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We study the properties of Fibonacci numbers and the transparency of clusters for electrons at some values
of the energy. For thenth Fibonacci numbeF,,, a set of divisors are obtained Wy, /k=|F/k|, 1<k
<F,,. Interestingly, the numerical and analytical results show that any new divisors oftthé&ibonacci
sequence will appear periodically in the following Fibonacci sequence. Furthermore, in the mixing Fibonacci
system, we perform computer simulations and analytical calculations to study the transparent properties and
spatial distributions of electronic states with the energies determined by the divisors of Fibonacci systems. The
results show that the transmission coefficients are unity and the corresponding wave functions have periodic-
like features. We report that an infinite number of one-dimensional disordered lattices, which are composed of
some specific Fibonacci clusters, exhibit an absence of localiza861.63-182098)04325-2

I. INTRODUCTION uitous, emerging in different problems of diverse disciplines.
For instance, the arrangement of botanical elements accord-
The medieval mathematician Leonardo Fibonacci of Pisang to the Fibonacci sequence has been well known for more
considered the idealized generation of rabbits and introducetthan a century.In fact, many distinctive physical properties
the so-called Fibonacci sequence. Since then, much researahlow-dimensional Fibonacci lattices are also related to the
had discovered the link between this pure mathematicaFibonacci numbet3?In the next section we will present an
model and real natural phenomendHowever, the study of interesting kind of periodicity of divisors of Fibonacci num-
one-dimensional Fibonacci systems has become particularlyers.
relevant since the remarkable discovery of Schechtman In recent works, the transparent properties in the mixing
et al.® i.e., the discovery of one-dimensional Fibonacci qua-Fibonacci(MF) systems have been reportéd? One of the
sicrystals in rapidly solidified alloy$together with the real- aims of this paper is to also investigate the transparency of
ization of a quasiperiodic superlattiéét has been found that electrons in MF systems with electronic energies related to
both electronic and phonon spectra of Fibonacci chains othe divisors of the Fibonacci number. These discussions are
Fibonacci multilayers are of Cantor-set structures and thgiven in Sec. Ill.
corresponding eigenstates may be localized, extended, or Then, in Sec. IV, we report that periodiclike wave func-
critical 21" The milestone work of Anderson showed that thetions with perfect transmission coefficients can be found in
tight-binding models with a site-energy disorder cause théMF systems. In this section, we present the interesting nu-
vanishing of the diffusion in one- and two-dimensional merical results and theoretically explain the numerical find-
systems® However, Dunlap, Wu, and Phillig©WP) (Refs.  ing of the wave functions.
19-22 explicitly demonstrated that diffusion occurs in mod-  Finally, in Sec. V, we consider the problem of the rela-
els involving a specific type of correlation of the random sitetionship between the random system and the Fibonacci chain
energies known as random dimer mod@&DM), in which  that was previously discussed by Phillips and Win view
two kinds of site energy, ande,, are assigned at random to of the above-mentioned works, the research has been re-
pairs of lattice sites. The basic reason for the appearance sfricted to two cases: the RDM-like systems with internal
extended states in such systems has been traced to the exdgmmetrical defects, and aperiodic systems with long-range
tence of short-range spatial correlatidokistering effecgt It~ correlation clusters. In this section, we construct some ran-
is worth mentioning that the idea of a clustering effect, firstdom systems by using some quasiperiodic clusters. The ana-
pointed out by DWP, has been the subject of manylytical studies show that these random systems permit the
papers3~?® Moreover, some types of correlations have beerperfect transmission of some special electronic states and the
shown to be responsible for the appearance of extended eleeorresponding wave functions are found to be extended.
tronic states in one-dimensional quasiperiodic lattices, such

as the copper mean chain and the Thue-Morse lfi¢&in Ty

the recent_ work on the aperiodic st_ru_c_ture, sgveral groups OF THE EIBONACCI NUMBER
have provided evidence of the possibility of Fibonacci and
Thue-Morse superlattices as selective electronic fifte?s. The Fibonacci sequence can be generated by the substitu-

As is well known, the Fibonacci numbers are rather ubig-tion rules:B— A andA— AB, whereA andB correspond to
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TABLE |. The relationship among the Fibonacci generation

(m), the Fibonacci numbeF,,, and corresponding divisoks The
divisorsk exhibit different kinds of periodicity.
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P(k)=m, m=3, v

