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Distribution of electromagnetic field and group velocities in two-dimensional periodic systems
with dissipative metallic components
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We study the distribution of the electromagnetic field of the eigenmodes and corresponding group velocities
associated with the photonic band structures of two-dimensional periodic systems consisting of an array of
infinitely long parallel metallic rods whose intersections with a perpendicular plane form a simple square
lattice. We consider both nondissipative and lossy metallic components characterized by a complex frequency-
dependent dielectric function. Our analysis is based on the calculation of the complex photonic band structure
obtained by using a modified plane-wave method that transforms the problem of solving Maxwell’s equations
into the problem of diagonalizing an equivalent non-Hermitian matrix. In order to investigate the nature and the
symmetry properties of the eigenvectors, which significantly affect the optical properties of the photonic
lattices, we evaluate the associated field distribution at the high symmetry points and along high symmetry
directions in the two-dimensional first Brillouin zone of the periodic system. By considering both lossless and
lossy metallic rods we study the effect of damping on the spatial distribution of the eigenvectors. Then we use
the Hellmann-Feynman theorem and the eigenvectors and eigenfrequencies obtained from a photonic band-
structure calculation based on a standard plane-wave approach applied to the nondissipative system to calculate
the components of the group velocities associated with individual bands as functions of the wave vector in the
first Brillouin zone. From the group velocity of each eigenmode the flow of energy is examined. The results
obtained indicate a strong directional dependence of the group velocity, and confirm the experimental obser-
vation that a photonic crystal is a potentially efficient tool in controlling photon propagation.
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I. INTRODUCTION

Recently, it has been demonstrated both theoretically
experimentally that the nature of the wave function asso
ated with the eigenmodes propagating in a photonic cry
significantly affects the optical properties of the photon
crystal. For example, the presence of uncoupled modes
photonic crystal, whose field patterns display a misma
with the field pattern of an incoming wave, has been stud
by several authors.1–3 A group theoretical analysis based o
the symmetry of two-dimensional lattices shows that some
the observed opaque regions in transmission experiment
artifacts of the measurement in contrast to those that e
due to the band gaps.1,2 The optical response that occurs in
photonic crystal provides another example of the importa
of complete knowledge about the eigenfunctions. Spec
cally, the intensity of radiation from an oscillating dipo
embedded in a photonic crystal depends on position bec
both the amplitude of the electromagnetic field and the c
pling strength between the dipole and the radiation field
position-dependent functions.4 These two examples clearl
demonstrate that the nature of the wave function significa
affects the optical properties of photonic crystals, and tha
detailed knowledge of the eigenfunctions is necessary to
derstand the transport properties of the electromagnetic
diation in these structures.

We recently studied the propagation of electromagn
waves in both one- and two-dimensional periodic syste
PRB 580163-1829/98/58~11!/7230~22!/$15.00
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with lossy metallic components, and predicted remarka
features occurring in these structures.5 Namely, we showed
that both the lifetime and the absorption coefficient asso
ated with the modes propagating through a one-dimensio
system display singular behavior near the band edges.
origin of the former effect was identified as the redistributi
of the electromagnetic field in the modes at the bottom a
the top of the gap. Another interesting property of a comp
photonic band structure is the existence of branches of
lifetimes associated with modes of different symmetry se
rated by a gap that vanishes as the filling fraction of the r
is increased.

In this paper, we deal with phenomena related to
propagation of electromagnetic waves and the transpor
energy through two-dimensional photonic crystals consist
of an array of infinitely long parallel metallic cylinders. I
order to obtain deeper physical insight into the nature
phenomena associated with the presence of dissipation
study the distribution of the electromagnetic fields in ter
of the eigenmodes that correspond to the individual ban
We inspect the symmetry of the bands at the points of h
symmetry and along the high symmetry directions in t
two-dimensional first Brillouin zone of the photonic crysta
By evaluating the eigenfunctions, we identify uncoupl
modes, and we also determine the symmetry of modes in
cases in which a definite symmetry cannot be assigned by
use of group theory itself. Furthermore, we evaluate
group velocity associated with the individual eigenmodes
7230 © 1998 The American Physical Society
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lowed within the photonic crystal, in particular at the ba
edges, since in these regions the Ioffe-Regel criterion is
isfied, which consequently may give rise to the existence
phenomena related to the localization of light.6

The present paper is organized as follows. In Sec. II
briefly describe the linearization technique used to calcu
the complex photonic band structure, and we apply
Hellmann-Feynman theorem to obtain an expression for
group velocity of the individual bands. In Sec. III, we prese
the results obtained by applying these methods to the sys
that consists of infinitely long lossy metallic rods, who
intersections with a perpendicular plane form a square
tice. In particular, we focus on the effect of the presence
dissipation on the nature of the spatial distribution of t
electric field associated with the individual bands at
points of high symmetry in the first Brillouin zone, and o
the dependence of the group velocities associated with
individual bands of the photonic band structure of the sys
with lossless metallic rods, on their filling fraction. The i
terpretation of the interesting features associated with
complex valued dispersion law and possible directions
future research are presented in Sec. IV.

