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We study the distribution of the electromagnetic field of the eigenmodes and corresponding group velocities
associated with the photonic band structures of two-dimensional periodic systems consisting of an array of
infinitely long parallel metallic rods whose intersections with a perpendicular plane form a simple square
lattice. We consider both nondissipative and lossy metallic components characterized by a complex frequency-
dependent dielectric function. Our analysis is based on the calculation of the complex photonic band structure
obtained by using a modified plane-wave method that transforms the problem of solving Maxwell's equations
into the problem of diagonalizing an equivalent non-Hermitian matrix. In order to investigate the nature and the
symmetry properties of the eigenvectors, which significantly affect the optical properties of the photonic
lattices, we evaluate the associated field distribution at the high symmetry points and along high symmetry
directions in the two-dimensional first Brillouin zone of the periodic system. By considering both lossless and
lossy metallic rods we study the effect of damping on the spatial distribution of the eigenvectors. Then we use
the Hellmann-Feynman theorem and the eigenvectors and eigenfrequencies obtained from a photonic band-
structure calculation based on a standard plane-wave approach applied to the nondissipative system to calculate
the components of the group velocities associated with individual bands as functions of the wave vector in the
first Brillouin zone. From the group velocity of each eigenmode the flow of energy is examined. The results
obtained indicate a strong directional dependence of the group velocity, and confirm the experimental obser-
vation that a photonic crystal is a potentially efficient tool in controlling photon propagation.
[S0163-182698)02835-3

I. INTRODUCTION with lossy metallic components, and predicted remarkable
features occurring in these structureNamely, we showed

Recently, it has been demonstrated both theoretically anthat both the lifetime and the absorption coefficient associ-
experimentally that the nature of the wave function associated with the modes propagating through a one-dimensional
ated with the eigenmodes propagating in a photonic crystadystem display singular behavior near the band edges. The
significantly affects the optical properties of the photonicorigin of the former effect was identified as the redistribution
crystal. For example, the presence of uncoupled modes in @f the electromagnetic field in the modes at the bottom and
photonic crystal, whose field patterns display a mismatchihe top of the gap. Another interesting property of a complex
with the field pattern of an incoming wave, has been studieghhotonic band structure is the existence of branches of the
by several authors.® A group theoretical analysis based on lifetimes associated with modes of different symmetry sepa-
the symmetry of two-dimensional lattices shows that some ofated by a gap that vanishes as the filling fraction of the rods
the observed opaque regions in transmission experiments aieincreased.
artifacts of the measurement in contrast to those that exist In this paper, we deal with phenomena related to the
due to the band gap< The optical response that occurs in a propagation of electromagnetic waves and the transport of
photonic crystal provides another example of the importancenergy through two-dimensional photonic crystals consisting
of complete knowledge about the eigenfunctions. Specifiof an array of infinitely long parallel metallic cylinders. In
cally, the intensity of radiation from an oscillating dipole order to obtain deeper physical insight into the nature of
embedded in a photonic crystal depends on position becaugpdenomena associated with the presence of dissipation, we
both the amplitude of the electromagnetic field and the coustudy the distribution of the electromagnetic fields in terms
pling strength between the dipole and the radiation field aref the eigenmodes that correspond to the individual bands.
position-dependent functiodsThese two examples clearly We inspect the symmetry of the bands at the points of high
demonstrate that the nature of the wave function significanthgymmetry and along the high symmetry directions in the
affects the optical properties of photonic crystals, and that &avo-dimensional first Brillouin zone of the photonic crystal.
detailed knowledge of the eigenfunctions is necessary to urBy evaluating the eigenfunctions, we identify uncoupled
derstand the transport properties of the electromagnetic ranodes, and we also determine the symmetry of modes in the
diation in these structures. cases in which a definite symmetry cannot be assigned by the

We recently studied the propagation of electromagnetiaise of group theory itself. Furthermore, we evaluate the
waves in both one- and two-dimensional periodic systemgroup velocity associated with the individual eigenmodes al-
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lowed within the photonic crystal, in particular at the bandsume that the axes of the cylinders are parallel taxthaxis
edges, since in these regions the loffe-Regel criterion is saknd the positions of the sites of this lattice are given by the
isfied, which consequently may give rise to the existence ofectors
phenomena related to the localization of li§ht.

The present paper is organized as follows. In Sec. Il we X(D =1+, 2.3
briefly describe the Iinearization technique used to CalCU|at9\/hereal=a(l,O,0) anda,=
the complex photonic band structure, and we apply th%

o emn o e s, T f e abiry neger hal e denot collcivehne
) i ) L areaa. of a primitive unit cell of this lattice is given b
the results obtained by applying these methods to the system,_ .° b 9 He

: i , =|a; X a,|=a2.
fchat consists O.f infinitely Ion_g lossy metallic rods, whose |The Ia|ttice reciprocal to the direct lattice whose points are
mtersecnon; with a perpendicular plane form a square lat]{jefined by Eq(2.3 is defined by the translation vectors
tice. In particular, we focus on the effect of the presence o
dissipation on the nature of the spatial distribution of the G,(h)=h;b;+h,b,, (2.9
electric field associated with the individual bands at the
points of high symmetry in the first Brillouin zone, and on Where b;=(2w/a)(1,0,0) andb,=(2/a)(0,1,0) are the
the dependence of the group velocities associated with thfimitive translation vectors of the reciprocal lattice, dnd
individual bands of the photonic band structure of the systengndh, are arbitrary integers that we denote collectivelyhby
with lossless metallic rods, on their filling fraction. The in- The system we study is characterized by a position-
terpretation of the interesting features associated with théependent dielectric function of the form
complex valued dispersion law and possible directions for

a(0,1,0) are the two, noncolin-
ar, primitive translation vectors of the lattice, whileand

future research are presented in Sec. IV. el +x (D] w]=e(x|w), 2.9
where x;=(X1,X»,0) is two-dimensional vector in the,x,
Il. COMPUTATIONAL METHOD plane ande(x;| ) is a position-dependent, periodic function

of x; with the periodicity of the Bravais lattice defined by Eg.

