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Diffraction from anisotropic random rough surfaces
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The diffraction beam from an anisotropic, random, rough surface is investigated. Two kinds of anisotropic
surfaces with either a correlation-length anisotropy or a scaling anisotropy are considered. For the correlation-
length anisotropic surface with an isotropic scaling, the shape of the diffraction beam directly reflects the
surface anisotropy under any diffraction condition. However, for the correlation-length anisotropic surface with
an anisotropic scaling, the anisotropic scaling exponents may alter the anisotropy in the diffraction beam shape,
sometimes even rotating the direction of anisotropy as the diffraction conditionq'w changes. Hereq' andw
are the momentum transfer perpendicular to the surface and the interface width, respectively. This result
demonstrates that one must be cautious when analyzing anisotropic diffraction beams. These results also
provide a way to differentiate experimentally the correlation length anisotropy from the scaling anisotropy in
anisotropic rough surfaces.@S0163-1829~98!03935-6#
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I. INTRODUCTION

The dynamics of surface morphological evolution duri
thin-film growth or etching process is of great technologi
and scientific interest. These processes usually generate
dom rough surfaces that can be described in terms of s
affine fractals.1,2 Self-affine fractal surfaces exhibit fluctua
tions in the direction perpendicular to the surface, which c
be characterized in terms of the height-height correlat
function H(r )5^@h(r )2h(0)#2&. Here h(r ) is the surface
height at positionr @5~x,y!# on the surface. The notation^ &
means an average over all possible choices of the origin,
an ensemble average over all possible surface configurat
Usually if an isotropic surface is assumed, the height-he
correlation would depend only on the magnitude ofr , H(r )
}r 2a for r !j, and H(r )5const for r @j. Here j is the
lateral correlation length within which the surface heights
any two points are correlated, anda is the roughness expo
nent. The value ofa, which lies between 0 and 1, describ
how wiggly the surface is. The smaller thea, the more wig-
gly the surface. Most diffraction theories developed so
are based on an isotropic surface model.

However, in practice, sometimes surfaces may not be
tropic. Dynamic equations have been developed to desc
processes that form anisotropic surfaces. An example is
kinetic roughening on a vicinal surface,3 where the growth
process can be described by an anisotropic Kardar-Pa
Zhang ~KPZ! equation. Recent study has revealed that t
anisotropic KPZ equation would give a directionally depe
dent scaling property.4 In fact, the directionally dependen
scaling, in which the value of the roughness exponenta de-
pends on the direction, has been recognized in geophy
studies.5

Besides this scaling anisotropy, there is another kind
anisotropy caused by the anisotropy in the lateral correla
length scale. In this case, the scaling properties of the sur
remain the same in all directions. Recently we develope
linear anisotropic growth model~with noise! demonstrating
that both scaling anisotropy and correlation length anisotr
PRB 580163-1829/98/58~11!/7300~10!/$15.00
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can be formed during growth processes.6 For the correlation
length anisotropy, the dynamic growth equation can be m
isotropic by a linear transformation. In this case, the form
tion of a correlation length anisotropic surface can
achieved simply by stretching an isotropic surface in cert
directions, resulting in different lateral correlation length
The scaling properties of the surface would remain the sa
in all directions. From the point of view of dynamic growth
such a surface is the result of the anisotropy of one domin
surface process such as evaporation/condensation or su
diffusion during the growth. It is not the case for the anis
tropic scaling, in which the roughness exponenta is direc-
tional dependent, with or without a correlation length anis
ropy. In the case of anisotropic scaling, the surface is form
by at least two competing surface processes, in which at l
one is anisotropic. In the framework of dynamic scaling, t
overall interface width of the surface scales with the grow
time as tb, which means that the dynamic exponentsz
~5a/b! in different directions are different.

