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Calculating photonic Green’s functions using a nonorthogonal
finite-difference time-domain method

A. J. Ward and J. B. Pendry
Condensed Matter Theory Group, The Blackett Laboratory, Imperial College, London, SW7 2BZ, United Kingdom

~Received 2 April 1998!

In this paper we shall propose a simple scheme for calculating Green’s functions for photons propagating in
complex structured dielectrics or other photonic systems. The method is based on an extension of the finite-
difference time-domain~FDTD! method, originally proposed by Yee@IEEE Trans. Antennas Propag.14, 302
~1966!#, also known as the order-N method@Chan, Yu, and Ho, Phys. Rev.51, 16 635~1995!# which has
recently become a popular way of calculating photonic band structures. We give a transparent derivation of the
order-N method which, in turn, enables us to give a simple yet rigorous derivation of the criterion for
numerical stability as well as statements of charge and energy conservation which are exact even on the
discrete lattice. We implement this using a general, nonorthogonal coordinate system without incurring the
computational overheads normally associated with nonorthogonal FDTD. We present results for local densities
of states calculated using this method for a number of systems. First, we consider a simple one-dimensional
dielectric multilayer, identifying the suppression in the state density caused by the photonic band gap and then
observing the effect of introducing a defect layer into the periodic structure. Second, we tackle a more realistic
example by treating a defect in a crystal of dielectric spheres on a diamond lattice. This could have application
to the design of superefficient laser devices utilizing defects in photonic crystals as laser cavities.
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I. INTRODUCTION

One of the principal driving forces behind the rece
flurry of research into photonic band-gap materials1,2 has
been the potential for manipulating the spontaneous emis
of an atom placed in a cavity in such a material. As w
pointed out some years ago3 a material with a periodically
structured dielectric function~a photonic crystal! can have a
profound effect on the density of states for photons wit
the material, in some cases leading to frequency windows
which no allowed photon states exist. These windows,
photonic band gaps, radically alter the emission propertie
atoms. An excited atom that wants to emit a photon o
frequency within the band gap cannot do so—the photon
no states into which it can go, and so is forced to form a k
of atom-photon bound state. Even zero-point fluctuations
forbidden within the band gap. This has immediate implic
tions for device physics. Placing an active device, such a
semiconductor laser, within a cavity in a photonic crys
offers the possibility to control unwanted spontaneous em
sion and allow emission only into the lasing mode, thus d
matically improving the efficiency of the device.4

Green’s functions have the potential to play a central r
in the theoretical investigations of these photonic syste
Not only are they a natural way to express key quanti
such as the density of states, they also are easily calcu
within the framework of time domain methods such as
order-N technique that we shall be exploring in this paper.
systems where dissipation is present, such as those con
ing metals or lossy dielectrics, the Green’s-function a
proach is the only route to calculate quantities of physi
interest.

For the theorist, the challenge is to solve Maxwell’s equ
PRB 580163-1829/98/58~11!/7252~8!/$15.00
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tions for such systems. Much progress has been made in
past few years, and several well-established techniques
emerged. Probably the most widely used is the plane-w
method.5–7 Simply put, this method involves expanding th
electromagnetic fields as a sum of plane waves and reca
Maxwell’s equations into the form of a eigenvalue proble
to find the allowed eigenfrequencies. Though simple
implement and use, this method has the drawback that
time taken for the calculation scales as the cube of the n
ber of plane waves used, so for complicated problems wh
require many plane waves this is a severe limitation. Anot
limitation is to systems whose dielectric functions do n
disperse with frequency. Hence metallic systems are bey
the scope of this method.

A second popular method involves working at a fix
frequency, but instead of expanding the wave field on a
tice in reciprocal space the wave field is represented on
points of a real-space lattice.8,9 The resulting equations ca
be rearranged into the form of a transfer matrix which rela
the fields in one layer of the lattice to the fields in the ne
This method has proved extremely useful especially for s
tems involving metals where the dielectric constant is a fu
tion of frequency. Also, because the form the transfer ma
takes, connecting the fields on onesurfaceto the fields on
another, calculations based on this method scale as
square of the number of real space points, rather than
cube.

