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In this paper we shall propose a simple scheme for calculating Green'’s functions for photons propagating in
complex structured dielectrics or other photonic systems. The method is based on an extension of the finite-
difference time-domaiiFDTD) method, originally proposed by Y¢éEEE Trans. Antennas Propaty, 302
(1966)], also known as the ordé\-method[Chan, Yu, and Ho, Phys. Re®l, 16 635(1995] which has
recently become a popular way of calculating photonic band structures. We give a transparent derivation of the
orderN method which, in turn, enables us to give a simple yet rigorous derivation of the criterion for
numerical stability as well as statements of charge and energy conservation which are exact even on the
discrete lattice. We implement this using a general, nonorthogonal coordinate system without incurring the
computational overheads normally associated with nonorthogonal FDTD. We present results for local densities
of states calculated using this method for a number of systems. First, we consider a simple one-dimensional
dielectric multilayer, identifying the suppression in the state density caused by the photonic band gap and then
observing the effect of introducing a defect layer into the periodic structure. Second, we tackle a more realistic
example by treating a defect in a crystal of dielectric spheres on a diamond lattice. This could have application
to the design of superefficient laser devices utilizing defects in photonic crystals as laser cavities.
[S0163-182698)00936-9

[. INTRODUCTION tions for such systems. Much progress has been made in the
past few years, and several well-established techniques have
One of the principal driving forces behind the recentemerged. Probably the most widely used is the plane-wave
flurry of research into photonic band-gap matefidlbas method®’ Simply put, this method involves expanding the
been the potential for manipulating the spontaneous emissicglectromagnetic fields as a sum of plane waves and recasting
of an atom placed in a cavity in such a material. As wasMaxwell's equations into the form of a eigenvalue problem
pointed out some years ayja material with a periodically to find the allowed eigenfrequencies. Though simple to
structured dielectric functiofe photonic crystalcan have a implement and use, this method has the drawback that the
profound effect on the density of states for photons withintime taken for the calculation scales as the cube of the num-
the material, in some cases leading to frequency windows fder of plane waves used, so for complicated problems which
which no allowed photon states exist. These windows, orequire many plane waves this is a severe limitation. Another
photonic band gaps, radically alter the emission properties dfmitation is to systems whose dielectric functions do not
atoms. An excited atom that wants to emit a photon of alisperse with frequency. Hence metallic systems are beyond
frequency within the band gap cannot do so—the photon hathe scope of this method.
no states into which it can go, and so is forced to form a kind A second popular method involves working at a fixed
of atom-photon bound state. Even zero-point fluctuations ar&equency, but instead of expanding the wave field on a lat-
forbidden within the band gap. This has immediate implica-tice in reciprocal space the wave field is represented on the
tions for device physics. Placing an active device, such as points of a real-space lattié€. The resulting equations can
semiconductor laser, within a cavity in a photonic crystalbe rearranged into the form of a transfer matrix which relates
offers the possibility to control unwanted spontaneous emisthe fields in one layer of the lattice to the fields in the next.
sion and allow emission only into the lasing mode, thus draThis method has proved extremely useful especially for sys-
matically improving the efficiency of the deviée. tems involving metals where the dielectric constant is a func-
Green'’s functions have the potential to play a central roletion of frequency. Also, because the form the transfer matrix
in the theoretical investigations of these photonic systemdakes, connecting the fields on oserfaceto the fields on
Not only are they a natural way to express key quantitiesanother, calculations based on this method scale as the
such as the density of states, they also are easily calculatedjuare of the number of real space points, rather than the
within the framework of time domain methods such as thecube.
orderN technique that we shall be exploring in this paper. In  This may be an improvement over the plane-wave
systems where dissipation is present, such as those contaimethod, but is still worse than the optimal linear scaling with
ing metals or lossy dielectrics, the Green's-function ap-system size. However, it has been sh&Wthat, because
proach is the only route to calculate quantities of physicaMaxwell’s equations are local, by working in the time do-
interest. main instead of the frequency domain it is possible to obtain
For the theorist, the challenge is to solve Maxwell's equa-methods which scale as “ord®&” where N is the system
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size. We shall work with such a method in this paper in order 1— e(—ikx@) 1— gliwd)

