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The diffraction beam from an anisotropic, random, rough surface is investigated. Two kinds of anisotropic
surfaces with either a correlation-length anisotropy or a scaling anisotropy are considered. For the correlation-
length anisotropic surface with an isotropic scaling, the shape of the diffraction beam directly reflects the
surface anisotropy under any diffraction condition. However, for the correlation-length anisotropic surface with
an anisotropic scaling, the anisotropic scaling exponents may alter the anisotropy in the diffraction beam shape,
sometimes even rotating the direction of anisotropy as the diffraction condjtianchanges. Herg, andw
are the momentum transfer perpendicular to the surface and the interface width, respectively. This result
demonstrates that one must be cautious when analyzing anisotropic diffraction beams. These results also
provide a way to differentiate experimentally the correlation length anisotropy from the scaling anisotropy in
anisotropic rough surfacegS0163-18208)03935-9

[. INTRODUCTION can be formed during growth proces$d=or the correlation
length anisotropy, the dynamic growth equation can be made
The dynamics of surface morphological evolution duringisotropic by a linear transformation. In this case, the forma-
thin-film growth or etching process is of great technologicaltion of a correlation length anisotropic surface can be
and scientific interest. These processes usually generate raachieved simply by stretching an isotropic surface in certain
dom rough surfaces that can be described in terms of seltlirections, resulting in different lateral correlation lengths.
affine fractals-? Self-affine fractal surfaces exhibit fluctua- The scaling properties of the surface would remain the same
tions in the direction perpendicular to the surface, which cann all directions. From the point of view of dynamic growth,
be characterized in terms of the height-height correlatiorsych a surface is the result of the anisotropy of one dominant
function H(r)=([h(r)—h(0)]%). Hereh(r) is the surface surface process such as evaporation/condensation or surface
height at positiorr [=(x,y)] on the surface. The notatid)  giffusion during the growth. It is not the case for the aniso-
means an average over all possible choices of the origin, a"\‘f"opic scaling, in which the roughness exponeris direc-
an ensemble average over all possible surface configurationgyna| dependent, with or without a correlation length anisot-
Usually if an isotropic surface is assumed, the height-heighf,,; | the case of anisotropic scaling, the surface is formed
corzrelatlon would depend only on the magnituder pH(r) by at least two competing surface processes, in which at least
«r<® for r<¢, and H(r)=const forr>¢. Here £ is the : : ; . :
one is anisotropic. In the framework of dynamic scaling, the

lateral corrglatlon length within wh|_c h the surface heights OfoveraII interface width of the surface scales with the growth
any two points are correlated, amdis the roughness expo- time astf. which means that the dvnamic exponemts
nent. The value of, which lies between 0 and 1, describes o L e dy P

(=dalp) in different directions are different.

how wiggly the surface is. The smaller the the more wig- . i o .
99y ae 9 An interesting research topic is to characterize these two

gly the surface. Most diffraction theories developed so far _ . . :
are based on an isotropic surface model. different anisotropies experimentally, as they reflect different

However, in practice, sometimes surfaces may not be isgdynamical processes. In a real space measurement such as
tropic. Dynamic equations have been developed to describ@omic force microscopyAFM) or scanning tunneling mi-
processes that form anisotropic surfaces. An example is the'0scopy(STM), one can calculate the directional height-
kinetic roughening on a vicinal surfaayhere the growth height correlation function to determine if the roughness ex-
process can be described by an anisotropic Kardar-Parisponent « is directionally dependent. Another important
Zhang (KPZ) equation. Recent study has revealed that thisxperimental technique to study the dynamics of surface
anisotropic KPZ equation would give a directionally depen-evolution is diffraction. However, in diffraction, the shape of
dent scaling propert§.In fact, the directionally dependent the diffraction beam not only depends on the surface mor-
scaling, in which the value of the roughness exponede-  phology, but also depends on the diffraction condition. Un-
pends on the direction, has been recognized in geophysiceker certain conditions, diffraction may not directly reflect the
studies’ statistical properties of the surface morpholdgsow does

