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Collinear Néel-type ordering in partially frustrated lattices
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~Received 4 February 1998!

We consider two partially frustratedS5
1
2 antiferromagnetic spin systems on the triangular and pentagonal

lattices. In an elementary plaquette of the two lattices, one bond has exchange interaction strengtha (a<1)
whereas all other bonds have exchange interaction strength unity. We show that fora less than a critical value
ac , collinear Néel-type ordering is possible in the ground state. The ground-state energy and the excitation
spectrum have been determined using linear spin-wave theory based on the Holstein-Primakoff transformation.
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Frustrated spin sytems show a tendency to be magn
cally disordered. Frustration may occur due to the prese
of further-neighbor interactions, besides the nearest-neigh
~NN! ones, as well as due to the topology of the underly
lattice. A well-known example of the latter is the triangul
lattice. The ground state of the Ising antiferromagnet~AFM!,
defined on the triangular lattice, is highly degenerate with
entropy per site being a finite quantity. The Ising AFM th
does not order at any temperature. In this context, the q
tion of interest is whether for a quantum-spin Hamiltoni
long-range magnetic order can exist in the ground state.
quantum Heisenberg AFM~HAFM! has been widely studied
on the triangular lattice1–5 and there is now more or less
consensus that AFM long-range order~LRO! exists in the
ground state. The ground state of the classical spin syst
exhibits noncollinear 120° ordering. The ordering is partia
destroyed but still exists once the quantum nature of
spins is taken into account.

Frustrated lattices, in general, exhibit noncollinear Ne´el-
type magnetic order whereas nonfrustrated lattices like
square lattice exhibit collinear Ne´el-type order in the classi
cal ground state. A partially frustrated lattice is obtain
when not all the exchange interaction strengths along
bonds have equal values. In this case, the classical gro
state, in a particular parameter regime, exhibits collin
Néel-type ordering similar to that in the case of a nonfru
trated lattice. The ordering is not destroyed when quan
fluctuations are taken into account. Two examples of t
will be given in this paper, namely, those of the triangu
and the pentagonal lattices. The result for the class
ground state of the triangular lattice is already known.6 In the
so-called Row model, the strength of the unequal excha
interaction isa (a<1) whereas all other exchange intera
tion strengths have value unity~Fig. 1!. For (a<ac), the
ground state has collinear order whereas for (a.ac), non-
collinear spiral ordering occurs. This ordering becomes
120° ordering whena51. For a<ac , we determine the
excitation spectrum as well as the quantal correction to
ground-state energy using linear spin-wave~LSW! theory
based on the Holstein-Primakoff~HP! transformation. We
next consider the case of the partially frustrated pentago
lattice. The Ising AFM has been previously studied on
pentagonal lattice7,8 and the ground state has been found
be disordered. In this paper, we study the spinS5 1
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on the pentagonal lattice. The elementary plaquette of a p
tagonal lattice is a pentagon and hence the lattice is topol
cally frustrated. We study the model in a limited parame
regime, namely, the one in which collinear Ne´el-type order
exists in the ground state.

Consider a single triangular plaquette with three N
bonds. One of the bonds has exchange interaction strenga,
the other two have exchange interaction strengths unity.
three spins sit at the three vertices and interact through
interaction. If the spins are treated as classical vectors,
easy to show that fora< 1

2 , collinear Néel-type ordering is
obtained in the ground state. Let 0,Q, Q8 be the respective
orientations of the spins with respect to thez axis. The first
and third spins interact through exchange interaction
strengtha. In the collinear state,Q5p and Q850. For
a.0.5, Q852Q in the ground state with Q
5cos21(21/2a), i.e., a spiral ordering is obtained. We fir
consider the Row model~Fig. 1! with a< 1

2 . The sites be-
longing to alternate rows~shown by dashed lines! belong to
one of the sublattices A or B. The interaction Hamiltonian

FIG. 1. The partially frustrated Row model defined on the t
angular lattice. A and B denote the two sublattices. The das
bonds have exchange interaction strengtha (a<1), all other
bonds~solid lines! have exchange interaction strength unity.
73 © 1998 The American Physical Society
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H5 (
i PA,B,d5â2â3

Si•Si1d1a (
i PA,B,d5â1

Si•Si1d , ~1!