This may be an improvement over the plane-wa
method, but is still worse than the optimal linear scaling w
system size. However, it has been shown10 that, because
Maxwell’s equations are local, by working in the time d
main instead of the frequency domain it is possible to obt
methods which scale as ‘‘orderN’’ where N is the system
7252 © 1998 The American Physical Society
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size. We shall work with such a method in this paper in or
to calculate photonic Green’s functions, and from those ot
quantities of physical interest such as densities of states.
vious work has successfully calculated spontaneous emis
rates from the density of states using a real-space la
formulation.11 However, that work was based in the fr
quency domain. By working in the time domain we are a
to exploit the more favorable scaling law and consider larg
more complex systems such as photonic crystals with
fects.

II. METHODS

The theory behind the methods used in this paper is so
what similar in principle to the finite-difference time-doma
~FDTD! method first introduced to the electrical engineeri
community by Yee12 in 1966, and first applied to the prob
lem of photonic band structures by Chan, Yu, and Ho10 in
1995. Here we present a systematic derivation of the fin
difference equations within a transparent formalism. The
vantages of this formalism over the traditional Yee appro
are many. First, it makes clear how to find quantities wh
are exactly conserved even by discrete equations. Henc
can identify the analogies to charge, energy density,
Poynting vector, etc. Second, our formalism enables a
cise analysis of the stability of the discrete equations to
made from a simple consideration of the approximations
volved, sidestepping the usual, rather involved, Courant
bility analysis. Third, and perhaps most importantly, the f
malism shows how to present finite-difference equations
completely general coordinate system without incurring
computational overheads normally associated with a no
thogonal FDTD.13 Finally, it is hoped that this transparenc
will make it simpler to extend the method to areas to wh
it has not yet been applied. We begin from the usual M
well’s equations, neglecting any free charges or currents

¹3H5«0«~r !
]E

]t
, ¹3E52m0m~r !

]H

]t
, ~1!

which, on Fourier transforming into (K ,v) space, can be
written

ik3H52 i«0«vE, ik3E51 im0mvH. ~2!

Next we wish to place these equations onto a discr
real-space lattice by replacing the derivatives with finite d
ferences. We have some freedom here but must be care
not all differencing schemes lead to stable equations.
will therefore take our lead from the differencing schem
which has proved so successful in the transfer-ma
method.9 We do this by introducing the following approx
mations tov andk. For the terms which involve the electri
field we use

kx°kx
15

e~ ikxa!21

ia
, v°v15

e~2 ivdt !21

2 idt
, ~3!

with similar expressions forky
1 and kz

1 . For the magnetic-
field terms we use
r
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kx°kx
25

12e~2 ikxa!

ia
, v°v25

12e~ ivdt !

2 idt
, ~4!

etc. So, making these approximations in Eq.~2!, we obtain

ik23H52 i«0«v1E, ik13E51 im0mv2H. ~5!

On Fourier transforming back into the (r ,t) domain it is
clear that these approximations are equivalent to takin
forward finite differenceD1 in place of derivatives of the
electric field, and a backwards differenceD2 for derivatives
of the magnetic field.

Dx
1F~r !5@F~r1a!2F~r !#/a, ~6!

Dx
2F~r !5@F~r !2F~r2a!#/a. ~7!

Putting it all together, the discrete form of Maxwell’s equ
tions become

¹13E~r ,t !52m0m~r !D t
2H~r ,t !, ~8!

¹23H~r ,t !5«0«~r !D t
1E~r ,t !, ~9!

where

¹135S 0 2Dz
1 Dy

1

Dz
1 0 2Dx

1

2Dy
1 Dx

1 0
D , ~10!