Before proving the above formulé), it is helpful to
write down the following recursion relation concerned with

m Fin k the golden mean:
1 1 PLUNTPS, R S 3)
2 1
3 2 2 where the formular®+ 7—1=0 is applied.
4 3 3 Using the recursion relation of the Fibonacci number, one
5 5 5 can easily obtain the recursion relation between the golden
6 8 24,8 meant and the Fibonacci numbét,, as follows3!
: > 5791 M= (= 1) (Fry = 7F ). @
9 34 2,17, 34 Becauser is an irrational number, from Eq§3) and (4) for
10 55 5,11, 55 any positive integet we have
11 89 89
12 144 2,3,4,6,8,9, 12, 16, 18, 24, 36, Fim=LFm, ®)
48, 72, 144 whereL is the sum of the Fibonacci number; therefore it is
13 233 233 an integer.
14 377 13, 29, 377 The definition of Eqg.(1) and the conclusion of E(5)
15 610 2,5, 10, 61, 122, 305, 610 lead to the obvious result that the divisdrsf F,,, must also
16 987 3, 7,21, 47, 141, 329, 987 be the divisors of,,. The result is in good agreement with
17 1597 1597 the numerical simulation of Table I.
18 2584 2, 4,8, 17,19, 34, 38, 68, 76, 136,
152, 323, 646, 1292, 2584 IIl. THE DIVISORS AND TRANSMISSION COEFFICIENT
19 4181 37, 113, 4181 . . . .
20 6765 3.5, 11, 15, 33, 41, 55, 123, 165, Making use of the properties of the Flbo_nacm number
205, 451, 615, 1353, 2255, 6765 above, we now study the e_Iectromc properties of3 the MF
21 10946 2,13, 26, 421, 842, 5473, 10946 system, that have_ been studied by seyeral gré%ﬂs? '_I'he _
Schralinger equation for such a one-dimensional lattice with
22 17711 89, 199, 17711 . . - . .
nearest-neighbor interactions can be written in the transfer
23 28657 28657 matrix form as follows:
46 1836311903 139, 461, 28657, 64079. =MV, _q,
69 117669030460994 2, 137, 274, 829, 1658, 18077, 28657, (6
36154, 57314, 113573, 227146 . E—¢, thn-1
- Pn+1
M,=| thn+1 thnet|, ¥,= .
1 0 ®n

two kinds of atoms. LeF,, denote the Fibonacci number of

the mth sequence, which obeys the recursion relagn ,
=Fn+1tFn, m=1, with initial conditionsF;=1 andF,
21, 34, 55, and the “golden mean?=Ilim_,.Fn/Fmn:1
=(V5—1)/2. Let us consider thenth Fibonacci sequence chooses the site energies and hopping integers in such a way
with the Fibonacci numbédf ,,, for which a set of divisork
can be obtained. These divisors are defined as

_m
k

Fm
| I<ksFm, (1)

where ‘| |” denotes the greatest integer function.

From the definition(1), we can easily obtain the divisors
k to an arbitrary high generation of the Fibonacci sequence.
Table | shows the divisork of F,, up to F,3=28657 and a

part of divisors k of the F,=1836311903 andFgg
=117669030460994. On the basis of the above results of
Table I, we can conclude that for any new divis&ref mth
Fibonacci sequence, they will appear periodically in the fol-energy, andM, and Mg are unimodular.

lowing sequence, the corresponding peri®) is given by

the following expression:

Here, ¢, denotes the amplitude of the wave function in the
Wannier representatioly, ., is the hopping matrix element

and M, is a 2x2 transfer matrix. In the MF lattice, if one

that epa=—eg=¢, tag=1, andtys=t, then the string of
transfer matrices ofnth MF can be described Hs

