

i.e., the heavy band does have an extremely small spe
weight @see the lower part of Fig. 2~a!#. This will turn out to
be of considerable importance, as we will demonstrate.

To proceed to the doped case, we need an expressio
the electron number operator. While at first sight this m
appear a triviality, we will now see that one thereby runs in
a rather deep-rooted problem, which reflects the special
tures of the strong-correlation problem. In the vacuum st
the number of electrons~countingc and f electrons! is 2N
and the presence of ana-fermion (b fermion! decreases~in-
creases! the electron number by 1, so that for the full Kond
lattice the electron number operator should be simply

Ne5 (
k,n,s

ak,n,sak,n,s
† 1 (

k,m,s
bk,m,s

† bk,m,s22N

5(
k,s

(
m51

4

gk,m,s
† gk,m,s22N. ~19!

For the strong-coupling limit, we obtain, in an analogo
fashion,

Ne5(
k,s

(
m51

2

gk,m,s
† gk,m,s . ~20!

The extra22N on the r.h.s. of Eq.~19! simply cancels the
lowest of the four bands obtained in the full Kondo lattic
As will be seen below, this is a practically dispersionle
lower Hubbard band for thef electrons, which is absent in
the strong-coupling limit~or better: pushed to2`). The
Fermi surfaces of both models thus are completely equ
lent, and e.g. for the case of hole doping in one dimens
one would obtain a Fermi momentumkF5(p/2)(rc11)
~whererc,1 denotes the density of conduction electrons! in
the lower hybridization band. This implies that we have
Fermi surface that satisfies a nominal Luttinger theorem,
the f electrons are treated as participating in the Fermi s
face. The physical origin, however, is the fact that we hav
density 12rc of holes in the singlet background, whic
forms the vacuum for our treatment. This results in a h
pocket centered onk5p with Fermi momentum (p/2)(1
2rc). The resulting Fermi surface then isnominallyequiva-
lent to a Luttinger Fermi surfaceincluding the f electrons
and obviously this equivalence holds true irrespectively
dimensionality and Fermi surface topology. We believe t
this is the reason why thef electronsseem toparticipate in
the Fermi surface volume despite the fact that they are lo
ized. At half-filling, we do not have a half-filled band o
single-particle-like mixtures ofc and f electrons—such a
picture is obviously completely wrong for the stron
coupling model. Rather, the half-filled ground state sho
be viewed as an array of local singlets, where eachf spin
captures one conduction electron to form an immobile s
glet. The system has a single particle gap because remo
an electron and reinserting it at a far-away site breaks two
the local singlets, in a completely analogous fashion as
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superconductor. Unlike a superconductor, the two memb
of each pair do belong to different species, whereby the n
ber of one of the species, thef electrons, is essentially inde
pendent of the total electron density. Removing electr
from the system thus produces holes in the singlet ba
ground and leaves behind unpairedf electrons. Unlike the
actual f electrons, which are largely immobile~completely
immobile for the strong-coupling model! the holes are mo-
bile, because anf electron can form a pair with ac electron
from a nearby pair, thereby leaving anotherf electron un-
paired.

However, there is still a major complication: the electr
number must also equal thek and v integrated photoemis
sion weight, which is given by the expectation value of t
operator

Ne85(
k,s

~ck,s
† ck,s1 f k,s

† f k,s!. ~21!

Inserting the expansion~16! of thec and f electrons in terms
of the model Fermions into this expression it is easy to
that in generalNeÞNe . For example, in the strong-couplin
limit we find, using Eq.~17!

Ne85
1

2 (
k,s

@~ak,sak,s
† 1bk,s

† bk,s!

2sign~s!~bk,s
† a

2k,s̄
†

1a2k,s̄bk,s!#1N. ~22!

