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We outline details about an extension of the tight-binding~TB! approach to improve total energies, forces,
and transferability. The method is based on a second-order expansion of the Kohn-Sham total energy in
density-functional theory~DFT! with respect to charge density fluctuations. The zeroth order approach is
equivalent to a common standard non-self-consistent~TB! scheme, while at second order a transparent,
parameter-free, and readily calculable expression for generalized Hamiltonian matrix elements may be derived.
These are modified by a self-consistent redistribution of Mulliken charges~SCC!. Besides the usual ‘‘band
structure’’ and short-range repulsive terms the final approximate Kohn-Sham energy additionally includes a
Coulomb interaction between charge fluctuations. At large distances this accounts for long-range electrostatic
forces between two point charges and approximately includes self-interaction contributions of a given atom if
the charges are located at one and the same atom. We apply the new SCC scheme to problems where
deficiencies within the non-SCC standard TB approach become obvious. We thus considerably improve trans-
ferability. @S0163-1829~98!03532-2#
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I. INTRODUCTION

Starting with Slater and Koster’s work in 1954, tigh
binding ~TB! theory since then has addressed an impor
topic of computational material science, namely, the dev
opment of rapid, robust, generally transferable and accu
methods to calculate atomic and electronic structures, e
gies, and forces of larger molecular and condensed syst

The standard TB method works by expanding eigenst
of a Hamiltonian in an orthogonalized basis of atomicli
orbitals and representing the exact many-body Hamilton
erator with a parametrized Hamiltonian matrix, where t
matrix elements are fitted to the band structure of a suita
reference system.

Although the original Slater-Koster scheme1 was only
used to investigate the electronic structure of periodic sol
the tight-binding ideas later on have been generalized to
atomistic total-energy method. While Froyen and Harrison
1979 proposed anr 22 dependence of the matrix elements
investigate problems with varying interatomic distances2,3

Chadi at the same time applied the method to semicondu
surface energy minimizations.4 He proposed to write the tota
energy as a function of all atomic coordinates,

Etot5Ebs1Erep, ~1!

whereEbs is the sum over the occupied orbital energies
rived from the diagonalization of the electronic Hamiltoni
PRB 580163-1829/98/58~11!/7260~9!/$15.00
nt
l-
te
r-
s.

es

-
e
le

s,
n

n

or

-

and Erep is a short-range repulsive two-particle interactio
The latter includes the ionic repulsion and corrections due
approximations made in the first term. The repulsive inter
tions versus distance may be determined in a parametr
functional form for reproducing cohesive energy and elas
constant~bulk-modulus! data for crystalline systems.

A common actual TB calculation and its results, hen
clearly depend on the parametrization scheme and the tr
ferability to various scale systems and problems is rat
limited. Successful applications include~for a review, see
Ref. 5! high accuracy band-structure evaluations,6 band cal-
culations in semiconductor heterostructures,7 device simula-
tions for optical properties,8 simulations of amorphous
solids,9 and predictions of low-energy silicon clusters.10,11

However, if the accuracy of the scheme is particularly tun
for dealing with a certain structure deficiencies may ar
when describing bonding situations that were not covered
the parametrization. Nonorthogonality is a step forward
improve transferability.11

In order to completely avoid the difficult parametrizatio
within a multiconfigurational space, more sophisticated,
efficient, TB schemes have recently been developed. Th
methods include the TB-LMTO~linear-muffin-tin orbitals!
method,12 the Hartree-Fock-based TB,13 a successful DFT
parametrization of TB,14 the ab initio multicenter TB,15 and
our DF-based~two-center! TB approach.16 Here, the Hamil-
tonian matrix elements are explicitly calculated within a no
7260 © 1998 The American Physical Society
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orthogonal basis of atomic orbitals. These schemes yield
curate results for a broad range of bonding situations,
which the superposition of overlapping atomlike densit
serves as a good approximation for the many-atom struct

The key idea of these developments is to understand
TB approach as a stationary approximation to dens
functional ~DF! theory.17–20 In particular it has been prove
that ~1! is a valid approximation to the total energy of th
many-atom structure. Central features of the common m
odology, namely, non-self-consistent treatment of the Ko
Sham equations and the exploitation of pairwise repuls
interactions are now known to be strongly related to an
propriate ‘‘educated guess’’ for the inital charge density
the system. Then the total energy is readily computable
second-order effects arising from a charge redistribution
negligibly small.