Besides this scaling anisotropy, there is another kind obne differentiate these two kinds of anisotropy through dif-
anisotropy caused by the anisotropy in the lateral correlatiofraction? How does the diffraction condition affect the dif-
length scale. In this case, the scaling properties of the surfadeaction beam shape? What information can one obtain? In
remain the same in all directions. Recently we developed this paper, based on the proposed height-height correlation
linear anisotropic growth modéivith noise demonstrating functions for these anisotropic surfaces, we study the char-
that both scaling anisotropy and correlation length anisotropycteristics of the shapes of the diffraction beams and the
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relationships between surface power spectra obtained from 2 10°
these surfaces.

II. ANISOTROPIC SURFACE MODELS

Different characteristic functions, such as autocovariance
function R(r), height-height correlation functioH(r), and
power spectruni(q,), wheregq; is the reciprocal space vec-
tor, have been used to describe the random rough surfaces.
These three functions are related to each other. The defini-
tions and relationships in ddimensional surface are given

by
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FIG. 1. Power spectrunP, autocovariance functiolR, and
wherew= \{[h(r) —h]?), known as the interface width, and height-height correlation functiohl for a=0.75, £,=400, andg,
h is the average surface height. The difference betweer 100. Note that the power spectrum and height-height correlation
H(r)/2 andR(r) is only a constantw?, while P(q) and function are plotted in log-log scales, while the autocovariance
R(r) are Fourier transform pairs. Therefore, these three fundunction is in a linear plot.
tions contain the same surface structural information. For an
isotropic surface, all of these functions are independent of A. Correlation length anisotropy
direction, e.g., R(r)=R(r), H(r)=H(r), and P(q) In modeling the anisotropic seafloor morphology, Goff
=P(qy). For an anisotropic surface, since the surface morand Jordan introduced a form of the power spectq,)
phologies are directionally dependent, the functional formg$
for those characteristic functions are more complicated. In
general, the autocovariance functiBgr) can be written in P(Qu)=20¢§x§yW2(1+Q§§>2<+ qigg)—l—a, (4)
the form
where ¢, and &, are the correlation lengths in theandy
R(r)=w2p(r). (2)  directions, respectively. Note that we can also assume other
forms; see the Appendix. However, the asymptotic behaviors

Note thatw? is square of the interface width over the surface.0f those forms are the same. The isotropic case of (.
For a given surfacen? is a constant. The functiop(r) is a  Was first used by Von Karmah,and has been studied

directionally dependent autocorrelation function, which haxtensively:’~*? Equation(4) has the following properties.
the following properties: (i) Wheng, (or q,) —0 while g, (or g,) remains constant,
then P(q;) ~const.(ii) Whenqy (or q,) — while g, (or

a,) remains constant?(q;)ocq, 2~ 2* [or P(q”)ocqu_za]'

=1 . . . . .
p(0)=1, (33 i.e., the scalings in both theandy directions are the same.
(iii) The full width at half maximum{FWHM) of the power
p(|r|—o=)=0. (Bb)  spectrum satisfies
ThereforeH(0)=0, andH(|r|—o)=2w?2. 292, + §§QEy: pllta_q )

As we showed before, there are at least two kinds of
anisotropy for a noise-induced rough surface, the correlatiowhereqg, andqg, are the FWHM positions of the diffrac-
length anisotropy and the scaling anisotr8gyor the corre-  tion beam along the, andq, directions, respectively. Equa-
lation length anisotropy, there are different lateral correlatiortion (5) describes an ellipse with the principal axes along the
lengths along different directions, but the scaling properties), and g, directions. The ratio of the diameter of the short
of the surface remain the same in all directions. For the scalxis, a,, and the diameter of the long axa,, is
ing anisotropy, the scaling property of the surface, e.g., the
roughness exponent, is directional dependent, with or ay, &
without the correlation length anisotropy. Based on these two a_y = f_x (6)
major features, we propose the following anisotropic random
surface models. Note that for simplicity, in the following, all Using the relation in Eq(1c), the autocovariance function
the surfaces are assumed to be Gaussian. can be written as
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w? . 21 1
R(r)= —agxfry f (L+az&i+ajey) t "e 'adr P(q)) = zgxgywrr((z J)FF“(X)F)(Z ey
ay)l (ay
W2 X2 y2 al? X2 y2 1/2 X(1+ 252)_1/2_0‘)((1—}— 262)—1/2—01)/, (10)
= st | 2T 2] Kdlzta 7 etx ey
(a) \ & & x &