An interesting research topic is to characterize these
different anisotropies experimentally, as they reflect differ
dynamical processes. In a real space measurement su
atomic force microscopy~AFM! or scanning tunneling mi-
croscopy~STM!, one can calculate the directional heigh
height correlation function to determine if the roughness
ponent a is directionally dependent. Another importa
experimental technique to study the dynamics of surf
evolution is diffraction. However, in diffraction, the shape
the diffraction beam not only depends on the surface m
phology, but also depends on the diffraction condition. U
der certain conditions, diffraction may not directly reflect t
statistical properties of the surface morphology.7 How does
one differentiate these two kinds of anisotropy through d
fraction? How does the diffraction condition affect the d
fraction beam shape? What information can one obtain?
this paper, based on the proposed height-height correla
functions for these anisotropic surfaces, we study the ch
acteristics of the shapes of the diffraction beams and
7300 © 1998 The American Physical Society
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relationships between surface power spectra obtained f
these surfaces.

II. ANISOTROPIC SURFACE MODELS

Different characteristic functions, such as autocovaria
function R(r ), height-height correlation functionH(r ), and
power spectrumP(qi), whereqi is the reciprocal space vec
tor, have been used to describe the random rough surfa
These three functions are related to each other. The de
tions and relationships in ad-dimensional surface are give
by

R~r !5^h~r !h~0!&, ~1a!

H~r !5^@h~r !2h~0!#2&52@w22R~r !#, ~1b!

and

P~qi!5
1

~2p!d/2 E R~r !e2 iqi•rdr , ~1c!

wherew5A^@h(r )2h̄#2&, known as the interface width, an
h̄ is the average surface height. The difference betw
H(r )/2 and R(r ) is only a constant,w2, while P(qi) and
R(r ) are Fourier transform pairs. Therefore, these three fu
tions contain the same surface structural information. Fo
isotropic surface, all of these functions are independen
direction, e.g., R(r )5R(r ), H(r )5H(r ), and P(qi)
5P(qi). For an anisotropic surface, since the surface m
phologies are directionally dependent, the functional for
for those characteristic functions are more complicated
general, the autocovariance functionR(r ) can be written in
the form

R~r !5w2r~r !. ~2!

Note thatw2 is square of the interface width over the surfac
For a given surface,w2 is a constant. The functionr~r ! is a
directionally dependent autocorrelation function, which h
the following properties:

r~0!51, ~3a!

r~ ur u→`!50. ~3b!

ThereforeH(0)50, andH(ur u→`)52w2.
As we showed before, there are at least two kinds

anisotropy for a noise-induced rough surface, the correla
length anisotropy and the scaling anisotropy.6 For the corre-
lation length anisotropy, there are different lateral correlat
lengths along different directions, but the scaling proper
of the surface remain the same in all directions. For the s
ing anisotropy, the scaling property of the surface, e.g.,
roughness exponenta, is directional dependent, with o
without the correlation length anisotropy. Based on these
major features, we propose the following anisotropic rand
surface models. Note that for simplicity, in the following, a
the surfaces are assumed to be Gaussian.
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A. Correlation length anisotropy

In modeling the anisotropic seafloor morphology, Go
and Jordan introduced a form of the power spectrumP(qi)
as8

P~qi!52ajxjyw
2~11qx

2jx
21qy

2jy
2!212a, ~4!

wherejx and jy are the correlation lengths in thex and y
directions, respectively. Note that we can also assume o
forms; see the Appendix. However, the asymptotic behav
of those forms are the same. The isotropic case of Eq.~4!
was first used by Von Karman,9 and has been studie
extensively.10–12 Equation~4! has the following properties
~i! Whenqx ~or qy) →0 while qy ~or qx) remains constant
then P(qi);const. ~ii ! When qx ~or qy) →` while qy ~or
qx) remains constant,P(qi)}qx

2222a @or P(qi)}qy
2222a#,

i.e., the scalings in both thex andy directions are the same
~iii ! The full width at half maximum~FWHM! of the power
spectrum satisfies

jx
2qFx

2 1jy
2qFy

2 521/11a21, ~5!

whereqFx andqFy are the FWHM positions of the diffrac
tion beam along theqx andqy directions, respectively. Equa
tion ~5! describes an ellipse with the principal axes along
qx and qy directions. The ratio of the diameter of the sho
axis,ax , and the diameter of the long axis,ay , is

ax

ay
5

jy

jx
. ~6!