Nevertheless, problems naturally arise if a delicate cha
balance is required for establishing chemical bonding
tween different types of atoms. In such cases, an adjustm
of the charge distribution via a self-consistent field~SCF!
procedure may be necessary. Hence, there is a need to e
the TB formalism in order to improve its transferability with
out discarding the simplicity, speed, and efficiency, wh
make it so useful.

Within the framework of standard empirical TB theor
several proposals have been made to generalize the TB
ergies by explicitly considering interatomic electron-electr
interactions.21–24 Skriver and Rosengaard use an efficie
self-consistent Green’s-function technique based on
LMTO method within the tight-binding and atomic-sphe
approximation.25 Tsai et al.26 improved theab initio multi-
center TB scheme15 in order to account for charge transfe
By using the Ewald technique, they added and subtracte
each atom a Gaussian charge distribution and solved
Schrödinger equation iteratively, to determine the se
consistent atomic charges. Demkovet al.27 used a different
approach to modify this TB scheme by including lon
ranged Hartree contributions, which leads to a self-consis
adjustment of site-dependent occupation numbers.

Here, we focus on describing in detail the systematic
tension of the tight-binding formalism and of our DFT
scheme16,18 in order to derive a generalized self-consiste
charge ~SCC! methodology, which has been discuss
recently.28 This differs from previous approaches since w
base the modification of the TB total-energy expression
Sec. II on a second-order expansion of the Kohn-Sham
ergy functional29 with respect to density fluctuations. Th
methodology ensures a proper distribution of the charge
overcomes the requirement of local charge neutrality,19 espe-
cially in multicomponent systems. In maintaining the simp
two-center picture of the non-SCC standard DFTB, wh
we briefly summarize in Sec. III, the new scheme, descri
in more detail in Sec. IV, can be easily incorporated into a
standard TB method. In Sec. V, we demonstrate the
provements considering properties of molecular and s
state systems, where the non-SCC scheme failed, and
out recent successful applications to polar semiconduc
surfaces and dislocations.

II. DENSITY-FUNCTIONAL BASIS OF TB THEORY

The total energy of a system ofM electrons in the field of
N nuclei at positionsRW may be written within DFT as a
c-
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functional of a charge densityn(rW):

E5(
i

occ

^C i u2
D

2
1Vext1

1

2E 8 n~rW8!

urW2rW8u
uC i&1EXC@n~rW !#

1
1

2(a,b

N
ZaZb

uRW a2RW bu
, ~2!

where the first sum is over occupied Kohn-Sham eigenst
C i , the second term is the exchange-correlation~XC! con-
tribution, and the last term covers the ion-ion core repulsi
Eii . Following Foulkes and Haydock,20 we now rewrite the
total energy in order to transform the leading matrix e
ments. We first substitute the charge density in Eq.~2! by a
superposition of a reference or input densityn085n0(rW8) and

a small fluctuationdn85dn(rW8), *drW8 is expressed by*8:

E5(
i

occ

^C i u2
D

2
1Vext1E 8 n08

urW2rW8u
1VXC@n0#uC i&

2
1

2E E 8n08~n01dn!

urW2rW8u
2E VXC@n0#~n01dn!

1
1

2E E 8dn8~n01dn!

urW2rW8u
1EXC@n01dn#1Eii . ~3!

The second term in this equation corrects for the dou
counting of the new Hartree, the third term for the new X
contribution in the leading matrix element, and the fou
term comes from dividing the full Hartree energy in Eq.~2!
into a part related ton0 and todn.

Finally, we expandEXC at the reference density and ob
tain the total energy correct to second order in the den
fluctuations by a simple transformation. Note that the ter
linear in dn cancel each other at any arbitrary input dens
n0:

E5(
i

occ

^C i uĤ0uC i&2
1

2E E 8 n08n0

urW2rW8u
1EXC@n0#

2E VXC@n0#n01Eii

1
1

2E E 8S 1

urW2rW8u
1

d2EXC

dn dn8
U

n0

D dn dn8. ~4!

III. ZEROTH-ORDER NON-SCC APPROACH, STANDARD
DFTB

The traditional non-SCC TB approach is to neglect t
last term in this final equation, withĤ0 as the Hamiltonian
operator resulting from an input densityn0. As usual, a
frozen-core approximation is applied to reduce the compu
tional efforts by only considering the valence orbitals. T
Kohn-Sham equations are then solved non-self-consiste
and the second-order correction is neglected. The contr
tions in Eq.~4! that depend on the input densityn0 only and
the core-core repulsion are taken to be a sum of one-
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two-body potentials.20 The latter, denoted byErep, are
strictly pairwise, repulsive, and short ranged. The total
ergy then reads

E0
TB5(

i

occ

^C i uĤ0uC i&1Erep. ~5!

