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We outline details about an extension of the tight-bindifhB) approach to improve total energies, forces,
and transferability. The method is based on a second-order expansion of the Kohn-Sham total energy in
density-functional theoryDFT) with respect to charge density fluctuations. The zeroth order approach is
equivalent to a common standard non-self-consist@i®) scheme, while at second order a transparent,
parameter-free, and readily calculable expression for generalized Hamiltonian matrix elements may be derived.
These are modified by a self-consistent redistribution of Mulliken cha(§€€). Besides the usual “band
structure” and short-range repulsive terms the final approximate Kohn-Sham energy additionally includes a
Coulomb interaction between charge fluctuations. At large distances this accounts for long-range electrostatic
forces between two point charges and approximately includes self-interaction contributions of a given atom if
the charges are located at one and the same atom. We apply the new SCC scheme to problems where
deficiencies within the non-SCC standard TB approach become obvious. We thus considerably improve trans-
ferability. [S0163-182698)03532-3

. INTRODUCTION and E,e, is a short-range repulsive two-particle interaction.
The latter includes the ionic repulsion and corrections due to
Starting with Slater and Koster's work in 1954, tight- approximations made in the first term. The repulsive interac-
binding (TB) theory since then has addressed an importantions versus distance may be determined in a parametrized
topic of computational material science, namely, the develfunctional form for reproducing cohesive energy and elastic
opment of rapid, robust, generally transferable and accurateonstant(bulk-modulug data for crystalline systems.
methods to calculate atomic and electronic structures, ener- A common actual TB calculation and its results, hence,
gies, and forces of larger molecular and condensed systemdearly depend on the parametrization scheme and the trans-
The standard TB method works by expanding eigenstateferability to various scale systems and problems is rather
of a Hamiltonian in an orthogonalized basis of atomiclikelimited. Successful applications includér a review, see
orbitals and representing the exact many-body Hamilton opRef. 5 high accuracy band-structure evaluatibrsnd cal-
erator with a parametrized Hamiltonian matrix, where theculations in semiconductor heterostructutetevice simula-
matrix elements are fitted to the band structure of a suitablgons for optical propertied, simulations of amorphous
reference system. solids? and predictions of low-energy silicon clustéfs!
Although the original Slater-Koster scheleas only  However, if the accuracy of the scheme is particularly tuned
used to investigate the electronic structure of periodic solidsior dealing with a certain structure deficiencies may arise
the tight-binding ideas later on have been generalized to awhen describing bonding situations that were not covered by
atomistic total-energy method. While Froyen and Harrison inthe parametrization. Nonorthogonality is a step forward to
1979 proposed an~? dependence of the matrix elements toimprove transferability
investigate problems with varying interatomic distantés, In order to completely avoid the difficult parametrization
Chadi at the same time applied the method to semiconductayithin a multiconfigurational space, more sophisticated, yet
surface energy minimizatioffs-e proposed to write the total efficient, TB schemes have recently been developed. These
energy as a function of all atomic coordinates, methods include the TB-LMTGlinear-muffin-tin orbital$
method'? the Hartree-Fock-based T8,a successful DFT
Etor= Eos T Erep, (1) parametrization of TB? the ab initio multicenter TB® and
whereE, is the sum over the occupied orbital energies de-our DF-basedtwo-centef TB approach® Here, the Hamil-
rived from the diagonalization of the electronic Hamiltonian tonian matrix elements are explicitly calculated within a non-
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orthogonal basis of atomic orbitals. These schemes yield agynctional of a charge density(r):

curate results for a broad range of bonding situations, for

which the superposition of overlapping atomlike densities occ A 10 n(r)

serves as a good approximation for the many-atom structure. g= 2 (Vi| = =+ Veut _f W)+ Exc[n(F)]
The key idea of these developments is to understand the [ 2 2 [r—r’']