Using the relation in Eq.~1c!, the autocovariance function
can be written as

FIG. 1. Power spectrumP, autocovariance functionR, and
height-height correlation functionH for a50.75, jx5400, andjy

5100. Note that the power spectrum and height-height correla
function are plotted in log-log scales, while the autocovarian
function is in a linear plot.
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R~r !5
ajxjyw

2

p E ~11qx
2jx

21qy
2jy

2!212ae2 iqirdr

5
w2

2a21G~a! S x2

jx
2 1

y2

jy
2D a/2

KaF S x2

jx
2 1

y2

jy
2D 1/2G . ~7!

Here the functionKa(x) represents the modified Bess
function of theath order. From Eq.~1b!, one can obtain the
height-height correlation functionH(r ),

H~r !52w2H 12
1

2a21G~a! S x2

jx
2 1

y2

jy
2D a/2

3KaF S x2

jx
2 1

y2

jy
2D 1/2G J . ~8!

As Ka(x);2a21G(a)/xa1@G(2a)/211a#xa for x→0, and
0,a,1; Ka(x);A(p/2x)e2x for x→`, one has

H~r !'
pw2

22a21a sin~ap!G2~a! S x2

jx
2 1

y2

jy
2D a

for ur u→0,

H~r !'2w2 for ur u→`.
~9!

Figure 1 plots two orthogonal cross sections of the pow
spectrum, autocovariance function and height-height corr
tion function fora50.75,jx5400, andjy5100. In the log-
log plot of the power spectrum, at largeq, the tails of two
cross sections are parallel. Similar behavior is also obse
in the log-log plot of height-height correlation function at th
small r region. However, the widths of the flat shoulders
the two cross sections in both power spectra and hei
height correlation functions are not the same. These are t
cal characteristics of a correlation length anisotropy. We a
plot in Fig. 2 the contours of the power spectrum and au
covariance function fora50.75,jx5400, andjy5100. The
shapes of the contours are elliptical, but the long axis in
power spectrum is perpendicular to the long axis in the
tocovariance function from the property of the Fourier tra
form.

B. Scaling anisotropy

A simple way to construct an anisotropic scaling surfa
is to assume that thex and they directions have differen
roughness exponents. Then the power spectrum can hav
following form:
r
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P~qi!5
2jxjyw

2G~ 1
2 1ax!G~ 1

2 1ay!

G~ax!G~ay!

3~11qx
2jx

2!21/22ax~11qy
2jy

2!21/22ay, ~10!

whereax anday are the roughness exponents in thex andy
directions, respectively. Equation~10! has the following
properties:~i! Whenqx ~or qy) →0 while qy ~or qx) remains
constant, thenP(qi);const.~ii ! Whenqx ~or qy) →` while
qy ~or qx) remains constant,P(qi)}qx

2122ax @or P(qi)

}qy
2122ay#, i.e., the scalings in both thex and y directions

are not the same.~iii ! It is clear that the contour of the
FWHM from Eq.~10! will not have the elliptical form. How-
ever, as Eq.~10! has a quadratic symmetry, the ratiog of
FWHM’s for the qx and theqy axes still reflects the surfac
anisotropy,

g5
jy

jx
S 22/~112ax!21

22/~112ay!21D 1/2

. ~11!

Equation~11! shows that the ratiog depends not only on the
ratio of the lateral correlation lengthsjy /jx , but also on the
scaling exponentsax and ay , $@22/(112ax)21#/@22/(112ay)

21#%1/2. One can estimate that the ratio caused by an
tropic scaling exponents ranges from 0.44 (ax51 and ay
50) to 2.26 (ax50 anday51).

The autocovariance function can be written as

R~r !5
4w2

G~ax!G~ay!jx
2axjy

ay Ujxx

2 UaxUjyy

2 Uay

3KaxS U x

jx
U DKayS U y

jy
U D , ~12!

and the height-height correlation functionH(r ) is

H~r !52w2F12
4

G~ax!G~ay!jx
2axjy

2ay Ujxx

2 UaxUjyy

2 Uay

3KaxS U x

jx
U DKayS U y

jy
U D G . ~13!

The asymptotic behavior of Eq.~13! is
H~r !5
'2w2H 12F12

p

sin~axp!G2~ax!
S x

2jx
D 2axGF12

p

sin~ayp!G2~ay! S y

2jy
D 2ayG J

'2w2
p

sin~axp!G2~ax!
S x

2jx
D 2ax

12w2
p

sin~ayp!G2~ay! S y

2jy
D 2ay

for ur u→0

52w2 for ur u→`.

