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Property of Fibonacci numbers and the periodiclike perfectly transparent electronic states
in Fibonacci chains
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We study the properties of Fibonacci numbers and the transparency of clusters for electrons at some values
of the energy. For themth Fibonacci numberFm , a set of divisors are obtained byFm /k5 bFm /kc, 1,k
<Fm . Interestingly, the numerical and analytical results show that any new divisors of themth Fibonacci
sequence will appear periodically in the following Fibonacci sequence. Furthermore, in the mixing Fibonacci
system, we perform computer simulations and analytical calculations to study the transparent properties and
spatial distributions of electronic states with the energies determined by the divisors of Fibonacci systems. The
results show that the transmission coefficients are unity and the corresponding wave functions have periodic-
like features. We report that an infinite number of one-dimensional disordered lattices, which are composed of
some specific Fibonacci clusters, exhibit an absence of localization.@S0163-1829~98!04325-2#
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I. INTRODUCTION

The medieval mathematician Leonardo Fibonacci of P
considered the idealized generation of rabbits and introdu
the so-called Fibonacci sequence. Since then, much rese
had discovered the link between this pure mathemat
model and real natural phenomena.1–4 However, the study of
one-dimensional Fibonacci systems has become particu
relevant since the remarkable discovery of Schechtm
et al.,5 i.e., the discovery of one-dimensional Fibonacci qu
sicrystals in rapidly solidified alloys,6 together with the real-
ization of a quasiperiodic superlattice.7 It has been found tha
both electronic and phonon spectra of Fibonacci chains
Fibonacci multilayers are of Cantor-set structures and
corresponding eigenstates may be localized, extended
critical.8–17The milestone work of Anderson showed that t
tight-binding models with a site-energy disorder cause
vanishing of the diffusion in one- and two-dimension
systems.18 However, Dunlap, Wu, and Phillips~DWP! ~Refs.
19–22! explicitly demonstrated that diffusion occurs in mo
els involving a specific type of correlation of the random s
energies known as random dimer models~RDM!, in which
two kinds of site energy«a and«b are assigned at random t
pairs of lattice sites. The basic reason for the appearanc
extended states in such systems has been traced to the
tence of short-range spatial correlations~clustering effect!. It
is worth mentioning that the idea of a clustering effect, fi
pointed out by DWP, has been the subject of ma
papers.23–26Moreover, some types of correlations have be
shown to be responsible for the appearance of extended
tronic states in one-dimensional quasiperiodic lattices, s
as the copper mean chain and the Thue-Morse lattice.27,28 In
the recent work on the aperiodic structure, several gro
have provided evidence of the possibility of Fibonacci a
Thue-Morse superlattices as selective electronic filters.29,30

As is well known, the Fibonacci numbers are rather ub
PRB 580163-1829/98/58~2!/739~6!/$15.00
a
ed
rch
al

rly
n
-

or
e
or

e
l

of
xis-

t
y
n
ec-
h

s
d

-

uitous, emerging in different problems of diverse disciplin
For instance, the arrangement of botanical elements acc
ing to the Fibonacci sequence has been well known for m
than a century.1 In fact, many distinctive physical propertie
of low-dimensional Fibonacci lattices are also related to
Fibonacci number.31,32 In the next section we will present a
interesting kind of periodicity of divisors of Fibonacci num
bers.

In recent works, the transparent properties in the mix
Fibonacci~MF! systems have been reported.17,33 One of the
aims of this paper is to also investigate the transparenc
electrons in MF systems with electronic energies related
the divisors of the Fibonacci number. These discussions
given in Sec. III.

Then, in Sec. IV, we report that periodiclike wave fun
tions with perfect transmission coefficients can be found
MF systems. In this section, we present the interesting
merical results and theoretically explain the numerical fin
ing of the wave functions.

Finally, in Sec. V, we consider the problem of the rel
tionship between the random system and the Fibonacci c
that was previously discussed by Phillips and Wu.21 In view
of the above-mentioned works, the research has been
stricted to two cases: the RDM-like systems with intern
symmetrical defects, and aperiodic systems with long-ra
correlation clusters. In this section, we construct some r
dom systems by using some quasiperiodic clusters. The
lytical studies show that these random systems permit
perfect transmission of some special electronic states and
corresponding wave functions are found to be extended.