wherea, anda, are the roughness exponents in handy
Here the functionK ,(x) represents the modified Bessel directions, respectively. Equatiol0) has the following
function of theath order. From Eq(1b), one can obtain the properties(i) Wheng, (or q,) —0 while g, (or g,) remains

height-height correlation functioH(r), constant, thefP(q) ~ const.(ii) Whenq, (or gq,) —< while
qy (or g,) remains constantP(qH)ocq;H“X [or P(qy)
, x2 y?\ a2 ocqgl_zay], i.e., the scalings in both the andy directions
H(r)=2w {1—m (?+?) are not the sameliii) It is clear that the contour of the
o FWHM from Eq.(10) will not have the elliptical form. How-
K2y 12 ever, as Eq(10) has a quadratic symmetry, the ratoof
XKl | =+ 23 ” (8) FWHM's for the g, and theq, axes still reflects the surface
x Sy anisotropy,

As K, (X)~2% I (a)Ix*+[T(— a)/2' T «]x“ for x— 0, and

0<a<1; K, (x)~(m/2x)e”* for x—, one has gy (2202 1|12
Y= | paarzay 1 (1)
& \2 -1
W2 X2 y?\e . :

H(r) =~ s > =+ for |r|—0, Equation(11) shows that the ratiezr depends not only on the
2% Ca sinfam)l'(a) \ & & ratio of the lateral correlation lengthkig /&, , but also on the

H(r)~2w? for |r|—c. scaling exponentsy, and a,, {[2%(*2)—1)[22/(+2e)

(9  —17}Y2 One can estimate that the ratio caused by aniso-

) ) tropic scaling exponents ranges from 0.4é €1 and a,
Figure 1 plots two orthogonal cross sections of the power— 0) to 2.26 @,=0 anda,=1).

spectrum, autocovariance function and height-height correla- The autocovariance function can be written as
tion function fora=0.75, §,= 400, and¢,= 100. In the log-
log plot of the power spectrum, at largg the tails of two

cross sections are parallel. Similar behavior is also observed 4w? EX| X &y |y
in the log-log plot of height-height correlation function at the R(r)= ()l (a )gzcvxgay o |2
smallr region. However, the widths of the flat shoulders of X yisx By
the two cross sections in both power spectra and height-
height correlation functions are not the same. These are typi- X y
S . . XK, Ka , (12
cal characteristics of a correlation length anisotropy. We also x\ | €x "\ €y

plot in Fig. 2 the contours of the power spectrum and auto-
covariance function foer=0.75, £,=400, and¢,=100. The  and the height-height correlation functiéf(r) is
shapes of the contours are elliptical, but the long axis in the
power spectrum is perpendicular to the long axis in the au-
tocovariance function from the property of the Fourier trans-
form. H(T)ZZWZ[l—

4 £ &y

2

&
2

B. Scaling anisotropy
X

&

Yy
&

F(ax)T(ay)éiaxg)z,ay
A simple way to construct an anisotropic scaling surface XKe, )Kay( ” (13
is to assume that the and they directions have different
roughness exponents. Then the power spectrum can have the
following form: The asymptotic behavior of EQL3) is

i

2ay
) for |r|—0

1|1 G (26| s |2
=W S T (e (28 |1 Sin(aymT(ay) | 26,

H(r){ T X | 2% T y
=2 S o T a) (E) W T ay) (z_fy
=2w? for |r|—oe.

(14
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FIG. 2. The equal value contours @ the power spectrum ari@) the autocovariance function fer=0.75, ¢,= 400, andé, = 100. All
X, ¥, Oy, andqy are in arbitrary units.