TB approach as a stationary approximation to density- N
functional (DF) theory!’~2°In particular it has been proven N }z 2,2z @
that (1) is a valid approximation to the total energy of the 2% |§ _§ﬁ| '

many-atom structure. Central features of the common meth-

odology, namely, non-self-consistent treatment of the Kohnwhere the first sum is over occupied Kohn-Sham eigenstates
Sham equations and the exploitation of pairwise repulsivel; , the second term is the exchange-correlatd&) con-
interactions are now known to be strongly related to an aptribution, and the last term covers the ion-ion core repulsion,
propriate “educated guess” for the inital charge density ofg,. . Following Foulkes and Haydod,we now rewrite the

the system. Then the total energy is readily computable anghta| energy in order to transform the leading matrix ele-
second-order effects arising from a charge redistribution arg,ents. We first substitute the charge density in @by a

negligibly small. o . . -,
Nevertheless, problems naturally arise if a delicate Chargguperposmon of a reference or input densify=no(r') and

balance is required for establishing chemical bonding bea small fluctuationsn’=én(r"), fdr’ is expressed by ':
tween different types of atoms. In such cases, an adjustment
of the charge distribution via a self-consistent fi¢BICPH oxe A ©ong
procedure may be necessary. Hence, there is a need to extend E= Z (Wi - 2 +Vextt f = o, +Vxclnol| ¥5)
the TB formalism in order to improve its transferability with- ' r=r’|
%uetkglsitczcr)dluns%fme simplicity, speed, and efficiency, which 1 /ny(Ng+ )
s : - __f J' ?_f Vxclnol(ng+én)

Within the framework of standard empirical TB theory, 2 Ir—r’|
several proposals have been made to generalize the TB en-
ergies by exPIicitIy considering interatomic electron-electron 1 76N’ (ng+ 4én)
interactions®’~2* Skriver and Rosengaard use an efficient +§f f ——=——=— tExc[noton]+E;. (3
self-consistent Green’s-function technique based on the r=r’]
LMTO method within the tight-binding and atomic-sphere The second term in this equation corrects for the double
approximatiorf” Tsai et al*® improved theab initio multi-  counting of the new Hartree, the third term for the new XC
center TB schenté in order to account for charge transfer. contribution in the leading matrix element, and the fourth

By using the Ewald technique, they added and subtracted t@rm comes from dividing the full Hartree energy in E8)
each atom a Gaussian charge distribution and solved th@to a part related tm, and tosn.

Schralinger equation iteratively, to determine the self-  Finally, we expancEyc at the reference density and ob-
consistent atomic charges. Demketal?’ used a different tain the total energy correct to second order in the density
approach to modify this TB scheme by including long- fyctuations by a simple transformation. Note that the terms

adjustment of site-dependent occupation humbers. No:

Here, we focus on describing in detail the systematic ex-
tension of the tight-binding formalism and of our DFTB occ 1 . n'n
schemé&®*®in order to derive a generalized self-consistent E=>, (|| W)~ —J' f 220 L E o]
charge (SCO methodology, which has been discussed i 2 [r—r’|
recently?® This differs from previous approaches since we
base the modification of the TB total-energy expression in _f Ve[ Nolng+E;;
Sec. Il on a second-order expansion of the Kohn-Sham en-
ergy functionad® with respect to density fluctuations. This 1 , 1 S°E
methodology ensures a proper distribution of the charge and + Ef f ( 4+ 27X

overcomes the requirement of local charge neutrafigspe- |F— F’| én on’
cially in multicomponent systems. In maintaining the simple

two-center picture of the non-SCC standard DFTB, which

we briefly summarize in Sec. lll, the new scheme, described!- ZEROTH-ORDER NON-SCC APPROACH, STANDARD
in more detail in Sec. 1V, can be easily incorporated into any DFTB

standard TB method. In Sec. V, we demonstrate the im-
provements considering properties of molecular and soli

state systems, where the non-SCC scheme failed, and poi
out recent successful applications to polar semiconducto

surfaces and dislocations.

) on én’. 4

No

The traditional non-SCC TB approach is to neglect the

t term in this final equation, withl, as the Hamiltonian
perator resulting from an input densityy. As usual, a
rozen-core approximation is applied to reduce the computa-

tional efforts by only considering the valence orbitals. The

Il. DENSITY-FUNCTIONAL BASIS OF TB THEORY Kohn-Sham equations are then solved non-self-consistently

and the second-order correction is neglected. The contribu-

The total energy of a system bf electrons in the field of  tions in Eq.(4) that depend on the input density only and

N nuclei at positionsR may be written within DFT as a the core-core repulsion are taken to be a sum of one- and
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two-body potential® The latter, denoted bYE ep, are Interatomic forces for molecular-dynamics applications
strictly pairwise, repulsive, and short ranged. The total encan easily be derived from an explicit calculation of the gra-
ergy then reads dients of the total energy at the considered atom sites,
oce = IEL®B 9H?® S
~ M., R,=——=—=-2,n CiChi| —— — & ———
E-(I)—B:Ei <‘Pi|HO|\I’i>+Erep- (5) ae IR, E| I% Ey v JR, e JR,