To solve the Kohn-Sham equations, the single-part
wave functionsC i within an LCAO ansatz are expanded in
a suitable set of localized atomic orbitalswn ,

C i~rW !5(
n

cn iwn~rW2RW a!. ~6!

As described earlier,16 we employ confined atomic orbitals i
a Slater-type representation. These are determined by so
a modified Schro¨dinger equation for a free neutral pseudo
tom within SCF-LDA calculations.30 The effective one-
electron potential of the many-atom structure in Ref. 16
approximated as a sum of spherical Kohn-Sham potentia
neutral pseudoatoms due to theirconfinedelectron density.

By applying the variational principle to the zeroth-ord
energy functional~5!, we obtain the non-SCF Kohn-Sha
equations, which, finally, within the pseudoatomic bas
transform into a set of algebraic equations:

(
n

M

cn i~Hmn
0 2« iSmn!50, ;m,i , ~7!

Hmn
0 5^wmuĤ0uwn&, Smn5^wmuwn&, ;mea, neb.

~8!

Consistent with the construction of the effective one-elect
potential we neglect several contributions to the Hamilton
matrix elementsHmn ~Ref. 18! yielding

Hmn
0 5H «m

neutral free atom if m5n

^wm
a uT̂1V0

a1V0
buwn

b& if aÞb

0 otherwise.

~9!

Since indicesa andb indicate the atoms on which the wav
functions and potentials are centered, only two-center Ha
tonian matrix elements are treated and explicitly evaluate
combination with the two-center overlap matrix elements.
follows from Eq.~9!, the eigenvalues of the free atom ser
as diagonal elements of the Hamiltonian, thus guarante
the correct limit for isolated atoms.

By solving the general eigenvalue problem Eq.~7!, the
first term in Eq.~5! becomes a simple summation over
occupied Kohn-Sham orbitals« i ~occupation numberni),
while Erep can easily be determined as a function of distan
by taking the difference of the SCF-LDA cohesive and t
corresponding TB band-structure energy for a suitable re
ence system,

Erep~R!5H ELDA
SCF~R!2(

i

occ

ni« i~R!J U
reference structure

.

~10!
-

e
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-

s
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,

n
n

il-
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e
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Interatomic forces for molecular-dynamics applicatio
can easily be derived from an explicit calculation of the g
dients of the total energy at the considered atom sites,

MaRẄ a52
]E0

TB

]RW a

52(
i

ni(
m

(
n

cm icn iF ]Hmn
0

]RW a

2« i

]Smn

]RW a
G

2 (
bÞa

]Erep~ uRW a2RW bu!

]RW a

. ~11!

This is the non-SCC DFTB approach, which has be
successfully applied to various problems in different syste
and materials, covering carbon,16 silicon,31 and germanium
structures,32 boron and carbon nitrides,33,34 silicon carbide35

and oxide36 and GaAs surfaces.37 Provided an educated
guess of the initial or input charge density of the system,
energies and forces are correct to second order of ch
density fluctuations. Furthermore, the short-range tw
particle repulsion~determined once using a proper referen
system! operates transferably in very different bonding sit
ations considering various scale systems.

IV. SECOND-ORDER SELF-CONSISTENT CHARGE
EXTENSION, SCC-DFTB

The previous scheme discussed above is suitable when
electron density of the many-atom structure may be rep
sented as a sum of atomiclike densities in good approxi
tion. The uncertainties within the standard DFTB varia
however, increase if the chemical bonding is controlled b
delicate charge balance between different atomic cons
ents, especially in heteronuclear molecules and in po
semiconductors. Therefore, we have extended the appr
in order to improve total energies, forces, and transferab
in the presence of considerable long-range Coulomb inte
tions. We start from Eq.~4! and now explicitly consider the
second-order term in the density fluctuations.

In order to include associated effects in a simple and
ficient TB concept, we first decomposedn(rW) into atom-
centered contributions, which decay fast with increasing d
tance from the corresponding center. The second-order t
then reads

E2nd5
1

2(a,b

N E E 8
G@rW,rW8,n0#dna~rW !dnb~rW8!, ~12!

where we have used the functionalG to denote the Hartree
and XC coefficients. Second, thedna may be expanded in a
series of radial and angular functions:

dna~rW !5(
l ,m

KmlFml
a ~ urW2RW au!YlmS rW2RW a

urW2RW au
D

'DqaF00
a ~ urW2RW au!Y00, ~13!