(2.3). It can therefore be expanded in a two-dimensional
The physical system that we consider in this paper confFourier series according to

sists of infinitely long, identical, metallic rods, whose inter-

sections with a plane perpendicular to the rods form a two-

A. Evaluation of the complex photonic band structure

— . iG)-x
dimensional lattice. We first consider lossless metallic E(X“I“’)_% e(Gye™, 2.6
cylinders characterized by a simple free-electron dielectric _ _ _
function of the form and in the particular case of cylinders characterized by the

dielectric function given by Eq2.2), whose cross section is

wf, a circle of radiusR we obtain for the Fourier coefficients
E(w)ZI—F, (2.1 %(G”),
where the plasma frequenay, is typically in the ultraviolet w?
frequency region. > 1—f a)((u—-ir-)iy)’ G,=0 (2.79
To calculate the photonic band structure for the modes &(G))= )
propagating through the system consisting of metallic rods w,  233(GR) G0, (2.7h
without dissipation we employ the modified plane-wave " w(etiy) (GR T T

method developed by the present autHoMle simulta- 2 2 - Lo .
neously study the system with lossy components when digderef=mR/a“ is the filling fraction, i.e., the fraction of the

sipation is introduced through the use of a dielectric function’0lume occupied by the rods, ade(x) is a Bessel function.
In the case ofE polarization, we seek solutions of the

of the form )
Maxwell equations that have the forms
2
a) -
(0)=1— —P__ 2.2 E(x;t) = (0,0E(x| @))exp( — i wt) (2.89
w(w+iy)
where the parametey is an inverse electronic relaxation H(x;t) = (H1(x|0),Ha(x)| @), 0exp( —iwt). (2.8D
time.

The Maxwell curl equations for the three nonzero field com-

The vector electromagnetic field in a two-d|men5|onalPonents are

(2D) photonic crystal can be decoupled into two independen
polarization componenfyiz., E polarization, in which the H, dH, ® ®

electric field is parallel to the axes of the rods, athgbolar- VA v =1 < Di=—i < e(x|w)Ez, (2.99
ization, in which the magnetic field is parallel to the axes of ! 2

the rods. In this paper, we will deal with tHe-polarized

electromagnetic waves propagating through a two- —2=—j —H,, (2.9b
dimensional photonic crystal formed by an array of infinitely X1 c

long metallic cylinders of circular cross section surrounded

by vacuum, whose intersections with a perpendicular plane 5_Eszi w H, (2.99

form a simple square lattice of lattice parameteWe as- Xy c
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The equation foE; obtained by eliminatingd; andH, from It is well known from matrix theory that the non-
these equations can be written in the form Hermiticity of the matrixW/(G,|G) implies the existence of
, R , nonidentical right and left eigenvectoB®, B, which
w satisfy the equations
2t | Etelxfo) o7 Ea=0. (210 i the eq
X1 X5 c

> W(G|G)BR(G)=uBR(G), (2173
To solve Eq.(2.10 we use the expansicf2.6) and write 3 G = H I

E3(X|®) in the form

(L) T\ N (LT
Es(XH|w)=§, B(k,|Gy)e! i+ G, 2.11) % B™M(G)'W(G)|G))=uB™(G))". (2.17b
H Both the right and left eigenvectors that satisfy E@s173
wherek; = (ky,k3,0) is the two-dimensional wave vector of and(2.17h can be expressed in terms of three vectors each
the wave. When these expansions and the results for thsf which hasNG components. Therefore, we can rewrite the
Fourier coefficient$(GH) are substituted into qu.l@, we latter equations in the forms
obtain a polynomial matrix equation satisfied by the coeffi-

cients{B(k;|G,)}, which takes the form 6 I 0\ /BR B(R)
o e e e § 0 1]|BY|=u|BY (2.183
3 - u?P-uQ—-R)B=0, 2.1 o o e (R (R
(1= p*P—uQ—R) (2.12 R g p/\8! B
where the elements of ttdGX NG matricesP, Q, andR and
are given by -
01 0
< . (DT LT RL)T 5 0 1 l= (DT LT LT
P(G||G|)=—i %56\\ G/ (2.13a (B, ,Bg" ,By) 9 9 L =u(B," BB,
R Q P
223,(|G,—G/|R (2180
6(GH|GH'):(kH+GH)25GI o +f w_g l(”—,”) respectively. Now we use the partitioned form of the matrix
B e® (|G—G |R)2 13 W in Eq. (2.183 to obtain the eigenvalue equations satisfied
2130y the vector8(Y, B, B in the form
- LY BIR =B, 2.19
R(GIG))=i L b6, c/(K+G)2 (2130 5 ~#HBa (2.193
B =uBy, (2.19

Here J,(x) is a Bessel function, anblG is the number of

plane waves used in the expansiong0f| w) andE;(x|w) §B<R)+6BfBR)+ PBR=,BR (2.190

given by Eqs(2.6) and(2.11), respectively. “ Y 7

The nonlinear eigenvalue problem given by E2j12 can By eliminating the vectors8{® and B{® from the latter

be transformed into a linear problem iMN& dimensions by equations we obtain the polynomial matrix equation satisfied

using a standard linearization technique based on the cory vectorB(R

struction of an equivalent matriw/(G,|G,) given by - - e o

(13— u?P—uQ—-R)BY=0, (2.20

which corresponds to the original polynomial matrix equa-

(2.149  tion given py Eq.(2.12. The gigenvectorB%R) yield eigen-
values, which possess a positive real component and a nega-
tive imaginary component and, therefore, correspond to

Thus, the solution of Eq2.12) is reduced to the diagonal- physical modes.

ization of the complex, non-Hermitian matriw/, which In the following we show that both right and left eigen-

yields complex eigenvalues that can be expressed in the for¥gctors yield equivalent solutions, so that in inspecting the
spatial distribution of the modes we can restrict ourselves to

either of the two eigenvectoB§Y or B{T.