, . : Ered|Ra—R
To solve the Kohn-Sham equations, the single-particle M_
wave functions¥; within an LCAO ansatz are expanded into B#*a IR,
a suitable set of localized atomic orbitafs ,

(11)

This is the non-SCC DFTB approach, which has been
successfully applied to various problems in different systems
W)=, cie(I—R,). (6)  and materials, covering carbohsilicon3* and germanium
v structures’? boron and carbon nitride$;** silicon carbidé®
and oxidé® and GaAs surface¥. Provided an educated
ess of the initial or input charge density of the system, the
ergies and forces are correct to second order of charge
density fluctuations. Furthermore, the short-range two-
sparticle repulsion(determined once using a proper reference
cﬁysten) operates transferably in very different bonding situ-
ations considering various scale systems.

As described earlie® we employ confined atomic orbitals in
a Slater-type representation. These are determined by solvi
a modified Schrdinger equation for a free neutral pseudoa-
tom within SCF-LDA calculation® The effective one-
electron potential of the many-atom structure in Ref. 16 i
approximated as a sum of spherical Kohn-Sham potentials
neutral pseudoatoms due to theonfinedelectron density.
By applying the variational principle to the zeroth-order
energy functionak5), we obtain the non-SCF Kohn-Sham V. SECOND-ORDER SELF-CONSISTENT CHARGE
equations, which, finally, within the pseudoatomic basis, EXTENSION, SCC-DFTB

transform into a set of algebraic equations: The previous scheme discussed above is suitable when the

electron density of the many-atom structure may be repre-
E c.(H® 68 )=0, V.| R0 sented as a sum pf 'atomi_clil_<e densities in good appro?dma-

L L ' Kot tion. The uncertainties within the standard DFTB variant,

however, increase if the chemical bonding is controlled by a

o ~ delicate charge balance between different atomic constitu-
Hu=(euHole.),  S.=(eule.,), Vuea, vep. ents, especially in heteronuclear molecules and in polar
®  semiconductors. Therefore, we have extended the approach

Consistent with the construction of the effective one-electrod! Oder to improve total energies, forces, and transferability
n the presence of considerable long-range Coulomb interac-

potential we neglect several contributions to the Hamiltoniar!" . ;
matrix elementsd , (Ref. 18 yielding tions. We start from Eq) and now explicitly consider the
124 :

second-order term in the density fluctuations.
In order to include associated effects in a simple and ef-

M

neutral free atom

o T u=v ficient TB concept, we first decomposﬁn(F) into atom-
Ho = (ealT+Ve+VElel) if a#p (9)  centered contributions, which decay fast with increasing dis-
0 otherwise. tance from the corresponding center. The second-order term
then reads

Since indicesy and B indicate the atoms on which the wave-
functions and potentials are centered, only two-center Hamil-
tonian matrix elements are treated and explicitly evaluated in
combination with the two-center overlap matrix elements. As )
follows from Eq.(9), the eigenvalues of the free atom serveWhere we have used the functioralto denote the Hartree
as diagonal elements of the Hamiltonian, thus guaranteeingnd XC coefficients. Second, ti#ia, may be expanded in a
the correct limit for isolated atoms. Series of radial and angular functions:

By solving the general eigenvalue problem Ed@), the

18 o R
Ean52, | | TP nelon oy, a2

first term in Eq.(5) becomes a simple summation over all > Q7B r—Ra

occupied Kohn-Sham orbitals; (occupation numben;), 5”"‘“)_.2”1 KniFmi(Ir=Rel)Yim IF—R,|

while E,¢, can easily be determined as a function of distance ..

by taking the difference of the SCF-LDA cohesive and the ~Aq.Foo(|r—Ral) Yoo, (13
corresponding TB band-structure energy for a suitable refer- i i

ence system, whereF 7, denotes the normalized radial dependence of the

density fluctuation on atom for the corresponding angular
momentum. While the angular deformation of the charge
. density, e.g., in covalently bonded systems, is usually de-
reference structure scribed very well within the non-SCC approach, charge
transfers between different atoms are not properly handled in

Ced R | SRS e
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many cases. Truncating the multipole expansB®rafter the  basis set to solve the Kohn-Sham equatithse assume an
monopole term accounts for the most important contributiongxponential decay of a normalized spherical charge densities
of this kind while avoiding a substantial increase in the nu-

merical complexity of the scheme. Also, it should be noted TS Cr-R|

that higher-order interactions decay much more rapidly with Na(r)= 8_77e oo

increasing interatomic distance. Finally, expressibs) pre-

serves the total charge in the system, EéaAqazfﬁn(F).
Substitution of Eq(13) into Eq. (12) yields the simple final
expression for the second-order energy term:

Neglecting for the moment the second-order contributions of
Exc in Eg. (12) we obtain:

ro1 7'3 I -
_ _a 77'\F'7R\_B —15r—Ryg|
Ya —ff e '« o e s Al
15 ) ) r-r 8 8
Eon=52 AULAQgYags, 14 . .
o Qo257 ap (14 Integration over’ gives

where f 1 Ta+ 1 o l-R
—yalgz | — = = e o @
5 > N > |r_Ra| 2 |r_Ra|
e FelIr=RADFEIr = Rgl)
WZJJF[” Mol 4 B il
g (15) Xﬁe 8 Bl (16)

is introduced as shorthand. In the limit of large interatomicSettingR=|R,—Ry|, after some coordinate transformations
distances, the XC contribution vanishes within LDA and ©n€ getssee Appendix
E,ng may be viewed as a pure Coulomb interaction between
two point charged g, andAqg . In the opposite case, where :l_
p geaq, Up pp » Wh Yop S(74,75,R). (17)

the charges are located at one and the same atom, a rigorous R
evaluatio_n o_fy,m_ Would_require the knowledge of the actugl Sis an exponentially decaying short-range functisee Ap-
charge distribution. This could be calculated by expandin endiy with
the charge density into an appropriate basis set of localize
orbitals. In order to avoid the numerical effort associated R—05 1
with a basis set expansion @h and to consider—at least S(74:7:R) = 1Tt R- (18
approximately the self-interaction contributions—we apply a
simple approximation fory,,, which is widely used in If we assume that &= 0 the second order contribution can
semiempirical quantum chemistry methods relying on Parisbe expressed approximately via the so-called chemical hard-
ers observatioff that y,, can be approximated by the dif- ness for a spin-unpolarized atom or Hubbard paramgtgr
ference of the atomic ionization potential and the electrorive obtain
affinity. This is related to the chemical hardnegs, or the e L
Hubbard parametdd ,: y,,~!,—A,~27na~U,. The ex- 280, Yaa= 280U,
pression fory,s then only depends on the distance betwee
the atomse and 8 and on the parametets$, andU;. The
latter constants can be calculated for any atom type within
LDA-DFT as the second derivative of the total energy of a
single atom with respect to the occupation number of thelhis result can be interpreted by noting that elements with a
highest occupied atomic orbital. These values are thereforkigh chemical hardness tend to have localized wave func-
neither adjustable nor empirical parameters. Indeed, the netions. The chemical hardness for a spin-unpolarized atom is
essary corrections for a TB total energy in the presence dhe derivative of the highest molecular orbital with respect to
charge fluctuations turns out to be a typical Hubbard-typets occupation number. We calculate this chemical hardness
correlation in combination with a long-range interatomic with a fully self-consistentb initio method and therefore
Coulomb interaction. Common functional forms far,;  include the influence of the second-order contributiof gf
have been presented by OHfo, Klopman?* and in v,z for small distances where it is important. In the limit
Mataga-Nishimotd? However, they may cause severe nu-of large interatomic distanceg, s— 1/R and thus represents
merical problems when applied to periodic systems sincéhe Coulomb interaction between two point chargeg, and
Coulomb-like behavior is only accomplished for large inter-Aq;. This accounts for the fact that at large interatomic
atomic distances. Using expressions like that in Refs. 40 andistances the exchange-correlation contribution vanishes
41 for periodic systems yield ill-conditioned energies with within the local density approximation. In periodic systems,
respect to the Hubbard parameters, i.e., small changes in tlileis long range part can be evaluated using the standard
Hubbard parameters may result in considerable variations diwald technique, whereas the short-range fadecays ex-
the total energy, and can therefore not be used. ponentially and can therefore be summed over a small num-

In order to obtain a well-defined expression useful for allber of unit cells. Hence Eq17) is a well-defined expression
scale systems and consistent with the previous approximder extended and periodic systems.
tions we make an analytical approach to obtain the functional Finally, the DFT total energy4) is conveniently trans-
Yap- IN accordance with the Slater-type orbitals used as #ormed into a transparent TB form,

"hnd therefore from Eq.18) for the exponents:

_16
T,=5U,.
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occ . 1 N TABLE I. Hydrogenation reactiongecal/mo) for small organic
E;BZE <‘I/i|HO|\IIi>+ EE VaﬁAquq[ﬁ Erep: molecules in comparison with DFT-LSD calculations and experi-
i a,p ment (Ref. 39.
(19
where ¥o5=vap(Ua U, IR, —Rgl). As discussed earlier, Reaction SCCDFTB  LSD e
the contribution due té, depends only om, and is there-  CH;CH;+H,—2CH, 20 18 19
fore exactly the same as in the previous non-SCC stuflies. CHsNH,+ H,— CH,+ NH3 23 24 26
However, since the atomic charges depend on the oné&H;OH+H,—CH,;+H,0 32 28 30
particle wave functionsV;, a self-consistent procedure is NH,NH,+ H,—2NH; 30 43 48
required to find the minimum of expressi¢oi9). HOOH+H,—2H,0 101 80 86
To solve the Kohn-Sham equations, the single-particlecH,CH,+2H,—2CH, 71 67 57
wave functions¥; are expanded into a suitable set of local- CH,NH+ 2H,— CH,+ NH; 66 67 64
ized atomic orbitalsp, , denoting the expansion coefficients cH,0+ 2H,— CH,+H,0 65 67 59
by c,i. In accord with the previous schertfewe employ NHNH+ 2H,— 2NH; 56 39 68
confined Slater-type atomic orbitals. These are determineg,y,+3H,—2CH, 124 131 105
by solving a modified Schadinger equation for a free atom cN+3H,— CH,+NHs, 88 102 76
W|_th|r_1 SCF-LDA calculatlon_s. By applying t_he variational CO+ 3H,— CH,y+ H,0 83 93 63
principle to the energy function#l9), we obtain the Kohn- N+ 3H,—2NH, 37 71 37

Sham equations, which, within the pseudoatomic basis
transform into a set of algebraic equations. We employ the

Mulliken charge analysis for estimating the charge fluctua- occ 0 1
tionsAq,=0q,—q° E=—>n> c,cy, M [ HW)&
a Ha Ha> @ : IMV wiCvi = €j S,u.v IR
1OCC N @ @
a:_E n'E 2 (C*'CV'S V+Ct'c 'SV )! (20) N d @ JE
q 24 |Mea = i Cviop iCuiovu _Aqaz '): §Aq§_ érep' 23)
_ IR, IR,
and obtain
M V. RESULTS
c,i(H,,—€S,,)=0, Vgu,i, 21 .
Ey i(Hun=e1S,0) il @D In order to validate the SCC-DFTB approach we now
concentrate on presenting results of first successful applica-
R 1 N tions of the SCC-DFTB scheme to a wide class of systems,
H,=(e.Hole,)+ ESWE (Yaet vpe)AQ; which are of interest in chemistry, physics, and biology. In
¢ particular, we demonstrate the improvements of the method
:Hﬁﬁ Hiw S.={(¢,l¢,), Vuea, vep. filsnzompared to conventional DFTB aab initio calcula-
(22)
Since the overlap matrix elemerssg, generally extend over A. Organic molecules

a few nearest-neighbor distances, they introduce multipar- o o4y first benchmark, we have calculated the reaction
ticle interactions. The second-order correction due to Charg@nergies of 36 processes between small closed shell mol-
fluctuations is now represented by the nondiagonal Mulliken, . jes containing oxygen, nitrogen, carbon, and hydrogen
charge dependent contributidﬂliy to the matrix elements om Ref. 43, some of them shown in Table I. We have
Huwoo ) ) found a mean absolute deviation from experiment of 12.5
As in our previous studie¥, we make use of the two- cal/mol for the SCC-DFTB, compared to 11.1 kcal/mol for
center approximation Eq9). Instead of superposing spheri- the DFT-LSD calculation& Further, considering the opti-
cal pseudoatom potentials for constructing the effective onemized geometries of a 63 organic molecules test set from
electron potential, however, we now superpose sphericakef. 44, the mean absolute deviations from experiment in the
pseudoatom charge densities and evaluate the effectiygyng lengths and bond angles akk=0.012 A andA#

potential for the resulting charge densitfl®,=(¢%T  =1.80°6 respectively, compared thR=0.017 A andA @
+V(n§+n)|¢f) if a+p. Consistent with Eq(10), we  =2.01° by using the semiempirical AM1 meth&t.
determine the short-range repulsive pair poterigl, as a The improvement over the non-SCC treatment is impres-