II. COMPUTATIONAL METHOD

A. Evaluation of the complex photonic band structure

The physical system that we consider in this paper c
sists of infinitely long, identical, metallic rods, whose inte
sections with a plane perpendicular to the rods form a tw
dimensional lattice. We first consider lossless meta
cylinders characterized by a simple free-electron dielec
function of the form

e~v!512
vp

2

v2 , ~2.1!

where the plasma frequencyvp is typically in the ultraviolet
frequency region.

To calculate the photonic band structure for the mo
propagating through the system consisting of metallic r
without dissipation we employ the modified plane-wa
method developed by the present authors.7 We simulta-
neously study the system with lossy components when
sipation is introduced through the use of a dielectric funct
of the form

e~v!512
vp

2

v~v1 ig!
, ~2.2!

where the parameterg is an inverse electronic relaxatio
time.

The vector electromagnetic field in a two-dimension
~2D! photonic crystal can be decoupled into two independ
polarization components,8 viz., E polarization, in which the
electric field is parallel to the axes of the rods, andH polar-
ization, in which the magnetic field is parallel to the axes
the rods. In this paper, we will deal with theE-polarized
electromagnetic waves propagating through a tw
dimensional photonic crystal formed by an array of infinite
long metallic cylinders of circular cross section surround
by vacuum, whose intersections with a perpendicular pl
form a simple square lattice of lattice parametera. We as-
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sume that the axes of the cylinders are parallel to thex3 axis
and the positions of the sites of this lattice are given by
vectors

xi~ l !5 l 1a11 l 2a2 , ~2.3!

wherea15a(1,0,0) anda25a(0,1,0) are the two, noncolin
ear, primitive translation vectors of the lattice, whilel 1 and
l 2 are arbitrary integers that we denote collectively byl. The
areaac of a primitive unit cell of this lattice is given byac
5ua13a2u5a2.

The lattice reciprocal to the direct lattice whose points
defined by Eq.~2.3! is defined by the translation vectors

Gi~h!5h1b11h2b2 , ~2.4!

where b15(2p/a)(1,0,0) andb25(2p/a)(0,1,0) are the
primitive translation vectors of the reciprocal lattice, andh1
andh2 are arbitrary integers that we denote collectively byh.

The system we study is characterized by a positi
dependent dielectric function of the form

e@xi1xi~ l !uv#5e~xiuv!, ~2.5!

wherexi5(x1 ,x2,0) is two-dimensional vector in thex1x2
plane ande(xiuv) is a position-dependent, periodic functio
of xi with the periodicity of the Bravais lattice defined by E
~2.3!. It can therefore be expanded in a two-dimensio
Fourier series according to

e~xiuv!5(
Gi

ê~Gi!eiGi•xi, ~2.6!

and in the particular case of cylinders characterized by
dielectric function given by Eq.~2.2!, whose cross section i
a circle of radiusR we obtain for the Fourier coefficient
ê(Gi),

ê~Gi!55 12 f
vp

2

v~v1 ig!
, Gi50 ~2.7a!

2 f
vp

2

v~v1 ig!

2J1~GiR!

~GiR!
, GiÞ0. ~2.7b!

Here f 5pR2/a2 is the filling fraction, i.e., the fraction of the
volume occupied by the rods, andJ1(x) is a Bessel function.

In the case ofE polarization, we seek solutions of th
Maxwell equations that have the forms

E~x;t !5„0,0,E3~xiuv!…exp~2 ivt ! ~2.8a!

H~x;t !5„H1~xiuv!,H2~xiuv!,0…exp~2 ivt !. ~2.8b!

The Maxwell curl equations for the three nonzero field co
ponents are

]H2

]x1
2

]H1

]x2
52 i

v

c
D352 i

v

c
e~xiuv!E3 , ~2.9a!

]E3

]x1
52 i

v

c
H2 , ~2.9b!

]E3

]x2
5 i

v

c
H1 . ~2.9c!
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The equation forE3 obtained by eliminatingH1 andH2 from
these equations can be written in the form

S ]2

]x1
2 1

]2

]x2
2DE31e~xiuv!

v2

c2 E350. ~2.10!

To solve Eq.~2.10! we use the expansion~2.6! and write
E3(xiuv) in the form

E3~xiuv!5(
Gi

B~kiuGi!ei ~ki1Gi !•xi, ~2.11!

whereki5(k1 ,k2,0) is the two-dimensional wave vector o
the wave. When these expansions and the results for
Fourier coefficientsê(Gi) are substituted into Eq.~2.10!, we
obtain a polynomial matrix equation satisfied by the coe
cients$B(kiuGi)%, which takes the form

~m3IJ2m2PJ2mQJ2RJ !B50, ~2.12!

where the elements of theNG3NG matricesPJ , QJ , andRJ

are given by

PJ ~GiuGi8!52 i
g

c
dGi ,G

i8
, ~2.13a!

QJ ~GiuGi8!5~ki1Gi!
2dGi ,G

i8
1 f

vp
2

c2

2J1~ uGi2Gi8uR!