u=—=+i—=, (2.15 In order to prove the latter statement we again use the
partitioned form of the matrixV in Eq. (2.18h to obtain the
wherewg represents the real part of the complex frequencygigenvalue equations satisfied by the vec®fs™, B},

and o, determines the lifetime of the modeaccording to  B{)T:
the definition

VT/(GH|GH,):

Ut —t1 0y

o1 O
Q101 —1

BTR=uBLT, (2.213

1
;: —2w| . (216) BEYL)T'i‘ B(),L)TQ:,U/B;;L)T, (2210
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J1(x) is a Bessel function, anfi= wR?/a? is the filling frac-
tion, i.e., the fraction of the total volume occupied by the
metallic rods, which are assumed to have a circular cross
ction of radiuRR

When the Hellmann-Feynman theorem is applied to the
eigenvalue problem we obtain théh component of the
group velocityvy(k;) associated with thetth band in the
form

BHWT+BLTP=uBLT, (2.210
By eliminating the vector8{"T andB{”" in these equations

we obtain the polynomial matrix equation satisfied by vector®
LT
'y 1

BT (% — u?P— uQ—R)=0. (2.22
By taking the transpose of this equation and keeping in mindvﬂ_(k )= 9 w, (k)
that the matrice®®,Q,R defined by Egs(2.133, (2.13b, ORI gk e
and(2.139 are symmetric, we obtain an equation that corre-

sponds to the polynomial equati¢®.20 that is satisfied by _ c? S A%K(G) IMe(k;+Gylk+Gj)
the eigenvectoBY . Hence, we have proved the equiva- 20,,(k)) s =l 3

lence of the solutions associated with the eigenveﬁ%?é

andB{IT. XAH(K|G), =12, (2.29

Using the solutions given by the eigenvalues with a posi-
tive real component and a negative imaginary compone \g
associated with right eigenvectors we inspect the spatial dig2an :
tributions of the electromagnetic fields that correspond to the
physical modes. We focus on the evaluation of the spatial
distribution associated with the high symmetry points of the
first Brillouin zone, in particular with respect to the interest-
ing features, which we have found for the lifetimes of the
modes determined from the imaginary part of the complex
photonic band structure.

here (k) are the eigenvalues associated with jitl

Ill. RESULTS

A. The distribution of the EM field at high symmetry points
in the first Brillouin zone in a system of metallic rods
without damping

Let us first consider the symmetry of the bands in the
photonic band structure foE-polarized electromagnetic
waves propagating through a system of lossless metallic rods
characterized by the dielectric function Eg.1), arrayed in a

To study the energy transfer associated with the indisimple square lattice, when the filling fraction of the rods is
vidual eigenmodes allowed in our two-dimensional modelf=0.1. In Fig. 1 we present the photonic band structure for
system we evaluate the group velocities of the individualthe electromagnetic waves propagating through this system.
bands. In general, the direction of wave propagation can b&he dispersion curves shown in Fig. 1 demonstrate a charac-
determined by inspecting the propagation of a wave packderistic feature of the dispersion law for photonic crystals
in space and time. When the wave packet propagates throug¥ith metallic components, namely, the existence of an
a medium characterized by a real-valued dispersion lavacoustic gap from zero frequency up to a cutoff frequency
w(k), it can be shown that the velocity of the energy flow, w.. To analyze the nature of the individual modes of the
including its direction, is given by the group velocityy, ~ photonic band structure shown in Fig. 1 we tabulate the spa-
=V, w(k).1°"12|n this paper, we examine the group velocity tial distribution of the electric field associated with the eigen-
Vg(ku):Vwﬂ(ku) associated with theith band of the pho- functions and eigenvalues evaluated at the high symmetry
tonic band structure for waves propagating through a twopoints and along the symmetry directions in the first Bril-
dimensional photonic crystal with lossless metallic compodouin zone. The spatial distribution shown in Fig. 1 is deter-
nents. In the case d&-polarized waves we can calculate the mined from the real component of the electric fields given by
group velocity by using the Hellmann-Feynman theorem anded. (2.11). In Fig. 1 we indicate systematically the symmetry
the corresponding dispersion relation, which can be writter®f the four lowest bands at the high symmetry points and
in the form a of standard eigenvalue problem along theM-T'-X-M directions. The symmetries of some of

these bands are explicitly demonstrated by plotting the field
2 patterns shown in Figs. 2—5. The distributions presented in
this paper are sampled eveay20 in the region of the;x,
plane, which is composed of*22 unit cells, each of which
has a lattice constarat

We begin with the field pattern with the symmetry of the
irreducible representatioB, of the point groupC,, associ-
ated with the lowest state at thé point shown in Fig. 2a),
which is symmetric with respect to the, reflections and

B. Group velocity calculation

w

2 Me(k,+ G|k +GAK|G)) = r A(k|G)),

G
(2.23

where the matrix elememilg(k,+ G|k, +G;) is given by

Me(ki+Gylk+Gj) = (k+G))*5g, o/

+f w_r2)2J1(|GH_GH’|R)
¢ (IG-G{IR)

(2.29

antisymmetric with respect to the, reflections. Here we
denote the mirror planes that contain teaxis and intersect
the x1X, plane along the;, X, axes and along the lineg

=X, x;=—X, by oV, oM ando! P, o/ @) respectively.
The second lowest band at tih point, which is doubly
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2D PBS FOR SQUARE LATTICE: E POLARIZATION orthogonal eigenvectors of the irreducible representation
oo _fmor NGmus (eeEroTi has a zero amplitude as depicted in Fi¢c)4
Metal Let us turn now to theX point in the first Brillouin zone.