Figure 3 plots two orthogonal cross sections of the power=0.4, £,=90, andé,=100; and(c) a,=0.75, ay=0.4, §,

spectra, autocovariance functions, and height-height correla=50, andé,=100. The shapes of the contours are not ellip-

tion functions for a,=0.75, ay=0.4, §{,=400, and ¢, tical any more. However, the long axis in the power spec-

=100. Unlike Fig. 1, in the log-log plot of the power spectra, trum is not only determined by the correlation length of the

at largeq, the tails of two cross sections are not parallel. Ashort axis in real space, but also by the roughness exponent.

similar behavior is also observed in the log-log plot of For example, in Fig. ), £,<¢,, but the long axis is still in

height-height correlation functions at the snralegion. This  the g, direction sincex,> «, . These behaviors are also re-

is a typical characteristic of a scaling anisotropic surface, théected in the autocovariance plots.

roughness exponents are different in different directions.

However, the widths of the flat shoulders of these two cross IIl. DIEERACTION THEORY FOR ANISOTROPIC

sections in both power spectra and height-height correlation SURFACES

functions are not the same. We plot in Fig. 4 the contours of

the power spectra and autocovariance functions(&ra, The power spectrum discussed in Sec. Il is proportional to

=0.75, ay=0.4, £,=400, andé,=100; (b) a,=0.75, ay the diffraction beam only under certain diffraction conditions
(see the following discussignin this section, the diffraction

characteristics from anisotropic surfaces under a general dif-

2 10° : >
ZF fraction condition are explored.
g10 o We shall assume that the surface height obeys a Gaussian
-8 10° distribution. In general, the diffraction intensity from an an-
%10’z ) isotropic surface can be written'ds
107

S<q>=J dr C(q, r)ea, (15

whereq is the momentum transfer, and can be decomposed
into two orthogonal components, the momentum transfer
perpendicular to the surfacg, , and the momentum transfer
parallel to the surfacey,. Note that we use the same nota-
tion g,, which was used as the reciprocal space vector in

R (arb. units)
OO O -
SN BN O

o 500 1000 1500 2000

b. uni Sec. Il. The height difference functionC(q, ,r)
o r(arlumts)l - =(e'ahO=hO)]y For a Gaussian surfacg,
C(q, ,1)=e HO2 (16)
The height difference functio@(q, ,r) can be decomposed
~ i into two parts,
T
C(ay,r)=AC(q,,n+C(qy,|r|—=). (17)

g, (arb. units)
] ) Therefore, the diffraction profile contains &peak and a
FIG. 3. Power spectrunP, autocovariance functiofk, and diffuse profile

height-height correlation functioi for «,=0.75, a,=0.40, &,

=400, and¢,=100. Note that the power spectrum and height- _ 2.~ q2w?

height correlation function are plotted in log-log scales, while the Ss(a) = (2m)%e 1" 8(qy) (18)
autocovariance function is in a linear plot. and
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Power Spectrum Autocovariance Function
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FIG. 4. The equal value contours of the power spectra and the autocovariance functi@sde+0.75, a,=0.4, £,=400, andé,
=100; (b) a,=0.75,@y=0.4, £,=90, andé,=100; and(c) a,=0.75,@,=0.4, £,=50, andé,=100. All X, y, d,, andq, are in arbitrary
units.

Sdiff(Qu):e_qiwzf dzr[eqfwzp(r)—l]eiq”'r- (19 qu\\sﬁ(QI\)

Rs= —e UW o0 (20)

- . L _ f dao S(ay)
Equation(18) shows that the-peak intensity is a function of
only the first-order statistical property of the random surfacewhere) = (q, w)2. The same ratio also holds for the isotro-
the interface widthw. In fact, this is true for all rough sur- pic Gaussian surface. Note that the integration is an area
faces no matter what the height distributions or correlatiorintegral.

functions aré:* The ratio of thes-peak intensity to the total The diffuse intensity, Eq(19), is the more complicated
diffraction intensity,R;s, is and an important part, because it reflects the short-range cor-
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relation of the surface as well as the surface anisotropy. In