~14!
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FIG. 2. The equal value contours of~a! the power spectrum and~b! the autocovariance function fora50.75,jx5400, andjy5100. All
x, y, qx , andqy are in arbitrary units.
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Figure 3 plots two orthogonal cross sections of the pow
spectra, autocovariance functions, and height-height corr
tion functions for ax50.75, ay50.4, jx5400, and jy
5100. Unlike Fig. 1, in the log-log plot of the power spectr
at largeq, the tails of two cross sections are not parallel.
similar behavior is also observed in the log-log plot
height-height correlation functions at the smallr region. This
is a typical characteristic of a scaling anisotropic surface,
roughness exponents are different in different directio
However, the widths of the flat shoulders of these two cr
sections in both power spectra and height-height correla
functions are not the same. We plot in Fig. 4 the contours
the power spectra and autocovariance functions for~a! ax
50.75, ay50.4, jx5400, andjy5100; ~b! ax50.75, ay

FIG. 3. Power spectrumP, autocovariance functionR, and
height-height correlation functionH for ax50.75, ay50.40, jx

5400, andjy5100. Note that the power spectrum and heig
height correlation function are plotted in log-log scales, while
autocovariance function is in a linear plot.
r
la-

,

e
s.
s
n
f

50.4, jx590, andjy5100; and~c! ax50.75, ay50.4, jx
550, andjy5100. The shapes of the contours are not ell
tical any more. However, the long axis in the power sp
trum is not only determined by the correlation length of t
short axis in real space, but also by the roughness expon
For example, in Fig. 4~b!, jx,jy , but the long axis is still in
the qy direction sinceax.ay . These behaviors are also re
flected in the autocovariance plots.

III. DIFFRACTION THEORY FOR ANISOTROPIC
SURFACES

The power spectrum discussed in Sec. II is proportiona
the diffraction beam only under certain diffraction conditio
~see the following discussion!. In this section, the diffraction
characteristics from anisotropic surfaces under a general
fraction condition are explored.

We shall assume that the surface height obeys a Gaus
distribution. In general, the diffraction intensity from an a
isotropic surface can be written as13

S~q!5E d2r C~q' ,r !eiqi•r, ~15!

whereq is the momentum transfer, and can be decompo
into two orthogonal components, the momentum trans
perpendicular to the surface,q' , and the momentum transfe
parallel to the surface,qi . Note that we use the same not
tion qi , which was used as the reciprocal space vecto
Sec. II. The height difference functionC(q' ,r )
5^eiq'@h(r )2h(0)#&. For a Gaussian surface,13

C~q' ,r !5e2q'
2 H~r !/2. ~16!

The height difference functionC(q' ,r ) can be decompose
into two parts,

C~q' ,r !5DC~q' ,r !1C~q' ,ur u→`!. ~17!

Therefore, the diffraction profile contains ad peak and a
diffuse profile,

Sd~qi!5~2p!2e2q'
2 w2

d~qi! ~18!

and

-
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FIG. 4. The equal value contours of the power spectra and the autocovariance functions for~a! ax50.75, ay50.4, jx5400, andjy

5100; ~b! ax50.75,ay50.4, jx590, andjy5100; and~c! ax50.75,ay50.4, jx550, andjy5100. All x, y, qx , andqy are in arbitrary
units.
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Sdiff~qi!5e2q'
2 w2E d2r @eq'

2 w2r~r !21#eiqi•r. ~19!

Equation~18! shows that thed-peak intensity is a function o
only the first-order statistical property of the random surfa
the interface widthw. In fact, this is true for all rough sur
faces no matter what the height distributions or correlat
functions are.14 The ratio of thed-peak intensity to the tota
diffraction intensity,Rd , is
,

n

Rd5

E dqiSd~qi!

E dqiS~qi!

5e2q'
2 w2

5e2V, ~20!

whereV5(q'w)2. The same ratio also holds for the isotr
pic Gaussian surface. Note that the integration is an a
integral.