4 The contour map associated with the lowest band shown in
Fig. 5a) reflects the vanishing amplitude of the wave func-
tion, which belongs to the irreducible representati®n of

the point groupC,,. In Fig. 5b) we present the spatial
distribution of the electric field associated with the second
lowest band. It is symmetric with respect to a rotation

N
X

14 \ through 7 and to mirror reflections-?) along thex,; andx,
£ 1.2 m | axes, and thus belongs to the irreducible representatjoof
Q % th_e point groupC,, . Flnall_y, the spgtlal d_lstrlbutlor_l of _the
g 1.0 B third lowest band shown in Fig.(§) is antisymmetric with
B} respect to ther, mirror reflections and symmetric with re-
0.8, \ spect to a rotation through. Hence it is identified as af,
state.
0.6 r A4 The photonic bands of a square lattice composed of cir-
04 L By a - cular rods have been classified according to the group theory
' A A S basgd on the symmgtry of' the photonlq cryst&lince t_he
0.2 | A =% posm_on-dependent dielectric constant given by 5_{15) is
invariant under the symmetry operations belonging to the
0.0 L—— * T TR — point group C4,, a conventional classification of eigen-
M r K| X M modes based on group theory is applicable. In Table | we

show the symmetries of th#l, I, and X points and the

FIG. 1. The photonic band structure of a 2D square lattice conirreducible representations for several low eigenfrequencies
sisting of lossless metallic rods in vacuum obtained by the planein the case of a square lattice. Table I ShOViS th_e Comp_ability
wave_methodE polariz_ation,fzo.l. The number of plane waves relations between the high symmetry poilds I, and X,
used in these calculations iG=113. and theM-T" andI'-X directions. The notation such &g

+B;+E in Table | means that the mode assignment shown

degenerate, reveals rather striking behavior, namely the eleis Table | accomplished by group theory itself does not al-
tric fields associated with this mode, which correspond to théow assigning a definite symmetry to each mode. Therefore,
two orthogonal eigenvectors belonging to tRerreducible it is useful to employ our method based on inspecting the
representation, vanish. This phenomenon is demonstrated irature of the electric field distributions to determine a defi-
Fig. 2(b) where the vanishing amplitude is indicated by anite symmetry of each of the eigenmodes.
contour map. In Fig. @), we display a fully symmetric pat-
tern, that corresponds to the distribution of the electric field B. Effect of dissipation on the distribution of the EM field
associated with the third lowest frequency band at the at high symmetry points in the first Brillouin zone
point. In Fig. 3a), we present the distribution of the electric in the system with lossy metallic rods
field associated with the lowest frequency band for the wave We now turn to the results fd polarization when dissi-
vector k;=(0.5,0.5)7/a, which belongs to the irreducible pation in the metal rods is taken into account by the linear-
representatior of the point groupC,. In agreement with ization technique described in Sec. Il. We assume the elec-
the compatibility relation the second lowest doubly degenertromagnetic waves propagate through a system of lossy
ate mode at thévl point splits into bands belonging to the metallic rods arrayed in a simple square lattice with the fill-

irreducible representatioiandA of the point groupC, for N9 fractions f=0.01 andf=0.1. In Figs. €a)-6(d), we
the wave vectok, = (0.5,0.5)r/a alon thel-M direction present the photonic band structures and the lifetimes of the
The field patterng of th.e:,;e. bands sho?/vn in Figs) 8nd 30)' modes associated with these band structures. The dispersion

X ) S curves shown in Fig. @) indicate that the real part of the
demon_strate that the former is antisymmetric with respect t(?:omplex photonic band structure, in comparison with the dis-
a rotation throughm and hence forms an uncoupled mode, hesion curves obtained for the system without dissipation,
while the latter displays fully symmetric behavior. see Fig. 1, is negligibly affected by the presence of damping
__ The eigenfunction associated with the lowest band at thgynen the value of the damping constaris small relative to
I" point shown in Fig. 4a) displays a field pattern belonging the plasma frequency, e.q= 0.01wy,, a typical value for a
to the irreducible representatiokh, of the point groupC,, metal. In Figs. ) and 6d) we present the lifetimes of the
that possesses a sinelike behavior that peaks between thepolarized modes, which are determined from the imagi-
metallic rods. The second lowest band shown in Fig) &  nary part of the complex eigenvalues obtained by diagonal-
a nondegenerate state Bf symmetry, which is symmetric izing the non-Hermitian matribW (G,|G,) given by Eq.
with respect to ther, mirror reflections along thg; andx, (2.14. The lifetimes depicted in Fig.(B) correspond to the
axes. The third lowest band is a doubly degenerate stdfe of 12 lowest eigenmodes and reveal an interesting feature,
symmetry. The spatial distribution of the electric field asso-namely, the existence of branches of lifetimes, which form
ciated with the degenerate modes that correspond to the twvo regions separated by a gap. The formation of these re-
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FIG. 2. The electric field distribution associated with the eigenfunctions and eigenvalues that correspond to the photonic band structure
shown in Fig. 1, evaluated at thd point of the first Brillouin zone, which correspond to the lowest band with the frequéacy
wal2mc=0.7081, to the second lowest doubly degenerate stakesyimmetry with the frequencgb) wa/27c=0.7239, and to the third
lowest band with the frequendig) wa/277c=0.8810. The spatial distribution of the electric field associated with the eigenfunctions is
tabulated evera/20 in the region of the;x, plane, which is composed of22 square lattice unit cells each of which has a lattice constant
a.

gions is illustrated in Fig. @), in which we depict the life- try, while the lifetimes that form the upper region are asso-
times associated with the four lowest bands, where the sieiated with uncoupled modes & symmetry, which are an-
perscripts correspond to the number of the band. Théisymmetric with respect to a rotation through. It is
analysis of the symmetry associated with the bands of theteresting to note that the ordering of the branches of the
lifetimes reveals that the lifetimes, which form the lower lifetimes along the high symmetry directions is determined
region are associated with the modes that pos&essnme- by the symmetries of the modes, which may give rise to the
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FIG. 3. The electric field distributions associated with the eigenfunctions and eigenvalues that correspond to the photonic band structure
shown in Fig. 1, evaluated at the=(0.5,0.5)7/a point along theM-I" direction in the first Brillouin zone, which correspond to the three
lowest bands with the frequencié® wa/27c=0.4335,(b) wa/27wc=0.8055, andc) wa/2mc=0.8672.