II. THE PERIODICITY OF DIVISORS
OF THE FIBONACCI NUMBER

The Fibonacci sequence can be generated by the sub
tion rules:B→A andA→AB, whereA andB correspond to
739 © 1998 The American Physical Society
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two kinds of atoms. LetFm denote the Fibonacci number o
the mth sequence, which obeys the recursion relationFm12
5Fm111Fm , m>1, with initial conditionsF151 andF2
51. The first ten Fibonacci numbers are 1, 1, 2, 3, 5, 8,
21, 34, 55, and the ‘‘golden mean’’t5 limm→`Fm /Fm11

5(A521)/2. Let us consider themth Fibonacci sequenc
with the Fibonacci numberFm , for which a set of divisorsk
can be obtained. These divisors are defined as

Fm

k
5 b Fm

k c, 1,k<Fm , ~1!

where ‘‘b c ’’ denotes the greatest integer function.
From the definition~1!, we can easily obtain the divisor

k to an arbitrary high generation of the Fibonacci sequen
Table I shows the divisorsk of Fm up to F23528657 and a
part of divisors k of the F4651836311903 andF69
5117669030460994. On the basis of the above result
Table I, we can conclude that for any new divisorsk of mth
Fibonacci sequence, they will appear periodically in the f
lowing sequence, the corresponding periodP(k) is given by
the following expression:

TABLE I. The relationship among the Fibonacci generati
(m), the Fibonacci numberFm , and corresponding divisorsk. The
divisorsk exhibit different kinds of periodicity.

m Fm k

1 1
2 1
3 2 2
4 3 3
5 5 5
6 8 2, 4, 8
7 13 13
8 21 3, 7, 21
9 34 2, 17, 34
10 55 5, 11, 55
11 89 89
12 144 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36,

48, 72, 144
13 233 233
14 377 13, 29, 377
15 610 2, 5, 10, 61, 122, 305, 610
16 987 3, 7, 21, 47, 141, 329, 987
17 1597 1597
18 2584 2, 4, 8, 17, 19, 34, 38, 68, 76, 136,

152, 323, 646, 1292, 2584
19 4181 37, 113, 4181
20 6765 3, 5, 11, 15, 33, 41, 55, 123, 165,

205, 451, 615, 1353, 2255, 6765
21 10946 2, 13, 26, 421, 842, 5473, 10946
22 17711 89, 199, 17711
23 28657 28657

46 1836311903 139, 461, 28657, 64079, . . .
69 117669030460994 2, 137, 274, 829, 1658, 18077, 286

36154, 57314, 113573, 227146, . . .
,

e.

of

-

P~k!5m, m>3. ~2!

Before proving the above formula~2!, it is helpful to
write down the following recursion relation concerned wi
the golden meant:

tm1tm215tm22, ~3!

where the formulat21t2150 is applied.
Using the recursion relation of the Fibonacci number, o

can easily obtain the recursion relation between the gol
meant and the Fibonacci numberFm as follows:31

tm5~21!m~Fm212tFm!. ~4!

Becauset is an irrational number, from Eqs.~3! and~4! for
any positive integerl we have

Flm5LFm , ~5!

whereL is the sum of the Fibonacci number; therefore it
an integer.

The definition of Eq.~1! and the conclusion of Eq.~5!
lead to the obvious result that the divisorsk of Fm must also
be the divisors ofFlm . The result is in good agreement wit
the numerical simulation of Table I.

III. THE DIVISORS AND TRANSMISSION COEFFICIENT

Making use of the properties of the Fibonacci numb
above, we now study the electronic properties of the M
system, that have been studied by several groups.16,17,33The
Schrödinger equation for such a one-dimensional lattice w
nearest-neighbor interactions can be written in the tran
matrix form as follows:

Cn5MnCn21 ,
~6!

Mn5F E2«n

tn,n11
2

tn,n21

tn,n11

1 0
G , Cn5Fwn11

wn
G .

Here,wn denotes the amplitude of the wave function in t
Wannier representation,tn,n61 is the hopping matrix elemen
from the Wannier stateun& to un61&, «n is the site energy,
and Mn is a 232 transfer matrix. In the MF lattice, if one
chooses the site energies and hopping integers in such a
that «A52«B5«, tAB[1, and tAA[t, then the string of
transfer matrices ofmth MF can be described as17

Mm5M ~N!5•••MBMAMAMBMA ,

MB5FE2« 21

1 0 GFE1« 21

1 0 G , ~7!