â1 , â2 , â3 are the NN vectors in the horizontal and obliq
directions, respectively. The spins on the A~B! sublattice are
pointing up ~down!. This is the classical ground state. Th
foundation of spin-wave theory is the assumption that AF
LRO exists in the ground state and the amplitude of ze
point motion produced by quantum fluctuation about
classical ordered state is small. This assumption fails if qu
tal corrections diverge. The first step in the LSW theory is
transform the operators to the bosonic operators. The
transformations connecting the spin operators to the bos
operatorsaj ,bj ’s are given in the lowest order by

SAj

† 5A2saj ,

SBj

† 5A2sbj
† ,

SAj

z 5s2aj
†aj ,

2SBj

z 5s2bj
†bj , ~2!

wherej denotes the lattice site andS is the magnitude of the
spins. We will ultimately consider the case ofS5 1

2 . S†, Sz

are the spin raising operator andz component of the spin
respectively. One can similarly define the spin lowering o
eratorSj

2 . We will not exhibit the different steps of LSW
theory as these are standard.9,10 The Hamiltonian~1! is ex-
pressed in terms of bosonic operators and then Fourier tr
formed. The Hamiltonian contains only quadratic operat
and so can be diagonalized by the well-known Bogolyub
transformation. The diagonalized Hamiltonian is given by

H5NS~S11!~2a24!1S(
k

vk1S(
k

vk~ck
†ck1dk

†dk!,

~3!

whereck ,dk are the new transformed operators andN is the
total number of sites. The excitation spectrumvk is given by

vk5AS 12a sin2
k–a1

2 D 2

2gk
2, ~4!

where

gk5
1

z (
d5â2 ,â3

eik•d ~5!

andz, the number of NN’s along the oblique directions, is
Figure 2 shows the excitation spectrum fora50.3 andS
5 1

2. The ground-state energyEg @the sum of the first two
terms in Eq.~3!# is given byEg520.6025. One can verify
that fora50, the excitation spectrum for the square lattice
recovered. As long asa, 1

2 , vk is positive for all momentum
wave vectors. This shows that the choice of the start
ground state is correct.

We next turn to the case of the pentagonal lattice. A cr
section of the lattice is shown in Fig. 3. The lattice is
non-Bravais lattice and has two types of sites with coordi
tion numbers 3 and 4, respectively. The NN exchange in
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action strengths along the solid lines are given bya (a
<1). Consider a single pentagonal plaquette. The class
ground state for different values ofa can be determined by
minimizing the exchange interaction energy with respect
the spin-orientation angles. Fora,0.4, one finds that the
collinear Néel state is the ground state. The question
whether this order survives once the quantal fluctuations
taken into account. Again, we perform LSW theory to get
answer. Figure 3 shows the six sublattices~Ai ,Bi , i 51,2,3!
corresponding to the six inequivalent sites. The A~B! sub-
lattices contain up~down! spins. The interaction Hamiltonian
is given by

H5(̂
i j &

Ji j Si•Sj, ~6!

where, i j . denotes NN’s andJi j 51 for NN’s shown by
solid lines in Fig. 1. The NN vectorsdi ’s are given by

FIG. 2. Excitation spectrum of the Row Model fora50.3.

FIG. 3. The partially frustrated pentagonal lattice. The six su
lattices areAi andBi ( i 51,2,3). The dashed bonds have exchan
interaction strengtha (a,1), all other bonds~solid lines! have
exchange interaction strength unity.
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d15 x̂,

d25 ŷ,

d35
1

2
x̂1
)

2
ŷ,

d452
1

2
x̂1
)

2
ŷ ~7!

and similarly for the vectors in the reverse directions. T
HP transformations connecting the spin operators to bos
operatorsai and bi are given by Eq.~2!. Each of the six
kinds of HP bosons forms a rectangular sublattice with
mension (1,41)). After Fourier transformation, the Hamil
tonian ~6! becomes

H5H01H1 ,

where

H05NS~S11!~2812a!, ~8!