discontinuous behavior demonstrated in Fige)@etween netism, which links the mode frequency with the spatial
the lifetimes segments denoted By and B'Y) associated variation of the electric field®

with the lowest frequency mode along tlieX and X-M In order to explore the nature of the eigenmodes we ex-
directions, respectively. We found that the forbidden regioramine the spatial variation of the electromagnetic field asso-
between the lifetime bands depends strongly on the fillingciated with eigenvectors that correspond to the physical so-
fraction and vanishes as the filling fraction is increased—settions of the matrix equatiori2.12). Since the resulting
Fig. 6(d). To explain the existence of these features we studyields are complex, we plot the intensity of the electric field
the eigenfunctions associated with each of the eigenmoddse display the spatial distributions of the modes propagating
within the context of the variational theorem in electromag-in the system in the presence of dissipation. The field pattern
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(a) T-point: 22 = 0.2621
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FIG. 4. The electric field distributions associated with the eigenfunctions and eigenvalues that correspond to the photonic band structure
shown in Fig. 1, evaluated at tHe point in the first Brillouin zone that correspond to the lowest band with the frequeaya/2mc
=0.2621, to the second lowest band with the frequefiywa/27c=1.0026, and to the third lowest doubly degenerate mode with the
frequency(c) wa/2wc=1.0208.

associated with the intensity of the electric field determinedexhibit markedly different behavior. While in the system
from the eigenvector which correspond to the lowest fre-with lossless rods the electric field associated with the sec-
guency band at thil point resembles the distribution shown ond lowest band vanishes for the two orthogonal eigenvec-
in Fig. 2(a), which displays the dominant variation betweentors, the spatial distributions of intensity of the electric fields
the rods. However, the field patterns associated with the inwhich correspond to the second lowest, doubly degenerate,
tensity of the fields associated with the second lowest doublyand ofE symmetry display patterns that are symmetric with
degenerate mode at th point shown in Figs. @) and 7c),  respect to the mirror planas,* and o).
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FIG. 5. The electric field distributions associated with the eigenfunctions and eigenvalues that correspond to the photonic band structure
shown in Fig. 1, evaluated at th¢ point in the first Brillouin zone that correspond to the three lowest bands with the frequéakies
wal/2wc=0.5125,(b) wa/2mc=0.6157, andc) wa/2mc=1.2003.

The spatial distribution of the intensity of the electric field andA of the point grougC,. From these results we find that
that corresponds to the lowest frequency band kat all three lowest frequency bands are not significantly affected
=(0.5,0.5)r/a, shown in Fig. 8a), displays fully symmetric by the presence of dissipation.
behavior, which belongs to the irreducible representaion  In Fig. 9a), we present the distributions of the intensity of
of the point groupC,. In Figs. §b) and §c) we present the the electric field associated with the lowest frequency band at
intensities of the electric field associated with the second anthe I" point. We again observe that the nature of the spatial
third lowest frequencies &t,;=(0.5,0.5)r/a, that display distribution of the intensity of the electric field associated
field patterns that belong to the irreducible representatibns with this nondegenerate mode is not significantly different
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TABLE I. The irreducible representations in the first Brillouin

DISTRIBUTION OF ELECTROMAGNETIC FIED . ..

7239

2D PBS FOR SQUARE LATTICE: E POLARIZATION

zone for electromagnetic waves propagating in a two-dimensional NG=197  za=1-wp®/w(w+iy) 7=0.0lwp
photonic-crystal based on a square lattice. £=0.01 £=0.01
2.2 T 7.0 .
Wave vectork, Symmetry wa/2mc Representation 2.0 6.5 |
1.8 | 1 6.0
r C4v 0 Al 1.6 5.5
1 A +B;+E old | S0l
= ~N7
V2 A+B,+E N 1.2t 1 3
N E 4.5
B 2 A;+B,+E g1 T,0 I
Ca, V2 A +B,+E Sos | g, |
B J10/2 A +A,+B;+B,+2E Zj so |
X Co, 1/2 A;+B; s | / os |
V5/2 At A;+B1+B; oo Lo o b g b e ]
3/2 Al+ Bl M Fk“ X M ( )M l"k“ X M
J132  A;+A,+B,+B, )
f=0.1 f=0.1
2.2 5.0 r
2.0
from that found in the nondissipative case, while the pres- 18 |

ence of dissipation remarkably affects the nature of the spa 1.6
tial distribution of the intensity of the electric field associated o 1.4 |

with the third lowest doubly degenerate stateecfymmetry — 1.2

at theI” point, which displays patterns that are symmetric g.;“’ B
with respect to the mirror planes™) ando{®), as shown in
Figs. 9b) and 9c¢) and thus, reflect the symmetry of the basis 06T
functionsE*? and EY? of the two-dimensional irreducible 2:
representatioi of the point groupCy,, . 0o Lo N IRV IR [ SR A N
In Fig. 10@ we present the distribution of the intensity M Fk“ X M M e ¥ M
associated with the lowest frequency band at Xheoint ®) @ ”
with a field pattern oB; symmetry, which is symmetric with THE LIFETIMES OF THE MODES: 2D PBES FOR SQUARE LATTICE
respect to ther, reflection and significantly differs from the o o0 Nemior eciied/eler) 700l
vanishing field pattern that corresponds to this mode in the
case of lossless rods. The intensities associated with the se: 65 1 il
ond and third lowest frequency bands shown in Figgb)jLO
and 1@c) resemble the lossless field patterns that belong to 6o |
the A; andA, irreducible representations of the point group 55 e Bm":-
C,, ., respectively. L S
In order to acquire a deeper physical insight into the phe- 550 BO) BO ]
nomena associated with the presence of dissipation repre S
sented by the remarkably different field patterns at the points = T AW o |
of high symmetry in comparison to those found in the case of 2.0 o Yo, MY D
I T IS
TABLE Il. The compability relations between the irreducible as peesl’ e aeo®e
representations shown in Table I. o | .. 70 e
Al s
Representation along 25 | . . A i
Representations at o o .
points of high symmetry M-T r-X 2.0 — e e
— M T K| X M
T(Aq) A A (e)
T(Ay) B B
I'(B,) B A FIG. 6. The photonic band structure of a square lattice of lossy
F(Bz) A B metal cylinders in vacuum obtained by the linearization technique.
F(E) A+B A+B E polarization_,(a) f=_0.01, (b) f=Q.1, and the lifetime of th(_e
I\W(Al) 1\7(82) A modes associated with the photonic band structures showa) in
— — and(b); (c) f=0.01,(d) f=0.1. The number of plane waves used in
M(A2),M(By) B these calculations iBIG=197; (e) the formation of the separated
M(E) A+B branches of the lifetimes associated with four lowest frequency
X(A1),X(B;) A bands, wherf=0.01. The bands are indicated in increasing order
;(Az).;(Bz) B by full squares, open squares, full circles and open circles, respec-