whereFml
a denotes the normalized radial dependence of

density fluctuation on atoma for the corresponding angula
momentum. While the angular deformation of the char
density, e.g., in covalently bonded systems, is usually
scribed very well within the non-SCC approach, char
transfers between different atoms are not properly handle



on
u

te
it

i
nd
ee
e
r

al
in
iz
te
t

y a

ris
f-
ro

e

th
f a
th
fo
ne

p
ic

u
nc
r

an
ith

s

al
im
n
s

ities

of

s

n
ard-

h a
nc-

is
to
ess

it
s

ic
hes
s,
ard

um-

PRB 58 7263SELF-CONSISTENT-CHARGE DENSITY-FUNCTIONAL . . .
many cases. Truncating the multipole expansion~5! after the
monopole term accounts for the most important contributi
of this kind while avoiding a substantial increase in the n
merical complexity of the scheme. Also, it should be no
that higher-order interactions decay much more rapidly w
increasing interatomic distance. Finally, expression~13! pre-
serves the total charge in the system, i.e.,(aDqa5*dn(rW).
Substitution of Eq.~13! into Eq. ~12! yields the simple final
expression for the second-order energy term:

E2nd5
1

2(a,b

N

DqaDqbgab , ~14!

where

gab5E E 8
G@rW,rW8,n0#

F00
a ~ urW2RW au!F00

b ~ urW82RW bu!
4p

~15!

is introduced as shorthand. In the limit of large interatom
distances, the XC contribution vanishes within LDA a
E2nd may be viewed as a pure Coulomb interaction betw
two point chargesDqa andDqb . In the opposite case, wher
the charges are located at one and the same atom, a rigo
evaluation ofgaa would require the knowledge of the actu
charge distribution. This could be calculated by expand
the charge density into an appropriate basis set of local
orbitals. In order to avoid the numerical effort associa
with a basis set expansion ofdn and to consider—at leas
approximately the self-interaction contributions—we appl
simple approximation forgaa , which is widely used in
semiempirical quantum chemistry methods relying on Pa
ers observation38 that gaa can be approximated by the di
ference of the atomic ionization potential and the elect
affinity. This is related to the chemical hardnessha ,39 or the
Hubbard parameterUa : gaa'I a2Aa'2ha'Ua . The ex-
pression forgab then only depends on the distance betwe
the atomsa andb and on the parametersUa andUb . The
latter constants can be calculated for any atom type wi
LDA-DFT as the second derivative of the total energy o
single atom with respect to the occupation number of
highest occupied atomic orbital. These values are there
neither adjustable nor empirical parameters. Indeed, the
essary corrections for a TB total energy in the presence
charge fluctuations turns out to be a typical Hubbard-ty
correlation in combination with a long-range interatom
Coulomb interaction. Common functional forms forgab
have been presented by Ohno,40 Klopman,41 and
Mataga-Nishimoto.42 However, they may cause severe n
merical problems when applied to periodic systems si
Coulomb-like behavior is only accomplished for large inte
atomic distances. Using expressions like that in Refs. 40
41 for periodic systems yield ill-conditioned energies w
respect to the Hubbard parameters, i.e., small changes in
Hubbard parameters may result in considerable variation
the total energy, and can therefore not be used.

In order to obtain a well-defined expression useful for
scale systems and consistent with the previous approx
tions we make an analytical approach to obtain the functio
gab . In accordance with the Slater-type orbitals used a
s
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basis set to solve the Kohn-Sham equations,16 we assume an
exponential decay of a normalized spherical charge dens

na~r !5
ta

3

8p
e2taurW2RW au.

Neglecting for the moment the second-order contributions
EXC in Eq. ~12! we obtain:

gab5E E 8 1

ur 2r 8u

ta
3

8p
e2taurW82RW au

tb
3

8p
e2tburW2RW bu.

Integration overr 8 gives

gab5E F 1

urW2RW au
2S ta

2
1

1

urW2RW au D e2taurW2RW auG
3

tb
3

8p
e2tburW2RW bu. ~16!

SettingR5uRa2Rbu, after some coordinate transformation
one gets~see Appendix!

gab5
1

R
2S~ta ,tb ,R!. ~17!

S is an exponentially decaying short-range function~see Ap-
pendix! with

S~ta ,ta ,R! 5
R→0 5

16ta1
1
R . ~18!

If we assume that atR50 the second order contribution ca
be expressed approximately via the so-called chemical h
ness for a spin-unpolarized atom or Hubbard parameterUa ,
we obtain

1
2 Dqa

2gaa5 1
2 Dqa

2Ua

and therefore from Eq.~18! for the exponents:

ta5 16
5 Ua .