We thus arrive at the, at first sight, devastating conclus
that counting the electrons in real space on one hand
integrating the spectral weight ink space on the other give
us different results for the electron number. On the ot
hand, this is not an indication for a qualitative flaw in o
theory, but has a very clear and simple physical orig
namely, the fact that in a strongly correlated electron sys
spectral weight and band structure are completely decoup
As an example, let us consider the band structure show
Fig. 2~a!. If one simply were to introduce a chemical pote
tial corresponding to the real-space electron count~20! the
Fermi energy would necessarily cut into the heavy part of
lower band. Let us assume that the only effect of dop
were thatkF progressively cuts deeper into the heavy ba
portion of the otherwise completely rigid quasiparticle ba
structure calculated above. Trivially, for the one-dimensio
chain the number of occupied momenta,Nocc would change
with kF as

]Nocc

]kF
54.

On the other hand, the integrated photoemission wei
NPES, would change as

]NPES

]kF
54W5S D

ekF
D 2

.

Introducing a simple chemical potential following E
~20! into an otherwise rigid quasiparticle band structure th
inevitably leads to the breakdown of the sum rule for t
integrated photoemission weight. The breakdown of rig
band behavior and the failure of a simple electron count
therefore a completely natural consequence of the spe
rs
-

s
k-

e

n
nd
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,
m
d.
in
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g
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feature of strongly correlated electrons, namely, that th
may have quasiparticle weights that substantially dev
from unity.

In order to cope with this problem, we try the simple
possible solution and enforce the consistency of the ordin
electron count and spectral weight integration by adding b
expressions~20! and ~22! for the electron number to the
Hamiltonian, each one with a separate Lagrangian multipl

H→H2mNe2lNe8 . ~23!

The notion of two chemical potentials may seem awkward
first sight, but as will be shown now, this approach results
a remarkable consistency with the numerical results. Le
again consider the strong-coupling limit. The spectral wei
operatorNe takes the same form as the kinetic energy, b
with the replacementek→1 or, equivalently,t i , j→1. The
Hamiltonian thus becomes

He f f5
1

2 (
k,s

F2~ek2l!1
3J

2
12m Gak,s

† ak,s

1F ~ek2l!1
3J

2
22mGbk,s

† bk,s

2
1

2 (
k,s

sign~s!~ek2l!~bk,s
† ak,s̄

†
1H.c.!, ~24!

so that, using again Eq.~14!, we find the dispersion

E6~k!5 1
2 @~ek2l!6A~ek2l!21D2#2m. ~25!

Using the representation of the spectral operators, we ob
the momentum distribution/spin direction of the conducti
electrons:

nk
c5

1

2S 12
ek2l

A~ek2l!21D2D . ~26!

Then, for uek2lu@D we may replace the denominator o
the r.h.s. by2uek2lu and obtainnk

c5 1
2 @12sign(ek2l)#.

This is simply the free-electron result. Forek2l50, on the
other hand, we findnk

c51/2. Let us now discuss these re
sults. To begin with, the real-space chemical potentialm acts
like a standard chemical potential, which cuts into the hea
band and, as discussed above, produces a Fermi surface
sistent with the nominal Luttinger theorem. On the oth
hand, the chemical potential for the spectral weightl gives
rise to a pseudo-Fermi-surface for the conduction electro
wherenk

c drops sharply but continuously from a value'1 to
nearly 0 @see Fig. 2~b!#. Since the integratedc distribution
must equal the number of conduction electrons, it is cl
that l'e(kF

0), with kF
0 the Fermi momentum forunhybrid-

izedconduction electrons. Carrying on the formal analogy
Eq. ~25! with a hybridization gap picture,l obviously plays
the role of an on-site energy of the effectivef level, and
therefore the lineek5l marks the locus ink space where the
strongly dispersive conduction band bends over into
nearly flat heavy band@see Fig. 2~b!# In other words, the
band structure of the Kondo lattice is equivalent to an eff
tive f level, which is pinned near the frozen core Fer
energy for conduction electrons of densityrc , and which
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mixes into the conduction band with a matrix element
strength 3J/4. We note that this is very much what on
would expect intuitively: in the limitt@J the kinetic energy
of thec electrons is by far the dominant energy contributi
of the system. This can be expressed as

^Hkin&5E dknk
cek

and obviously the minimum value compatible with the Pa
principle is obtained by the free-electron distribution for t
conduction electrons. Then, in order to recover a~small! ad-
ditional energy;J from the Kondo hybridization, the sys
tem will not sacrifice much kinetic energy, i.e.,nc(k) will
stay close to its free-electron shape. We also note th
similar shape fornc(k) was obtained previously by Shib
and Fazekas23 in a variational treatment.