tively.
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FIG. 7. The intensity of the electric field distributions associated with eigenvectors that correspond to complex eigenvalues of the
photonic band structure shown in Figgbpand &d), evaluated at th& point of the first Brillouin zone, which correspond to the lowest

band with the frequencfa) wa/27wc=0.7081, and to the orthogonal eigenvectors associated with the second lowest doubly degenerate mode
with the frequencyb) and(c) wa/27c=0.7239.

lossless rods, we plot both the real and imaginary compospond to the real and imaginary components of the electric
nents of the electric fields associated with the modes that arfgeld associated with the lowest frequency band at he
significantly affected by the presence of damping. First, wepoint.

display a typical field pattern associated with a mode that is Next, we display the field patterns that belong to the
negligibly affected by the presence of damping. In this casemodes that exhibit the opposite behavior, viz., the magni-
the real component of the electric field is much larger thartudes of the real components are negligible in comparison
the imaginary component as is demonstrated in Fig&)11 with the imaginary components of the electric field. In fact,
and 12a), in which we show the field patterns that corre- this phenomenon is closely linked to the effect of the van-
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FIG. 8. The intensity of the electric field distributions associated with eigenvectors that correspond to complex eigenvalues of the
photonic band structure shown in Figgbpand &d), evaluated at th&,=(0.5,0.5)r/a point of the first Brillouin zone, which correspond
to the lowest band with the frequen¢g wa/2wc=0.4335, to the second lowest band with the frequeitywa/277c=0.8055, and to the

third lowest mode with the frequendyg) wa/27c=0.8672.

ishing amplitude of the electric fields found for the doubly components of the electric field patterns, which correspond
degenerate modes &fsymmetry at theM andI” points, and to the doubly degenerate modes Bfsymmetry at theM
for the nondegenerate band associated with the lowest frgsoint, and the field patterns associated with the real—Figs.

quency band at th& point. To illustrate this behavior, we 13@ and 13b)—and imaginary—1&) and 14b)—
display the field patterns associated with the real—Figscomponents of the electric field that correspond to the doubly

11(b) and 1Xc)—and imaginary—1@) and 1Zc)—  degenerate modes & symmetry at thel’ point. In Figs.
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FIG. 9. The intensity of the electric field distributions associated with eigenvectors that correspond to the complex eigenvalues of the

photonic band structure shown in Figgbpand Gd), evaluated at th& point in the first Brillouin zone that correspond to the lowest band
with the frequencya) wa/27¢c=0.2612, and to the orthogonal eigenvectors associated with the third lowest band with the fréQuandy

(c) wal2mc=1.0208.

13(c) and 14c) we display the real and imaginary parts of obtain information about the energy flux, induced electric
the field associated with the nondegenerate lowest frequendield, and the Poynting vector. While the amount of the en-

band at theX point, respectively.

C. Group velocity associated with the eigenmodes propagating
in a system of metallic rods without dissipation

ergy flow is directly proportional to the group velocity;,
the magnitude of the Poynting vector and the intensity of the
induced electric field are proportional tov}/and 12,
respectivelyt* To analyze these quantities we evaluate the

By inspecting the group velocity pattern as a function ofdroup velocity associated with the eigenmodes that propa-

the wave vectokk; in the first Brillouin zone we directly

gate through the system consisting of lossless metallic cylin-
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FIG. 10. The intensity of the electric field distributions associated with eigenvectors that correspond to complex eigenvalues of the

photonic band structure shown in Figgband &d), evaluated at th& point of the first Brillouin zone, which correspond to the lowest band
with the frequencya) wa/27c=0.5125, to the second lowest band with the frequeibgywa/27wc=0.6157, and to the third lowest mode
with the frequency(c) wa/27c=1.2003.

ders considered in Sec. Il. To calculate the dependence of thecity on the two-dimensional wave vectds;, which is
group velocity on the wave vector we employ E2.19 into  sampled everyr/15a in the first Brillouin zone, where is
which the matrixMg(k,+ G|k, +G|) given by Eq.(2.18, the lattice constant.

that describes the dispersion law polarized electromag- In Figs. 18a)—15(c), we present the distribution of the
netic waves in the nondissipative system, is substituted. Thabsolute value of the group velocity associated with the three
results are presented as patterns associated with the indowest bands, which correspond to the dispersion curves
vidual bands, which show the dependence of the group veshown in Fig. 1. The most notable feature of the group ve-
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Rel[Electric field] (arb.units)

(b) @ = (.7239
Re[Electric field] (arb.units)
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FIG. 11. The real part of the electric field distributions associated with eigenfunctions that correspond to the complex eigenvalues of the
photonic band structure shown in Figgbpand &d), evaluated at thé point in the first Brillouin zone, which correspond to the lowest
band with the frequencya) wa/27c=0.7081, and to the second lowest doubly degenerate mode with the freqi®néy) wa/2zc
=0.7239.