MA5FE2« 2t

1 0 GF E2«

t
2

1

t

1 0
G FE1« 21

1 0 G ,
where N5Fm is the Fibonacci number,E is the electron
energy, andMA andMB are unimodular.

Defining xm5 1
2 TrMm , Kumar found that there exists

constant16

,
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J5Xm11
2 1Xm

2 1Xm21
2 22Xm11XmXm2121

5 1
8 Tr@MA ,MB#

5
1

4t2
@~11t2!«2~12t2!E#2. ~8!

WhenJ50, or @MA ,MB#50, thenE5«(11t2)/(12t2) is
obtained.16,17 Consequently, the transfer matrixMA andMB
can be decomposed as33

MB5M0
2 , and MA5M0

3 ,
~9!

M05F 2«t

12t2
2t

1

t
0
G .

At the same time,M (N) becomes the simple form
M (N)5M0

N , which can be explicitly evaluated in terms o
the Chebyshev polynomial of the second kind. Ifu«t/
~12t2)u<1, expression~4! of Ref. 17 can be readily ob
tained. Whereafter the transmission coefficient of the stud
system can be determined by

T~N,E!5
1

11@~12t2!2/~42E2!t2#sin2~Nf!
, ~10!

where 2cosf5AE22«2. From the expression~10!, we can
see that some transparent electronic states@T(N,E)51# can
be found in finite Fibonacci systems withNf5Kp. On ac-
count of the restriction of@MA ,MB#50, the integerK will
influence the choice of the model parameters« and t. It
seems that the authors of Ref. 17 had ignored this point

In fact, for a given MF system with sizeN, the model
parametert and an integerK, from the transparency cond
tion Nf5Kp of Eq. ~10! along with@MA ,MB#50, we find
another parameter« and the corresponding allowed transpa
ent stateE as follows:

«S N

K D5
t221

t
cosS Kp

N D ,
~11!

ES N

K D52
11t2

t
cosS Kp

N D .

In the following, we consider only some special cases
Eq. ~11!. These cases are confined byk5N/K, where the
values ofk are given by Eq.~1!. An example of these divi-
sors is shown in Table I. According to the expression~11!,
whenk52, tÞ1, then«(2)50, E(2)50. The correspond-
ing electronic state exists in the center of the energy sp
trum of the transfer model, which can perfectly transm
from the Fibonacci chain withN5F313i ( i 51,2, . . . ).
When k53, t52, the expression~11! shows that«(3)
50.75, E(3)521.25. The corresponding electronic sta
was studied in Ref. 17 in the MF chain withN5F1751597.
The authors foundT@F17,E(3)#50.5909 . . .Þ1. This can
be well explained from the given divisorsk of Table I. As we
can see,k53 is the forbidden divisor in the 17th Fibonac
d

-

f

c-
t

chain. In fact, it is possible to find many Fibonacci syste
where the electronic stateE(3)521.25 satisfies the trans
parency condition. These Fibonacci systems areN5F414i
( i 51,2, . . . ). In general, for a new divisork of the mth
Fibonacci chain, the corresponding electronic stateE(k) will
propagate through the corresponding Fibonacci chain ba
tically. Consider, for example, the situationk54 and t52.
It follows from Eq. ~11! that the model parameter«(4)
53A2/4 and energy E(4)525A2/4. Accordingly,
the transmission coefficients for this state with several
tice lengths can be obtained from Eq.~10!. They
are T@F15,E(4)#50.2799 . . . , T@F16,E(4)#50.4375 . . . ,
T@F17,E(4)#50.4376 . . . , andT@F18,E(4)#51. As can be
seen from Table I,k54 is the allowed divisor of the 18th
MF lattice and the related state can move through it with
decaying, whilek54 is not allowed in the 15th, 16th, an
17th MF systems. Therefore, the corresponding transmis
coefficients are below unity. Of course, the above discuss
can be extended to the higherk.