X
general, Eq(19) can be expanded into a Taylor series, x'= g—
X
Sairr(dy) =€ QE Jdr p(r)nelarr (21) y
y, = F
Equation (21) shows that the shape of the diffuse profile &
depends on the value 6I. For (<1, only the first term in
Eg. (21) dominates, =Jx"2+y’2,

Sdiff(qu)~e*“(2fdr p(r)e'drepP(q), (22 and

e., the diffuse profile is proportional to the surface power ,
spectrum. However, when the conditiéh<1 is not satis- Gk = &xOlx
fied, the higher-order terms 1) on the right-hand side of
Eq. (21) should be taken into account, and the diffuse profile
is no longer proportional to the surface power spectrum. In
this case, would the surface anisotropy still be directly re-
flected in the shape of the diffuse profile? This is a question '— g2+ q’2
that needs to be addressed since the conditierii may not N e Ty
always be satisfied in a diffraction experiment. The value of
g, orw or both may be sufficiently large th&<1 may not
be valid. Here we consider two specific surface models.

Q{/: quy )

g. (19 becomes

(g )=e 2 20 0(r' ) _ 176191’
A. Correlation length anisotropy Saitr () =€ fxfyf dr'fe”” e, (23

We consider the diffuse diffraction profile from a surface
with a correlation length anisotropy. Inserting E&) into  wherep(r)=[1/(2* " 'T'(«))]r' *K,(r"). This form matches
Eq. (190 and performing the following linear transforma- the corresponding result for the isotropic surfaces. Sor
tions: >1, Eq.(23) become¥

Sdiﬁ(qu/)wznggycfl/aﬂfl/af Xe Xza‘] (C l/2aQ 1/2aq‘ X)dX 27T§X§ o 1/aQ 1/aF (C l/2aQ 1/2aqH) (24)
0

where the FWHM of a diffuse diffraction beam projected in thg
andq, directions of the momentum transfer in the reciprocal
C=ml[22%al?(a)sinam)], space for eight different values 6f=(q, w)2. The surface
is anisotropic in the lateral correlation length, witf)
" =400, which is different from¢, = 100. An isotropic scaling
Fa(y)zj Xe*XZ“JO(xy)dx, exists in the surface, i.e., the values of the roughness expo-
0 nenta along thex andy directions are the same and equal to
0.75. The contours near the center, which correspond to
andJy(x) is the zeroth-order Bessel function. The contour ofsmall values of) (=0.1 and }, are very close in their sizes;
the FWHM for a diffraction beam satisfies these two contours overlap. A3 increases, the size of the
contour increases. Therefore, for the correlation length aniso-
tropic surface model, the diffraction profile shape reflects the
surface anisotropy under any diffraction condition.
To contrast the anisotropic surface model, we also plot the
FWHM contours for an isotropic surface with=0.75 and
&x=§,=100 as the dashed curve fr=20 in Fig. 5.

)2<qFx qu;:y—4Y§C]'/aQ]-/“:4Y5C1/a(qlw)2/a,( )
25

where Y, is a constant depending only an and satisfies
a(Yg)— 3F ,(0). Equation(25) for a diffraction profile un-

derQ>1 and Eq.5) for a power spectrum{{<1) are very _ _

similar except for the diameter of the ellipse. The ratio of the B. Scaling anisotropy

diameters of the principal axes is the same. Note that the For a scaling anisotropic surface, whéh<1, as dis-

power spectrum contour is obtained fa<1. However, for  cussed above, the diffraction beam is proportional to the sur-

a diffraction profile aIQ>1 the ellipse diameter increases asface power spectrum. However, f@>1, the diffraction

a power law ofg, , i.e. ql . Figure 5 shows the contours of profile can be written as