The diffuse intensity, Eq.~19!, is the more complicated
and an important part, because it reflects the short-range
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relation of the surface as well as the surface anisotropy
general, Eq.~19! can be expanded into a Taylor series,

Sdiff~qi!5e2V (
n51

`
1

n!
VnE dr r~r !neiqi•r. ~21!

Equation ~21! shows that the shape of the diffuse profi
depends on the value ofV. For V!1, only the first term in
Eq. ~21! dominates,

Sdiff~qi!'e2VVE dr r~r !eiqi•r}P~qi!, ~22!

i.e., the diffuse profile is proportional to the surface pow
spectrum. However, when the conditionV!1 is not satis-
fied, the higher-order terms (n.1) on the right-hand side o
Eq. ~21! should be taken into account, and the diffuse pro
is no longer proportional to the surface power spectrum
this case, would the surface anisotropy still be directly
flected in the shape of the diffuse profile? This is a ques
that needs to be addressed since the conditionV!1 may not
always be satisfied in a diffraction experiment. The value
q' or w or both may be sufficiently large thatV!1 may not
be valid. Here we consider two specific surface models.

A. Correlation length anisotropy

We consider the diffuse diffraction profile from a surfa
with a correlation length anisotropy. Inserting Eq.~8! into
Eq. ~19! and performing the following linear transforma
tions:
o

h
th

as
f

In

r

e
n
-
n

f

x85
x

jx
,

y85
y

jy
,

r 85Ax821y82,

and

qx85jxqx ,

qy85jyqy ,

qi85Aqx8
21qy8

2,

Eq. ~19! becomes

Sdiff~qi8!5e2VjxjyE d2r 8@eVr~r 8!21#eiqi8•r8, ~23!

wherer(r )5@1/(2a21G(a))#r 8aKa(r 8). This form matches
the corresponding result for the isotropic surfaces. ForV
@1, Eq. ~23! becomes13
Sdiff~qi8!'2pjxjyC
21/aV21/aE

0

`

Xe2X2a
J0~C21/2aV21/2aqi8X!dX52pjxjyC

21/aV21/aFa~C21/2aV21/2aqi8!, ~24!
al

xpo-
to

to
;
e
iso-
the

the

ur-
where

C5p/@22aaG2~a!sin~ap!#,

Fa~Y!5E
0

`

Xe2X2a
J0~XY!dX,

andJ0(x) is the zeroth-order Bessel function. The contour
the FWHM for a diffraction beam satisfies

jx
2qFx

2 1jy
2qFy

2 54Yg
2C1/aV1/a54Yg

2C1/a~q'w!2/a,
~25!

where Yg is a constant depending only ona, and satisfies
Fa(Yg)5 1

2 Fa(0). Equation~25! for a diffraction profile un-
derV@1 and Eq.~5! for a power spectrum (V!1) are very
similar except for the diameter of the ellipse. The ratio of t
diameters of the principal axes is the same. Note that
power spectrum contour is obtained forV,1. However, for
a diffraction profile atV@1, the ellipse diameter increases
a power law ofq' , i.e.,q'

1/a . Figure 5 shows the contours o
f

e
e

the FWHM of a diffuse diffraction beam projected in theqx
andqy directions of the momentum transfer in the reciproc
space for eight different values ofV5(q'w)2. The surface
is anisotropic in the lateral correlation length, withjx
5400, which is different fromjy5100. An isotropic scaling
exists in the surface, i.e., the values of the roughness e
nenta along thex andy directions are the same and equal
0.75. The contours near the center, which correspond
small values ofV ~50.1 and 1!, are very close in their sizes
these two contours overlap. AsV increases, the size of th
contour increases. Therefore, for the correlation length an
tropic surface model, the diffraction profile shape reflects
surface anisotropy under any diffraction condition.

To contrast the anisotropic surface model, we also plot
FWHM contours for an isotropic surface witha50.75 and
jx5jy5100 as the dashed curve forV520 in Fig. 5.

