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Few-anyon systems in a parabolic dot

Ricardo Perez
Centro de Matematicas y Fisica Teorica, Calle E No. 309, Ciudad Habana, Cuba

Augusto Gonzalez
Centro de Matematicas y Fisica Teorica, Calle E No. 309, Ciudad Habana, Cuba
and Departamento de Fisica, Universidad de Antioquia, A.A. 1226, Medellin, Colombia
(Received 8 December 1997

The energy levels of two and three anyons in a two-dimensional parabolic quantum dot and a perpendicular
magnetic field are computed as power series i LivhereJ is the angular momentum. The particles interact
repulsively through a Coulombic (1 potential. In the two-anyon problem, the reached accuracy is better than
one part in 1B. For three anyons, we study the combined effects of anyon statistics and Coulomb repulsion in
the “linear” anyonic states|S0163-182¢08)04628-1

I. INTRODUCTION two-dimensional quantum dot in the presence of a perpen-
dicular homogenous magnetic field. In the bosonic gauge, it
Recent developments in semiconductor technol@gy., is given by the expressioh
molecular-beam epitaxy and electron lithograplopened N N
the possibility to create totally confined electron systems, the 1 3 e 2 2
so-called artificial atoms or quantum ddtsThis is one of H=3m ,21 Pit g Ai—hva| + E‘”Ozl ri
the examples of present-day-physics’ interest in confined fi-
nite systems, among which one can mention also the atomic e?
and electronic trap$,and the condensation of confined +|>] wlri—r;l’ @

bosong!
Quantum dots exhibit very interesting properties like thein which the vector potential is taken in the symmetric
possibility of varying their parametefsumber of electrons, gauge,
applied fields, dot's geometry, temperatu@ver a wide
range, the observation of conductance oscillatores)d
Kohn's theoren?, etc.
Theoretically, these systems have been studied mainly o ]
with the help of numerical methods. However, analytic ap-& is the statistical vector potential,
proaches have proven to work extremely well providing, at

1
AiZEBXri! (2)

the same time, a qualitative understanding of the quantum S nXx(rj—r;)
: : q=2, 7 ©)
dynamics. Among these approaches one can mention the 7 Ir-ril

semiclassical  quantizatidh, regularized perturbation ) ) )
theory®® Pade approximant techniqué€'! and the 1N N is the unit vector perpendicular to the plane of motion of
expansior? 14 the anyonsg is the anyon chargey is the anyonic param-

In the present paper, we continue the ana'ytic_qua"tativ@ter,(,()o is the frequency of the pal’abo”c pOtentia| needed to
line of research and apply theNLexpansion(N is the abso- confine the anyons in the dot, ards the dielectric constant
levels of two and three anyons in a model parabolic dot. Théneans of the change of variables- V/(mQ)r;,
particles interact through a Coulombic (Lfepulsive poten- N N
tial. A magnetic field is applied perpendicularly to the plane H 1 Q& , o {

igl Pit 50 n'zl riXpi

of motion. Q2

Numerical results for the two-anyon system were ob-
tained by Myrheimet al® Exact analytic solutions at par- (ri—=ry)xX(pi—p;)
ticular values of the coupling constants were found in Ref.
16. Bohr-Sommerfeld quantization was applied to this sys-
tem at low magnetic fields. We shall see that our method 1 , ©
provides extremely accurate solutions for states with angular + 5. ri+ mVNa(Na_ 1)
momentum|J|=2. A picture for the “geometry” of the
stateqthe spatial distribution of probabilitys obtained also. V2 (ri=r;)-(ri—ry) . 1
In the three-anyon problem, however, to our knowledge, +?_2 mﬂff 2 F—r]’
there are no numerical or approximate calculations. LT K S

We start from the Hamiltonian dfl, anyons moving in a (4)

i>] |ri_rj 2
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where w.=eB/(mc) is the cyclotronic frequency)?
= w?l4+ 0j, andB3= |me"(«?Q%47) is the square root of

the ratio between the Coulombic and oscillator characteristic
energies. The problem has one exactly solvable limit: a low-

density limit, which we call the Wigner limit, reached when
B—co. In the B—0 (oscillatop limit, the two-anyon prob-
lem is exactly solvablé® whereas the three-anyon system
has an infinite family of exact linear statésln real semi-
conductors 8~ 1.