7306 Y.-P. ZHAO, G.-C. WANG, AND T.-M. LU PRB 58

) X | 29x y |29 anisotropic surface, as the diffraction beam itself becomes
Sdiff(ql\)~J dr exp —Q Cx(g_ +Cy g—) €'’ anisotropic, the cross section is directional dependent. Is it
X y still possible to obtain the interface width through a line scan
E&y of the diffraction intensity?
= () 12yt U2aey - 25, S 1722y Without losing any generality, we can consider the cross
X y section in theq, direction. In a real detection system, the
<G [Qfllzaxcfllmxg a.] detector has a finite size. The diffraction intens8y (line
x X X scan integrated over a finitey, is
— 120~ 12a
8 Gay[Q 'y e (29 Ady —i(gx+ayy)
where SC(qX)_J—Aqydqyff dx dy qqy.rje TR
28
C,= ml[22%al?(ay)sin( aym)], 28
S:(qy) can be also broken into two partsdgpeak,
Cy= W/[Zzayarz(ay)sin(ayﬂ')], )
and Ses(Ox) =2me” 4" 5(qy), (29)
te and a diffuse profile,
Ga(Y)=j e XM e XYgX.
— o0 Aqy

2,2
S . = f d J’ J’ dX d C ) — e*qu
WhenY—c, one hasG,(Y)«Y =22 Therefore, the ratio () -Aqgy % hea.n ]

s of the FWHM's for theq, and theq, axes for the diffrac-
tion profile can be obtained as

12a, For simplicity, we consider only the case of the correlation

Xe_i(qxx+qu)_ (30)

&Yq, Cy length anisotropic surface
Ys= &Y X clay (01, w)Hox™ Hay= o (g, w) Hox Hay, g P ,
X ayy Aqy

@ sauao= [ dq,[ [ oxay

where G (Y,)=3G,(0). The ratio vy, is determined not

only by the surface roughness parameterst, anda) them- XY i)

selves, but also by the diffraction condition through. In XG|q,; & g—)e BTy

Fig. 6, we plot several FWHM contours for different surface o

parameters. The contours near the center that correspond to _ aagdy o, Naig’
small values of) (=0.1 and } again are very close in their _27T§XJ_Aqy§ydqyj dr'G(q.,rHet

sizes and overlap. AS) increases, the size of the contour
increases. The surface is anisotropic in the lateral correlation (31)
length with ¢, =400 different fromé,=100. The surface has
an anisotropic scaling, i.e., the values of the roughness e
ponenta along thex andy directions are not the same. Fig-
ure Ga) shows that if§,> &, and ay(=0.75)> a,(=0.40),
the anisotropy in the shape of the diffraction beam §br scdiﬁ(qx)=4ﬂ-§x§yAqyf d’r'G(q, ,r')eiqu"r'

>1 is quite pronounced, especially in the direction. Note q/=0
that the scale in Fig. (@) is increased three times as com- (32
pared with that of Fig. 5. Qualitatively the contours in Fig. 5
and Fig. §a) are similar.

However, if £,>¢, and a, (=0.25)<a, (=0.75), as
shown in Fig. 6b), the direction of the anisotropy in the f Seai(Ax)d 0= 47E,AQ,C(Q, a), (33
FWHM contour would rotate as the diffraction condition
changes froml<1 to O>1 (aroun_sz'ZO). This result where C(Q,) is a constant depending on bothand a.
shows that the shape of the diffraction beam dependgqyation(33) shows that the integration of the diffuse profile
strongly on both the correlation length anisotropy and th&g girectional dependent. Because #H@eak is superposed
scaling exponent anisotropy. These two anisotropies compets, the diffuse profile, thes-peak ratio(with respect to the
with each other as the diffraction condition is changed.  (4t5] intensity in the line scaralso depends on the direction.
If during a growth process the surface anisotropy &f
changes, then the change in thpeak ratio from a line scan