B. Scaling anisotropy

For a scaling anisotropic surface, whenV!1, as dis-
cussed above, the diffraction beam is proportional to the s
face power spectrum. However, forV@1, the diffraction
profile can be written as



ce
nd
r
ur
tio
s
e
-

-
5

e
n

nd
th
pe

di
io
ex
on
fa

es
Is it
an

ss
e

on

le

.

ut

y a
ne

7306 PRB 58Y.-P. ZHAO, G.-C. WANG, AND T.-M. LU
Sdiff~qi!'E d2r expH 2VFCxS x

jx
D 2ax

1CyS y

jy
D 2ayG J eiqi•r

5
jxjy

V1/2ax11/2ayCx
1/2axCy

1/2ay

3Gax
@V21/2axCx

21/2axjxqx#

3Gay
@V21/2ayCy

21/2ayjyqy#, ~26!

where

Cx5p/@22axaG2~ax!sin~axp!#,

Cy5p/@22ayaG2~ay!sin~ayp!#,

and

Ga~Y!5E
2`

1`

e2X2a
e2 iXYdX.

WhenY→`, one hasGa(Y)}Y2122a. Therefore, the ratio
gs of the FWHM’s for theqx and theqy axes for the diffrac-
tion profile can be obtained as

gs5
jyYax

Cx
1/2ax

jxYay
Cy

1/ay
~q'w!1/ax21/ay5g~q'w!1/ax21/ay,

~27!

where Ga(Ya)5 1
2 Ga(0). The ratio gs is determined not

only by the surface roughness parameters~w, j, anda! them-
selves, but also by the diffraction condition throughq' . In
Fig. 6, we plot several FWHM contours for different surfa
parameters. The contours near the center that correspo
small values ofV ~50.1 and 1! again are very close in thei
sizes and overlap. AsV increases, the size of the conto
increases. The surface is anisotropic in the lateral correla
length withjx5400 different fromjy5100. The surface ha
an anisotropic scaling, i.e., the values of the roughness
ponenta along thex andy directions are not the same. Fig
ure 6~a! shows that ifjx.jy and ax(50.75).ay(50.40),
the anisotropy in the shape of the diffraction beam forV
@1 is quite pronounced, especially in theqy direction. Note
that the scale in Fig. 6~a! is increased three times as com
pared with that of Fig. 5. Qualitatively the contours in Fig.
and Fig. 6~a! are similar.

However, if jx.jy and ax (50.25),ay (50.75), as
shown in Fig. 6~b!, the direction of the anisotropy in th
FWHM contour would rotate as the diffraction conditio
changes fromV<1 to V@1 ~aroundV520). This result
shows that the shape of the diffraction beam depe
strongly on both the correlation length anisotropy and
scaling exponent anisotropy. These two anisotropies com
with each other as the diffraction condition is changed.

C. Line scan of the diffraction beam

Another interesting feature is the cross section of the
fraction profile from the anisotropic surface. A cross sect
of the diffraction beam is obtained by line scans in an
periment. For an isotropic surface, the cross section al
any direction is the same, and one can obtain the inter
width from thed-peak intensity ratioRd . However, for an
to

n

x-

s
e
te

f-
n
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g

ce

anisotropic surface, as the diffraction beam itself becom
anisotropic, the cross section is directional dependent.
still possible to obtain the interface width through a line sc
of the diffraction intensity?

Without losing any generality, we can consider the cro
section in theqx direction. In a real detection system, th
detector has a finite size. The diffraction intensitySc ~line
scan! integrated over a finiteqy is

Sc~qx!5E
2Dqy

Dqy
dqyE E dx dy C~q' ,r !e2 i ~qxx1qyy!.

~28!

Sc(qx) can be also broken into two parts, ad peak,

Scd~qx!52pe2q'
2 w2

d~qx!, ~29!

and a diffuse profile,

Scdiff~qx!5E
2Dqy

Dqy
dqyE E dx dy@C~q' ,r !2e2q'

2 w2
#

3e2 i ~qxx1qyy!. ~30!

For simplicity, we consider only the case of the correlati
length anisotropic surface,

Scdiff~qx!5E
2Dqy

Dqy
dqyE E dx dy

3GS q' ;
x

jx
,

y

jy
De2 i ~qxx1qyy!

52pjxE
2Dqyjy

Dqyjy
dqy8E d2r 8G~q' ,r 8!eiq8•r8,

~31!

where G(q' ,r )5C(q' ,r )2e2q'
2 w2

. If Dqy is small, Eq.
~31! can be approximated by

Scdiff~qx!54pjxjyDqyE d2r 8G~q' ,r 8!eiqi8•r8U
q

y850
.