As can be seen from Eq.~26! the steepness of the drop o
nc(k) at kF

0 depends on the pair breaking energyD}J. For
~unphysical! values J;t the drop is almost completel
smeared out, and only upon decreasingJ the pseudo-Fermi-
surface becomes sharper and sharper~see Ref. 21!. The be-
havior of nc(k) found in Ref. 21 is in almost quantitativ
agreement with the density matrix renormalization group
sults of Moukuri and Caron,16 which shows the quality of
our simple analytical calculation.

Having discussed the strong-coupling version, we n
turn to the full Kondo-lattice problem. Thereby we encoun
a new problem. In the strong-coupling version, we have
troduced the pseudo-chemical-potentiall in order to enforce
the consistency of real-space electron count and integr
photoemission weight; clearly we will have to do the sa
thing for the full Kondo lattice. For the full model, howeve
there is an additional distinction to be made because now
havec-like and f -like spectral weight, and we need to ma
sure that the total spectral weight is distributed between
two species in a proper version. We will see that this co
pels us to introduce yet another Lagrange multiplier that
sentially governs the ratio ofc-like to f -like weight.

To that end, let us first construct an operator that cou
the total number ofa-type electrons~where a5c, f ). To
begin with, we define the expectation values of the elect
numbers in the single-cell states:

na
~ i ,n!5^Cn,s

~ i ! una,↑1na,↓uCn,s
~ i ! &.

These expectation values are readily computed from
single-cell wave functions, e.g.,nf

(2,0)52a21b2. By anal-
ogy with Eq. ~22! we may thus write down the following
operator to count the total number ofa electrons:

Na5Nna
~2,0!1 (

k,n,s
~na

~1,n!2na
~2,0!!ak,n,s

† ak,n,s

1 (
k,m,s

~na
~3,m!2na

~2,0!!bk,m,s
† bk,m,s . ~27!

Using nf
( i ,n)1nc

( i ,n)5 i we find Nc1Nf5Ne , with Ne given
by Eq.~19! ~as it has to be!. On the other hand, by using th
resolutions~16! of thea operators we can form the operato
Na85(k,sak,s

† ak,s , which give the integrated spectra
weight for thea electrons alone. We then replace the Ham
tonian,
f

i

a

-

r
-

ed
e

e

e
-

s-

ts

n

e

-

H→H2mNe2l~Nc81Nf8!2l f~Nf2Nf8!. ~28!

We determinel from the condition̂ Nc81Nf8&5Ne (l thus
has precisely the same meaning as for the strong-coup
limit discussed above! and l f from the requirement̂ Nf

2Nf8&50. This implies that automatically alsôNc2Nc8&
50, therefore we have reached ‘‘specieswise’’ consiste
between real-space electron count and integrated spe
weight.

IV. COMPARISON WITH EXACT DIAGONALIZATION

Using the eigenenergies obtained by diagonalizing the
fective Hamiltonian ~28! with the self-consistently deter
mined values of the Lagrange multipliersl andl f we obtain
the band dispersions. Combining the resolutions~16! of thec
and f operators in terms of the model fermions and t
eigenvectors obtained by diagonalizing Eq.~28! we can com-
pute the photoemission and inverse photoemission matrix
ements, so that we can obtain the photoemission spectru

Aa
~2 !~k,v!5

1

p
ImK C0Uak,s

† 1

v1~H2E0!2 i01
ak,sUC0L

and the inverse photoemisison spectrum

Aa
~1 !~k,v!5

1

p
ImK C0Uak,s

1

v2~H2E0!2 i01
ak,s

† UC0L ,

wherea5c, f . TherebyuC0& denotes the ground-state wav
function, E0 the ground-state energy. We have carried o
this calculation for several one-dimensional versions of
Kondo lattice and in the following we compare them to t
results of Lanczos diagonalization. For the Lanczos stud
we used a six-unit-cell chain. To simulate longer chains,
combine spectra calculated with periodic and antiperio
boundary conditions~see Ref. 17 for a detailed discussion!.
While there is no rigorous justification for this procedur
inspection of the numerical spectra shows that one can ob
remarkably smooth band structures in this way.