¹235S 0 2Dz
2 Dy

2

Dz
2 0 2Dx

2

2Dy
2 Dx

2 0
D . ~11!

The approximations outlined in the previous paragraph pl
Maxwell’s equations onto a discrete lattice of points which
uniform and Cartesian. However, this is not always con
nient for the problems we may want to consider. It may be
our advantage to work in a coordinate system which is n
uniform or even nonorthogonal. Fortunately, as shown
detail elsewhere,14 there is a simple result which allows us
map a completely arbitrary coordinate system onto a unifo
Cartesian one as long as we introduce renormalized vers
of the permittivity and permeability. In the generalized coo
dinates Maxwell’s equations become

¹q
23Ĥ~r ,t !

Q0
5«0«̂~r !

Dt
1Ê~r ,t !

dt
, ~12!

¹q
13Ê~r ,t !

Q0
52m0m̂~r !

Dt
2Ĥ~r ,t !

dt
, ~13!

where

Dq1

1F~r ,t !5F~r1Q1u1 ,t !2F~r ,t !,

~14!
Dt

1F~r ,t !5F~r ,t1dt !2F~r ,t !,
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Dq1

2F~r ,t !5F~r ,t !2F~r2Q1u1 ,t !,

~15!~15!
Dt

2F~r ,t !5F~r ,t !2F~r ,t2dt !,

etc., and

«̂ i j ~r !5«~r !gi j uu1•u23u3u
Q1Q2Q3

QiQjQ0
,

~16!

m̂ i j ~r !5m~r !gi j uu1•u23u3u
Q1Q2Q3

QiQjQ0

and

ŝ i j ~r !5s~r !gi j uu1•u23u3u
Q1Q2Q3

QiQjQ0
,

~17!

ŝm
i j ~r !5sm~r !gi j uu1•u23u3u

Q1Q2Q3

QiQjQ0
.

The generalized coordinate system is defined by the th
unit vectorsu1 , u2 , andu3 which point along the general
ee

ized coordinate axis, and the three lattice spacingsQ1 , Q2 ,
and Q3 which define the spacing between discrete latt
points in each direction. In general, theui ’s and Qi ’s will
themselves be functions of position. The metric tensorgi j is
defined such that (g21) i j 5ui•uj . As well as the permittivity
and permeability being renormalized by the coordinate tra
formation, the fields themselves are also rescaled by the
tice spacings

Êi5QiEi , Ĥ i5QiHi . ~18!

In order to obtain the equations that will link the fields
one time step to the fields at the next, we introduce

Ĥ85
dt

«0Q0
Ĥ, ~19!

and let

a5Q1u1 , b5Q2u2 , c5Q3u3 . ~20!

Then, after some rearranging, we arrive at
Ê1~r ,t1dt !5Ê1~r ,t !1@ «̂21~r !#11@Ĥ38~r ,t !2Ĥ38~r2b,t !2Ĥ28~r ,t !1Ĥ28~r2c,t !#1@ «̂21~r !#12@Ĥ18~r ,t !2Ĥ18~r2c,t !

2Ĥ38~r ,t !1Ĥ38~r2a,t !#1@ «̂21~r !#13@Ĥ28~r ,t !2Ĥ28~r2a,t !2Ĥ18~r ,t !1Ĥ18~r2b,t !#, ~21!

Ê2~r ,t1dt !5Ê2~r ,t !1@ «̂21~r !#21@Ĥ38~r ,t !2Ĥ38~r2b,t !2Ĥ28~r ,t !1Ĥ28~r2c,t !#1@ «̂21~r !#22@Ĥ18~r ,t !2Ĥ18~r2c,t !

2Ĥ38~r ,t !1Ĥ38~r2a,t !#1@ «̂21~r !#23@Ĥ28~r ,t !2Ĥ28~r2a,t !2Ĥ18~r ,t !1Ĥ18~r2b,t !#, ~22!