to calculate photonic Green'’s functions, and from those other Ky— k;:T’ w0 =T, (4)
guantities of physical interest such as densities of states. Pre-

vious work has successfully calculated spontaneous emissiaitc. So, making these approximations in E2), we obtain
rates from the density of states using a real-space lattice

formulation!! However, that work was based in the fre- ik-XH=—igpgew™E, iK'XE=+iuouw H. (5
guency domain. By working in the time domain we are able . . ) S

to exploit the more favorable scaling law and consider largerOn Fourier transforming back into the,() domain it is

more complex systems such as photonic crystals with declear that these approximations are equivalent to taking a
fects. forward finite differenceA™ in place of derivatives of the

electric field, and a backwards differen&é for derivatives
of the magnetic field.
Il. METHODS

The theory behind the methods used in this paper is some- Ay AN =[Ar+a)-An)]la, (6)

what similar in principle to the finite-difference time-domain
(FDTD) method first introduced to the electrical engineering Ay Fr)=[HAr)—FAr—a)]la. (7)
community by Ye& in 1966, and first applied to the prob- . i ,

lem of photonic band structures by Chan, Yu, andHa Putting it all together, the discrete form of Maxwell’'s equa-
1995. Here we present a systematic derivation of the finitelions become
difference equations within a transparent formalism. The ad-
vantages of this formalism over the traditional Yee approach
are many. First, it makes clear how to find quantities which
are exactly conserved even by discrete equations. Hence we VoXH(r,t)=gge(r) A E(r,t), 9
can identify the analogies to charge, energy density, the
Poynting vector, etc. Second, our formalism enables a pre?"€re
cise analysis of the stability of the discrete equations to be
made from a simple consideration of the approximations in-
volved, sidestepping the usual, rather involved, Courant sta-
bility analysis. Third, and perhaps most importantly, the for-

VEXE(r,t)=— pou(r) A H(r,t), (8)

0 —A; AJ

+ +
vix=| Az 0 A (10)

+ +
malism shows how to present finite-difference equations in a —Ay A 0
completely general coordinate system without incurring the
computational overheads normally associated with a nonor- 0 AT A-
thogonal FDTD!® Finally, it is hoped that this transparency z y
will make it simpler to extend the method to areas to which VX = A, 0 —Ay _ (11)
it has not yet been applied. We begin from the usual Max- —A; Af 0

well's equations, neglecting any free charges or currents,

JE 9H The approximati.ons outlined _in the pre\(ious par_agraph_ pIape
VXH= sos(r)ﬁ, VXE=—puou(r) 0 (1)  Maxwell’s equations onto a discrete lattice of points which is
uniform and Cartesian. However, this is not always conve-
nient for the problems we may want to consider. It may be to
our advantage to work in a coordinate system which is non-
uniform or even nonorthogonal. Fortunately, as shown in
_ _ _ _ detail elsewheré? there is a simple result which allows us to
ikXH=—liegewE, IkXE=+ipouwH. (2 map a completely arbitrary coordinate system onto a uniform
Cartesian one as long as we introduce renormalized versions
Next we wish to place these equations onto a discretepf the permittivity and permeability. In the generalized coor-
real-space lattice by replacing the derivatives with finite dif-dinates Maxwell's equations become
ferences. We have some freedom here but must be careful—
not all differencing schemes lead to stable equations. We Vg X H(r,t) . ATE(rY

which, on Fourier transforming intoK(w) space, can be
written

will therefore take our lead from the differencing scheme Q—zsoe(r)fT, (12
which has proved so successful in the transfer-matrix 0
method® We do this by introducing the following approxi- i a .
mations tow andk. For the terms which involve the electric Vg XE(r) . AH(LY 13
field we use Qo =~ op(r) St
elik@ _ 1 e(—iwd) _q where
kXHk;Z.—, w—>w :T’ (3)

'a ! Ag F(r ) =F(r+Qquy,t) = (1),

with similar expressions fok, andk, . For the magnetic- (14

field terms we use AT F(rt)=F(rt+8t)— F(r,t),
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The generalized coordinate system is defined by the three