IV. PERIODICLIKE WAVE FUNCTIONS

In this section, we will discuss the behavior of the wa
function for the states with the electronic energies de
mined byk of Eq. ~1!. We study the spatial distributions fo
two cases with the Fibonacci numberF1852584 andF16
5987, and some very interesting wave-function propert
are numerically found. Examples are presented in Figs. 1
2, and the corresponding divisorsk are indicated in the fig-
ures. From the figures we obtain the following conclusio
although the arrangement of atoms is quasiperiodic, mos
the global structures of the wave functions for allowed p

FIG. 1. The wave functions versus site number for the 18th MF
lattice with 2584 sites. Here the energiesE(k)522.5cos(p/k). ~a!,
~b!, ~c!, ~d!, ~e!, and~f! correspond, respectively, tok52584, 1292,
646, 323, 152, and 136.
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742 PRB 58XIUQING HUANG AND CHANGDE GONG
fect transmitted electronic states are periodiclike. For a gi
system sizeN, the smallerk is, the more periods the enve
lope of the wave function has, and the period of the envel
is exactly equal toN/k. In Figs. 2~c! and 2~d! we notice that
whenk becomes rather small~compared withN), the corre-
sponding wave functions will change from periodiclike
homogeneous.

Now, we proceed to explain the particular periodicity
the envelopes of the wave functions in the MF system
When « and E are given by Eq.~11!, we have M0

k5
(21)k21I , wherek is a divisor ofFm and I is a 232 unit
matrix, which indicates that the corresponding envelopes
the wave functions must be periodic. As one can s
uw i 1m8ku5uM11( i 1m8k)w1u5uM11( i )w1u5uw i u, where i ( i
,k) and m8 (m8<Fm /k) are integers. To gain further in
sight into the behavior of the wave function, we next analy
the detailed structure of the wave-function amplitudes fr
sites 1 tok. In this paper, we have chosen the initial wa
functionsw050 andw151. At this point the overall behav
ior of the wave-function amplitudes can be obtained exa
by the matrix elementM11( i ). From Eq.~9!, for a bigk, the
transfer matrixM ( i ) can be approximately expressed
M ( i )5M0

i , and the corresponding matrix elementM11( i ) is
given by

M11~ i !55 112(
j 52

i

cosS j p

k D for i even

22(
j 51

i

cosS j p

k D for i odd ,

~12!

where 1< i<k. Then, the wave-function amplitudes are
follows:

uw i~k!u5uM11~ i !w1u

'U2(
j 51

i

cosS j p

k DU, 1< i<k. ~13!

Sincek is big, it is not hard to transform Eq.~13! into

FIG. 2. The wave functions versus site number for the 16th
lattice with 987 sites. Here the energiesE(k)522.5cos(p/k). ~a!,
~b!, ~c!, and~d! correspond, respectively, tok5329, 141, 7, and 3.
n

e

s.

of
e,

e

y

uw i~k!u'2U E
0

i

cosS yp

k DdyU
5U2k

p
sinS ip

k D U, 1< i<k. ~14!

With the aid of Eq.~14!, we are able to explain the inter
esting numerical results of Figs. 1 and 2. Let us for simp
ity consider Fig. 1~c!, which is the charge distribution of th
state for the 18th MF lattice with the chain lengthN52584
and divisork5646. For this case, the positions of both t
minima and the maxima appearing in the figure can be
termined by Eq.~14!. They are 0, 646, 1292, 1938, and 258
for the minima, while 323, 969, 1615, and 2261 are for t
maxima, which is in good agreement with the numerical
sults of Fig. 1~c!. In general, for a given MF system wit
atomsN and divisork, the minima and the maxima position
of the charge distribution of the corresponding state arepk
~where p50,1,2, . . . ,N/k) and (p2 1

2 )k ~where p
51,2, . . . ,N/k), respectively. Consequently, the global fe
ture of the wave function for this state is periodiclike, a
there arek atoms in each period. In addition, for smallk, we
have found some homogenous wave functions@Figs. 2~c!
and 2~d!# that have unity transmission coefficients. In pa
ticular, by comparing Fig. 2~d! with Fig. 1~a! of Ref. 17, one
may find immediately that both figures are almost identic
In the above discussion, we have pointed out that these
states have absolutely opposite transmission coefficien
for Fig. 2~d! of our paper and 0.5909 . . . for Fig. 1~a! of
Ref. 17.