~ uGi2Gi8uR!
,

~2.13b!

RJ~GiuGi8!5 i
g

c
dGi ,G

i8
~ki1Gi!

2. ~2.13c!

Here J1(x) is a Bessel function, andNG is the number of
plane waves used in the expansions ofe(xiuv) andE3(xiuv)
given by Eqs.~2.6! and ~2.11!, respectively.

The nonlinear eigenvalue problem given by Eq.~2.12! can
be transformed into a linear problem in 3NG dimensions by
using a standard linearization technique based on the
struction of an equivalent matrixWJ (GiuGi8) given by9

WJ ~GiuGi8!5F 0J

0J

RJ

IJ

0J

QJ

0J

IJ

PJ
G . ~2.14!

Thus, the solution of Eq.~2.12! is reduced to the diagona
ization of the complex, non-Hermitian matrixWJ , which
yields complex eigenvalues that can be expressed in the

m5
vR

c
1 i

v I

c
, ~2.15!

wherevR represents the real part of the complex frequen
and v I determines the lifetime of the modet according to
the definition

1

t
522v I . ~2.16!
he

-

n-

rm

,

It is well known from matrix theory that the non
Hermiticity of the matrixWJ (GiuGi8) implies the existence o
nonidentical right and left eigenvectorsB(R), B(L), which
satisfy the equations

(
G

i
8

WJ ~GiuGi8!B~R!~Gi8!5mB~R!~Gi!, ~2.17a!

(
Gi

B~L !~Gi!
TWJ ~GiuGi8!5mB~L !~Gi8!T. ~2.17b!

Both the right and left eigenvectors that satisfy Eqs.~2.17a!
and ~2.17b! can be expressed in terms of three vectors e
of which hasNG components. Therefore, we can rewrite t
latter equations in the forms

S 0J

0J

RJ

IJ

0J

QJ

0J

IJ

PJ
D S Ba

~R!

Bb
~R!

Bg
~R!
D 5mS Ba

~R!

Bb
~R!

Bg
~R!
D ~2.18a!

and

~Ba
~L !T ,Bb

~L !T ,Bg
~L !T!S 0J

0J

RJ

IJ

0J

QJ

0J

IJ

PJ
D 5m~Ba

~L !T ,Bb
~L !T ,Bg

~L !T!,

~2.18b!

respectively. Now we use the partitioned form of the mat
WJ in Eq. ~2.18a! to obtain the eigenvalue equations satisfi
by the vectorsBa

(R) , Bb
(R) , Bg

(R) in the form

Bb
~R!5mBa

~R! , ~2.19a!

Bg
~R!5mBb

~R! , ~2.19b!

RJBa
~R!1QJBb

~R!1PJBg
~R!5mBg

~R! . ~2.19c!

By eliminating the vectorsBa
(R) and Bg

(R) from the latter
equations we obtain the polynomial matrix equation satisfi
by vectorBb

(R) ,

~m3IJ2m2PJ2mQJ2RJ !Bb
~R!50, ~2.20!

which corresponds to the original polynomial matrix equ
tion given by Eq.~2.12!. The eigenvectorsBb

(R) yield eigen-
values, which possess a positive real component and a n
tive imaginary component and, therefore, correspond
physical modes.

In the following we show that both right and left eigen
vectors yield equivalent solutions, so that in inspecting
spatial distribution of the modes we can restrict ourselves
either of the two eigenvectorsBb

(R) or Bg
(L)T .

In order to prove the latter statement we again use
partitioned form of the matrixWJ in Eq. ~2.18b! to obtain the
eigenvalue equations satisfied by the vectorsBa

(L)T , Bb
(L)T ,

Bg
(L)T :

Bg
~L !TRJ5mBa

~L !T , ~2.21a!

Ba
~L !T1Bg

~L !TQJ5mBb
~L !T , ~2.21b!
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Bb
~L !T1Bg

~L !TPJ5mBg
~L !T . ~2.21c!

By eliminating the vectorsBa
(L)T andBb

(L)T in these equations
we obtain the polynomial matrix equation satisfied by vec
Bg

(L)T ,

Bg
~L !T~m3IJ2m2PJ2mQJ2RJ !50. ~2.22!

By taking the transpose of this equation and keeping in m
that the matricesPJ ,QJ ,RJ defined by Eqs.~2.13a!, ~2.13b!,
and~2.13c! are symmetric, we obtain an equation that cor
sponds to the polynomial equation~2.20! that is satisfied by
the eigenvectorBb

(R) . Hence, we have proved the equiv
lence of the solutions associated with the eigenvectorsBb

(R)

andBg
(L)T .