Introducing Jacobi coordinates,

2k
Pk:‘/ | Erl rkﬂ], 1<ks=N,—1, (5
N
1 a
PN, ’_Nazl ©)

the center-of-mass and relative motions are separated

H HCM Hrel
Q- RO RQ ™
where
HCM 1 w 1
70 Epﬁj ﬁ n-(pn,Xpn,) + Epﬁa, )
is the center-of-mass Hamiltonian and
H Ny—1 © Ny—1
_trel _ 2, C . XD
70 izl p|+29n ZL Pi X P
rii X
ton. S TP Z Pt - Z UNg(Na—1)
i>] ,J
V rij . r,k 3
— — 9

is the Hamiltonian of the relative motion. We introduced the

following notation:rj;=r;—r; andp;; =p;—p; -
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1 |Hie 0c(J+v)

9] 20

_ﬁ?+nz 1 33 1(a2+1 a) "
p? tget P\ ap? " p1py)’

wherep;=|p,|. We have “renormalized” the coupling con-
stant,3%= 8%/|J|®?, and the statistical parameter= v/J, in
order to take account of the Coulomb repulsion and the sta-
tistical interaction in a nonperturbative way when taking the
formal limit | J| — . We shall look for symmetric eigenfunc-
tions ofh, i.e.,|J| shall be even.

In the|J|— < limit, the only term surviving in the Hamil-
tonian is the effectivéclassical potential energy

(v+ 1)2
2
P1

1

33
4pl .

eff= (12

Minimizing U, we obtain the leading contribution to
the energy,eo=U.ti(po1), Where the radius of the “Bohr
orbit” is obtained from

1

5 P01~ BPpor=2(v+1)% (13

g (U%) @42
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a0 1 ! ' )

B/p+1)

We will obtain approximate expressions for the energy

eigenvalues oH,. /(% Q) for N;=2 andN,=3 as a func-
tion of 8 by means of the 1J| expansion.

Il. THE TWO-ANYON SYSTEM

In the two-anyon problem, we have only one Jacobi co-

ordinate, p;, and the Hamiltonian of the internal motion
reads

Hrel 2 X Py 2
ﬁQ 29 n- (plXpl)+2Vn _[)2_+4p1
53
+ + . 10
pf p1 20 (10

Notice thatn- (p, X p,) =J. After the scaling transforma-
tion p5—|J|p3, we get

3
e /(11%) (b) 46
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20x10°
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FIG. 1. Relative weight okg in . Two anyons in states with
n=0 andv=1/2 are studied(@ J=2, (b) J=6.
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Substituting p;=po;+y1/|J|¥? in the right-hand side  letufon

(rhs) of Eq. (11) and expanding, we get aox109
i h: 25x10° -
h=> = (14
1=0 |J| 20x10°

where the operator coefficients are given by

_ 15x10°
3 ) (v+ 1)2
hO:Zp01_ — 2 (15 10x10°
Po1
h1: 0, (16) 50x1077°
00
2 1 ( 4(v+1)2 . a0 a2 4 a6 a8 10
hy= =yt 23+ [y8 @) .
? gy; 4 Po1 !

FIG. 2. Comparison between the|ll/ estimate and the exact

_ 1 (i— l)(7/+ 1)2| solution found in Ref. 16 for two anyons with=6, n=0.
hi:(_l)l[(29612+ Por” Il '
Vo=en), (21
1 i3 ;
" ;Ezyl 9_)/1] =3 (18 where 6 is the angle associated to the vecpr the|n) are

two-dimensional harmonic oscillator radial states with fre-

scasllergII:r:eSrZ;efh:ﬁswmten for the wave function and thequencywlz 34400+ 1)2/9611: and the first two coeffi-
' ' cients for the energy are

y=2 e (19
=o NI 3, (h+1)?
© €=gPo1~ — 7 (22
_ 1|Ee o(J+v) _2 € 20 Po1
“=plae 2 & e @
Inserting Eq.(19), Eq. (20), and the series expansion for P 1 23)
the Hamiltonian into the Scladinger equation, we may com- 2— " 2)

pute the coefficientg); and¢; in a systematic way. Up to

second order, for example, the system is described in terms

of small oscillations around the equilibrium orbit, i.e., the  Afterward, we may take account of anharmonicities. The
wave function is results for the next two coefficients are the following:

1 32n2+2n+1)[  6(p+1)2) (3n2+30n+11)( 4(v+1)2\°
€= 42 20202 + z - d0io2 + Z ) (24
Po1 w1001 Po1 w1001 Po1
3(2n+1)  (2n+1)|_ (v+1)3(50n%+50+81)| (2n+1) )
€6=— ) 37| 5n“+5n+9+ Z T 5 57
4wipgy w1001 Po1 2w3ipgy
12(v+1)%(87n%+87+86) 4(v+1)4 71N+ 71n+709 | 9(2n+1)
+87n+ 86+ 7 + 5 —
Po1 Po1 2w1p01
, 6(v+1)2 a(v+1)?\* 152n+1) 4v+1)2\*
X (25n%+25n+19)| 1+ — 1+ — - sa— (4% +4n+3D| 1+ —5——| . (25
Po1 Po1 8wipo1 Po1

Notice that in both Wigner §—«) and oscillator —0) limits the corrections, and eg go to zero. The expressions
found in Ref. 14 are reproduced if we take=0.

We show in Fig. 1 the relative weight af in e for the first states witl=2 and 6. The parameterwas fixed to 1/2
(semion$. The relative contribution oég is never greater than>610 ° or 3xX 10 ® for J=2 or 6, respectively. This shows
that the 1J| series is extremely well behaved.
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A comparison with the exact solutions found in Ref. 16 is carried on in Fig. 2, where the relative dlffdreence
— €oxacl €exact IS plotted against. The state withJ=6, n=0 is shown. It may be easily verified tha@t,,..~ pl‘]+V(l

2
+p1/\2]J+ V| +1)e PL, €apac=|I+ v|+2, are exact solutions of the two-anyon problemBat= 2|3+ v[+ 1. The com-
parison shows that the relative error of our estimate is not greater thagh 10

Ill. THE THREE-ANYON SYSTEM

The internal Hamiltonian of the system of three anyons in Jacobi coordipatasd p, is written as

rel 3wcv
ile.+ n- 2 PXPt S0

+wvn-| 2 2

PLXP1 49 (p1+V3py) X (p1+V3py) 49 (Pl_‘/jpz)x(pl_‘/jpz)l
p1 |p1+V3p,? |p1—V3p,|?

1 2 2
—+ + .
P1  |p1+V3py|  |p1—V3p,

2 2, 2\2 2 2 2
L1 ( +p2)°+4[p1ps—(p1-po)°]
Z Z P17 P2 P1p2—\P1 P2 P (26)

P3| p1+V3py|? pr—V3pol?

Doing the same scaling transformatipfi—|J|p?, and making explicit the dependence |dh, we get

1 ~q 1 2 2
7 (P12 B

1[H,e| w(J+3v) N N
P1 |p1+V3py| |p1—V3p,

PN AQ 20

1 ( 1 .
4\pl o}
~ p3(2—3cog 0)+3p3(2—cog 0)
14

|p1+V3p2|?|pr— V3P,

~, (pi+p5)?+4pipssi? 6 1

7
i
p

(1 1) d

P1|P1+‘/_Pz| |p1—V3p,|? 3l i p3) 90
p1p> Sin 20 d d
|P1+‘[3P2|2|P1_‘/3P2|2 (pl &_‘)Z_pza_pl)

p(1-3cog ¢)+3p3(1+co 0) a]
|p1+V3p2|%p1—V3po|? 9

#? 149 &# 1 9

o i o e

+

2 9
7—— [
p1 90

1
+ |-

1+1
2T
P1 P2

+ ) (27)