Ê3~r ,t1dt !5Ê3~r ,t !1@ «̂21~r !#31@Ĥ38~r ,t !2Ĥ38~r2b,t !2Ĥ28~r ,t !1Ĥ28~r2c,t !#1@ «̂21~r !#32@Ĥ18~r ,t !2Ĥ18~r2c,t !

2Ĥ38~r ,t !1Ĥ38~r2a,t !#1@ «̂21~r !#33@Ĥ28~r ,t !2Ĥ28~r2a,t !2Ĥ18~r ,t !1Ĥ18~r2b,t !#, ~23!

Ĥ18~r ,t1dt !5Ĥ18~r ,t !2S dtc0

Q0
D 2

@m̂21~r !#11@Ê3~r1b,t !2Ê3~r ,t !2Ê2~r1c,t !1Ê2~r ,t !#2S dtc0

Q0
D 2

@m̂21~r !#12@Ê1~r1c,t !

2Ê1~r ,t !2Ê3~r1a,t !1Ê3~r ,t !#2S dtc0

Q0
D 2

@m̂21~r !#13@Ê2~r1a,t !2Ê2~r ,t !2Ê1~r1b,t !1Ê1~r ,t !#, ~24!

Ĥ28~r ,t1dt !5Ĥ28~r ,t !2S dtc0

Q0
D 2

@m̂21~r !#21@Ê3~r1b,t !2Ê3~r ,t !2Ê2~r1c,t !1Ê2~r ,t !#2S dtc0

Q0
D 2

@m̂21~r !#22@Ê1~r1c,t !

2Ê1~r ,t !2Ê3~r1a,t !1Ê3~r ,t !#2S dtc0

Q0
D 2

@m̂21~r !#23@Ê2~r1a,t !2Ê2~r ,t !2Ê1~r1b,t !1Ê1~r ,t !#, ~25!

Ĥ38~r ,t1dt !5Ĥ38~r ,t !2S dtc0

Q0
D 2

@m̂21~r !#31@Ê3~r1b,t !2Ê3~r ,t !2Ê2~r1c,t !1Ê2~r ,t !#2S dtc0

Q0
D 2

@m̂21~r !#32@Ê1~r1c,t !

2Ê1~r ,t !2Ê3~r1a,t !1Ê3~r ,t !#2S dtc0

Q0
D 2

@m̂21~r !#33@Ê2~r1a,t !2Ê2~r ,t !2Ê1~r1b,t !1Ê1~r ,t !#. ~26!
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These equations allow us to take an arbitrary set of elec
and magnetic fields at some initial timet50 and, subject to
appropriate boundary conditions, calculate the fields at
later times.

Notice that by incorporating all of the details of the ge
eralized coordinate system into the definitions of the perm
tivity and permeability we have, in effect, eliminated th
extra computational overhead of the general coordinate
the coordinate system changed from one place to ano
and there is no reason why it should not, we would have
store the metric tensor at each point on the lattice. But, s
we have to store« andm tensors at each point anyway, b
combining the metric into our new«̂ and m̂ we cut the
amount of storage needed. Similarly, we also reduce
number of calculations required at each time step as we
longer need to worry about converting between covari
and contravariant vectors at every time step—this is all ta
care of by«̂ and m̂. Hence, in contrast with previous meth
ods, our nonorthogonal FDTD has no additional compu
tional overhead compared to an orthogonal one, except
the initial setting up of«̂ and m̂.

A. Stability criterion

These equations give a stable updating procedure for
fields if the time step is kept sufficiently small. The criterio
is easy to find. Starting from the approximations we made
k andv @Eqs.~3! and~4!#, the free-space dispersion relatio
v25c0

2k2 becomes

4

dt2
sin2S vdt

2 D54c0
2F 1

Q1
2
sin2S Q1 kx

2 D1
1

Q2
2
sin2S Q2 ky

2 D
1

1

Q3
2
sin2S Q3 kz

2 D G . ~27!

The condition that the maximum value of the right-hand s
must correspond to a real frequency gives

~dt !2,S c0
2

Q1
2

1
c0

2

Q2
2

1
c0

2

Q3
2D 21

. ~28!