To begin with, Fig. 3 shows the Lanczos result for t
single-particle spectral function for a one-dimensional ch
of the ‘‘pure’’ Kondo lattice, i.e.,U f c5Uc50, Figure 4
shows the result obtained from the theory~similar Lanczos
spectra with slightly different parameters have also been
tained by Tsutsuiet al.17! To begin with, in contrast to any
band theory approach, our theoretical spectrum correctly
produces the four well-distinguishable bands in the num
cal spectra: the practically dispersionless upper and lo
Hubbard band, which have almost puref character, and the
two hybridization bands, which resemble the strong-coupl
result ~15!. The basic idea of our approach, namely,
broaden the ionization and affinity states of a single cell i
bands, thus obviously works quite well. The spectra nic
show the pseudo-fermi-surface for thec electrons: while the
true Fermi momentum in the doped case is atkF55p/6,
where the heavy band intersectsEF ~although this is not
easily recognized in the theoretical spectra!, there is a pro-
nounced transfer ofc-like spectral weight from below to
aboveEF at kF

05p/2. This means that doping shifts the dro
of the momentum distribution for thec electrons~which is
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nothing but the integratedc weight belowEF) from p/2 to
p/3—this is preciseley the pseudo-Fermi-surface discus
above for the strong-coupling limit~see Fig. 2!. The theoret-
ical spectra somewhat overestimate the weight of the he
f -like portions in the hybridization bands; moreover, the p
sition of the f -like Hubbard bands is shifted to slightly to
high ~binding! energies. On the other hand, the Fermiology
reproduced quite well. It is interesting to note that quali
tively identical results for smaller values ofU f and e f and
lower electron filling have been obtained by Tahvildar-Zad
et al.24 using theD→` technique—quite obviously there i
overall agreement between different numerical approac
for quite different parameters values and fillings~and our
analytical results!.

Figure 5 shows a more asymmetric case; more precis
we sete f5U. As expected, the upper Hubbard band for t
f electrons is virtually absent. Interestingly, the theoreti
spectrum shows a very weak band at'3t above the Fermi
energy, the intensity of which shows a weak increase w
doping. The Lanczos spectrum for half-filling shows som
diffuse f weight roughly in this area, and even some indic
tion of peaks in the doped case. Next, the dispersion of
hybridization bands shows a quite pronounced asymm
between photoemisison and inverse photoemission, whic
nicely reproduced by the theory~see Fig. 6!. The explanation
is simple: due to the reduced energy of the puref state
f ↑

†f ↓
†uvac& the weight of this state in the single-cell groun

state for two electronsuC0
(2)& must increase. The weight o

FIG. 3. Single-particle spectral function for the 1D Kondo la
tice, obtained by Lanczos diagonalization of a six-unit-cell syste
Full lines ~dashed lines! correspond toc-like ( f -like! spectral
weight. The vertical dashed line gives the Fermi energyEF , peaks
to the right~left! of this line correspond to electron creation~anni-
hilation!. Parameter values areU58, e f54, V51, e(k)5
22 cos(k).
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the two remaining states therefore must decrease, so tha
overall probability of finding ac electron in the ground stat
is reduced~this manifests itself also in the significantl
smaller integratedc weight in the photoemission spectrum!.

.
FIG. 4. Theoretical spectrum for the same parameter value

Fig. 3.

FIG. 5. Lanczos spectrum forU f54; all other parameter value
as in Fig. 3.
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Since only thec electrons can hop between cells, the ban
width seen in photoemission therefore will be reduced. Ne
since thec weight that disappears from the photoemiss
part must reappear in the inverse photoemission spectru
follows from analogous considerations that the dispersion
the IPES part will be enhanced. As in the symmetric ca
doping causes a shift of the chemical potential into the low
hybridization band, but there is now also some change of
spectral character of the upper hybridization band neak
5p: there thec character increases, thef character de-
creases with doping, and the theoretical spectra obviousl
correctly reproduce this trend.