Aalf(r’t):}'(r,t)—f(r—Qlulyt), ized coordinate axis, and the three lattice spaciQgs Q,,
(15 points in each direction. In general, thes and Q;’s will

A F(r,t)=F(r,t)— Fr,t—ot), : o . i
HHH=FH - A ) themselves be functions of position. The metric tergbiis

etc., and defined such thaty" )" =u;- u; . As well as the permittivity
and permeability being renormalized by the coordinate trans-
- ) Q,0Q,05 formation, the fields themselves are also rescaled by the lat-
gl(r=e(r)g"|u- us X ug| =———, tice spacings
( ) ( )g | 142 3| Q|Q]QO p g
Q:1Q2Q (o E :
P . E.=0.E; H.=0.H.. 1
,LL'J(I’)=,LL(I')QIJ|U1-U2XU3| Q1Q2Q3 | QI i i QI i ( 8)
PeIx0 In order to obtain the equations that will link the fields at
and one time step to the fields at the next, we introduce
~ i Q1Q2Q3 N ot .
al(r)=o(r)g"|uy- uy X ug| =——=—=—, H' = H 19
( ) ( )g | 142 3| QlQJQO 80Q0 ’ ( )
17
and let
SN = (1) X | 22
QiQ;Qo
a=Qquy, b=Quuz, ¢=Qaus. (20

unit vectorsu;, U,, andus which point along the general- Then, after some rearranging, we arrive at

Eq(r,t+8t)=E(r,t)+[e 2N ALr,t) —Hi(r—b,t) —A(r,t) + Hy(r—c,t) ]+ [ X(r)1*H(r,t)—Hi(r—ct)

—H4(r, ) +HY(r—at)]+[e ()19 ALr,H) —Ay(r—at)—H(r,t)+ A (r—b,1)], (22)

Eo(r,t+ 8t =E,(r,t)+[e X(r)P AL(r,t) —Hi(r—b,t) —HL(r,t) + Hi(r—c,t) ]+ [ X(r) 12 Hy(r,t)—Hi(r—ct)

—H4(r, ) +HL(r—at)]+[e 1)1 ALr,H) —Ay(r—at)—H(r,t)+ A (r—b,t)], (22

Ea(r,t+8t)=E5(r,t)+[e 2N P AL(r,t) —Hi(r—b,t) —AL(r,t) + Hy(r—c,t) ]+ [~ X(r) 13T H(r,t)—Hi(r—ct)

—H4(r,)+HLr—at)]+[e )13 ALr, ) —Ay(r—at)—Hi(r,t)+ A (r—b,t)], (23

oteg

Qo

otcy

2
o ) [ Y] E(r+c,t)

2
Hi(r t+ 8t)=|3|1(r,t)—( ) [,ZL1(r)]11[E3(r+b,t)—Eg(r,t)—Ez(r+c,t)+éz(r,t)]—<

&CO

2
Q—O> [ Y] Ex(r+at)—Ex(r,t) —Ey(r+b,0)+Es(r,t)], (24

—Eq(r,t)—Es(r+at)+Es(r,t)]—

otcy oteg

2 2
Hé(r,twt):H;(r,t)—( )[;11(r)]21[ég<r+b,t>—E3<r,t>—E2<r+c,t>+é2<r,t>]—( )[ﬁl(r)]zz[él<r+c,t>

Qo Qo
N N a &CO 2 ~_ A ~ A ~
_El(rvt)_E3(r+aat)+E3(r1t)]_ Q_> [,LL l(r)]za[EZ(r+alt)_E2(rlt)_El(r+blt)+El(rat)]l (25)
0
N o1 &002“71 31 = = = &COZAfl 3 E
Ha(r,t+6t)=Hj(r,t)— Q0 [ (NP Es(r+b,t) —Ea(r,t) —Ep(r+c,t) + Ep(r,t)] - Qo [u™ ()] E(r+ct)