H15S(
k

ck
†Mkc, ~9!

ck
†5~a1k

† a2k
† a3k

† b1kb2kb3k!, ~10!

Mk5FZ1k Z2k

Z2k
† Z1k

G ,

Z1k5F 224a sin2
k–d1

2
0 0

0 3 0

0 0 3

G ,

Z2k5F 0 x1
! x2

x1 0 x!

x2
! x 0

G ,

x15eik–d1, x25eik–d2, x5eik–d31eik–d4, ~11!

andN is the total number of sites. Following Jolicoeur a
Le Guillou,5 we consider the generalized Bogolyubov tran
formation matrixT as follows:

Fa~k!

b~k!G5TF a~k!

b†~k!G , ~12!

where a(k) is the column vector with three componen
an(k) (n51,2,3) and similarly forb†(k). In order to satisfy
the bosonic commutation relations,T has to satisfy

T215hTh, ~13!

where

h5F I 0

0 2I G , ~14!

and I is the 333 identity matrix. Finally we have
e
ic

i-

-

H15S(
k

@a†~k!b~k!#hT@hMk#T
21F a~k!

b†~k!G . ~15!

To diagonalizeH1 a suitable choice forT is

T215~v1v2v3w1w2w3!, ~16!

wherevn andwn are the eigenvectors ofhMk , with corre-
sponding eigenvalues (vn ,2vn). The eigenvalues ofhMk
occur in pairs withvn.0. The matrixhMk can be diagonal-
ized numerically. We obtain three excitation spectra each
which is doubly degenerate corresponding to the two sub
ticesAi ,Bi . The diagonalized Hamiltonian has the form

H5H01S(
n51

3

vn~an
†an1bn

†bn!, ~17!

H05NS~S11!~2812a!1S(
n51

3

vn . ~18!

Figure 4 shows the three excitation spectra fora50.27 and
S5 1

2 . The positivity of the spectra shows that the colline
Néel state with quantum corrections is still the ground sta
For a beyond the critical valueac'0.32 this is no longer so
The ground-state energyEg is given by Eq.~18! and has the
valueEg520.4835 fora50.27.

For both the triangular and pentagonal lattices, there
critical valueac of a below which the classical ground sta
has collinear Ne´el-type order. As shown by LSW theory, th
order is maintained, albeit with quantum corrections, wh
the quantum nature of the spins is taken into account. Le
now consider the casea.ac . For the triangular lattice, as
mentioned before, the ground state shows spiral order
For the pentagonal lattice, however, the problem is m
difficult. Consider the casea51. Calculations for an el-
ementary plaquette show that in the classical ground state
difference in the successive spin orientation angles is 14
Unlike the case of the triangular lattice, the spin arrangem
of a single pentagon cannot be repeated for the whole lat
The determination of the classical ground-state structure
becomes computationally more difficult. The parameter
gion a.ac for the pentagonal lattice has not been studied
yet. The value ofac can be taken as a measure of frustrati
in a spin system. The values for the square, triangular,

FIG. 4. Excitation spectra for the pentagonal lattice fora
50.27.
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pentagonal lattices areac51, 0.5, and;0.32, respectively.
Thus the pentagonal lattice appears to be more frustr
than the triangular lattice. Several studies have been un
taken in the recent past to understand the effect of topol
cal frustration on ground-state properties. In two dimensio
the most studied cases are those of the triangular andkagome´
lattices. Frustration, in general, leads to more disorder in
ground state. The interest in spin-disordered states has a
y

ed
er-
i-

s,

e
en

in connection with high-temperature superconductivity. T
pentagonal lattice is another topologically frustrated latt
which has not been studied so far in the context of quan
spin systems. The present study constitutes a small begin
which will hopefully lead to more exhaustive studies in t
future.
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