This result can be interpreted by noting that elements wit
high chemical hardness tend to have localized wave fu
tions. The chemical hardness for a spin-unpolarized atom
the derivative of the highest molecular orbital with respect
its occupation number. We calculate this chemical hardn
with a fully self-consistentab initio method and therefore
include the influence of the second-order contribution ofEXC
in gab for small distances where it is important. In the lim
of large interatomic distances,gab→1/R and thus represent
the Coulomb interaction between two point chargesDqa and
Dqb . This accounts for the fact that at large interatom
distances the exchange-correlation contribution vanis
within the local density approximation. In periodic system
this long range part can be evaluated using the stand
Ewald technique, whereas the short-range partS decays ex-
ponentially and can therefore be summed over a small n
ber of unit cells. Hence Eq.~17! is a well-defined expression
for extended and periodic systems.

Finally, the DFT total energy~4! is conveniently trans-
formed into a transparent TB form,
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E2
TB5(

i

occ

^C i uĤ0uC i&1
1

2(a,b

N

gabDqaDqb1Erep,

~19!

where gab5gab(Ua ,Ub ,uRW a2RW bu). As discussed earlier
the contribution due toĤ0 depends only onn0 and is there-
fore exactly the same as in the previous non-SCC studie16

However, since the atomic charges depend on the o
particle wave functionsC i , a self-consistent procedure
required to find the minimum of expression~19!.

To solve the Kohn-Sham equations, the single-part
wave functionsC i are expanded into a suitable set of loc
ized atomic orbitalswn , denoting the expansion coefficien
by cn i . In accord with the previous scheme,16 we employ
confined Slater-type atomic orbitals. These are determi
by solving a modified Schro¨dinger equation for a free atom
within SCF-LDA calculations. By applying the variationa
principle to the energy functional~19!, we obtain the Kohn-
Sham equations, which, within the pseudoatomic ba
transform into a set of algebraic equations. We employ
Mulliken charge analysis for estimating the charge fluct
tions Dqa5qa2qa

0 ,

qa5
1

2(i

occ

ni (
mPa

(
n

N

~cm i* cn iSmn1cn i* cm iSnm!, ~20!

and obtain

(
n

M

cn i~Hmn2« iSmn!50, ;m,i , ~21!

Hmn5^wmuĤ0uwn&1
1

2
Smn(

j

N

~gaj1gbj!Dqj

5Hmn
0 1Hmn

1 , Smn5^wmuwn&, ;mea, neb.

~22!

Since the overlap matrix elementsSmn generally extend ove
a few nearest-neighbor distances, they introduce multip
ticle interactions. The second-order correction due to cha
fluctuations is now represented by the nondiagonal Mullik
charge dependent contributionHmn

1 to the matrix elements
Hmn .

As in our previous studies,16 we make use of the two
center approximation Eq.~9!. Instead of superposing spher
cal pseudoatom potentials for constructing the effective o
electron potential, however, we now superpose spher
pseudoatom charge densities and evaluate the effe
potential for the resulting charge density,Hmn

0 5^wm
a uT̂

1V(n0
a1n0

b)uwn
b& if aÞb. Consistent with Eq.~10!, we

determine the short-range repulsive pair potentialErep as a
function of distance by taking the difference of the SC
LDA cohesive energy and the corresponding SCC-DF
electronic energy for a suitable reference structure@first two
terms in Eq.~19!#. Since charge transfer effects are no
considered explicitly, the transferability ofErep is improved
compared to the non-SCC approach. A simple analytic
pression for the interatomic forces for use in MD simulatio
is easily derived by taking the derivative of the final T
energy~19! with respect to the nuclear coordinates,
.
e-

e

d

s,
e
-

r-
e

n

e-
al
ive

-

x-
s

FW a52(
i

occ

ni(
mn

cm icn iF ]Hmn
0

]RW a

2S « i2
Hmn

1

Smn
D ]Smn

]RW a
G

2Dqa(
j

N
]gaj

]RW a

Dqj2
]Erep

]RW a

. ~23!

V. RESULTS

In order to validate the SCC-DFTB approach we no
concentrate on presenting results of first successful app
tions of the SCC-DFTB scheme to a wide class of syste
which are of interest in chemistry, physics, and biology.
particular, we demonstrate the improvements of the met
as compared to conventional DFTB andab initio calcula-
tions.