&CO

—Eq(r,t)—Es(r+at)+Es(r,t)]— o
0

2
) [ (NP Ex(r+at)—Ex(r,t)—Ei(r+b,t) +E4(r,1)].  (26)

and Q3 which define the spacing between discrete lattice
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These equations allow us to take an arbitrary set of electric o )
and magnetic fields at some initial tine:0 and, subject to f f(t)expgiwt]dt
appropriate boundary conditions, calculate the fields at all o
later times. N¢
Notice that by incorporating all of the details of the gen- 921 f(nst)exdi(w+id)(n*x1/2)6t]. (29
=

eralized coordinate system into the definitions of the permit-

tivity and permeability we have, in effect, eliminated the .Fhe size of this imaginary part is determined by the total

extra computational overhead of the general coordinates. hme interval over which the fields are integrated. In order to

the coordinate system changed from one place to anothetr)é properly causal, the final term in the sum must tend to

and there is no reason why it should not, we would have tq C : o
. . . - zero. This is of less importance when finding a band struc-
store the metric tensor at each point on the lattice. But, sincg

we have to store and u tensors at each point anvway. b ure, but is critical if we are to calculate the Green'’s function
K P yway, by correctly. Another small detail: because of the choices we

combining the metric into our new and u we cut the  paye made in our approximations for the time derivatives for

amount of storage needed. Similarly, we also reduce the angH, it is necessary to include a half-time-step offset,
number of calculations required at each time step as we Ngyinus for thek field and plus for theH.

longer need to worry about converting between covariant
and contravariant vectors at every time step—this is all taken

care of bye and u. Hence, in contrast with previous meth- _ . _ _
ods, our nonorthogonal FDTD has no additional computa- An obvious question to ask is whether our discrete Max-
tional overhead compared to an orthogonal one, except fovell equations have conserved quantities analogous to those
the initial setting up of and 4. for the continuum equations. The 'S|mplest to start with is the
conservation of charge. We consider the quantity

C. Conserved quantities

A. Stability criterion V;~§(r)|§(r), (30

These equations give a stable updating procedure for the dth lcul he di . fits time derivati
fields if the time step is kept sufficiently small. The criterion 3" then calculate the discrete version of its time derivative,

is easy to find. Starting from the approximations we made for . L R
k andw [Egs.(3) and(4)], the free-space dispersion relation A, -Vq-e(r)E(r)=Vy- A -e(r)E([)=V, -V XH"=0.
w?=cZk? becomes (31
Because our approximations to Maxwell's equations have
Q1 kx) 1 'rF(QZ ky) preserved the form of the curls, the quantty - e(r)E(r)
2

> remains an exactly conserved quantity even on the discrete
lattice. This is the direct equivalent §f- D being conserved

1 0, k in the continuum case, in other words, of the conservation of
+ —sinz( 3 Z)l (27)  charge. The same follows &t - (r)H’(r) corresponding
to the conservation of the “magnetic chargéey* B.

The next task is to find the correct form for Poynting’s
The condition that the maximum value of the right-hand Sidetheorem on the Iattice._This_ again fO.HOWS in a straigh_tfor-
must correspond to a real frequency gives ward way in our formalls_m if we begin from the following

form for the energy density:

2 ¢z ¢\’ U(t)=3[0e(N)EL(r,HE(r,t—6t)
()< 24 24— (28) .
1 Q; Q3 +pou(NHL(rt=8H)H(r,t=ot)]. (32

This has the correct form for the energy density in the limit
B. Fourier transforms 6t— 0. Substituting the expressions for the generalized coor-

) . . . . _dinates we obtain
The final step of any time-domain method is a Fourier

transform of the time-dependent information into the fre- U
quency domain, and for our FDTD method there are a few ()= =9
points which need to be made clear. First, it is desirable to 2
eliminate the zero-frequency, longitudinal mode from our re- (

e“PEL(r,0)E4(r,t—ot)

sults. This is done by subtracting off the static part from the + &
time-dependent fields which we have calculated, so that their Codt
time average is zero. Next we must ensure that we obtain the (33
properly causal solution to Maxwell’s equations when we

replace the integral in the Fourier transform with a discretevhere Uy=Qqe,/(Q1Q2Q3|u;-UsX ug|). Poynting’s theo-
sum. We do this by adding a small positive, imaginary gart rem can then be obtained by considering the time-difference
to the frequency: operatorA U (t)=[U(t+ 6t)—U(t)]/6t. This gives