locity associated with the lowest band depicted in Figall5 corresponds to the second and third lowest bands reveals a
is its nonmonotonic dependence on the wave vector, with geduced amplitude along tHeM andI'-X directions in the
vanishing amplitude at thE point and near the boundaries first Brillouin zone, respectively.

of the first Brillouin zone. The distribution of the group ve-  We have shown in a previous papémat the width of the
locity of each of the modes reflects the symmetry and theap, which occurs between the first and second lowest bands
characteristic features associated with each of the bands, amla nonmonotonic function of the filling fraction. The effect
determines the directions along which the group velocity iof increasing the filling fraction on the distribution of the
reduced or tends to zero. Specifically, the group velocity thagroup velocity is demonstrated in Figs. (&46-16(c), in
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(a) M-point: £2 = 0.7081

(b)
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FIG. 12. The imaginary part of the electric field distributions associated with eigenfunctions that correspond to the complex eigenvalues
of the photonic band structure shown in Figgh)6and Gd), evaluated at th& point in the first Brillouin zone, which correspond to the
lowest band with the frequencfa) wa/2wc=0.7081, and to the second lowest doubly degenerate mode with the freq(®ndyg)
wal2mc=0.7239.

which we present the group velocity associated with the IV. DISCUSSION AND CONCLUSIONS
three lowest bands when the filling fraction of the rods cor-
responds to the maximum value of the band gap, \iz., In this paper, we have analyzed the spatial distribution of

=0.7. The patterns shown in the latter figure resemble théhe electric fields and group velocities associated with the
group velocities that correspond to the case when the fillinggigenmodes that correspond to the photonic band structure of
fractionf=0.1, except that their magnitudes are reduced duelectromagnetic waves propagating through periodic two-
to the flattened nature of the dispersion curves. dimensional systems containing both lossless and lossy me-
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FIG. 13. The real part of the electric field distributions associated with eigenfunctions that correspond to the complex eigenvalues of the
photonic band structure shown in FiggbBand &d), evaluated at th€ point in the first Brillouin zone, which correspond to the third lowest
doubly degenerate band with the frequeriay, (b) wa/2wc=1.0208, and to the lowest nondegenerate mode aXthmint with the
frequency(c) wa/2wc=0.5125.

tallic components characterized by frequency dependent dleuin zone. We considered both lossless and lossy metallic
electric functions given by Eq$2.1) and(2.2), respectively. cylinders to investigate how the eigenfunctions are affected
Our study is based on the calculation of {leempleX pho- by the presence of damping, and to obtain a deeper physical
tonic band structure by the plane-wave approach developedsight into the interesting features observed in the complex
by the present authdr3®and the application of this method photonic band structure, in particular in the lifetimes of the
to the calculation of the group velocity presented in Sec. Ilmodes determined from its imaginary part. Then, we evalu-
We first studied the nature and symmetry properties of thated the group velocities associated with the individual bands
eigenvectors at the points of high symmetry in the first Bril-as functions of the two-dimensional wave vedtpto exam-
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FIG. 14. The real part of the electric field distributions associated with eigenfunctions that correspond to the complex eigenvalues of the
photonic band structure shown in FiggbBand &d), evaluated at th€ point in the first Brillouin zone, which correspond to the third lowest
doubly degenerate band with the frequeriay, (b) wa/2wc=1.0208, and to the lowest nondegenerate mode aXthmint with the
frequency(c) wa/2wc=0.5125.

ine the energy flow in the system with lossless componentswith respect to the interpretation of the features observed in
By evaluating the spatial distribution of the electric field the photonic band structures in the systems characterized by
associated with the eigenmodes propagating through the noa-frequency-dependent dielectric function. The patterns asso-
dissipative system we have identified the symmetry of theciated with the individual eigenvectors at the high-symmetry
bands at the points of high symmetry and along the highpoints of the first Brillouin zone possess the symmetry prop-
symmetry directions in the first Brillouin zone, even in caseserties predicted by group theory. As a notable feature, our
when a definite symmetry cannot be assigned by groupesults predict that the amplitude of the electric field associ-
theory. We have examined the individual bands, in particulaated with some of the eigenmodes vanishes. Specifically, we
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FIG. 15. The group velocity of the three lowest bands that correspond to the photonic band structure shown in Fig. 1, when the filling
fraction of the rods if=0.1 evaluated in the first Brillouin zone as a function of the two-dimensional wave vgctdrhe distribution of
the group velocities associated with the individual bands is tabulated ev&Ba in the first Brillouin zone, whera is the lattice constant

found a vanishing amplitude of the electric fields associatedhg of the electric field associated with the doubly degenerate
with the orthogonal eigenvectors which correspond to doublytates ofE symmetry at thd™ point is due to the opposite
degenerate modes & symmetry at theM andI points. A signs of the coefficients of the plane waves in the expansion
vanishingly small amplitude of the electric field was also(2.11) within each of the shells of reciprocal lattice vectors,
found in the case of the lowest frequency band attpmint.  While the vanishing of the electric fields associated with the
In order to explore the origin of this behavior we have in-doubly degenerate modes Bfsymmetry at thev_point and
spected the eigenfunctions, and have found that the vanistihe nondegenerate mode Bf symmetry at thd™ point is
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FIG. 16. The same as in Fig. 15, except that the filling fractioh=%.7.