A. Organic molecules

For our first benchmark, we have calculated the react
energies of 36 processes between small closed shell
ecules containing oxygen, nitrogen, carbon, and hydro
from Ref. 43, some of them shown in Table I. We ha
found a mean absolute deviation from experiment of 1
kcal/mol for the SCC-DFTB, compared to 11.1 kcal/mol f
the DFT-LSD calculations.28 Further, considering the opti
mized geometries of a 63 organic molecules test set fr
Ref. 44, the mean absolute deviations from experiment in
bond lengths and bond angles areDR50.012 Å andDu
51.80°,46 respectively, compared toDR50.017 Å andDu
52.01° by using the semiempirical AM1 method.44

The improvement over the non-SCC treatment is impr
sively demonstrated for systems with a delicate counter
ance between ionic and covalent bonding contributions,
e.g., in formamide~cf. Table II!. The DFTB method overes
timates the equalization of single and double bonds in
amide and carboxyl groups. This is exclusively due to t
much charge flow~of nearly one electron! from carbon to
oxygen, clearly indicating the need for a self-consiste
charge redistribution. SCC can considerably improve vib
tional frequencies of simple molecules, like, for examp

TABLE I. Hydrogenation reactions~kcal/mol! for small organic
molecules in comparison with DFT-LSD calculations and expe
ment ~Ref. 39!.

Reaction SCC-DFTB LSD exp

CH3CH31H2→2CH4 20 18 19
CH3NH21H2→CH41NH3 23 24 26
CH3OH1H2→CH41H2O 32 28 30
NH2NH21H2→2NH3 30 43 48
HOOH1H2→2H2O 101 80 86
CH2CH212H2→2CH4 71 67 57
CH2NH12H2→CH41NH3 66 67 64
CH2O12H2→CH41H2O 65 67 59
NHNH12H2→2NH3 56 89 68
C2H213H2→2CH4 124 131 105
HCN13H2→CH41NH3 88 102 76
CO13H2→CH41H2O 83 93 63
N213H2→2NH3 37 71 37
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CO2, in which a wrong charge transfer crucially affects for
constants. As in the formamide molecule a too large cha
transfer from carbon to oxygen is obtained, connected w
an underestimation of the CO bond strength. The symme
and antisymmetric stretching modes ((g and (u) in CO2
change from 1458 and 1849 cm21 in DFTB to 1348 and
2305 cm21 in SCC-DFTB in good agreement with the e
perimental values, 1333 and 2349 cm21. Frequencies have
further been tested for a series of 33~O-, N-, C-, and H-!
containing molecules from Ref. 45 yielding 6.4% mean a
solute deviation of vibrational frequencies from th
experiment.46

B. Biological systems

The very promising results for the organic molecules
scribed above lead us to believe that the method can be
plied to investigate the geometric and electronic structure
large biomolecules. A detailed study of H-bonded DNA ba
pairs and the structure and energetics of different conform
of small polypeptides will be presented elsewhere.47 Here,
we focus only on some examples, where semiempir
methods are known to meet difficulties. We have simula
the retinal in the bacteriorhodopsin molecule, a polye
structure linked via a Schiff base to the protein matrix. T
SCC-DFTB geometries are in good agreement with the
perimentally reported crystalline structure of the retinal.48 In
particular, the planar structure of the retinal Schiff base
correctly described, characteristics that classical force fi
and standard semiempirical methods have been reporte
fail.49,50Another important property for a realistic simulatio
of structural and energetic properties of peptides and prot
is the rotational barrier in formamide. This is so largely u
derestimated by semiempirical methods that it is usua
correct for the associated effects by empirical force fields
contrast, the SCC-DFTB barrier height is in good agreem
with the experiments deviating by only 10%.

Since DFT-LDA is known to perform poorly for H
bonded systems, one has to go beyond this level of des
tion. One natural extension provides the use of gradie
corrected functionals such as the PBE-GGA.51 By applying
this functional in both the full SCF reference calculatio
and the construction of the TB Hamiltonian~GGA atoms and
matrix calculations by superposition of densities!,46 the ef-
fects of hydrogen bonding within the SCC-DFTB may
described at a corresponding level of accuracy. For exam
for the water dimer the linear structure is found to be
global minimum and the O•••O distance is underestimate
by 4% with respect to the experimental value, which is co
parable to the performance of DFT-GGA methods. In or

TABLE II. Optimized geometries for three different methods.

Formamide DFTB SCC-DFTB
DFT-LSD
~Ref. 39!

Expt.
~Ref. 39!