Mp=M(N)="---MgMaMaMgM,,

E—-e¢ —-1||E+e -1
E—¢ 1
E—e¢ -t " 1 E+e -1
Ma=l 1 o 1 0/
1 0

where N=F, is the Fibonacci numbefE is the electron

Defining X,=3TrM,, Kumar found that there exists a
consta
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J= Xﬁ]+1+ Xﬁﬁ— Xﬁq_l— 2Xms 1 XmXm—1—1 (@) N=2584, k=2584 (b) N=2584, k=1292
= %Tr[ M A M B]
1
= —[(1+t})e—(1-tH)E]% (8)
4t? : . . . . . . .
: — 0 800 1600 2400 0 800 1600 2400
WhenJ=0, or[M,,Mg]=0, thenE=¢(1+1t%)/(1—1?) is 8
obtained'®1” Consequently, the transfer matii, andMpg g |© N=2584,k=646 | | (d) N=2584, k=323
can be decomposed®3s P
]
Mg=M2, and My=M3, N
9 o
=
2et é::
112 S 0 800 1600 2400 O 800 1600 2400
Mo= 1 ' (e N=2s84, k=152 | [ () N=2584, k=136
- 0
t
At the same time,M(N) becomes the simple form
M(N)ZMB‘, which can be explicitly evaluated in terms of
the Chebyshev polynomial of the second kind. |t/ k : : . . . . .
0 800 1600 2400 0 800 1600 2400

(1-t?)|<1, expression4) of Ref. 17 can be readily ob-
tained. Whereafter the transmission coefficient of the studiec .
system can be determined by Number of sites
FIG. 1. The wave functions versus site number for theh1dF
T(N.E)= 1 (10) lattice with 2584 sites. Here the energlegk) = —2.5cos@/k). (a),
=/ + i 2\2/( A E2\427 i ' (b), (¢), (d), (e), and(f) correspond, respectively, to=2584, 1292,
1+[(1-1)%(4-E)L]siP(N) 646, 323, 152, and 136.

where 2cog=E?—&?. From the expressiofil0), we can
see that some transparent electronic stafédl,E)=1] can
be found in finite Fibonacci systems wibth¢ =K. On ac-
count of the restriction ofM,,Mz]=0, the integeiK will
influence the choice of the model parameterandt. It
seems that the authors of Ref. 17 had ignored this point.

In fact, for a given MF system with sizM, the model
parametett and an integeK, from the transparency condi-
tion N =K of Eq. (10) along with[M,Mg]=0, we find
another parameter and the corresponding allowed transpar-
ent stateE as follows:

chain. In fact, it is possible to find many Fibonacci systems
where the electronic state(3)=—1.25 satisfies the trans-
parency condition. These Fibonacci systems [dreF,, 4
(i=1,2,...). Ingeneral, for a new divisok of the mth
Fibonacci chain, the corresponding electronic skte) will
propagate through the corresponding Fibonacci chain ballis-
tically. Consider, for example, the situatidi+=4 andt=2.
It follows from Eq. (11) that the model parameter(4)
=3\2/4 and energy E(4)=-52/4. Accordingly,
the transmission coefficients for this state with several lat-
tice lengths can be obtained from Eq10). They

N\ t2—1 (K are T[Fy5,E(4)]=0.279 ..., T[F5,E(4)]=0435. ..,
S(R) = COS( ) T[F17,E(4)]=0.43%® ..., andT[F.5,E(4)]=1. As can be

(11 seen from Table k=4 is the allowed divisor of the 18th
(N) 1412 {KW) MF lattice and the related state can move through it without
=— co

N

decaying, whilek=4 is not allowed in the 15th, 16th, and
17th MF systems. Therefore, the corresponding transmission
1coefﬁcients are below unity. Of course, the above discussion
can be extended to the highler

K

t N

In the following, we consider only some special cases o
Eq. (11). These cases are confined by N/K, where the
values ofk are given by Eq(1). An example of these divi-
sors is shown in Table I. According to the expressitf),
whenk=2,t#1, theneg(2)=0, E(2)=0. The correspond- In this section, we will discuss the behavior of the wave
ing electronic state exists in the center of the energy spedunction for the states with the electronic energies deter-
trum of the transfer model, which can perfectly transmitmined byk of Eqg. (1). We study the spatial distributions for
from the Fibonacci chain witthN=F;,5 (i=1,2,...). two cases with the Fibonacci numbErg=2584 andF 4
When k=3, t=2, the expression1l) shows thate(3) =987, and some very interesting wave-function properties
=0.75, E(3)=—1.25. The corresponding electronic stateare numerically found. Examples are presented in Figs. 1 and
was studied in Ref. 17 in the MF chain with=F;=1597. 2, and the corresponding divisdksare indicated in the fig-
The authors found[F.;,E(3)]=0.59® ...#1. This can ures. From the figures we obtain the following conclusions:
be well explained from the given divisoksof Table I. Aswe  although the arrangement of atoms is quasiperiodic, most of
can seek=3 is the forbidden divisor in the 17th Fibonacci the global structures of the wave functions for allowed per-