Another interesting feature is the cross section of the difreflects both the changes of and of the anisotropy. One
fraction profile from the anisotropic surface. A cross sectioncannot obtain the interface width from a line scan without
of the diffraction beam is obtained by line scans in an exknowing the anisotropic properties éfin the surface. How-
periment. For an isotropic surface, the cross section alongver, if Ag, is small, the line scan can be approximated by a
any direction is the same, and one can obtain the interfaceross section of the two-dimensional diffraction beam. One
width from the &-peak intensity ratidR;. However, for an  can still obtain the correspondirtgand « in a certain direc-

vhere G(ql,r)=C(qL,r)—e*qu2. If Ag, is small, Eq.
31) can be approximated by

Therefore the integration of the diffuse profile becomes

C. Line scan of the diffraction beam
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Half-Maximum Positions Half-Maximum Positions
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FIG. 5. Contours of the FWHM of a diffraction diffuse profile Half-Maximum Positions

. . 400 . 0.6 — 7T - T ' T r T T T T
as a function of) with a,= a,=0.75 andé, /§, = 155=4. The size |
of the contour increases with the increasidgralue. For compari- 04 §,=400 2 ,=025 2 =01
son, an isotropic surface with an isotropic scaling=t £,= 100, ’ ¢,=100 & =075 1
a=0.75) is also shown as the dashed curve(or 20. 12
02+
tion according to the discussions in Secs. Ill A and Il B. For ) -
an anisotropic scaling surface, one can obtain a similar re- g L
it 3 00 40
SUult. g 50
D. Possible experimental realization = 02F ]
Although many authors reported the observation of aniso- 04 ]
tropic surfaces, very little quantitative measurement with re-
spect to the growth and roughness parameters has been L

< X 3 Ny M B R .
performed®~?> One good candidate for an anisotropic sur- 08 04 02 00 02 o7 os

face is the growth on a vicinal surface, in which the lateral
correlation length along the step direction is longer than that
along the direction perpen.d'CUIar to the step: The roughness FIG. 6. Contours of the FWHM of a diffuse diffraction beam
exponent can change during the growth of films on steppeﬂg1

q,. (arb. units)

surfaces. In order to see the rotation of the diffraction bea rgjfgi?sréiérfﬁaigdfgé (irfggo;s:olfotge a?gn\]/ea?it cl::; tvrzﬂiir O'?
anisotropy from such an anisotropic surface, the valuof ,~ "\ aX:0.7X5 and a.=0.40: (b) a,=0.25 anda
_nee(_js to change by, say, a factor Off}zfrom 10 0 40 as showpl 0.75. The size of the contouryincreases with the increaﬁyng
in Fig. 6. Thus, Fhe ijOdUCﬂ]J_W_=Q _must Change by a value. Note that in(b) the extreme local roughness,(=0.25) in
factor of 2. In a diffraction eXpe”me'f‘L if a_vvave with \_Nave— the x direction dominates the FWHM even thoughis four times
length\ scatters from the surface with an interface width larger thang, .
theq, w value can be changed by varying the incident angle Y
with respect to the sample or by rocking the sample. This i$ete with each other in a surface. We showed that the dif-
because the, for the specular diffraction beam is equal 10 gaction profile of an anisotropic surface would be quite
(4m/\)cosd, where ¢ is measured with respect to the Sur- yigterent from that of an isotropic surface. We derived the
facI(:a ”Olfmha'- . ith a He-Ne | f | h diffraction profiles for surfaces with anisotropy in the lateral
632§ rA '?hé scsztatli anaxvge \E/iarieec; be azliri?)rstoa gi:;%?gfo correlation length and with anisotropy in the scaling expo-

' qi_4 A1 o ,&Y—l _ggo nent. For surfaces with an isotropic roughness exponent, the
fro”g 1.710 FO 2.0><_1(_) (0= to 6 lateral correlation length determined the shape of the profile
=0°). Inorder to obtain a sufficiently larg (say 40, one at all diffraction conditions. In contrast, for the case of an

requires an interfape .Width of 3000 A. Alternatively, if the anisotropic roughness exponent, the anisotropic profile de-
wavelength of the incident wave can be changed, such as |I51

X : ends not only on the lateral correlation length anisotropy,
Iow—energy elgctron dlffracuoml__EED), then theq, w can but also on the diffraction conditiog, through a power law
be varied easily. For example, if the electron energy chang

