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Collinear Neel-type ordering in partially frustrated lattices
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We consider two partially frustrateﬁ=% antiferromagnetic spin systems on the triangular and pentagonal
lattices. In an elementary plaquette of the two lattices, one bond has exchange interaction stigngth)
whereas all other bonds have exchange interaction strength unity. We show thade$srthan a critical value
a., collinear Nel-type ordering is possible in the ground state. The ground-state energy and the excitation
spectrum have been determined using linear spin-wave theory based on the Holstein-Primakoff transformation.
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Frustrated spin sytems show a tendency to be magnetén the pentagonal lattice. The elementary plaquette of a pen-
cally disordered. Frustration may occur due to the presenc&gonal lattice is a pentagon and hence the lattice is topologi-
of further-neighbor interactions, besides the nearest-neighb@ally frustrated. We study the model in a limited parameter
(NN) ones, as well as due to the topology of the underlying’egime, namely, the one in which collinear él¢ype order
lattice. A well-known example of the latter is the triangular €xists in the ground state.
lattice. The ground state of the Ising antiferromagdgM), Consider a single triangular plaquette with three NN
defined on the triangular lattice, is highly degenerate with thdonds. One of the bonds has exchange interaction strength
entropy per site being a finite quantity. The Ising AFM thusthe other two have exchange interaction strengths unity. The
does not order at any temperature. In this context, the quehree spins sit at the three vertices and interact through NN
tion of interest is whether for a quantum-spin Hamiltonianinteraction. If the spins are treated as classical vectors, it is
long-range magnetic order can exist in the ground state. Theasy to show that forr<3, collinear Nel-type ordering is
quantum Heisenberg AFNHAFM) has been widely studied obtained in the ground state. LetQ, Q' be the respective
on the triangular lattice® and there is now more or less a orientations of the spins with respect to thexis. The first
consensus that AFM long-range ord&RO) exists in the and third spins interact through exchange interaction of
ground state. The ground state of the classical spin systensérength «. In the collinear stateQ== and Q'=0. For
exhibits noncollinear 120° ordering. The ordering is partiallya>0.5, Q'=2Q in the ground state with Q
destroyed but still exists once the quantum nature of the=cos *(—1/2a), i.e., a spiral ordering is obtained. We first
spins is taken into account. consider the Row modgFig. 1) with a<3. The sites be-

Frustrated lattices, in general, exhibit noncollineaeNe longing to alternate rowéshown by dashed lingbelong to
type magnetic order whereas nonfrustrated lattices like thene of the sublattices A or B. The interaction Hamiltonian is
square lattice exhibit collinear etype order in the classi-
cal ground state. A partially frustrated lattice is obtained A A A A
when not all the exchange interaction strengths along NN
bonds have equal values. In this case, the classical ground
state, in a particular parameter regime, exhibits collinear
Neel-type ordering similar to that in the case of a nonfrus-
trated lattice. The ordering is not destroyed when quantum
fluctuations are taken into account. Two examples of this
will be given in this paper, namely, those of the triangular
and the pentagonal lattices. The result for the classical
ground state of the triangular lattice is already kndWin the
so-called Row model, the strength of the unequal exchange
interaction ise (e<1) whereas all other exchange interac-
tion strengths have value uniffFig. 1). For (e<«a.), the
ground state has collinear order whereas fer(x.), non-
collinear spiral ordering occurs. This ordering becomes the
120° ordering wherw=1. For a<a., we determine the
excitation spectrum as well as the quantal correction to the
ground-state energy using linear spin-wals&SW) theory
based on the Holstein-PrimakofHP) transformation. We
next consider the case of the partially frustrated pentagonal FiG. 1. The partially frustrated Row model defined on the tri-
lattice. The Ising AFM has been previously studied on theangular lattice. A and B denote the two sublattices. The dashed
pentagonal lattice® and the ground state has been found tobonds have exchange interaction strengif{a<1), all other
be disordered. In this paper, we study the spin3 HAFM bonds(solid lineg have exchange interaction strength unity.
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a;, a,, az are the NN vectors in the horizontal and oblique
directions, respectively. The spins on théB) sublattice are 2
pointing up (down). This is the classical ground state. The
foundation of spin-wave theory is the assumption that AFM 1+
LRO exists in the ground state and the amplitude of zero-
point motion produced by quantum fluctuation about the ol
classical ordered state is small. This assumption fails if quan-
tal corrections diverge. The first step in the LSW theory is to
transform the operators to the bosonic operators. The HF
transformations connecting the spin operators to the bosoni
operatorsa; ,bj’'s are given in the lowest order by

o FIG. 2. Excitation spectrum of the Row Model far=0.3.
SAJ- = \/Ea] )
S;g — J2sb! action strengths alpng the solid lines are given &y« .
i e <1). Consider a single pentagonal plaquette. The classical
, + ground state for different values of can be determined by
Sa, =S~ a3, minimizing the exchange interaction energy with respect to
the spin-orientation angles. Far<<0.4, one finds that the
—S§j=s—bfbj, (2 collinear Nel state is the ground state. The question is

whether this order survives once the quantal fluctuations are
Wherej denotes the lattice site artlis the magnitude of the taken into account. Again' we perform LSW theory to get an
spins. We will ultimately consider the case $%3. S', S answer. Figure 3 shows the six sublatti¢as,B; , i=1,2,3
are the spin raising operator amdcomponent of the spin, corresponding to the six inequivalent sites. TheBY sub-
respectively. One can similarly define the spin lowering op-attices contain ugdown) spins. The interaction Hamiltonian
eratorS; . We will not exhibit the different steps of LSW s given by
theory as these are standard.The Hamiltonian(1) is ex-
pressed in terms of bosonic operators and then Fourier trans-
formed. The Hamiltonian contains only quadratic operators
and so can be diagonalized by the well-known Bogolyubov
transformation. The diagonalized Hamiltonian is given by