IV. PERIODICLIKE WAVE FUNCTIONS
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(sl

2k (iﬂ'

(a) N=987, k=329 b N=987, k=141

|<Pi(k)|”2

= |—SIN|
T k

,  1<isk. (14)

0 250 500 750 1000 0 250 500 750 1000 With the aid of Eq.(14), we are able to explain the inter-
esting numerical results of Figs. 1 and 2. Let us for simplic-
ity consider Fig. 1c), which is the charge distribution of the
state for the 18th MF lattice with the chain lendgth- 2584
and divisork=646. For this case, the positions of both the
minima and the maxima appearing in the figure can be de-
termined by Eq(14). They are 0, 646, 1292, 1938, and 2584
———T——T— ————T—— T for the minima, while 323, 969, 1615, and 2261 are for the
0 20 S0 70010000 25005000 7501000 maxima, which is in good agreement with the numerical re-
Number of sites sults of Fig. 1c). In general, for a given MF system with
atomsN and divisork, the minima and the maxima positions

FIG. 2. The wave functions versus site number for the 16th MFOf the charge distribution of the corresponding state ke

lattice with 987 sites. Here the energiEék) = —2.5cosg/k). (a), where p=0.1 N/K)  and 1k (where
(b), (c), and(d) correspond, respectively, to=329, 141, 7, and 3. (:1 5 .pN/k,) ,fe's'p.e,ctive)ly. Conse(zuezn)tly tée globalpfea-

: . o . ture of the wave function for this state is periodiclike, and
fect transmitted electronic states are periodiclike. For a 9iVeR} ore arek atoms in each period. In addition, for smiallwe

system sizeN, the smqllerk is, the more p_eriods the enve- have found some homogenous wave functioRigs. 2c)
lope of the wave function has, and the period of the envelopg _ , 2d)] that have unity transmission coefficients. In par-

is exactly equal tdN/k. In Figs. Zc) and Zd) we notice that ticular. b ; : . ;

. , by comparing Fig. @) with Fig. 1(a) of Ref. 17, one
Whenk becomes rathgr sma(!d:ompared With\), the corre- may find immediately that both figures are almost identical.
sponding wave functions will change from periodiclike to In the above discussion, we have pointed out that these two

homogeneous. . . . states have absolutely opposite transmission coefficients 1
Now, we proceed to explain the particular periodicity of for Fig. 2(d) of our paper and 0.5 for Fig. 18 of
the envelopes of the wave functions in the MF systemsRef 17' et '

When ¢ and E are given by Eq.(11), we have M§=
(—1)%11, wherek is a divisor ofF,, and| is a 2x 2 unit V. RANDOM SYSTEMS

matrix, which indicates that the corresponding envelopes of

the wave functions must be periodic. As one can see, According to expressio(®), for a given electronic energy

| @i+ md =IMpa(i+m'K) 1| =|M11(i) 01| =| ¢i|, wherei (i E(k), a great number of MF chains that permit the perfect

<k) andm’ (m’'<F/k) are integers. To gain further in- transmission of this electron can be easily obtained. They are
sight into the behavior of the wave function, we next analyzeN=Fqmi, for m=3,4, andN=F,;, for m=5, wherei

the detailed structure of the wave-function amplitudes from=1,2, ... .Consequently, we can see that there are infinite

sites 1 tok. In this paper, we have chosen the initial wavekinds of disorder systems where the electronic transmission
functionsey=0 ande,;=1. At this point the overall behav-