due to the alternating signs of the terms from the shells ofya¢ the vanishing of the electric field at tRepoint is not an
increasing order, which converge to zero as the distance froRrtifact of the diagonalization procedure, and represents a
the origin to a shell goes to infinity. real effect. To interpret this effect we suggest solutions of
We have analyzed the behavior of the coefficients profgs. (2.11) and (2.23 that yield a vanishing field with a
duced by the diagonalization procedure associated with thgonzero frequency represent trivial solutions, indicating that
doubly degenerate states in the vicinity of thepoint and a mode with such a frequency is absent in the system.
compared them to those obtained by using a projection op- The analysis of the eigenfunctions associated with the
erator technique. We found that the symmetrized planenodes propagating through a nondissipative system has been
waves produced by the latter method are consistent witlhised as the starting point for exploring the relation between
those generated by the numerical procedure. Thus, we thirtke dispersion curves and the components of the complex
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valued photonic band structure, which describes the proparariation in the air region have a negligible overlap with the
gation of electromagnetic waves in systems with metallicthin metal rods, which act as a repulsive potential, and ex-
components characterized by a complex frequencyhibit smaller dissipation than those whose variation is local-
dependent dielectric function. We have found that the disperized at the positions of the rods and have a significantly
sion curves determined from the resulting complex photonidarger overlap with the rods and therefore dissipate their en-
band structure obtained by the linearization technique arergy into the system to a greater degree. It is worth empha-
negligibly changed when a damping term with a typicalsizing that this effect is predicted to occur when the filling
value for metalsy=0.01w, is used. The presence of dissi- fraction of the metallic rods is smaller than 5%.
pation, however, significantly affects the nature of the eigen- The eigenvalues and eigenvectors determined in the pho-
functions. In contrast to the nondissipative system, the diagaonic band-structure calculations have been utilized to calcu-
nalization of the non-Hermitian matrix yields right and left late the group velocities of the individual bands, which allow
eigenvectors. We have proved that both right and left eigenexamining the flow of energy associated with each of the
vectors are equivalent and therefore we can restrict ourselvesgenmodes. We have shown that the dependence of the
to either of the two eigenvectors. group velocities on the wave vectlyj reveals a vanishing
The analysis of our results reveals that the intensities ohmplitude at the symmetry points and along the high-
the electric fields associated with the modes resemble theymmetry directions in the first Brillouin zone. This effect
field patterns associated with the corresponding modes in th@ay have important practical applications. It has been dem-
nondissipative case. The presence of dissipation, howevesnstrated that in a one-dimensional photonic band-gap struc-
significantly affects the nature of the spatial distribution oftyre a vanishing group velocity increases the optical path due
the electric field at the points of high symmetry at which thetg the multiple reflections of photons near the photonic band
electric field in the case of lossless rods va_nis_hes. Specif_bap, and can lead to the enhancement of gain in an active
cally, we have shown that the complex electric fields associmyedium® The vanishing group velocity at a photonic band
ated with the doubly degenerate statessafymmetry at the  g4qe may also lead to the enhancement of nonlinear pro-
M andI" points and with the nondegenerate statesBof  cesses compared with their strengths in a uniform material,
symmetry at theX point possess a dominant imaginary part.as was shown in the case of the enhancement of the induced
In contrast to the field patterns associated with the dOUbI%econd_harmoniC field intensity caused by a Vanishing group
degenerate modes in the nondissipative system that vanisig|ocity near the photonic band edge in a two-dimensional
the intensity of the electric field associated with the dege”'photonic crystal in the presence of nonlineafftythe distri-
erate modes at thel and " points, determined by diagonal- pution of the group velocities associated with the bands dis-
ization of the non-Hermitian matri¥/(G,|G, ), display pat-  plays a rich variety of patterns as the band number increases,

terns that reflect the symmetry of the basis functi&fe, and the nodal structure of the higher frequency bands be-
E®2 of the two-dimensional irreducible representatiBrof ~ comes more complicated. This strong directional dependence
the point groupC,, . indicates the existence of channels of energy flow, which

By studying the spatial distribution of the electric field may prove be an effective mechanism in controlling photon
associated with the eigenmodes propagating through the tw@ropagation through a photonic crystal.
dimensional system consisting of lossy metallic rods we ob- The propagation of electromagnetic waves in absorbing
tained a deeper physical insight into the effects exhibited bynedia is described by a complex valued dispersion law, and
the lifetimes of the modes. We have shown that the existencge associated group velocities also become complex. Let us
of the separated branches of the lifetimes is due to the synyst consider the components of the electric field and the
metry of the modes. The lifetimes associated with the modeg,mplex group velocity associated with the right eigenvec-
of A symmetry belong to the lower band, while those thaty,. \while the real part of the complex group velocity

correspond to the antisymmetric uncoupled modes give ris : : o

to the upper band. The existence of branches of thegliifetimegk”R,e[w”(k”)] determ|ries the.prop.agatlon directlon of the
is closely linked to the difference in the spatial variation of M@Ximum energy density, the imaginary part is related to the
the fields associated with the symmetric modes, which exdirections in which the maximum dissipation of the energy
hibit predominant variation in the region of the rods, while density —occurs. It can be explicitly expressed as
the variation of the uncoupled modes occurs mostly betweel k IMl@,(k)1=[1/27,,(k))?IV 7,(k;), and represents the
the rods. Consequently, for the lifetimes determined from theate of dissipation of the photon’s energy into the system in
imaginary part of the complex photonic band structure andthe direction of the maximum dissipated energy density,
therefore, for small values of the filling fraction of the rods, where 7,(k)) is the lifetime associated with theth band

the difference between the spatial variation of the symmetriclefined in Eq(2.15.18

and antisymmetric modes tends to affect the difference be- This topic is part of a more general problem concerned
tween the imaginary components of the complex eigenvaluewith the properties of the macroscopic fields inside dielec-
more significantly than in the case of the real componentdirics, which has been studied both theoretically and experi-
and implies the existence of separated branches of the lifgnentally. One of the crucial questions raised is that of the
times. Such behavior is consistent with a simple physicabeneral expression for the Poynting vector in scattering or
explanation, which assumes longer lifetimes of the modesbsorbing media. It has been shown that if a Gaussian wave
that are mostly extended in the region with low dielectricpacket is chosen for the initial wave packig(r), then the
constant than of those that are more localized in the region gfropagation direction of the maximum of the energy density
the rods. Specifically, the modes with the dominant spatials determined by the real part of the group velocity, and
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