Next, we study a more complicated form of the hoppi
term for conduction electrons. More precisley, we introdu
a hopping integral between second-nearest neighbors, a
have a pronounced effect we choose this to be of equal m
nitude, but opposite sign to the nearest-neighbor hopping
other words, the conduction electrons now have the dis
sion relation

ek522t„cos~k!2cos~2k!…. ~29!

For the band fillings under consideration, a system of non
teracting electrons thus would have four Fermi points rat
than 2, and we want to see if our simple ‘‘rule of thumb
deduced above for the band structure in the strong-coup
limit continues to be valid also in this more complicat
situation. Namely, the band structure of the Kondo latt
should be qualitatively given by the one obtained for mixi
with a dispersionlessf level, that is, pinned to the ‘‘frozen
core’’ Fermi energy of the nonhybridizing conduction ban
see Fig. 2. Then, Fig. 7 shows the Lanczos result for
single-particle spectral function and Fig. 8 shows the th

FIG. 6. Theoretical spectrum for the parameter values as in
5.
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retical data. It is quite obvious that the theory remains va
also in this case. The relatively complicated band struct
predicted by the rule of thumb can indeed be seen quite w
in the Lanczos spectra: thes-shaped conduction band, with

g. FIG. 7. Lanczos spectrum for conduction electrons with the d
persion~29!; all other parameter values as in Fig. 3.

FIG. 8. Theoretical spectrum for the parameter values as in
7.
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local maximum atk50, which crosses from inverse photo
emission and back again and thereby mixes with the dis
sionless, low-intensityf band ~it should be noted that the
low-intensity f -like peaks at 5p/6 and p in the Lanczos
spectra for̂ n&52 are actually on the photoemission side!.
With doping away from half-filling the heavy band ne
k5p develops a Fermi edge, and thetwo pseudo-Fermi-
surfaces for thec electrons atp/6 and 2p/3 shift as expected
for free, nonhybridizingc electrons. In the doped case, th
flat low-intensity band that skims belowEF and crossesEF
at kF55p/6 can be identified particularly well. Also th
heavy part in the inverse photoemission atk5p/3 andp/2,
which is predicted by the theory can be identified reasona
well. Again, the theoretical spectra somewhat overestim
the spectral weight of these heavy band portions, and
relative position of the lower Hubbard band is not co
pletely correct. Our simple picture of the Fermiology, ho
ever, obviously remains valid also with this more comp
cated Fermi-surface topology.

We proceed to the case of nonvanishingU f c , i.e., a Cou-
lomb repulsion betweenf and conduction electrons. Th
Lanczos spectra for this case are shown in Fig. 9, the th
retical spectra in Fig. 10. The main effects ofU f c is to open
a wider gap at half-filling, to enhance the weight of t
heavy bands, and to shift the Hubbard bands to higher
ergy. All in all, the total width of the spectrum is now
'125U f1U f c rather thanU f as it used to be in the preced
ing cases. As compared to the preceding cases, the Hub
bands, moreover, acquire an appreciable dispersion, and
ing causes a pronounced spectral weight transfer from
upper to the lower Hubbard band. The widening of the ga
half-filling appears hard to understand at first sight, beca
U f c by itself does not increase the energy cost for a cha

FIG. 9. Lanczos spectrum withU f c54; all other parameter val
ues as in Fig. 3.
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fluctuation: transferring ac electron from one cell to anothe
~see the process of Fig. 1,a→b) does not change the energ
due to f -c repulsion as long as thef occupation is nearly
constant at 1~which is almost certainly the case for the larg
e f we are using!. It is straightforward to see, howeve
that the opening of the gap is due to a loss ofkinetic
energy: switching onU f c increases the energy of the sta
(1/A2)(c↑