Using the solutions given by the eigenvalues with a po
tive real component and a negative imaginary compon
associated with right eigenvectors we inspect the spatial
tributions of the electromagnetic fields that correspond to
physical modes. We focus on the evaluation of the spa
distribution associated with the high symmetry points of
first Brillouin zone, in particular with respect to the interes
ing features, which we have found for the lifetimes of t
modes determined from the imaginary part of the comp
photonic band structure.5

B. Group velocity calculation

To study the energy transfer associated with the in
vidual eigenmodes allowed in our two-dimensional mo
system we evaluate the group velocities of the individ
bands. In general, the direction of wave propagation can
determined by inspecting the propagation of a wave pac
in space and time. When the wave packet propagates thro
a medium characterized by a real-valued dispersion
v~k!, it can be shown that the velocity of the energy flo
including its direction, is given by the group velocityvg
5¹kv(k).10–12In this paper, we examine the group veloci
vg

m(ki)5¹vm(ki) associated with themth band of the pho-
tonic band structure for waves propagating through a tw
dimensional photonic crystal with lossless metallic comp
nents. In the case ofE-polarized waves we can calculate th
group velocity by using the Hellmann-Feynman theorem a
the corresponding dispersion relation, which can be writ
in the form a of standard eigenvalue problem7

(
Gi8

ME~ki1Giuki1Gi8!A~kiuGi8!5
v2

c2 A~kiuGi!,

~2.23!

where the matrix elementME(ki1Giuki1Gi8) is given by

ME~ki1Giuki1Gi8!5~ki1Gi!
2dGi ,G

i8

1 f
vp

2

c2

2J1~ uGi2Gi8uR!

~ uGi2Gi8uR!
,

~2.24!
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J1(x) is a Bessel function, andf 5pR2/a2 is the filling frac-
tion, i.e., the fraction of the total volume occupied by t
metallic rods, which are assumed to have a circular cr
section of radiusR.

When the Hellmann-Feynman theorem is applied to
eigenvalue problem we obtain thej th component of the
group velocityvg(ki) associated with themth band in the
form

vg j
m ~ki!5

]

]kj
vm~ki!

5
c2

2vm~ki!
(

Gi ,Gi8
Am~kiuGi!

]ME~ki1Giuki1Gi8!

]kj

3Am~kiuGi8!, j 51,2, ~2.25!

where vm(ki) are the eigenvalues associated with themth
band.

III. RESULTS

A. The distribution of the EM field at high symmetry points
in the first Brillouin zone in a system of metallic rods

without damping

Let us first consider the symmetry of the bands in t
photonic band structure forE-polarized electromagnetic
waves propagating through a system of lossless metallic
characterized by the dielectric function Eq.~2.1!, arrayed in a
simple square lattice, when the filling fraction of the rods
f 50.1. In Fig. 1 we present the photonic band structure
the electromagnetic waves propagating through this syst
The dispersion curves shown in Fig. 1 demonstrate a cha
teristic feature of the dispersion law for photonic crysta
with metallic components, namely, the existence of
acoustic gap from zero frequency up to a cutoff frequen
vc . To analyze the nature of the individual modes of t
photonic band structure shown in Fig. 1 we tabulate the s
tial distribution of the electric field associated with the eige
functions and eigenvalues evaluated at the high symm
points and along the symmetry directions in the first Br
louin zone. The spatial distribution shown in Fig. 1 is det
mined from the real component of the electric fields given
Eq. ~2.11!. In Fig. 1 we indicate systematically the symmet
of the four lowest bands at the high symmetry points a
along theM̄ -Ḡ-X̄-M̄ directions. The symmetries of some o
these bands are explicitly demonstrated by plotting the fi
patterns shown in Figs. 2–5. The distributions presented
this paper are sampled everya/20 in the region of thex1x2
plane, which is composed of 232 unit cells, each of which
has a lattice constanta.

We begin with the field pattern with the symmetry of th
irreducible representationB2 of the point groupC4v associ-
ated with the lowest state at theM̄ point shown in Fig. 2~a!,
which is symmetric with respect to thesv8 reflections and
antisymmetric with respect to thesv reflections. Here we
denote the mirror planes that contain thex3 axis and intersect
the x1x2 plane along thex1 , x2 axes and along the linesx1

5x2 , x152x2 by sv
(1) , sv

(1) andsv8
(1) , sv8

(2) , respectively.
The second lowest band at theM̄ point, which is doubly
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degenerate, reveals rather striking behavior, namely the e
tric fields associated with this mode, which correspond to
two orthogonal eigenvectors belonging to theE irreducible
representation, vanish. This phenomenon is demonstrate
Fig. 2~b! where the vanishing amplitude is indicated by
contour map. In Fig. 2~c!, we display a fully symmetric pat
tern, that corresponds to the distribution of the electric fi
associated with the third lowest frequency band at theM̄
point. In Fig. 3~a!, we present the distribution of the electr
field associated with the lowest frequency band for the w
vector ki5(0.5,0.5)p/a, which belongs to the irreducible
representationA of the point groupC2 . In agreement with
the compatibility relation the second lowest doubly degen
ate mode at theM̄ point splits into bands belonging to th
irreducible representationsB andA of the point groupC2 for
the wave vectorki5(0.5,0.5)p/a along theḠ-M̄ direction.
The field patterns of these bands shown in Figs. 3~b! and 3~c!
demonstrate that the former is antisymmetric with respec
a rotation throughp and hence forms an uncoupled mod
while the latter displays fully symmetric behavior.