function of distance by taking the difference of the SCF-sively demonstrated for systems with a delicate counterbal-
LDA cohesive energy and the corresponding SCC-DFTBance between ionic and covalent bonding contributions, as,
electronic energy for a suitable reference strucffiret two  e.g., in formamidécf. Table 1)). The DFTB method overes-

terms in Eq.(19)]. Since charge transfer effects are nowtimates the equalization of single and double bonds in the
considered explicitly, the transferability &, is improved amide and carboxyl groups. This is exclusively due to too
compared to the non-SCC approach. A simple analytic exmuch charge flow(of nearly one electronfrom carbon to

pression for the interatomic forces for use in MD simulationsoxygen, clearly indicating the need for a self-consistent
is easily derived by taking the derivative of the final TB charge redistribution. SCC can considerably improve vibra-
energy(19) with respect to the nuclear coordinates, tional frequencies of simple molecules, like, for example,
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TABLE Il. Optimized geometries for three different methods.

DFT-LSD Expt.
Formamide DFTB SCC-DFTB (Ref. 39 (Ref. 39

Cc=0 1.296 1.224 1.223 1.193
C—N 1.296 1.382 1.358 1.376
N—H 1.003 0.996 1.022 1.002
C—H 1.130 1.131 1.122 1.102
OCN 127.0 125.5 124.5 123.8 0o, o

[T10] 1101

FIG. 1. Top view of the relaxed three As dime#$2x 4) (left)

CO,, in which awrhong charge transfer crucially affects force nd wo As dimersB2(2x4) (right) reconstructions of the
constants. As in the formamide molecul lar har

Sanetor rom carbon to ouygen 1 o?)f[::i ﬁez,tggniegc?e% \?vi?l’f aAq100) surface. Largésmal) filled circles represent tofthird)

an underestimation of the CO bond strength. The symmetrié‘%’?&A i) er;ncrgr{s(t::zcgﬁznGﬁazthosv'vgu;:;ieg:grstat'c effects, the
and antisymmetric stretching modeE(and =) in CG, 9y
change from 1458 and 1849 cthin DFTB to 1348 and
2305 cm' ! in SCC-DFTB in good agreement with the ex-

perimental values, 1333 and 2349 ¢th Frequencies have

further been tested for a series of 83-, N-, C-, and H} . o S
containing molecules from Ref. 45 yielding 6.4% mean ap-lransfer in kat|_0r_1|c a_md anionic SySteﬁ?SAlth.OUQh some
solute deviation of vibrational frequencies from the well-known deficiencies of DFT-GGA cglculatlo(‘vsoncern-
experiment’® ing the underesnmatlon_ of proton parn)ar;anr_mot be over-
come, the overall description is reliable yielding a clear im-
S provement compared to semi-empirical AM1 and PM3
B. Biological systems Hamiltonians.
The very promising results for the organic molecules de-
scribed above lead us to believe that the method can be ap-
plied to investigate the geometric and electronic structure of ) o
large biomolecules. A detailed study of H-bonded DNA base \We then applied the SCC-DFTB method to periodic struc-
pairs and the structure and energetics of different conformergires of Ill-V semiconductors. At first we considered the
of small polypeptides will be presented elsewHErélere, —energetic ordering of reconstructions of GAE®) surfaces.
we focus 0n|y on some examp|es, where Semiempirica]rhe Stablllty of different models that could eXpIain a (2
methods are known to meet difficulties. We have simulated<4) periodicity has been discussed for a long tifie?” In
the retinal in the bacteriorhodopsin molecule, a polyendarticular uncertainty persisted on whether thex@ peri-
structure linked via a Schiff base to the protein matrix. Theodicity observed under As-rich growth conditions corre-
SCC-DFTB geometries are in good agreement with the exsponds to theg(2x4) reconstruction with three surface
perimentally reported crystalline structure of the retiffdh ~ dimers per (2 4) unit cell or to theg2(2Xx4) model with
particular, the planar structure of the retinal Schiff base igwo surface dimergsee Fig. 1
correctly described, characteristics that classical force field While Ohno found theB(2x4) reconstruction to be en-
and standard semiempirical methods have been reported &getically favorable, which appeared to be in agreement
fail.495% Another important property for a realistic simulation With_an STM observatio} Northrup et al>> and Moll
of structural and energetic properties of peptides and proteirgt al>® determined thgg2(2x 4) phase to have a lower en-
is the rotational barrier in formamide. This is so largely un-ergy, explaining the high resolution STM images by Hashi-
derestimated by semiempirical methods that it is usual tgumeet al®>’ Also the SCC-DFTB scheme favors ti#2 (2
correct for the associated effects by empirical force fields. 1< 4) model by 3.7 meV/A, which agrees very well with the
contrast, the SCC-DFTB barrier height is in good agreemend meV/A? found by Northrupet al. who suggested that the
with the experiments deviating by only 10%. calculated energy difference between B2(2x4) and the
Since DFT-LDA is known to perform poorly for H- B(2Xx4) phase can be attributed to electrostatic interactions
bonded systems, one has to go beyond this level of descrign the surface. As standard TB schemes neglect these inter-
tion. One natural extension provides the use of gradientactions it is not surprising that TB calculations by CHAdi
corrected functionals such as the PBE-G&M®y applying  and calculations with the non-self-consistent DFTB schiéme
this functional in both the full SCF reference calculationsyield degenerate energies for these phases. An analogous
and the construction of the TB Hamiltoni@@GA atoms and question arises in the Ga-rich environment where a three Ga
matrix calculations by superposition of densiji&sthe ef-  dimer 8(4x2) and a two dimeB2(4x 2) model could ac-
fects of hydrogen bonding within the SCC-DFTB may becount for the observed ¢42) periodicity. Again the stan-
described at a corresponding level of accuracy. For examplelard DFTB method gives degenerate surface energies,
for the water dimer the linear structure is found to be thewhereas charge self-consistency favors@2¢4x 2) recon-
global minimum and the © - O distance is underestimated struction in agreement with previous scf calculatri§and
by 4% with respect to the experimental value, which is com-STM investigations® Figure 2 shows the surface energies
parable to the performance of DFT-GGA methods. In ordeidetermined with the SCC-DFTB method depending on the