(92

wherep;=|pi|, p2=|p2|, and cosv=p;- p,/(p1p,). The “renormalized”B%= B%/|J|*? andv= v/J were introduced.
The minimum of the classical potential entering E&7) is reached in the configuration of an equilateral trianglg,
=po2, 0==*m/2). We choose, for exampl@gy,=pg,., 8= /2. py; is obtained as the solution of the equation

po1—3poiB°=(3v+1)% (28)

Then, introducinge;= poit+Y1/V][I[, p2=portY2/V]I], and 6==m/2+2/]J] in the rhs of Eq.(27), we obtain for the
Hamiltonianh a series like Eq(14). The first operator coefficients are given by

) 3, (Bv+1)? -
O_Ep(’l_TM’ (29

h,=0, (30
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(Y3 +y3)

o <a2+a2+2 92 I () )a+1 3+1
== = sgrI)(y1—Y2) -+ 7| =
2 \oyl ays 03077 pdy V% gz 4\ pgy
T2

9v
+ (Byi+6y1y2+8y;+3p5:2") + 1o (Yi+Ya+ 6yay2—pi2’)
1

— | 1— —
16 Pgl

972 3i1sgnd)z( o d 31 sgn(J)

3 J
— (3yi+3y5+2y1y,) — o + {———J—— ~y2) > |, 31
gt (VITIaT YY) T T T Gy oy )3 iy 5 (32)

+

d 1
2 .29 3, .3
) o (Yi—VY2) 97 _pgl(Y1+Y2)

— |+ 5 (y1+yo)+
PYAREEYA (Y1tY2)

1 ( d d ) 2 31 sgnJ)
= 3 - 7z
Po

Po1

1 1
- W( 1- _4) (19y3+3y3y,+33y1y5+9y5 — 9pgy122+ 21p51Y 7%
01 Po1

972

3 31 sgnJ)
64p5;

(¥2=5y1~21y1y,~ 31y5+ Thoiyaz’ ~ Llpgo2’) +7) =
01

J
{ (4yi—2y5—2y1y,— p5,Z°) >

d

) ( N d 3
— Z [— —_—
PoiZ| Y1 YA Y2 V1

+2pdy zi — ——(2ly3+15y3+5y?y,+ 23y, y2+ p3y1 22— 13p2,y,7%) (32
o1Y2 EYS 32P81 1 2 1Y2 1Y2 T po1Y1 P01y 2 )

o I J|_3 d 4 sgnd) s 5
— T2 y2py2y L TR 83y 4. 4
(yl &yl+Y2 &yz) p4 (Yitvy3) 072 p5 (Y1—Y2) az+ _4p81(y1+y2)

4_ Pél oL 5
1 1\/329 123 9 99
i 256p31< 1= p_gl) (Ty‘f— 25y}y,+ —-Yiys+13%1y3+ Vi~ 5 poyiz
141 41 0 1sgrd)
+27p5y Y22+ 71)31)/%22-1- Zpglzd') +v| - 88 ( 6(11y3—y2y,—7y1y5—3Y5
01

J J J
- 3P61Y122 - P(zn)/zzz) 97 + Pglz(g)’i_ 3y§_ 18y,y,— Pglzz) (9_y1 - Pélz(g)’i_ 27y§+ By1y,— Pcz)lzz) &_yz ]

3
+ 5150 (5031~ 283y, + 268/1y5+ 61213 + 1835 5861y 12" + 200G,Y1,2” ~ 16405,y52° ~ 41p:2")
01
372
+ m(swfl‘— 411y5—84y3y,+2718/3y5+ 1836y,y3— 750p3,y27%+ 12663,y 57%+ 60p3,y1Y.22+ 3Tpe,z?).
1

(33
|
The operatorh, is diagonalized by changing variables 2 PR w .