2
) pPHE(rt= SO t=8t) |,
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+ Uo Nk L E
A¢ U(t):7{[H2 (r=c,t)—Hg™(r—=b,t)JE(r,1t)

+[H§*(r—a,t)—H;*(r—c,t)]l‘zz(r,t)+[|i|g*(r
—b,t)=H3* (r—a,)]Es(r,) +[Hy(r—ct—ot)
—H4(r—b,t— 8O 1ES (r,t)+[A5(r—at—ot)
—Hi(r—ct=80)]E5 (1, +[A(r—b,t— o)
—HA(r—at—68t)1E5(r,t) +[Ex(r+ct)
—Es(r+b,t)]ﬂ;7r,t)+[é3(r+a,t)
—Ex(r+e,)]HZ* (r)+[Ey(r+bt)
—Ey(r+at)JA* (r,t)+[E5(r+c,t)
—E5(r+b,O]AL(r,D+[Ef(r+at)

—E* (rrs+c,0) AL (r ) +[EX (r+b,t)

—E3(r+at)]AL(r, b} (34)

The important point to notice is that when this quantity is
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2 FS’j(r)FS’jrr(r/)Pjer:5jj75(r_r,). (39)
S,j”
We can define a Green'’s function in the usual way:

Fj(s,r)F;r,,(s,r’)Pj”j,

R "n—
G”/(w1ryr )_SEJ” w_ws+|5 (40)
The Green'’s function clearly obeys the equation
(0—P7IM)G{(w,r,r")=8;8(r—r"). (41)

We can now Fourier transform to obtain the Green’s function
in the time domain,

1 (+= .
R " R "N A—iot
ij,(t,r,r )——wa_w ij,(w,r,r e '"“dw

=—i2 Foj(NFL (1P eios, (42
SJ'H

so that

.
(IE_P1M)GR(t,r,r,):(s(t)(S(l’—r’)_ (43)

Now we turn to consider how to repeat this procedure for

summed over a set of neighboring lattice points only théN€ discrete case. We begin from E&5), but apply the
terms associated with the surface of the integration regiofubstitutions fok and« presented in the Sec. Il,
survive, all the volume terms cancel. This allows us to iden-

tify the right-hand side of Eq(34) as the Poynting vector
integrated over the volume surrounding one lattice point.

[ll. OBTAINING THE GREEN’S FUNCTION
ON THE LATTICE

We turn our attention now to consider how we can define
the Green’s function within our discrete real-space for-
mulism. We will begin from the continuum limit, and write

Maxwell’s equations as

MR
M H =P l (35
where
_(0 +iVX _(s(r)so 0
M= _ivx o o w(N o)
(36)

We now define a six vector

Es
Fs= ( ) (37)

as an eigenfunction of Eg. 35 with an eigenvalug. We
choose to normalize thie’s such that

6 6
f ;El > FLi(nP Fejp(Ndr=6,g. (39
=

The completeness relation gives us

. (E(r.t))__ Af 0 (E(r,t))
P Mben/ "o arlbey) @Y

whereM is now

M=

0 +iV™X
( (45

—-iv™x 0

We want to construct &7(t) which will obey the equation

[0 —P7IM|GR(t,r,r")=68(t)8(r—r’

(46)
Try constructing
G (t,r, 1) ==t Fj(NFL ()
S,j”
XPJ//j’eiiws(tiat)v t>o’
Gﬁ,(t,r,r'):o, t<0; (47)
then
Nt
Gl (wr,r)=2 G (tr,r)ee
t= ot
=—i5t2_,, Fsyj(r)F;j,,(rr)P,-nj/
S|
1_ei(w—ws)Nté‘t ot
I I P
T glosdt (48)
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FIG. 1. A dielectric multilayer or Bragg stack formed by alter- 0.00 L ‘ ‘ ‘ ‘ ‘ ‘
nating layers of higiishaded and low (unshadegpermittivity ma- -3.0 -2.0 -1.0 0.0 1.0 20 3.0
terials. The thickness of the high dielectric layedjsand the lattice Wave vector (k a)
period isa.

FIG. 2. The photonic band structure for the Bragg stack.