†f ↓
†1 f ↑

†c↓
†) by U f c , so that the energy differenc

relative to the other two basis states is decreased by
amount @see the Hamilton matrix~4!#. This means that
charge fluctuations in the two-electron ground state are
hanced, thus the kinetic energy for this state becomes m
negative. On the other hand, this mechanism for enhan
the charge fluctuations is operative neither for one nor
three electrons in a cell@see the respective Hamilton matrice
Eqs.~6! and~7!#, so that there is no gain in kinetic energy
these cases. The charge fluctuation thus is accompanied
net loss of kinetic energy, which in turn results in a larg
charge gap. Moreover, it follows from expression~26! for
the c-type spectral weight of the lower hybridization ban
that the distance ink space over which the weight drops
approximately given byDc /vF , with Dc the charge gap and
vF the Fermi velocity. It is thus immediately obvious that a
increase of the charge gap~for whatever reason! will give a
‘‘more homogeneous’’c weight along the hybridization
bands. While at half-filling the agreement between Lanc
and theoretical spectra is very good, the situation change
the doped case. The lower of the two hybridization band
still well described, but the weights and dispersions of
other bands, as well as the weight shift between the Hubb
bands, are not reproduced well. Actually the Lanczos spe
show a rather strong reduction of the gap between the
central bands upon doping—we believe that this indicate

FIG. 10. Theoretical spectrum for the parameter values a
Fig. 9.
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rather profound doping-induced reconstruction of the el
tronic structure and since our theory corresponds more
less to an ‘‘expansion around the Kondo insulator’’ it m
not be expected to reproduce this.

The situation is actually quite similar if we introduce
Coulomb repulsion between conduction electrons,25–27 Uc ,
see Figs. 11 and 12. Again, this opens a wider quasipar
gap in the spectrum and the hybridization bands now hav
predominantc character over their entire width. At half
filling the upper hybridization band intersects and mixes w
the upper Hubbard band for thef electrons. The upper an
lower Hubbard bands for thef electrons remain unaffecte
and are dispersionless; the lower one has practically p
f -like character. At half-filling, there is again good agre
ment between Lanczos and theory but for the doped case
situation is again different. The Lanczos spectra show
rather dramatic collapse of the gap between the hybridiza
bands; the upper hybridization band, which intersected
upper Hubbard band at half-filling, is now at least 2t below.
Again, this suggests a strong doping-induced reconstruc
of the entire electronic structure, and our theory natura
fails to reproduce this.

The effect ofUc at half-filling can be understood alread
in the context of the strong-coupling model limit, where w
simply would have to replaceD→D1Uc . The more homo-
geneousc character of the hybridization bands then follow
in an analogous fashion as forU f c .

As a last example, we turn to a somewhat exotic vers
of the Kondo lattice model, where the magnitude of thec-f
hybridization depends on the occupation of thef level. More
precisely, we replace

FIG. 11. Lanczos spectrum withUc54; all other parameter
values as in Fig. 3.
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Vci ,s
† f i ,s→V1ci ,s

† f i ,s f i ,s̄
†

f i ,s̄1V2ci ,s
† f i ,s f i ,s̄ f i ,s̄

†

with V1@V2 . Such a model may be relevant7 to describe the
recently discovered5 transition-metal hydrides with switch
able mirror properties, such as YH3. In this case, the yttrium
4d electrons would play the role of the conduction electro
the hydrogen corresponds to thef electrons. The conditiona
hopping term is supposed to describe the relaxation of
orbital wave function on hydrogen as a function of electr
occupation.7 This is manifested, e.g., by the dramatica
larger radius of the free H2 ion as compared to the neutra
free H atom~for a detailed discussion see Ref. 7; for a d
cussion of such an ‘‘orbital Kondo effect’’ in the context o
cuprate superconductors see Refs. 28,29!. Here we are not so
much interested in the details of the correspondence w
YH3, but rather in the applicability of our theory to thi
model. The conditional hopping is easily incorporated
replacing the Hamiltonian~4! for two electrons in a cell by

H25S 22e f1U f A2V1 0

A2V1 2e f1U f c A2V2

0 A2V2 Uc

D ~30!