Y1=(YstYm/V2, Yo=(Ys—Ym)/V2, 2=V2Zulpgy, and =" o2 " o g Wt

making the “gauge” transformatiom,=e'’h,e~'", where m m

f=sgn0)ynzn/(205,), the result is | sgrd)(3v+1) [ 9
Tz Ymag gy (36)

h,=hg+hp,, (34) oL m m

wherew,=\3/2— (3v+1)%(2pl,).

wherehg describes the motion of a harmonic oscillator inthe  he first two coefficients in the expansion for the energy

coordinatey (the symmetric mode

are
P 0l 3 (3v+1)?
he= — — + —y2, 35 _2 o Svr)
S ayg 4 yS ( ) €p 2p0]_ 2pgl ’ (37)
with ;= 3+ (3v+1)%ps,, and h,, accounts for two- B 1
dimensional motion in a “fictitious” magnetic fieldthe €27 @1 ner2 (204 |m+1)+ w3 sgrid)m,

mixed modé (39
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g,/ (JZE) (a) J=3
80x10*

e (@) p=0.5

eox10* |
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Q0 02 04 06 o8 10

BAB+1)

e 4% (b) 4= Ole (b) p=8

30x10* 20241 +

202.05
25x10™ |

202 +
20x10% |
201.85

4
15x10 - 2019

10x10% [ 201.85 |

201.8 - +
sox10° |- 0 02 04 06 08 1

Q0 N L 1 1 ]
00 02 04 06 08 10

B/(B+1) FIG. 4. |J|€ vs v for three anyons in states with==6. (a) 8
=0.5, (b) B=8.

FIG. 3. Relative weight ok, for three anyons in states with
=1/2. (@) J=3, (b) J=6.
and 14. An additional requirement is that the statgdat0
should be a linear state. For example, the lowest linear states

where wz=(3v+ 1)/P§1v and the quantum numbens, n, are the following:|0,0,0,0 [the ground state, starting from

andm may be used to approximately label the states. Eq=2 at the bosonic end|0,1,0,0, and|2,0,0-- 1) (starting
Up to this order, the wave function is given by from Eo=4), [3,0,0,0 and |1,0,0,} (starting fromEq=5),
|4,0,0,-2), |2,1,0,-1), and|0,1,1,0 (starting fromEy=6),

etc. The lowest state with<0 is|—6,0,0,0, which starts at
Eo=8. Of course, states with small values|df cannot be
described within our method.

where E accounts for overall rotations of the system, and N what follows, we restrict the analysis to levels with
3,ng,n,m) are the eigenfunctions di}. We notice that, quantum numberag=n=m=0. This leaves only the linear
when 80 the energy becomes anyonic states witd =3k, wherek is an integef? The ge-

ometry of the state is an equilateral triangle. It can be seen
from Eq. (29) that the side of the triangle increases with
when J>0, and decreases wheh< 0. Thus, the Coulomb
repulsion is much more stronger fdr<0 states, and the
ordering of levels may dramatically changefss increased.

These are the “linear” three-anyon states. We stress thgPn the other hand, for3— the side grows likepo;
they are obtained as harmonic excitations against the equi~ 3Y33 and becomes independent of the anyonic parameter,
lateral triangle configuration, and are not necessarily relateds one expects. A strong coupling expan¥iahows that the
to a cigarlike shape of the wave functiop,&p,) as de- leading contribution to the enerdpotential energyis ~ 82,
scribed in Ref. 21. the next correctionsquantum fluctuationsare ~1, the an-

The set of number§l,ng,n,m} compatible with the sym- gular momentum and the statistical parameter enter the sec-
metry constraintgthe wave function shall be symmetriare  ond order corrections, which are1/32.
obtained upon comparison with harmonic-oscillator wave The first anharmonic corrections to the energy are given
functions atv=0, 8=0. Details may be found in Refs. 22 by

Wo=e"Z|J,ng,n,m), (39

Eo=|J+3v|+2+2ns+2n+|m|+sgnd)m. (40
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€2=(J,ng,n,m[hy|J,ng,n,m)

(J,ng,n,mh3|J,n{,n",m")
P Al !