(©) N=987, k=7 (d) N=987, k=3

I, (k) (arb.units)

ior of the wave-function amplitudes can be obtained exactly (@) N=68000, k=34 (b) N=68000, k=34
by the matrix elemeni 14(i). From Eq.(9), for a bigk, the
transfer matrixM(i) can be approximately expressed as _
M(i)=Mg, and the corresponding matrix elemét (i) is 2
given by E
i _ 'g 0 30000 60000 0 S0 100 150 200
T N’
1+22 COS( JT) for i even ﬁ;\ ©) N=68000, k=34 (d) N=68000, k=34
i =2 ~
Ma(i)= i _ (12) o
Jm . =
-2> co{ —) for i odd,
=1 k
where I<i<k. Then, the wave-function amplitudes are as 34000 34100 34200 67800 67900 68000
follows: .
Number of sites
li(K)|=[M1a(i) 1] FIG. 3. The wave functions versus site number for the random
i . system that is composed of 100typeand 34Y-type MF clusters,
~ 22 COS(J_W 1<i<k (13) whereX=F4 andY=Fg, the total system sizB=68000 and the
=1 k /|’ ' energyE(k) = — 2.5cos{r/34). (a) The global wave functiongb),

(c), and(d) are the enlarged figures ¢). They correspond to the
Sincek is big, it is not hard to transform Eq13) into left, center, and right part af), respectively.
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coefficient of E(k) is exactly unity. These models can be (7) and the condition M, ,Mg]=0, the global transfer ma-

readily constructed as trices have the particular fortd (N') =M}, which can also
be represented by the expressi@gh of Ref. 17 with N’

i1 J2 is .. —
_ Fm+mi1Fm+misz+mi3 , m=34 (15 =Zs1jsFmemiy, form=3,4, orN’=2_;jFp;_for m=5.
Srandoni Flt fl2 Els ... m=5 By applying the same procedure above, we have the trans-
mi,- mi, mi ! ! .. ..
v s mission coefficienfT=T[N’,E(k)]. Thus, the perfect trans-
whereiq,j1,is,j2,i3,j3, ..., arearbitrary positive integers. mitted condition isN’¢=K’ 7. BecauseN' is the linear
From the knowledge th&k,,, i, for m=3,4, andF,;, combination of the Fibonacci chains with same divikpk

for m=5 (i=1,2,...)meets the perfect transmission con-is, consequently, the divisor &’, which, in turn, implies
dition for the considered energy valligk), we can prove T=T[N’,E(k)]=1.

that the disorder systen{45) will also allow the electronic To illustrate the random systent45) more clearly, we
stateE(k) to pass them with zero resistance. To this end, lenow present the simplest random system of expresdibn

us consider the global transfer matrices of the disorder sysFhis system is composed of the following two kinds of MF
tems(15) for the allowed energ¥ (k). With the help of Eq. clusters:

X=F¢={BAABABAA, (16)

Y=Fy={BAABABAABAABABAABABAABAABABAABAABA

whereA andB are considered as two kinds of site energies VI. CONCLUSION

or hopping integers. From Table | we note that 2 is the In this paper, we have shown that there exists an interest-

common divisor of the 6th and 9th FM chains that pe_rmit the“mg kind of periodicity in Fibonacci numbers. We have stud-
electronic statd(2)=0 to move through them ballistically. jeq the relationship among the divisor of Fibonacci numbers,
Interestingly, by these two MF clusters, a related randompe transmission, and the form of wave function in MF sys-
system can be constructed, tems. On the one hand, for thheth MF system and the divi-
sorsk of F,,, we have obtained the periodiclike wave func-
tions for the energies relative to the divisd&¢sand proved
that the period of envelopes of wave functions are exactly
equal toF,/k. On the other hand, we have presented the
With the above background we are able to verify that theanalytical derivation that shows the transmission coefficients

electronic staté€E(2)=0 can also pass the random Systen.|scorresponding to these_ states are unity. _Furthermore, ‘we
(17) with unity transmission coefficient. Naturally, we also have found that some Fibonacci clusters with the same divi-

expect that the wave functions, like Figs. 1 and 2, can b&Or €an randomly combine together to for_m infinitg kinds of
observed in these random systems. To support this argumer%,sorder, Iattlces_ that have the same filtering function as the
we consider a random system that contains randomly placetdndlé Fibonacci cluster.

100 X-type and 34Y-type MF clusters, whereX=F4 and
Y=Fg. In Fig. 3 we plot the wave functions for the energy
E(34)= —2.5cos(/34). We also show the detailed structure  One of the authorgX.H.) would like to thank Dr. Fan

of Fig. 3(a) and these functions are shown in Figé&)3and  Zhong for his help. This project was supported by the China
3(d), which are seen to have a period of 34 atoms. Postdoctoral Science Foundation.
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