C5O 1.296 1.224 1.223 1.193
C2N 1.296 1.382 1.358 1.376
N2H 1.003 0.996 1.022 1.002
C2H 1.130 1.131 1.122 1.102
OCN 127.0 125.5 124.5 123.8
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to test the SCC-DFTB for these systems systematically,
calculated the bonding energies of 18 weak and strong
drogen bonded compounds and studied barriers for pro
transfer in kationic and anionic systems.46 Although some
well-known deficiencies of DFT-GGA calculations~concern-
ing the underestimation of proton barriers! cannot be over-
come, the overall description is reliable yielding a clear i
provement compared to semi-empirical AM1 and PM
Hamiltonians.

C. III-V semiconductor surfaces

We then applied the SCC-DFTB method to periodic stru
tures of III-V semiconductors. At first we considered th
energetic ordering of reconstructions of GaAs~100! surfaces.
The stability of different models that could explain a (
34) periodicity has been discussed for a long time.52–56 In
particular uncertainty persisted on whether the (234) peri-
odicity observed under As-rich growth conditions corr
sponds to theb(234) reconstruction with three surfac
dimers per (234) unit cell or to theb2(234) model with
two surface dimers~see Fig. 1!.

While Ohno found theb(234) reconstruction to be en
ergetically favorable, which appeared to be in agreem
with an STM observation,53 Northrup et al.55 and Moll
et al.56 determined theb2(234) phase to have a lower en
ergy, explaining the high resolution STM images by Has
zumeet al.57 Also the SCC-DFTB scheme favors theb2(2
34) model by 3.7 meV/Å2, which agrees very well with the
3 meV/Å2 found by Northrupet al. who suggested that th
calculated energy difference between theb2(234) and the
b(234) phase can be attributed to electrostatic interacti
on the surface. As standard TB schemes neglect these i
actions it is not surprising that TB calculations by Chad52

and calculations with the non-self-consistent DFTB schem37

yield degenerate energies for these phases. An analo
question arises in the Ga-rich environment where a three
dimer b(432) and a two dimerb2(432) model could ac-
count for the observed (432) periodicity. Again the stan-
dard DFTB method gives degenerate surface energ
whereas charge self-consistency favors theb2(432) recon-
struction in agreement with previous scf calculations55,56and
STM investigations.58 Figure 2 shows the surface energi
determined with the SCC-DFTB method depending on

FIG. 1. Top view of the relaxed three As dimersb(234) ~left!
and two As dimersb2(234) ~right! reconstructions of the
GaAs~100! surface. Large~small! filled circles represent top~third!
layer As, empty circles Ga atoms. Due to electrostatic effects,
b2(234) reconstruction has a lower surface energy.
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growth conditions described via the chemical potentialmGa.
They are in very good agreement with the recent SCF-L
results by Mollet al.56

Applied to point defects in GaAs SCC-DFTB can be us
to describe the energetic ordering for different charge sta
Assuming the electrochemical potentialme at the valence
band edge we obtain for the energy difference between
neutral and the threefold negatively charged Ga vaca
21.0 eV and for the energy difference between the po
tively charged As vacancy and the threefold positive
charged As vacancy 1.1 eV. In agreement with S
calculations59 we can therefore conclude that inp-type ma-
terial the Ga vacancy should exist in its neutral charge s
and the As vacancy should be singly positively charg
These conclusions could not be achieved within the stand
TB approximation, where the Coulomb repulsion of char
localized at the defect is neglected resulting in significan
lower energies for the charged configurations.

As a final example, we consider the GaN (1010̄) surface
~Fig. 3!. The geometry is already well described within t
standard DFTB method~cf. Table III! yielding a rehybrid-
ization of the surface Ga~N! atoms towardssp2 (p3). In
this configuration theN-derived surface states are occupi
whereas the Ga surface states are empty. The surface e
estimated within SCC-DFTB is 121 meV/Å2, in very good
agreement with 118 meV/Å2 given by Northrupet al.60 We
calculated the surface projected SCC-DFTB band struc
of the valence bands~see Fig. 4!. Again this agrees well with
the SCF LDA calculations of Northrupet al.60 However,
within the standard TB approximation no correction is a

FIG. 2. Surface energies in meV/Å2 of the GaAs~100! structures
plotted versusmGa-mGabulk

. The part on the right~left! of the dia-
gram corresponds to Ga~As! rich growth conditions.

FIG. 3. Schematic top view of the (1010̄) surface of wurtzite
GaN. Atoms 1 and 2 form a dimer in the surface layer. Atoms 3
4 form the second layer.
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plied to the negatively chargedN-derived surface level. In
contrast to a self-consistent treatment the energy of this le
is therefore considerably too low, resulting in a surface ba
shifted at the edges of the Brillouin zone.

As a first successful application of the SCC-DFT
scheme to extended defects we modeled GaN threa
screw and edge dislocations in large supercells contain
576 atoms.61 Consistent with experiments we found th
these line defects are electrically inactive, i.e., they do
exhibit deep gap states.