B. Fourier transforms

The final step of any time-domain method is a Four
transform of the time-dependent information into the f
quency domain, and for our FDTD method there are a f
points which need to be made clear. First, it is desirable
eliminate the zero-frequency, longitudinal mode from our
sults. This is done by subtracting off the static part from
time-dependent fields which we have calculated, so that t
time average is zero. Next we must ensure that we obtain
properly causal solution to Maxwell’s equations when
replace the integral in the Fourier transform with a discr
sum. We do this by adding a small positive, imaginary pard
to the frequency:
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`

f ~ t !exp@ ivt#dt

° (
n51

Nt

f ~ndt !exp@ i ~v1 id!~n61/2!dt#. ~29!

The size of this imaginary part is determined by the to
time interval over which the fields are integrated. In order
be properly causal, the final term in the sum must tend
zero. This is of less importance when finding a band str
ture, but is critical if we are to calculate the Green’s functi
correctly. Another small detail: because of the choices
have made in our approximations for the time derivatives
E and H, it is necessary to include a half-time-step offs
minus for theE field and plus for theH.

C. Conserved quantities

An obvious question to ask is whether our discrete Ma
well equations have conserved quantities analogous to th
for the continuum equations. The simplest to start with is
conservation of charge. We consider the quantity

¹q
2
• «̂~r !Ê„r …, ~30!

and then calculate the discrete version of its time derivat

Dt
2
•¹q

2
• «̂~r !Ê„r …5¹q

2
•Dt

2
• «̂~r !Ê„r …5¹q

2
•¹q

23Ĥ850.
~31!

Because our approximations to Maxwell’s equations ha
preserved the form of the curls, the quantity¹q

2
• «̂(r )Ê„r …

remains an exactly conserved quantity even on the disc
lattice. This is the direct equivalent of¹•D being conserved
in the continuum case, in other words, of the conservation
charge. The same follows for¹q

1
•m̂(r )Ĥ8(r ) corresponding

to the conservation of the ‘‘magnetic charge,’’¹•B.
The next task is to find the correct form for Poynting

theorem on the lattice. This again follows in a straightfo
ward way in our formalism if we begin from the following
form for the energy density:

U~ t !5 1
2 @«0«~r !Ea* ~r ,t !Ea~r ,t2dt !

1m0m~r !Ha* ~r ,t2dt !Ha~r ,t2dt !#. ~32!

This has the correct form for the energy density in the lim
dt→0. Substituting the expressions for the generalized co
dinates we obtain

U~ t !5
U0

2 F «̂abÊa* ~r ,t !Êb~r ,t2dt !

1S Q0

c0dt D
2

m̂abĤa8* ~r ,t2dt !Ĥb
8 ~r ,t2dt !G ,

~33!

where U05Q0«0 /(Q1Q2Q3uu1•u23u3u). Poynting’s theo-
rem can then be obtained by considering the time-differe
operatorD tU(t)5@U(t1dt)2U(t)#/dt. This gives
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D t
1U~ t !5

U0

2
$@Ĥ28* ~r2c,t !2Ĥ38* ~r2b,t !#Ê1~r ,t !

1@Ĥ38* ~r2a,t !2Ĥ
1

8*
~r2c,t !#Ê2~r ,t !1@Ĥ18* ~r

2b,t !2Ĥ28* ~r2a,t !#Ê3~r ,t !1@Ĥ28~r2c,t2dt !

2Ĥ38~r2b,t2dt !#Ê1* ~r ,t !1@Ĥ38~r2a,t2dt !

2Ĥ18~r2c,t2dt !#Ê2* ~r ,t !1@Ĥ18~r2b,t2dt !