The eigenfunction associated with the lowest band at
Ḡ point shown in Fig. 4~a! displays a field pattern belongin
to the irreducible representationA1 of the point groupC4v
that possesses a sinelike behavior that peaks between
metallic rods. The second lowest band shown in Fig. 4~b! is
a nondegenerate state ofB1 symmetry, which is symmetric
with respect to thesv mirror reflections along thex1 andx2
axes. The third lowest band is a doubly degenerate stateE
symmetry. The spatial distribution of the electric field ass
ciated with the degenerate modes that correspond to the

FIG. 1. The photonic band structure of a 2D square lattice c
sisting of lossless metallic rods in vacuum obtained by the pla
wave method.E polarization,f 50.1. The number of plane wave
used in these calculations isNG5113.
c-
e

in

d

e

r-

to
,

e

the

f
-
o

orthogonal eigenvectors of theE irreducible representation
has a zero amplitude as depicted in Fig. 4~c!.

Let us turn now to theX̄ point in the first Brillouin zone.
The contour map associated with the lowest band show
Fig. 5~a! reflects the vanishing amplitude of the wave fun
tion, which belongs to the irreducible representationB1 of
the point groupC2v . In Fig. 5~b! we present the spatia
distribution of the electric field associated with the seco
lowest band. It is symmetric with respect to a rotati
throughp and to mirror reflectionssv

(2) along thex1 andx2

axes, and thus belongs to the irreducible representationA1 of
the point groupC2v . Finally, the spatial distribution of the
third lowest band shown in Fig. 5~c! is antisymmetric with
respect to thesv mirror reflections and symmetric with re
spect to a rotation throughp. Hence it is identified as anA2
state.

The photonic bands of a square lattice composed of
cular rods have been classified according to the group the
based on the symmetry of the photonic crystal.3 Since the
position-dependent dielectric constant given by Eq.~2.5! is
invariant under the symmetry operations belonging to
point group C4v , a conventional classification of eigen
modes based on group theory is applicable. In Table I
show the symmetries of theM̄ , Ḡ, and X̄ points and the
irreducible representations for several low eigenfrequen
in the case of a square lattice. Table II shows the compab
relations between the high symmetry pointsM̄ , Ḡ, and X̄,
and theM̄ -Ḡ and Ḡ-X̄ directions. The notation such asA1
1B11E in Table I means that the mode assignment sho
in Table I accomplished by group theory itself does not
low assigning a definite symmetry to each mode. Therefo
it is useful to employ our method based on inspecting
nature of the electric field distributions to determine a de
nite symmetry of each of the eigenmodes.

B. Effect of dissipation on the distribution of the EM field
at high symmetry points in the first Brillouin zone

in the system with lossy metallic rods

We now turn to the results forE polarization when dissi-
pation in the metal rods is taken into account by the line
ization technique described in Sec. II. We assume the e
tromagnetic waves propagate through a system of lo
metallic rods arrayed in a simple square lattice with the fi
ing fractions f 50.01 and f 50.1. In Figs. 6~a!–6~d!, we
present the photonic band structures and the lifetimes of
modes associated with these band structures. The dispe
curves shown in Fig. 6~c! indicate that the real part of th
complex photonic band structure, in comparison with the d
persion curves obtained for the system without dissipati
see Fig. 1, is negligibly affected by the presence of damp
when the value of the damping constantg is small relative to
the plasma frequency, e.g.,g50.01vp , a typical value for a
metal. In Figs. 6~b! and 6~d! we present the lifetimes of the
E-polarized modes, which are determined from the ima
nary part of the complex eigenvalues obtained by diagon
izing the non-Hermitian matrixWJ (GiuGi) given by Eq.
~2.14!. The lifetimes depicted in Fig. 6~b! correspond to the
12 lowest eigenmodes and reveal an interesting feat
namely, the existence of branches of lifetimes, which fo
two regions separated by a gap. The formation of these

-
e-
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FIG. 2. The electric field distribution associated with the eigenfunctions and eigenvalues that correspond to the photonic band
shown in Fig. 1, evaluated at theM̄ point of the first Brillouin zone, which correspond to the lowest band with the frequency~a!
va/2pc50.7081, to the second lowest doubly degenerate state ofE symmetry with the frequency~b! va/2pc50.7239, and to the third
lowest band with the frequency~c! va/2pc50.8810. The spatial distribution of the electric field associated with the eigenfunctio
tabulated everya/20 in the region of thex1x2 plane, which is composed of 232 square lattice unit cells each of which has a lattice cons
a.
s
h
th
er

o-

the
ed
the
gions is illustrated in Fig. 6~e!, in which we depict the life-
times associated with the four lowest bands, where the
perscripts correspond to the number of the band. T
analysis of the symmetry associated with the bands of
lifetimes reveals that the lifetimes, which form the low
region are associated with the modes that possessA symme-
u-
e
e