€Rlated to the anisotropi h ts. The lateral
from 40 eV(~2 A) to 150 eV(~1 A), thqu_ value would ate (0] € anisotropic roughness exponents e latera

] correlation length determined the shape of the profile onl
range from 6 to 12 AL. One can obtain a larg@ value even for low vaIuesgof . w)2. For high valﬂes of ¢ vI\j)Z the y
for smallw. L L

anisotropy in the roughness exponent competes with the an-
isotropy in the lateral correlation leng#h Both anisotropies
can affect the shape; that is, the anisotropy of the diffraction
An anisotropic surface can be formed when surface tenprofile can rotate from one direction to a different direction
sion (evaporation/condensatipand surface diffusion com- as the value of ¢, w)? increases. We also showed that the

IV. CONCLUSION
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value of the interface width calculated from the line scan ofand

a one-dimensional integrated diffuse intensity depends on the

lateral correlation length and the direction of the scan. An Oy = &0y,
accurate determination of the interface width from the ratio

of the 6-peak intensity to the integrated diffuse profile inten-

sity in a line scan is only possible if the directionally depen- Gy =&y
dent lateral correlation length is known. This is in contrast to
the isotropic surface, in which the shape of the diffuse inten- qf= Vo, +ay’, (A4)

sity is independent of the direction of scan.
one has
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=W?EEF,(a)), (A5)
APPENDIX
In this appendix, we propose other forms of the anisowhereF ,(Y) = [5Xe X*J5(XY)dX andJy(x) is the zeroth-
tropic surface models. order Bessel function. EquatioA5) shows that, after the
linear transformation, EqA3) becomes isotropic. Assuming
1. Correlation length anisotropy that Yy is a constant depending only om and satisfies

Fo(Yg) = 1F_(0), then the contour of the full width at half

We assume that the height-height correlation funCtiO%aximum(FWHM) for a power spectrum satisfies
H(r) has the form

H(r)ZZWZ[ 1- exp{ =t 2 H , (A1) whereqg, andqg, are the FWHM positions of the diffrac-
x by

tion beam along the, andq, directions, respectively. This

is an equation for an ellipse with the principal axes along the
gx and gy directions. The ratio of the diameter of the short
axis, a, and the diameter of the long axa, , is

where the height-height correlation functid(r) has the
following asymptotic behaviors:

2 2\ a
H(r)~2w?| — + for r—0,
£'g _& )
(A2) ay &
H(r)~2w? for r—oo.

Equation(A2) is similar to Eq.(9) except for the difference 2. Scaling anisotropy
in the prefactors. The power spectrum can be writtem in A simple way to construct an anisotropic scaling surface
=2 dimensions as is to assume that thg direction and they direction have

different scaling exponents. Then the height-height correla-

w2 x2 y2\e] tion function can have the following form:
P(qH)z—f exg —| =+ | |[e'%dr. (A3)
277 X gy 2a 2a
H(r)=2w?[1—e &g~ V&)™, (A8)
Performing the li transf ti . .
erforming the linear transformations The asymptotic form of EqAS) is
. X
X =——, X 2ay Zuzy
& H(r)~2w2[<— nEs for r—0,
éx &y
Ly (A9)
y'=4, H(r)=2w? for r—oo.
&y
Equation(A9) is similar to Eq.(14). The power spectrum
r'=\x"2+y’? can be written as

(5"
expg —
&

1N Tdr =W££,G, (£ Ga (£/0y), (A10)
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where G(Y)=1/2mfe X" XYdX. When Y—, one &Ya
has G,(Y)xY 172% |t is clear that the contour of the Y= AP
FWHM from Eq. (A10) will not have the elliptical form. X7y
However, as Eq(A10) has a quadratic symmetry, the ragio  whereG(Y,)=3G,(0). Equation(A11) shows that the ra-

of FWHM's for the g, and theq, axes still reflects the sur- tio y depends not only on the ratio of the lateral correlation

(A11)

face anisotropy, lengthsé, /£, , but also on the scaling exponents and .
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