2Ĥ28~r2a,t2dt !#Ê3* ~r ,t !1@Ê2~r1c,t !

2Ê3~r1b,t !#Ĥ
1

8*
~r ,t !1@Ê3~r1a,t !

2Ê1~r1c,t !#Ĥ28* ~r ,t !1@Ê1~r1b,t !

2Ê2~r1a,t !#Ĥ38* ~r ,t !1@Ê2* ~r1c,t !

2Ê3* ~r1b,t !#Ĥ18~r ,t !1@Ê3* ~r1a,t !

2Ê1* ~r rs1c,t !#Ĥ28~r ,t !1@Ê1* ~r1b,t !

2Ê2* ~r1a,t !#Ĥ38~r ,t !%. ~34!

The important point to notice is that when this quantity
summed over a set of neighboring lattice points only
terms associated with the surface of the integration reg
survive, all the volume terms cancel. This allows us to id
tify the right-hand side of Eq.~34! as the Poynting vecto
integrated over the volume surrounding one lattice point.

III. OBTAINING THE GREEN’S FUNCTION
ON THE LATTICE

We turn our attention now to consider how we can defi
the Green’s function within our discrete real-space f
mulism. We will begin from the continuum limit, and writ
Maxwell’s equations as

M S E

HD 5vPS E

HD , ~35!

where

M5S 0 1 i¹3

2 i¹3 0 D , P5S «~r !«0 0

0 m~r !m0
D .

~36!

We now define a six vector

Fs5S Es

Hs
D ~37!

as an eigenfunction of Eq. 35 with an eigenvaluevs . We
choose to normalize theF’s such that

E (
j 51

6

(
j 851

6

Fs, j
† ~r !Pj j 8Fs8, j 8~r !d3r5dss8 . ~38!

The completeness relation gives us
e
n
-

e
-

(
s, j 9

Fs, j~r !Fs, j 9~r 8!Pj 8 j 95d j j 8d~r2r 8!. ~39!

We can define a Green’s function in the usual way:

Gj j 8
R

~v,r ,r 8!5(
s, j 9

F j~s,r !F j 9
†

~s,r 8!Pj 9 j 8

v2vs1 id
. ~40!

The Green’s function clearly obeys the equation

~v2P21M !Gi j
R~v,r ,r 8!5d i j d~r2r 8!. ~41!

We can now Fourier transform to obtain the Green’s funct
in the time domain,

Gj j 8
R

~ t,r ,r 8!5
1

2pE2`

1`

Gj j 8
R

~v,r ,r 8!e2 ivtdv

52 i(
s j9

Fs, j~r !Fs, j 9
†

~r 8!Pj 9 j 8e
2 ivst, ~42!

so that

S i
]

]t
2P21M DGR~ t,r ,r 8!5d~ t !d~r2r 8!. ~43!

Now we turn to consider how to repeat this procedure
the discrete case. We begin from Eq.~35!, but apply the
substitutions fork andv presented in the Sec. II,

P21M S E~r ,t !

H~r ,t ! D 5 i S D t
1 0

0 D t
2D S E~r ,t !

H~r ,t ! D , ~44!

whereM is now

M5S 0 1 i¹23

2 i¹23 0 D . ~45!

We want to construct aGR(t) which will obey the equation

F i S D t
1 0

0 D t
2D 2P21M GGR~ t,r ,r 8!5d~ t !d~r2r 8!.

~46!

Try constructing

Gj j 8
R

~ t,r ,r 8!52 idt(
s, j 9

Fs, j~r !Fs, j 9
†

~r 8!

3Pj 9 j 8e
2 ivs~ t2dt !, t.0,

Gj j 8
R

~ t,r ,r 8!50, t<0; ~47!

then

Gj j 8
R

~v,r ,r 8!5 (
t5dt

Ntdt

Gj j 8
R

~ t,r ,r 8!eivt

52 idt(
s, j 9

Fs, j~r !Fs, j 9
†

~r 8!Pj 9 j 8

3F12ei ~v2vs!Ntdt

e2 i ~v2vs!dt21
Geivsdt. ~48!
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If Nt is large andv5v1 id,

Gj j 8
R

~v,r ,r 8!52 idt(
s, j 9

Fs, j~r !Fs, j 9
†

~r 8!