to test the SCC-DFTB for these systems systematically, we
calculated the bonding energies of 18 weak and strong hy-
drogen bonded compounds and studied barriers for proton

C. llI-V semiconductor surfaces
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TABLE IlI. Atomic displacements in A for the top two layers of

atoms at the GaN(l_GD]) surface. Atom numbers refer to Fig. 3.
Values in brackets are results of Ref. 50.

Atom AX Ay Az

1 (Ga&xcoora) —0.10 (-0.11 0.0 —0.23 (-0.20
2 (Nax coord) 0.03(0.0D 0.0 —0.01(0.02
3 (Gaxcoord) 0.01(0.09 0.0 0.08(0.05
4 (Ngx coord) 0.04(0.05 0.0 0.07(0.05

plied to the negatively chargel-derived surface level. In
contrast to a self-consistent treatment the energy of this level
is therefore considerably too low, resulting in a surface band
shifted at the edges of the Brillouin zone.

As a first successful application of the SCC-DFTB
scheme to extended defects we modeled GaN threading
screw and edge dislocations in large supercells containing
576 atom$! Consistent with experiments we found that
these line defects are electrically inactive, i.e., they do not

Aexhibit deep gap states.
We would like to remark that the time-limiting step in

FIG. 2. Surface energies in meV#Af the GaA$100) structures
plotted versusugs ey, The part on the rightleft) of the dia-
gram corresponds to Gas) rich growth conditions.

growth conditions described via the chemical potentig},.
They are in very good agreement with the recent SCF-LD

results by Mollet al>® el )
; : : both non-SCC and SCC-DFTB calculations is the solution of
Applied to point defects in GaAs SCC-DFTB can be used he general eigenvalue problem. While the non-SCC scheme

to describe the energetic ordering for different charge stated® 9 ) o
Assuming the electrochemical potential, at the valence requires th|_s task to be solved once for each ionic mol_ecular-
band edge we obtain for the energy difference between thgynam'cs time step, SCC-DFTB needs _only a f@‘"‘r’) It-
neutral and the threefold negatively charged Ga vacanc rations, That means that SCC-DFTB is only slightly less
—1.0 eV and for the energy difference between the posi- fficient than the non-SCC approach.

tively charged As vacancy and the threefold positively
charged As vacancy 1.1 eV. In agreement with SCF
calculations® we can therefore conclude that jmtype ma-

VI. SUMMARY

We have presented a straightforward extension and suc-

;enr:jal tH;e Ssa \\//:g::é:y iﬂgﬂﬂ ebx;stszg ||ts n%l;ti?\/le?hagﬁzrsgggessful implementation of the standard TB theory to opera-
These conclusions c){)uld not be achigv)édpwithin t>r/1e star?darti n in & self-consistent charge mode based on a second-
der expansion of the Kohn-Sham total-energy functional as

L%a?pggogtnlﬁgogéf\évge_re r;cgelg:?:(ljogb rﬁﬁubr']on. or]:' ;?Qgrr]%ecalculated within DFT. By this we successfully address a key
12 . IS nég resutting in signit yproblem of electronic structure theory, the development of
lower energies for the charged configurations.