H=%mﬁﬁ, (6)

where<i j> denotes NN's and;;=1 for NN’s shown by
H=NS(S+ 1)(2a—4)+32 o+ S; o(chee+didy), solid lines in Fig. 1. The NN vectorg’s are given by

)

wherec,,d, are the new transformed operators &hds the
total number of sites. The excitation spectruipis given by
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k-a;\?
W= \/( l1-« sszl - ’}/ﬁ, (4)
where
1 )
w=s > ek’ (5)
Z 5-ay.a4

andz, the number of NN's along the oblique directions, is 4.
Figure 2 shows the excitation spectrum f@r~0.3 andS
=1. The ground-state enerdy, [the sum of the first two
terms in Eq.(3)] is given byE,=—0.6025. One can verify
that for a= 0, the excitation spectrum for the square lattice is ~ |B3 B3 B3 B3
recovered. As long as< 3, wy is positive for all momentum
wave vectors. This shows that the choice of the starting
ground state is correct.

We next turn to the case of the pentagonal lattice. A cross F|G. 3. The partially frustrated pentagonal lattice. The six sub-
section of the lattice is shown in Fig. 3. The lattice is alattices areA; andB; (i=1,2,3). The dashed bonds have exchange
non-Bravais lattice and has two types of sites with coordinainteraction strengthe (a<1), all other bondgsolid lineg have
tion numbers 3 and 4, respectively. The NN exchange interexchange interaction strength unity.
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and similarly for the vectors in the reverse directions. The
HP transformations connecting the spin operators to bosonit
operatorsa; andb; are given by Eq(2). Each of the six
kinds of HP bosons forms a rectangular sublattice with di-
mension (1,4-v3). After Fourier transformation, the Hamil-

tonian (6) becomes
H=Hy+H,,
where

Ho=NS(S+1)(—8+2a), ®)
H1=S§ P, 9)

i = (al ahal bbby, (10
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andN is the total number of sites. Following Jolicoeur and
Le Guillou? we consider the generalized Bogolyubov trans-

formation matrixT as follows:
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FIG. 4. Excitation spectra for the pentagonal lattice for
=0.27.

k
Hi=S3 [a*(k)ﬂ(k)]nT[an]T1[51((2)}- (15

To diagonalizeH ; a suitable choice fof is
T 1=(v23wiw?w?), (16)

wherev" andw" are the eigenvectors afM,, with corre-
sponding eigenvaluesw(, ,— w,). The eigenvalues ofjM
occur in pairs withw,>0. The matrixyM can be diagonal-
ized numerically. We obtain three excitation spectra each of
which is doubly degenerate corresponding to the two sublat-
ticesA;,B;. The diagonalized Hamiltonian has the form

3
H=Ho+ S wn(anant BiBn), (17

3
Ho=NS(S+1)(—8+2a)+S>, w,. (18)
n=1

Figure 4 shows the three excitation spectrader0.27 and
S=1. The positivity of the spectra shows that the collinear
Neel state with quantum corrections is still the ground state.
For a beyond the critical value:.~0.32 this is no longer so.
The ground-state enerdy, is given by Eq.(18) and has the
valueE4= —0.4835 fora=0.27.

For both the triangular and pentagonal lattices, there is a
critical valuea, of « below which the classical ground state
has collinear Nel-type order. As shown by LSW theory, the
order is maintained, albeit with quantum corrections, when
the quantum nature of the spins is taken into account. Let us
now consider the case> «.. For the triangular lattice, as
mentioned before, the ground state shows spiral ordering.

where a(k) is the column vector with three components For the pentagonal lattice, however, the problem is more
an(k) (n=1,2,3) and similarly foB'(k). In order to satisfy difficult. Consider the caser=1. Calculations for an el-

the bosonic commutation relatiorB,has to satisfy
T i=9Ty, (13)
where

0
7=, —J’ (14

andl is the 3x 3 identity matrix. Finally we have

ementary plaquette show that in the classical ground state the
difference in the successive spin orientation angles is 144°.
Unlike the case of the triangular lattice, the spin arrangement
of a single pentagon cannot be repeated for the whole lattice.
The determination of the classical ground-state structure thus
becomes computationally more difficult. The parameter re-
gion a> «,, for the pentagonal lattice has not been studied as
yet. The value ofx, can be taken as a measure of frustration
in a spin system. The values for the square, triangular, and
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pentagonal lattices are.,=1, 0.5, and~0.32, respectively. in connection with high-temperature superconductivity. The
Thus the pentagonal lattice appears to be more frustrategentagonal lattice is another topologically frustrated lattice
than the triangular lattice. Several studies have been undeyhich has not been studied so far in the context of quantum

taken in the recent past to understand the effect of topologPin Systems. The present study constitutes a small beginning

cal frustration on ground-state properties. In two dimensionghich will hopefully lead to more exhaustive studies in the

the most studied cases are those of the triangulakagdme future.
lattices. Frustration, in general, leads to more disorder in the The authors thank Sitabhra Sinha and Asimkumar Ghosh
ground state. The interest in spin-disordered states has arisésr computational help.
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