and analogous replacements in the single- and three-elec
subspaces. It is quite obvious that the conditional hopp
will lead to a dramatic increase of the charge gap: in o
picture, the magnitude of the gap is determined by the ene
difference between two cells with two electrons on one ha
and on the other, a cell with one electron and another w
three electrons. Then, the electron in the singly occupied
can mix with the conduction band only by using the~much
smaller! hybridization integralV2 , which corresponds to the

FIG. 12. Theoretical spectra for the parameters of Fig. 11;
other parameter values as in Fig. 3.
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collapsedf orbital. Only the single hole in the cell occupie
by three electrons can delocalize using the large hopp
integral V1 . A charge fluctuation thus will result in a hug
loss ofkinetic energyand thus open a substantial gap in t
band structure~the effect is thus similar, but much strong
than theU f c discussed above!. This gap will be opened eve
in the complete absence of any Coulomb repulsion on thf
orbital, so that the breathingf orbital can lead to strong
correlationlike behavior even if there is no really strong Co
lomb repulsion at play. In fact, comparing the Lanczos a
theoretial results~Figs. 13 and 14! one can note first of all a
good agreement between the two, and in addition a v
substantial correlation gap in the spectrum. Also, there
low-intensity ‘‘Hubbard bands,’’ the positions and spect
weights of which are reproduced quite well by the theory.
interesting feature in the Lanczos data is the extraf -like
band in the inverse photoemission spectrum that dispe
from just aboveEF at k5p to '2t aboveEF at k50, and
that is completely absent in the theory. We believe that
band is a consequence of superconducting pairing corr
tions in the doped ground state. As discussed by vari
researchers, the breathingf orbital presents a very stron
pairing mechanism28,29for electrons in the doped material, i
that the electrons will always pair up around onef site to
hybridize by the large hopping parameterV1 . In the spectral
function the presence of such pairing correlations will ma
fest itself as a Bogoliubov-type ‘‘mirror image’’ of the top
most band, i.e., the replacement

ẽk2m→6A~ ẽk2m!21Dsc
2 ,

where ẽk is the ‘‘nonsuperconducting dispersion’’ of th
lower hybridization band~which should correspond to th

FIG. 13. Lanczos spectrum for the breathingf orbital. Param-
eter values areU5e f52, V152.0, V250.2, ek522cos(k).
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one given by our theory! and Dsc the superconducting gap
The latter appears to be quite small in the numerical spec
We defer a detailed discussion of superconductivity to
separate publication, but we note that our theory does
encompass superconductivity, so that the absence of
band in the theroretical spectra can be no surprise.

Summarizing this section, our theory gives a remarka
good description of sometimes rather complicated and un
pected features of a wide variety of extended versions of
Kondo lattice. Moreover, it allows us in all cases to extra
simple physical pictures in order to understand the ove
trends. The main inaccuracy concerns the positions of
f -like Hubbard bands, but we believe that this is not a sev
deficiency because this is an extreme high-energy feature
the cases of extra intracell repulsions the Lanczos spe
showed some indications of a doping-induced reconstruc
of the electronic structure—this could not be reproduced
our theory. Also, superconductivity in the doped ‘‘breathi
f model’’ naturally could not be described.

V. CONCLUSION

In summary, we have presented a ‘‘nearly analytica
theory for the Kondo lattice. In simplest terms it may b
viewed as a Fermionic version of linear spin-wave theory
that we constructed an effective Hamiltonian describing
pair creation and propagation of Fermionic charge fluct
tions on a strong-coupling resonating-valence-bond–t
vaccuum. This gives us a systematic way to broaden
ionization and affinity states of a single cell into bands, rem
niscent of the cell perturbation theory developed by Jeffer
and co-workers.20 For quite a number of different versions o
the Kondo-lattice model, the theoretical results for the sin
particle spectral function were found to be in overall exc

FIG. 14. Theoretical spectra for the parameters of Fig. 13.
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lent agreement with exact diagonalization of small cluste
as far as the dispersion of energy and spectral weight is
cerened. It is a particularly encouraging fact the rather n
trivial evolution of the spectra with electron density in ma
cases is reproduced in detail. This gives us some confide
that despite some uncontrolled approximations the theor
already very close to the correct picture. Given its extrao
nary simplicity ~all results are obtained by an elementa
Bogoliubov transformation! we believe that the theory
should easily be amenable to systematic improvement to
scribe as yet neglected processes.