If N, is large andw=w+i 4, . . . . :
ness of 0.@, wherea is the lattice spacing. This choice leads

to sizable band gaps for electromagnetic waves propagating

Gﬁ"(w!r!r,): —iﬁz Fs,j(r)Fle(r,) normal to the planes, as can seen in Fig. 2. The frequencies
s in this figure are scaled so as to be dimensionless; what we

el st actually write for the frequency imal/(2mcy). The wave

XPjnjs , (49 vectors are also written in dimensionless unit&aod so that

e i(o—wgdt_q : o
e llomedd_g the edge of the first Brillouin zone occurs atr.

which in the limit st—0 gives the correct form for the . M Fig. 3, we show the local density of states for a point

frequency-dependent Green's function. So simply by settindSide the Bragg stack. Again the frequencies are given in
t= 5t in Eq. (47) to give imensionless units, and the density of states itself is in ar-

bitrary units. The band gaps are clearly visible as frequency
Gﬁ,(tzét,r,r’)z—i&téjj/ﬁ(r—r’) (50) windows over which the density of states is _strong[y sup-
pressed. At the band edges the Van Hove singularities are
as the appropriate starting condition, and applying @4), also apparent, corresponding to the points on the band struc-
we can calculat&R(t) at all subsequent times. ture at the band edges whete/Jk tends to zero.

Once we have found the Green’s function it is a simple We can go one step further and add a defect layer to the
matter to calculate useful physical quantities from it, such a®therwise perfect crystal. We do this by introducing a super-
the photonic density of states. The local density of states, focell consisting of 25 repeat units of the Bragg stack, then a
example, is found in the usual way, from the imaginary partdefect of 0.2 of the high refractive index material, and then
of the trace ofGR(w),*® another 25 unit cells. The local density of states at the center

of the defect can be seen in Fig. 4 superimposed over the

(51) density of states for the perfect crystal. The dominant feature

plw,r)=— %lm[Ej Gl (w,r,r)

10.0 T
Similarly, the band structure can be easily determined by

locating the poles in the Green'’s function and so identifying
the normal modes of the system.

IV. RESULTS

We shall now put the ideas of the previous sections to

work for two different physical systems. 50 ’

A. Bragg stack

Density of States (Arb. Units)

In the first case we will look at what is probably the
simplest one-dimensional photonic crystal that can be imag-
ined, the dielectric multilayer or Bragg stack. This crystal is Jv
formed by stacking together alternating layers of dielectric of 0.0 .
high and low refractive indexsee Fig. 1 Each layer is of 0.0 . . 05
Lo . requency (dimensionless units)
infinite extent in the plane, and we choose parameters such
that the high refractive indexn=3.6) planes have a thick- FIG. 3. The density of states for the ideal Bragg stack. The Van
ness of 0.8 and the low indexif=1.0) planes have a thick- Hove singularities in the perfect crystal are clearly seen.
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20.0 05
—— With defect
— — - Without defect

) :030.4
= 2
> g
a @
z 8 ..., ‘e
< S EATRESAER: Loty
L 10.0 - g = s Lottt
© c N ftat H
% £ ' : A '
5 5 o' .:,"”,:- ==
> z | . |
2 <>).0.2 \ p
[ qc> s ]
=] 8— . ]

o ] .

A : : 1

0.0 1 Il 1 Il 1

Frequency (dimensionless units) -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Wave vector (k a)
FIG. 4. The density of states both with and without a defect

inserted into the ideal Bragg stack. Both the Van Hove singularities FIG. 6. Partial band structure for spheres on the diamond lattice
in the perfect crystal and the localized state associated with thé#n the I'-K andI'-X directions. The presence of the band gap is
defect are clearly seen. clearly shown.