) ) = robust, accurate, rapid, and generally transferable methods
As a final example, we consider the GaN (0Q1surface

(Fig. 3). The geometry is already well described within the
standard DFTB methogcf. Table Ill) yielding a rehybrid-
ization of the surface G&N) atoms towardsp® (p°). In

this configuration theN-derived surface states are occupied
whereas the Ga surface states are empty. The surface enen
estimated within SCC-DFTB is 121 meV#Ain very good
agreement with 118 meVAgiven by Northrupet al%® We
calculated the surface projected SCC-DFTB band structureY
of the valence bandsee Fig. 4. Again this agrees well with
the SCF LDA calculations of Northrugt al®® However,
within the standard TB approximation no correction is ap-

O—e o—e |
N
O—e O _
> FIG. 4. Valence band structure of the relaxed GaN @04ur-

b— face. The full line represents tié-derived surface band calculated
. with charge self-consistent tight bindif§CC-DFTB, the dashed

FIG. 3. Schematic top view of the (10} surface of wurtzite line the too low-lying surface band determined with non-SCC-
GaN. Atoms 1 and 2 form a dimer in the surface layer. Atoms 3 andDFTB. The shaded region corresponds to the bulk projected band
4 form the second layer. structure.
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for ab initio based simulation and characterization of large
scale molecular and condensed systems. The analytically d

rived charge-dependent contribution to the total-energy ex-

pression can be physically interpreted to describe the chem

cal hardness for vanishing distances and to represent the

Coulomb interaction between point charges at large dis
tances. Moreover, for intermediate distances the energy co

rection does not contain any empirical functional but is en-

tirely consistent with approximations that frequently enter

TB schemes. We show that the scheme is numerically stablﬁ

for all scale systems and by describing various benchmark-
’ FO, TB

results clearly demonstrate the method’s successful operation

at sufficient accuracy on very different systems and materi

als, including up-to-date results for large-scale biomoleculesT

GaAs surface reconstructions and extended defects in grou
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—Rg|)/R we get for Eq.(AL):
e_

2
. 7 3R foc fl nt1
! 2R > 1d§ 71d77(§+77)

- X (&= p)e~ (Tat Tp) (R (74~ mB)(RI2) 7,

r_

Expanding the productéd 7)"*! into binomials and using
the relation [2x'e” dx=3!_,[11/(I-i)l o' "1]x' "t~ X2
e finally get with y=(R/2)(7,+ 75) and 6=(R/2)(7,
):

[l nitrides. This clearly shows the usefulness of the scheme

for improving various TB applications in material science.
The method can be understood as a general SCC exte

sion of TB theory offering the great advantage to incorporate

any atom type in a straightforward manner. This will not

only stimulate MD applications for large-scale semiconduc-

tor structures and biological systems, but also for other chal
langing types of materials.
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APPENDIX

In Eqg. (16) we need to evaluate integrals of the form
f =R Jre Rl Rlgf. (A1)
IR

SettingR=|R,,— §B| and transforming to spheroidal coordi-
nates ¢é=[r—R,|+|r—Rg/R and p=(r—R,|—|r

Rnn+1 n+1 i+1 i+ 1)
R e Y ———— i+ —
Bo2=0\ i m=0 (i+1—m)!y
n+1-i .
(n+1-i)! .
X -1 n+17|7meﬁ_e7§
n-x 2, (i1 imami Y :

i n+2—i

_<2

m=0 (I _m)! ,ym+1

il (n+2—i)!

m=0 (n+2—i—m)!sm*?

|

X[(_l)n+2—i—me6_e—§]

From this we obtain fory,z in Eq. (16):

E_ o 7R T4B7'a B 72—37?;72
R 2(2—15)% (- 13)°R

4 6_3.4.2

e TR TaTp  Ta”37aTp
2_ 2 2 2 :

2(7',3— 7'65)2 (TB—TQ)SR

Denoting the function in square brackets wahwe see that
S decays exponentially witR. Expanding the exponentials
we find the relatiorn(18).
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