try, while the lifetimes that form the upper region are ass
ciated with uncoupled modes ofB symmetry, which are an-
tisymmetric with respect to a rotation throughp. It is
interesting to note that the ordering of the branches of
lifetimes along the high symmetry directions is determin
by the symmetries of the modes, which may give rise to
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FIG. 3. The electric field distributions associated with the eigenfunctions and eigenvalues that correspond to the photonic band
shown in Fig. 1, evaluated at theki5(0.5,0.5)p/a point along theM̄ -Ḡ direction in the first Brillouin zone, which correspond to the thr
lowest bands with the frequencies~a! va/2pc50.4335,~b! va/2pc50.8055, and~c! va/2pc50.8672.
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discontinuous behavior demonstrated in Fig. 6~e! between
the lifetimes segments denoted byA(1) and B(1) associated
with the lowest frequency mode along theḠ-X̄ and X̄-M̄
directions, respectively. We found that the forbidden reg
between the lifetime bands depends strongly on the fill
fraction and vanishes as the filling fraction is increased—
Fig. 6~d!. To explain the existence of these features we st
the eigenfunctions associated with each of the eigenmo
within the context of the variational theorem in electroma
n
g
e
y
es
-

netism, which links the mode frequency with the spat
variation of the electric field.13

In order to explore the nature of the eigenmodes we
amine the spatial variation of the electromagnetic field as
ciated with eigenvectors that correspond to the physical
lutions of the matrix equation~2.12!. Since the resulting
fields are complex, we plot the intensity of the electric fie
to display the spatial distributions of the modes propagat
in the system in the presence of dissipation. The field pat
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FIG. 4. The electric field distributions associated with the eigenfunctions and eigenvalues that correspond to the photonic band
shown in Fig. 1, evaluated at theḠ point in the first Brillouin zone that correspond to the lowest band with the frequency~a! va/2pc
50.2621, to the second lowest band with the frequency~b! va/2pc51.0026, and to the third lowest doubly degenerate mode with
frequency~c! va/2pc51.0208.
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ith
associated with the intensity of the electric field determin
from the eigenvector which correspond to the lowest f
quency band at theM̄ point resembles the distribution show
in Fig. 2~a!, which displays the dominant variation betwe
the rods. However, the field patterns associated with the
tensity of the fields associated with the second lowest dou
degenerate mode at theM̄ point shown in Figs. 7~b! and 7~c!,
d
-

n-
ly

exhibit markedly different behavior. While in the syste
with lossless rods the electric field associated with the s
ond lowest band vanishes for the two orthogonal eigenv
tors, the spatial distributions of intensity of the electric fiel
which correspond to the second lowest, doubly degener
band ofE symmetry display patterns that are symmetric w
respect to the mirror planessv8

(1) andsv8
(2) .
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FIG. 5. The electric field distributions associated with the eigenfunctions and eigenvalues that correspond to the photonic band
shown in Fig. 1, evaluated at theX̄ point in the first Brillouin zone that correspond to the three lowest bands with the frequencie~a!
va/2pc50.5125,~b! va/2pc50.6157, and~c! va/2pc51.2003.
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The spatial distribution of the intensity of the electric fie
that corresponds to the lowest frequency band atki

5(0.5,0.5)p/a, shown in Fig. 8~a!, displays fully symmetric
behavior, which belongs to the irreducible representatioA
of the point groupC2 . In Figs. 8~b! and 8~c! we present the
intensities of the electric field associated with the second
third lowest frequencies atki5(0.5,0.5)p/a, that display
field patterns that belong to the irreducible representationB
d

andA of the point groupC2 . From these results we find tha
all three lowest frequency bands are not significantly affec
by the presence of dissipation.

In Fig. 9~a!, we present the distributions of the intensity
the electric field associated with the lowest frequency ban
the Ḡ point. We again observe that the nature of the spa
distribution of the intensity of the electric field associat
with this nondegenerate mode is not significantly differe
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from that found in the nondissipative case, while the pr
ence of dissipation remarkably affects the nature of the s
tial distribution of the intensity of the electric field associat
with the third lowest doubly degenerate state ofE symmetry
at the Ḡ point, which displays patterns that are symmet
with respect to the mirror planessv

(1) andsv
(2) , as shown in

Figs. 9~b! and 9~c! and thus, reflect the symmetry of the bas
functionsE(xz) andE(yz) of the two-dimensional irreducible
representationE of the point groupC4v .

In Fig. 10~a! we present the distribution of the intensi
associated with the lowest frequency band at theX̄ point
with a field pattern ofB1 symmetry, which is symmetric with
respect to thesv reflection and significantly differs from th
vanishing field pattern that corresponds to this mode in
case of lossless rods. The intensities associated with the
ond and third lowest frequency bands shown in Figs. 10~b!
and 10~c! resemble the lossless field patterns that belong
the A1 andA2 irreducible representations of the point gro
C2v , respectively.

In order to acquire a deeper physical insight into the p
nomena associated with the presence of dissipation re
sented by the remarkably different field patterns at the po
of high symmetry in comparison to those found in the case

TABLE I. The irreducible representations in the first Brillou
zone for electromagnetic waves propagating in a two-dimensio
photonic-crystal based on a square lattice.