The emerging picture of the Kondo insulator then is qu
different from that of a conventional band insulator, and
fact more reminiscent of a superconductor: the ground s
at half-filling corresponds to an array of~overlapping! local
singlets, where each Kondo spin forms a bound state w
one conduction electron. The system has a single-par
gap for precisely the same reason as in a supercondu
removing a conduction electron from some sitei and rein-
serting it at a remote sitej breaks twof -c pairs; thus there is
an increase in energy of twice the binding energy of a sin
pair.

A key ingredient for the construction of the effectiv
Hamiltonian was the existence of a unique RVB-type ‘‘s
glet background,’’ which sets the stage for the pair creat
and propagation of the fermionic charge fluctuations. T
basic idea of the present work, therefore, is not restricte
the Kondo lattice. Rather, once such an ‘‘RVB vacuum’’ h
been identified, an essentially analogous construction ca
carried out also for other strongly correlated systems. T
most obvious example is the dopedt-J ladder, where the
‘‘rung singlet RVB state’’ may replace the product of singl
cell states, and for which a very similar construction c
indeed been carried out.30

Perhaps the most important approximation we have m
is the neglect of any excited states of two electrons in a c
This means that we have negelected single-cell states w
one conduction electron and onef electron couple to a trip-
let. Such states do in fact have a very small excitation ene
}V2/U. As we have already mentioned, this restriction fo
bids the propagating charge fluctuations to ‘‘radiate o
tripletlike spin excitations and thus makes their propagat
completely coherent. The good agreement with the nume
and also the relatively ‘‘coherent’’ nature of the Lancz
spectra themselves~in which the incoherent high-energ
continua familiar from thet-J or Hubbard model31 are al-
most completely absent!, give us some confidence that d
spite their low energy, the neglect of the singlet triplet ex
tations is a good approximation as far as the single-part
properties are concerned. Moreover, it is quite easy to in
ke
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porate these singlet-triplet excitations into the pres
theory:21 the three components of a triplet state in celli can
be grouped into an SO~3! vector ti . Then, we would model
the cell i being in theath triplet state by the presence of
Bosonic excitation, created byt i ,a

† . In addition to a term
describing the on-site energies of these triplets we wo
obtain terms that describe the coupling between the Fe
onic charge fluctuations and the Bosonic spin fluctuatio
Their form can be inferred from rotational invariance: f
example,ti

†
•(ai ,t

† st,t8aj ,t8) ~with s the vector of Pauli ma-
trices! describes the hopping of a hole fromi→ j while
creating a spin excitation in cell i ; the terms
(tj

†
•ti)•(t ai ,t

† aj ,t and (ai ,t
† st,t8aj ,t8)•(tj

†3ti) represent two
different ways for a spin excitation to exchange its positi
with a hole. The actual prefactors of these terms can be c
puted in an entirely analogous fashion as the hopping in
grals for the charge fluctuations themselves, and these te
can be incorporated into the formalism by using stand
Green’s-function techniques. Details will be report
elsewhere.32 Since already the simplest version of the theo
apparently gives a quite good description of the physics,
may expect that such an extension is actually ‘‘converge
and gives a good description of the spin dynamics as we

As a final remark, we note that the ‘‘vaccum’’ in the ca
of the simple Kondo lattice was a unique product of sing
states, and that the charge fluctuations did have precisely
quantum numbers of electrons or holes. For systems wi
larger unit cell, however, one can envisage situations wh
this is very different: one example would be a twofold orb
ally degeneratef -level mixing with a nondegeneratec
orbital.33 For one electron/orbital the number of electron
unit cell then would be 3, and the~Fermionic! charge fluc-
tuations would correspond to cells with an even number
electrons. Thereby Hund’s rule coupling between the deg
erate f orbitals would favor high-spin states, so that o
might actually obtain ‘‘high-spin quasiparticles.’’ From th
good success for the simple Kondo lattice one might exp
that the present formalism would continue to give a go
description even in this more complicated situation.
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