=+
E Jnghm 6Jnsn m

P
ng.,n’,m 62 2

x(J,n{,n",m’'|h3]J,ng,n,m), (41

whereh; andh; are obtained fronlh; andh, by means of a

gauge transformation, in the same way as explained above

for h,.
For a state with quantum numbédik0,0,0, we get

<JOOQh’|JOOQ— > +3 ! +9 !
A 8Pc2)1 4P31“’§ 8P81w%

+ 9 ! 1+ !
16 Pélwlwz Pgl

7

8 pgrw1 16 pGro)

Po1
27v? 5 )
m(3wl_wlw2+ 6(02)
3v ) )
- m(gwl—wlwz—l&vz),
(42
, J
h3=AW+ByS+Cy§+D, (43
S
where
V2 32 sgnd)v ,
:_E_—L‘-prg sin 2, (44)
1
B_x/i 2 62+cos’-a 3
TS 02T T8 0
(3v+2)1 sgnJ) sin 2
+|——————cof a——
Po1 §
s 3 sgnd)| @
2pp; da
(3v+2)1 sgr(J)sin 2a§+ cog a) 3
ZPgl § 9%
sin2a 42 +97/2—1§2 2
COS «
£ dfda’ 4pl
3 31?-2v-1) ,
_1_6 1+p—gl &, (45)
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V2
4po1

(3v+1)2

4
Po1

, (46)

V2 27’—6v—5
5+ & cosa(4cod a—3)

D: —
32p0;1 pél
3v21v sgnJ 9
321 SO 12 in (4 cog a—1) -
2po; 23

3v21v sgr(J)
+ e ——

0
3 £ cosa(4 co¥ a—3)
2po1

da’

(47)

Polar coordinates have been introduced according®to
=y2+7%, tana=z,/y,. The only nonvanishing matrix el-
ements entering the sufl) are the following

V2
(0,0A[0,00=——, (49
Po1

3sgrd)v

, (49
2981‘02

(0,0A|0,£2)==*

<o,r2|A|o,o>::3sgr(J)V, (50)

2pp102

2(1)2
2po1’

(0,0B|0,00=— (51

3+2 1w,

0,0=Fsgnd) =55 —
) 2po1

0,£2|B
< l 4 po1

912-1 1

+ =,
4 W2P01

(52

6
0,73|D|0,0)= — 5p%.—5
(0,+3|D|0,0) W( Po1

¥ 24p3, sgn(J) vw,+ 277 —67).
(53

Collecting everything, we arrive at
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B ) (0,3D|0,0)2 (0,—3|D|0,0)2 11 )
64_<J’0’0'qh4l‘]’0'0’°_[ 3wyt 3w; sgnJ)  3w,— 3wy sgn(J) | w_‘1‘<0’qc 0.0
»1[(0,0A]0,0%  (0,0A|0,2(0,2A]0,00 ~ (0,0A|0,—2)(0,—2|A|0,0)
* 4 w1 w1t 2w+ 2w3 sgnJ) w1t 20— 2w3 SgnJ)
(0,0A/0,2(0,2B[0,00 (0,0A[0,—2)(0,—2|B[0,0)
(1)1+ 2w2+ 2(1)3 Sgr(\]) w1+ 2w2—2w3 SgI”(J)
6 1 ((0,0B|0,0) (0,2B|0,0)2 (0,—2|B|0,0?
B w_§<o,qB|0,0><o,QC|O,O>_ w_1[ (OF} w1+ 2w2+ 2(1)3 Sgl’(J) (1)1+ 2(1)2_2(1)3 SgI’(J) ’ (54)

It may be checked that the corrections go to zero in both/|J| expansion is that of a rigid structufan orbit in the

the Wigner (83— ) and the oscillator 8—0) limits.
We show in Fig. 3 the relative weight ef, in e for three
semions in states with=3 andJ=6. The numbers are simi-

two-anyon system, an equilateral triangle for three anyons
against which harmonic and anharmonic oscillations are de-
veloped. The Coulomb repulsion is much stronger for nega-

lar to those appearing in the two-anyon problem. Thus, weive J states. Comparison with exact particular solutions for

expect a similar accuracy to this order, i.e., one part a0
better.

In Fig. 4, the levels withl= £ 6 are drawng is increased

from 0.5 to 8. Notice that the Coulomb effects are stronger

for the state with negativd, and that the levels become
flatter (as a function ofv) as g rises.

two anyons shows excellent agreement.
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