Wave vectorki Symmetry va/2pc Representation

G C4v 0 A1

1 A11B11E
& A11B21E
2 A11B11E

M̄ C4v 1/& A11B21E

A10/2 A11A21B11B212E

X̄ C2v 1/2 A11B1

A5/2 A11A21B11B2

3/2 A11B1

A13/2 A11A21B11B2

TABLE II. The compability relations between the irreducib
representations shown in Table I.

Representations at
points of high symmetry

Representation along

M̄ -Ḡ Ḡ-X̄

Ḡ(A1) A A

Ḡ(A2) B B

Ḡ(B1) B A

Ḡ(B2) A B

Ḡ(E) A1B A1B

M̄ (A1),M̄ (B2) A

M̄ (A2),M̄ (B1) B

M̄ (E) A1B

X̄(A1),X̄(B1) A

X̄(A2),X̄(B2) B
-
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to
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FIG. 6. The photonic band structure of a square lattice of lo
metal cylinders in vacuum obtained by the linearization techniq
E polarization, ~a! f 50.01, ~b! f 50.1, and the lifetime of the
modes associated with the photonic band structures shown in~a!
and~b!; ~c! f 50.01,~d! f 50.1. The number of plane waves used
these calculations isNG5197; ~e! the formation of the separate
branches of the lifetimes associated with four lowest freque
bands, whenf 50.01. The bands are indicated in increasing ord
by full squares, open squares, full circles and open circles, res
tively.
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FIG. 7. The intensity of the electric field distributions associated with eigenvectors that correspond to complex eigenvalue
photonic band structure shown in Figs. 6~b! and 6~d!, evaluated at theM̄ point of the first Brillouin zone, which correspond to the lowe
band with the frequency~a! va/2pc50.7081, and to the orthogonal eigenvectors associated with the second lowest doubly degenera
with the frequency~b! and ~c! va/2pc50.7239.
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lossless rods, we plot both the real and imaginary com
nents of the electric fields associated with the modes tha
significantly affected by the presence of damping. First,
display a typical field pattern associated with a mode tha
negligibly affected by the presence of damping. In this ca
the real component of the electric field is much larger th
the imaginary component as is demonstrated in Figs. 1~a!
and 12~a!, in which we show the field patterns that corr
o-
re
e
is
e,
n

spond to the real and imaginary components of the elec
field associated with the lowest frequency band at theM̄
point.

Next, we display the field patterns that belong to t
modes that exhibit the opposite behavior, viz., the mag
tudes of the real components are negligible in compari
with the imaginary components of the electric field. In fa
this phenomenon is closely linked to the effect of the va
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FIG. 8. The intensity of the electric field distributions associated with eigenvectors that correspond to complex eigenvalue
photonic band structure shown in Figs. 6~b! and 6~d!, evaluated at theki5(0.5,0.5)p/a point of the first Brillouin zone, which correspon
to the lowest band with the frequency~a! va/2pc50.4335, to the second lowest band with the frequency~b! va/2pc50.8055, and to the
third lowest mode with the frequency~c! va/2pc50.8672.
ly

fr

ig

nd

igs.

bly
ishing amplitude of the electric fields found for the doub
degenerate modes ofE symmetry at theM̄ andḠ points, and
for the nondegenerate band associated with the lowest
quency band at theX̄ point. To illustrate this behavior, we
display the field patterns associated with the real—F
11~b! and 11~c!—and imaginary—12~b! and 12~c!—
e-

s.

components of the electric field patterns, which correspo
to the doubly degenerate modes ofE symmetry at theM̄
point, and the field patterns associated with the real—F
13~a! and 13~b!—and imaginary—14~a! and 14~b!—
components of the electric field that correspond to the dou
degenerate modes ofE symmetry at theḠ point. In Figs.
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FIG. 9. The intensity of the electric field distributions associated with eigenvectors that correspond to the complex eigenvalu
photonic band structure shown in Figs. 6~b! and 6~d!, evaluated at theḠ point in the first Brillouin zone that correspond to the lowest ba
with the frequency~a! va/2pc50.2612, and to the orthogonal eigenvectors associated with the third lowest band with the frequency~b! and
~c! va/2pc51.0208.
of
n
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ric
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the
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lin-
13~c! and 14~c! we display the real and imaginary parts
the field associated with the nondegenerate lowest freque
band at theX̄ point, respectively.