are the peaks which have appeared in the band gaps. The@Q¢ convenience with lattice vectorsa=ai, b=(a/2)i
correspond to localized modes associated with the defectt (V3a/2)j, andc=Bak, wherea is the distance between
That these modes are tightly localized can be easily showRearest-neighbor lattice points. The exact parameters we
by calculating the local density of states in the crystal severdpave chosen lead to a fairly sizable band gap. The refractive

lattice spacings away from the defect. A perfect crystal result’dex for the host material isn=3.6, the spheres have
is recovered. =1.0, and the ratio of sphere radius to the distance separat-

ing nearest-neighbor spheres is 0.43. The band structure for
this system in the directioris-K andI'-X is given in Fig. 6,
where it is clear that a band gap is opening up over a fre-
The second system which we shall consider is a fullyquency range of about 3.2 and 3.9 in dimensionless units.
three-dimensional photonic crystal made up from air sphere$his band gap is confirmed in the density of states in Fig. 7.
embedded in a dielectric host arranged in a diamond latticdhe density-of-states calculation is performed by creating a
structure. This structure was one of the first to be shown tsupercell by stacking unit cells together, eight in each direc-
have a complete photonic band gapigure 5 gives a dia- tion. Because each of our unit cells is not in fact primitive
gram of the diamond structure, and indicates the unit celbut itself contains three primitive cells, the super-cell con-
which we choose. This unit cell is not primitive but is chosensists of 1536 primitive units cells. By creating a larger unit
cell we reduce the number d&f points which we need to
@ e sample in order to build up the complete local density of
- states.
Next we can introduce a defect into the diamond lattice by
again creating a supercell by stacking unit cells together, and

B. Diamond lattice

0.04 T T T T T

0.03 - B

0.02 - 1

Density of states (Arb. Units)

0.01 b

FIG. 5. Diagram of the diamond lattice. The bravais lattice is
fcc, and the lattice points are shown as black dots. On each lattice M\
0.1 0.2 0.3

0.4 0.5 0.6
Frequency (dimensionless units)

point are placed two “atoms”—dielectric spheres in our case; one 0-0000
is at (0,0,0), and one at (0g34), wherec= \/Ea. Some of the )
atoms are shown as grey circles. The unit cell we model is the

parallelepiped enclosed by thick black lines. FIG. 7. The density of states for the diamond structure.
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0.010 T T

ficiently large by testing that the position of the defect mode
peaks do not disperse with

—— With Defect

— — - Without Defect V. CONCLUSIONS

In this paper we have shown how an ordér-finite-
difference time-domain method can be used to calculate the
Green'’s function in a simple and straightforward way. Spe-
cifically, our formalism enables us to give a simple deriva-
tion for the numerical stability criterion and exact statements
of charge and energy conservation, and allows us to use non-
orthogonal co-ordinate systems without the usual computa-
tional overheads.

From the Green’s function a whole range of other physi-
cal quantities can be found such as the local density of states.

The times required to calculate these quantities scales lin-
0.000 : . : .
0.0 0.1 0.2 0.3 0.4 0.5 early with the size of the system, so our technique is of
Frequency (dimensionless units) particular importance in analyzing systems with very large or
) ) ) complicated unit cells. Specifically, we have calculated the
FI_G. 8. The density of states_both with and w_|thout a defect for|j.o) density of states for both one- and three-dimensional
Fhe diamond structure. The localized state associated with the defeﬁhotonic crystals containing defects, and have recovered the
Is clearly seen. expected result. The defect has the effect of introducing a
highly localized mode, the frequency of which is determined
by the size of the defect. By a careful choice we have found
then cutting a hole in one of the dielectric parts of the cell.defect states within the photonic band gap for the crystal.
This defect will have a localized defect mode associated witlThese localized states have a potential application in photo-
it, and by altering the amount of dielectric material we cutnic cavity laser structures where the efficiency of the laser is
away we can tune the frequency of the mode. We choose thenhanced by suppression of emission into all but the lasing
size of the defect so that the defect mode lies within the ban¢hode. The linear scaling of this method with system size
gap for the crystal. We cut away a parallelepiped regiorshould allow modeling of realistic designs for cavity struc-
spanning adjacent unit cells starting from/Z,b/3,c/3) and  tures without prohibitive computational overheads associated
with edges of &/6, 5b/6, and %/12. Figure 8 shows the with traditional computational schemes. The computer pro-
density of states for the supercell with the defect, and, as fogram used to calculate the results presented in this paper has
the Bragg stack case, several defect modes are clearly seescently been submitted to the Computer Physics Communi-
We have also checked that we have made the supercell sufations International Program Librat$.
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