We would like to remark that the time-limiting step i
both non-SCC and SCC-DFTB calculations is the solution
the general eigenvalue problem. While the non-SCC sche
requires this task to be solved once for each ionic molecu
dynamics time step, SCC-DFTB needs only a few~3–5! it-
erations. That means that SCC-DFTB is only slightly le
efficient than the non-SCC approach.

VI. SUMMARY

We have presented a straightforward extension and
cessful implementation of the standard TB theory to ope
tion in a self-consistent charge mode based on a sec
order expansion of the Kohn-Sham total-energy functiona
calculated within DFT. By this we successfully address a k
problem of electronic structure theory, the development
robust, accurate, rapid, and generally transferable meth

d

FIG. 4. Valence band structure of the relaxed GaN (1010̄) sur-
face. The full line represents theN-derived surface band calculate
with charge self-consistent tight binding~SCC-DFTB!, the dashed
line the too low-lying surface band determined with non-SC
DFTB. The shaded region corresponds to the bulk projected b
structure.

TABLE III. Atomic displacements in Å for the top two layers o

atoms at the GaN(1010̄) surface. Atom numbers refer to Fig. 3
Values in brackets are results of Ref. 50.

Atom Dx Dy Dz

1 (Ga33coord.) 20.10 (20.11! 0.0 20.23 (20.20!
2 (N33coord.) 0.03 ~0.01! 0.0 20.01 ~0.02!
3 (Ga43coord.) 0.01 ~0.05! 0.0 0.08~0.05!
4 (N43coord.) 0.04 ~0.05! 0.0 0.07~0.05!
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for ab initio based simulation and characterization of lar
scale molecular and condensed systems. The analytically
rived charge-dependent contribution to the total-energy
pression can be physically interpreted to describe the che
cal hardness for vanishing distances and to represent
Coulomb interaction between point charges at large
tances. Moreover, for intermediate distances the energy
rection does not contain any empirical functional but is e
tirely consistent with approximations that frequently en
TB schemes. We show that the scheme is numerically st
for all scale systems and by describing various benchm
results clearly demonstrate the method’s successful opera
at sufficient accuracy on very different systems and mat
als, including up-to-date results for large-scale biomolecu
GaAs surface reconstructions and extended defects in gr
III nitrides. This clearly shows the usefulness of the sche
for improving various TB applications in material science

The method can be understood as a general SCC ex
sion of TB theory offering the great advantage to incorpor
any atom type in a straightforward manner. This will n
only stimulate MD applications for large-scale semicond
tor structures and biological systems, but also for other c
langing types of materials.
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APPENDIX

In Eq. ~16! we need to evaluate integrals of the form

E
IR3

urW2RW aune2taurW2RW aue2tburW2RW budrW. ~A1!

SettingR5uRW a2RW bu and transforming to spheroidal coord
nates j5urW2RW au1urW2RW bu/R and h5(urW2RW au2urW
y

v.

-

e-
x-
i-

he
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r
le
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i-
s,
p-
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rt

2RW bu)/R we get for Eq.~A1!:

p

4
R3

R2

2 E
1

`

djE
21

1

dh~j1h!n11

3~j2h!e2~ta1tb!~R/2!je2~ta2tb!~R/2!h.

Expanding the product (j1h)n11 into binomials and using
the relation *a

bxle2axdx5( i 50
l @ l !/( l 2 i )!a i 11#xl 21e2axua

b

we finally get with g5(R/2)(ta1tb) and d5(R/2)(ta
2tb):

p

4
R3

Rn

2 (
i 50

n11 S n11

i D e2gF S (
m50

i 11
~ i 11!!

~ i 112m!!gm11D
3 (

m50

n112 i
~n112 i !!

~n112 i 2m!!dm11
@~21!n112 i 2med2e2d#

2S (
m50

i
i !

~ i 2m!!gm11D (
m50

n122 i
~n122 i !!

~n122 i 2m!!dm11

3@~21!n122 i 2med2e2d#G .

From this we obtain forgab in Eq. ~16!:

1

R
2Fe2taRS tb

4ta

2~ta
22tb

2 !2
2

tb
623tb

4ta
2

~ta
22tb

2 !3R
D

1e2tbRS ta
4tb

2~tb
22ta

2 !2
2

ta
623ta

4tb
2

~tb
22ta

2 !3R
D G .

Denoting the function in square brackets withS, we see that
S decays exponentially withR. Expanding the exponential
we find the relation~18!.
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