V. RANDOM SYSTEMS

According to expression~2!, for a given electronic energy
E(k), a great number of MF chains that permit the perfe
transmission of this electron can be easily obtained. They
N5Fm1mi , for m53,4, andN5Fmi , for m>5, where i
51,2, . . . .Consequently, we can see that there are infin
kinds of disorder systems where the electronic transmiss

FIG. 3. The wave functions versus site number for the rand
system that is composed of 100X-typeand 34Y-typeMF clusters,
whereX5F9 andY5F18, the total system sizeN568000 and the
energyE(k)522.5cos(p/34). ~a! The global wave functions,~b!,
~c!, and~d! are the enlarged figures of~a!. They correspond to the
left, center, and right part of~a!, respectively.
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coefficient of E(k) is exactly unity. These models can b
readily constructed as

Srandom5H Fm1mi1

j 1 Fm1mi2

j 2 Fm1mi3

j 3
•••, m53,4

Fmi1

j 1 Fmi2

j 2 Fmi3

j 3
•••, m>5,

~15!

wherei 1 , j 1 ,i 2 , j 2 ,i 3 , j 3 , . . . , arearbitrary positive integers
From the knowledge thatFm1mi , for m53,4, andFmi ,

for m>5 (i 51,2, . . . ) meets the perfect transmission co
dition for the considered energy valueE(k), we can prove
that the disorder systems~15! will also allow the electronic
stateE(k) to pass them with zero resistance. To this end,
us consider the global transfer matrices of the disorder
tems~15! for the allowed energyE(k). With the help of Eq.
ie
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~7! and the condition@MA ,MB#50, the global transfer ma

trices have the particular formM (N8)5M0
N8, which can also

be represented by the expression~4! of Ref. 17 with N8
5(s51 j sFm1mis

, for m53,4, orN85(s51 j sFmis
for m>5.

By applying the same procedure above, we have the tra
mission coefficientT5T@N8,E(k)#. Thus, the perfect trans
mitted condition isN8f5K8p. BecauseN8 is the linear
combination of the Fibonacci chains with same divisork, k
is, consequently, the divisor ofN8, which, in turn, implies
T5T@N8,E(k)#51.

To illustrate the random systems~15! more clearly, we
now present the simplest random system of expression~15!.
This system is composed of the following two kinds of M
clusters:
X5F65$BAABABAA%,
~16!

Y5F95$BAABABAABAABABAABABAABAABABAABAABA%,
est-
d-
rs,
s-

c-

ctly
the
nts
we

ivi-
of
the

ina
whereA andB are considered as two kinds of site energ
or hopping integers. From Table I we note thatk52 is the
common divisor of the 6th and 9th FM chains that permit
electronic stateE(2)50 to move through them ballistically
Interestingly, by these two MF clusters, a related rand
system can be constructed,

Srandom5$•••XXXYYXYXXYYXY•••%. ~17!

With the above background we are able to verify that
electronic stateE(2)50 can also pass the random syste
~17! with unity transmission coefficient. Naturally, we als
expect that the wave functions, like Figs. 1 and 2, can
observed in these random systems. To support this argum
we consider a random system that contains randomly pla
100 X-type and 34Y-type MF clusters, whereX5F9 and
Y5F18. In Fig. 3 we plot the wave functions for the energ
E(34)522.5cos(p/34). We also show the detailed structu
of Fig. 3~a! and these functions are shown in Figs. 3~c! and
3~d!, which are seen to have a period of 34 atoms.
s

e

e
s

e
nt,
ed

VI. CONCLUSION

In this paper, we have shown that there exists an inter
ing kind of periodicity in Fibonacci numbers. We have stu
ied the relationship among the divisor of Fibonacci numbe
the transmission, and the form of wave function in MF sy
tems. On the one hand, for themth MF system and the divi-
sorsk of Fm , we have obtained the periodiclike wave fun
tions for the energies relative to the divisorsk, and proved
that the period of envelopes of wave functions are exa
equal toFm /k. On the other hand, we have presented
analytical derivation that shows the transmission coefficie
corresponding to these states are unity. Furthermore,
have found that some Fibonacci clusters with the same d
sor can randomly combine together to form infinite kinds
disorder lattices that have the same filtering function as
single Fibonacci cluster.
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