~32!

Therefore the integration of the diffuse profile becomes

E Scdiff~qx!dqx54pjyDqyC~V,a!, ~33!

where C(V,a) is a constant depending on bothw and a.
Equation~33! shows that the integration of the diffuse profi
is directional dependent. Because thed peak is superposed
on the diffuse profile, thed-peak ratio~with respect to the
total intensity in the line scan! also depends on the direction
If during a growth process the surface anisotropy ofj
changes, then the change in thed-peak ratio from a line scan
reflects both the changes ofw and of the anisotropy. One
cannot obtain the interface width from a line scan witho
knowing the anisotropic properties ofj in the surface. How-
ever, if Dqy is small, the line scan can be approximated b
cross section of the two-dimensional diffraction beam. O
can still obtain the correspondingj anda in a certain direc-
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tion according to the discussions in Secs. III A and III B. F
an anisotropic scaling surface, one can obtain a similar
sult.

D. Possible experimental realization

Although many authors reported the observation of an
tropic surfaces, very little quantitative measurement with
spect to the growth and roughness parameters has
performed.15–22 One good candidate for an anisotropic su
face is the growth on a vicinal surface, in which the late
correlation length along the step direction is longer than t
along the direction perpendicular to the step. The roughn
exponent can change during the growth of films on step
surfaces. In order to see the rotation of the diffraction be
anisotropy from such an anisotropic surface, the value oV
needs to change by, say, a factor of 4 from 10 to 40 as sh
in Fig. 6. Thus, the productq'w5V1/2 must change by a
factor of 2. In a diffraction experiment, if a wave with wav
lengthl scatters from the surface with an interface widthw,
theq'w value can be changed by varying the incident an
with respect to the sample or by rocking the sample. Thi
because theq' for the specular diffraction beam is equal
(4p/l)cosu, whereu is measured with respect to the su
face normal.

For light scattering with a He-Ne laser of waveleng
6328 Å, theq' value can be varied by almost a factor of 1
from 1.731024 Å 21 to 2.031023 Å 21 (u585° to u
50°). In order to obtain a sufficiently largeV ~say 40!, one
requires an interface width of 3000 Å. Alternatively, if th
wavelength of the incident wave can be changed, such a
low-energy electron diffraction~LEED!, then theq'w can
be varied easily. For example, if the electron energy chan
from 40 eV ~;2 Å! to 150 eV~;1 Å!, theq' value would
range from 6 to 12 Å21. One can obtain a largeV value even
for small w.

IV. CONCLUSION

An anisotropic surface can be formed when surface t
sion ~evaporation/condensation! and surface diffusion com

FIG. 5. Contours of the FWHM of a diffraction diffuse profil
as a function ofV with ax5ay50.75 andjx /jy5

400
10054. The size

of the contour increases with the increasingV value. For compari-
son, an isotropic surface with an isotropic scaling (jx5jy5100,
a50.75) is also shown as the dashed curve forV520.
r
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pete with each other in a surface. We showed that the
fraction profile of an anisotropic surface would be qu
different from that of an isotropic surface. We derived t
diffraction profiles for surfaces with anisotropy in the later
correlation length and with anisotropy in the scaling exp
nent. For surfaces with an isotropic roughness exponent,
lateral correlation length determined the shape of the pro
at all diffraction conditions. In contrast, for the case of
anisotropic roughness exponent, the anisotropic profile
pends not only on the lateral correlation length anisotro
but also on the diffraction conditionq' through a power law
related to the anisotropic roughness exponents. The la
correlation length determined the shape of the profile o
for low values of (q'w)2. For high values of (q'w)2 the
anisotropy in the roughness exponent competes with the
isotropy in the lateral correlation lengthj. Both anisotropies
can affect the shape; that is, the anisotropy of the diffract
profile can rotate from one direction to a different directi
as the value of (q'w)2 increases. We also showed that t

FIG. 6. Contours of the FWHM of a diffuse diffraction bea
projected in theqx andqy directions of the momentum transfer i
the reciprocal space forjx5400, jy5100, and various values o
V5(q'w)2. ~a! ax50.75 anday50.40; ~b! ax50.25 anday