3Pj 9 j 8

eivsdt

e2 i ~v2vs!dt21
, ~49!

which in the limit dt→0 gives the correct form for the
frequency-dependent Green’s function. So simply by set
t5dt in Eq. ~47! to give

Gj j 8
R

~ t5dt,r ,r 8!52 idtd j j 8d~r2r 8! ~50!

as the appropriate starting condition, and applying Eq.~44!,
we can calculateGR(t) at all subsequent times.

Once we have found the Green’s function it is a sim
matter to calculate useful physical quantities from it, such
the photonic density of states. The local density of states
example, is found in the usual way, from the imaginary p
of the trace ofGR(v),15

r~v,r !52
1

p
ImF(

j
Gj j

R~v,r ,r !G . ~51!

Similarly, the band structure can be easily determined
locating the poles in the Green’s function and so identify
the normal modes of the system.

IV. RESULTS

We shall now put the ideas of the previous sections
work for two different physical systems.

A. Bragg stack

In the first case we will look at what is probably th
simplest one-dimensional photonic crystal that can be im
ined, the dielectric multilayer or Bragg stack. This crystal
formed by stacking together alternating layers of dielectric
high and low refractive index~see Fig. 1!. Each layer is of
infinite extent in the plane, and we choose parameters s
that the high refractive index (n53.6) planes have a thick
ness of 0.3a and the low index (n51.0) planes have a thick

FIG. 1. A dielectric multilayer or Bragg stack formed by alte
nating layers of high~shaded! and low~unshaded! permittivity ma-
terials. The thickness of the high dielectric layer isd, and the lattice
period isa.
g
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ness of 0.7a, wherea is the lattice spacing. This choice lead
to sizable band gaps for electromagnetic waves propaga
normal to the planes, as can seen in Fig. 2. The frequen
in this figure are scaled so as to be dimensionless; wha
actually write for the frequency isva/(2pc0). The wave
vectors are also written in dimensionless units ofk•a so that
the edge of the first Brillouin zone occurs at6p.

In Fig. 3, we show the local density of states for a po
inside the Bragg stack. Again the frequencies are given
dimensionless units, and the density of states itself is in
bitrary units. The band gaps are clearly visible as freque
windows over which the density of states is strongly su
pressed. At the band edges the Van Hove singularities
also apparent, corresponding to the points on the band s
ture at the band edges where]v/]k tends to zero.

We can go one step further and add a defect layer to
otherwise perfect crystal. We do this by introducing a sup
cell consisting of 25 repeat units of the Bragg stack, the
defect of 0.3a of the high refractive index material, and the
another 25 unit cells. The local density of states at the ce
of the defect can be seen in Fig. 4 superimposed over
density of states for the perfect crystal. The dominant feat

FIG. 2. The photonic band structure for the Bragg stack.

FIG. 3. The density of states for the ideal Bragg stack. The V
Hove singularities in the perfect crystal are clearly seen.
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are the peaks which have appeared in the band gaps. T
correspond to localized modes associated with the de
That these modes are tightly localized can be easily sh
by calculating the local density of states in the crystal sev
lattice spacings away from the defect. A perfect crystal re
is recovered.

B. Diamond lattice

The second system which we shall consider is a fu
three-dimensional photonic crystal made up from air sphe
embedded in a dielectric host arranged in a diamond lat
structure. This structure was one of the first to be shown
have a complete photonic band gap.7 Figure 5 gives a dia-
gram of the diamond structure, and indicates the unit
which we choose. This unit cell is not primitive but is chos

FIG. 4. The density of states both with and without a def
inserted into the ideal Bragg stack. Both the Van Hove singulari
in the perfect crystal and the localized state associated with
defect are clearly seen.