50.75. The size of the contour increases with the increasingV
value. Note that in~b! the extreme local roughness (ax50.25) in
the x direction dominates the FWHM even thoughjx is four times
larger thanjy .
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value of the interface width calculated from the line scan
a one-dimensional integrated diffuse intensity depends on
lateral correlation length and the direction of the scan.
accurate determination of the interface width from the ra
of thed-peak intensity to the integrated diffuse profile inte
sity in a line scan is only possible if the directionally depe
dent lateral correlation length is known. This is in contrast
the isotropic surface, in which the shape of the diffuse int
sity is independent of the direction of scan.
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APPENDIX

In this appendix, we propose other forms of the ani
tropic surface models.

1. Correlation length anisotropy

We assume that the height-height correlation funct
H(r ) has the form

H~r !52w2H 12expF2S x2

jx
2 1

y2

jy
2D aG J , ~A1!

where the height-height correlation functionH(r ) has the
following asymptotic behaviors:

H~r !'2w2S x2

jx
2 1

y2

jy
2D a

for r→0,

~A2!
H~r !'2w2 for r→`.

Equation~A2! is similar to Eq.~9! except for the difference
in the prefactors. The power spectrum can be written ind
52 dimensions as

P~qi!5
w2

2p E expF2S x2

jx
2 1

y2

jy
2D aGe2 iqi•rdr . ~A3!

Performing the linear transformations

x85
x

jx
,

y85
y

jy
,

r 85Ax821y82,
f
he
n
o

-
o
-

k

-

n

and

qx85jxqx ,

qy85jyqy ,

qi85Aqx8
21qy8

2, ~A4!

one has

P~qi8!5
w2jyjy

2p E exp~2r 82a!exp~2 iqi8•r 8!dr 8

5w2jxjyFa~qi8!, ~A5!

whereFa(Y)5*0
`Xe2X2a

J0(XY)dX andJ0(x) is the zeroth-
order Bessel function. Equation~A5! shows that, after the
linear transformation, Eq.~A3! becomes isotropic. Assumin
that Yg is a constant depending only ona, and satisfies
Fa(Yg)5 1

2 Fa(0), then the contour of the full width at hal
maximum~FWHM! for a power spectrum satisfies

jx
2qFx

2 1jy
2qFy

2 5Yg
2, ~A6!

whereqFx andqFy are the FWHM positions of the diffrac
tion beam along theqx andqy directions, respectively. This
is an equation for an ellipse with the principal axes along
qx and qy directions. The ratio of the diameter of the sho
axis,ax , and the diameter of the long axis,ay , is

ax

ay
5

jy

jx
. ~A7!

2. Scaling anisotropy

A simple way to construct an anisotropic scaling surfa
is to assume that thex direction and they direction have
different scaling exponents. Then the height-height corre
tion function can have the following form:

H~r !52w2@12e2~x/jx!2axe2~y/jy!2ay#. ~A8!

The asymptotic form of Eq.~A8! is

H~r !'2w2F S x

jx
D 2ax

1S y

jy
D 2ayG for r→0,

~A9!
H~r !'2w2 for r→`.

Equation~A9! is similar to Eq.~14!. The power spectrum
can be written as
P~qi!5
w2

2p E expF2S x2

jx
2D axGexpF2S y2

jy
2D ayGe2 iqi•rdr5w2jxjyGax

~jxqx!Gay
~jyqy!, ~A10!
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where Ga(Y)51/A2p*e2X2a
e2 iXYdX. When Y→`, one

has Ga(Y)}Y2122a. It is clear that the contour of the
FWHM from Eq. ~A10! will not have the elliptical form.
However, as Eq.~A10! has a quadratic symmetry, the ratiog
of FWHM’s for the qx and theqy axes still reflects the sur
face anisotropy,
an

v

m

g5
jyYax

jxYay

, ~A11!

whereGa(Ya)5 1
2 Ga(0). Equation~A11! shows that the ra-

tio g depends not only on the ratio of the lateral correlati
lengthsjy /jx , but also on the scaling exponentsax anday .
.
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