FIG. 5. Diagram of the diamond lattice. The bravais lattice
fcc, and the lattice points are shown as black dots. On each la
point are placed two ‘‘atoms’’—dielectric spheres in our case; o
is at (0,0,0), and one at (0,0,c/4), wherec5A6a. Some of the
atoms are shown as grey circles. The unit cell we model is
parallelepiped enclosed by thick black lines.
ese
ct.
n

al
lt
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s
e

to

ll

for convenience with lattice vectors:a5ai, b5(a/2)i
1(A3a/2)j , andc5A6ak, wherea is the distance betwee
nearest-neighbor lattice points. The exact parameters
have chosen lead to a fairly sizable band gap. The refrac
index for the host material isn53.6, the spheres haven
51.0, and the ratio of sphere radius to the distance sepa
ing nearest-neighbor spheres is 0.43. The band structure
this system in the directionsG-K andG-X is given in Fig. 6,
where it is clear that a band gap is opening up over a
quency range of about 3.2 and 3.9 in dimensionless un
This band gap is confirmed in the density of states in Fig
The density-of-states calculation is performed by creatin
supercell by stacking unit cells together, eight in each dir
tion. Because each of our unit cells is not in fact primiti
but itself contains three primitive cells, the super-cell co
sists of 1536 primitive units cells. By creating a larger u
cell we reduce the number ofk points which we need to
sample in order to build up the complete local density
states.

Next we can introduce a defect into the diamond lattice
again creating a supercell by stacking unit cells together,

t
s
e

ce
e

e

FIG. 6. Partial band structure for spheres on the diamond lat
in the G-K and G-X directions. The presence of the band gap
clearly shown.

FIG. 7. The density of states for the diamond structure.
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then cutting a hole in one of the dielectric parts of the c
This defect will have a localized defect mode associated w
it, and by altering the amount of dielectric material we c
away we can tune the frequency of the mode. We choose
size of the defect so that the defect mode lies within the b
gap for the crystal. We cut away a parallelepiped reg
spanning adjacent unit cells starting from (a/2,b/3,c/3) and
with edges of 5a/6, 5b/6, and 5c/12. Figure 8 shows the
density of states for the supercell with the defect, and, as
the Bragg stack case, several defect modes are clearly
We have also checked that we have made the supercell

FIG. 8. The density of states both with and without a defect
the diamond structure. The localized state associated with the d
is clearly seen.
si
up
l.
h
t
he
d

n

or
en.
uf-

ficiently large by testing that the position of the defect mo
peaks do not disperse withk.

V. CONCLUSIONS

In this paper we have shown how an order-N, finite-
difference time-domain method can be used to calculate
Green’s function in a simple and straightforward way. Sp
cifically, our formalism enables us to give a simple deriv
tion for the numerical stability criterion and exact stateme
of charge and energy conservation, and allows us to use
orthogonal co-ordinate systems without the usual comp
tional overheads.

From the Green’s function a whole range of other phy
cal quantities can be found such as the local density of sta
The times required to calculate these quantities scales
early with the size of the system, so our technique is
particular importance in analyzing systems with very large
complicated unit cells. Specifically, we have calculated
local density of states for both one- and three-dimensio
photonic crystals containing defects, and have recovered
expected result. The defect has the effect of introducin
highly localized mode, the frequency of which is determin
by the size of the defect. By a careful choice we have fou
defect states within the photonic band gap for the crys
These localized states have a potential application in ph
nic cavity laser structures where the efficiency of the lase
enhanced by suppression of emission into all but the las
mode. The linear scaling of this method with system s
should allow modeling of realistic designs for cavity stru
tures without prohibitive computational overheads associa
with traditional computational schemes. The computer p
gram used to calculate the results presented in this pape
recently been submitted to the Computer Physics Comm
cations International Program Library.16
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