C. Group velocity associated with the eigenmodes propagating
in a system of metallic rods without dissipation

By inspecting the group velocity pattern as a function
the wave vectorki in the first Brillouin zone we directly
cy

f

obtain information about the energy flux, induced elect
field, and the Poynting vector. While the amount of the e
ergy flow is directly proportional to the group velocityvg ,
the magnitude of the Poynting vector and the intensity of
induced electric field are proportional to 1/vg and 1/vg

2,
respectively.14 To analyze these quantities we evaluate
group velocity associated with the eigenmodes that pro
gate through the system consisting of lossless metallic cy
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FIG. 10. The intensity of the electric field distributions associated with eigenvectors that correspond to complex eigenvalue
photonic band structure shown in Figs. 6~b! and 6~d!, evaluated at theX̄ point of the first Brillouin zone, which correspond to the lowest ba
with the frequency~a! va/2pc50.5125, to the second lowest band with the frequency~b! va/2pc50.6157, and to the third lowest mod
with the frequency~c! va/2pc51.2003.
f t
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Th
in
v

e
ree
ves
ve-
ders considered in Sec. II. To calculate the dependence o
group velocity on the wave vector we employ Eq.~2.19! into
which the matrixME(ki1Giuki1Gi8) given by Eq.~2.18!,
that describes the dispersion law forE polarized electromag
netic waves in the nondissipative system, is substituted.
results are presented as patterns associated with the
vidual bands, which show the dependence of the group
he

e
di-
e-

locity on the two-dimensional wave vectorki , which is
sampled everyp/15a in the first Brillouin zone, wherea is
the lattice constant.

In Figs. 15~a!–15~c!, we present the distribution of th
absolute value of the group velocity associated with the th
lowest bands, which correspond to the dispersion cur
shown in Fig. 1. The most notable feature of the group
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FIG. 11. The real part of the electric field distributions associated with eigenfunctions that correspond to the complex eigenvalu
photonic band structure shown in Figs. 6~b! and 6~d!, evaluated at theM̄ point in the first Brillouin zone, which correspond to the lowe
band with the frequency~a! va/2pc50.7081, and to the second lowest doubly degenerate mode with the frequency~b!, ~c! va/2pc
50.7239.
th
s
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th
, a

i
ha

ls a

nds
ct
e

locity associated with the lowest band depicted in Fig. 15~a!
is its nonmonotonic dependence on the wave vector, wi
vanishing amplitude at theḠ point and near the boundarie
of the first Brillouin zone. The distribution of the group ve
locity of each of the modes reflects the symmetry and
characteristic features associated with each of the bands
determines the directions along which the group velocity
reduced or tends to zero. Specifically, the group velocity t
a

e
nd
s
t

corresponds to the second and third lowest bands revea
reduced amplitude along theḠ-M̄ and Ḡ-X̄ directions in the
first Brillouin zone, respectively.

We have shown in a previous paper7 that the width of the
gap, which occurs between the first and second lowest ba
is a nonmonotonic function of the filling fraction. The effe
of increasing the filling fraction on the distribution of th
group velocity is demonstrated in Figs. 16~a!–16~c!, in
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FIG. 12. The imaginary part of the electric field distributions associated with eigenfunctions that correspond to the complex eig
of the photonic band structure shown in Figs. 6~b! and 6~d!, evaluated at theM̄ point in the first Brillouin zone, which correspond to th
lowest band with the frequency~a! va/2pc50.7081, and to the second lowest doubly degenerate mode with the frequency~b!, ~c!
va/2pc50.7239.
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which we present the group velocity associated with
three lowest bands when the filling fraction of the rods c
responds to the maximum value of the band gap, vizf
50.7. The patterns shown in the latter figure resemble
group velocities that correspond to the case when the fil
fraction f 50.1, except that their magnitudes are reduced
to the flattened nature of the dispersion curves.
e
-

e
g
e

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed the spatial distribution
the electric fields and group velocities associated with
eigenmodes that correspond to the photonic band structu
electromagnetic waves propagating through periodic tw
dimensional systems containing both lossless and lossy
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FIG. 13. The real part of the electric field distributions associated with eigenfunctions that correspond to the complex eigenvalu
photonic band structure shown in Figs. 6~b! and 6~d!, evaluated at theḠ point in the first Brillouin zone, which correspond to the third lowe
doubly degenerate band with the frequency~a!, ~b! va/2pc51.0208, and to the lowest nondegenerate mode at theX̄ point with the
frequency~c! va/2pc50.5125.
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nds
tallic components characterized by frequency dependen
electric functions given by Eqs.~2.1! and~2.2!, respectively.
Our study is based on the calculation of the~complex! pho-
tonic band structure by the plane-wave approach develo
by the present authors7,5,15and the application of this metho
to the calculation of the group velocity presented in Sec.
We first studied the nature and symmetry properties of
eigenvectors at the points of high symmetry in the first B
i-

ed

I.
e

-

louin zone. We considered both lossless and lossy met
cylinders to investigate how the eigenfunctions are affec
by the presence of damping, and to obtain a deeper phys
insight into the interesting features observed in the comp
photonic band structure, in particular in the lifetimes of t
modes determined from its imaginary part. Then, we eva
ated the group velocities associated with the individual ba
as functions of the two-dimensional wave vectorki to exam-
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FIG. 14. The real part of the electric field distributions associated with eigenfunctions that correspond to the complex eigenvalu
photonic band structure shown in Figs. 6~b! and 6~d!, evaluated at theḠ point in the first Brillouin zone, which correspond to the third lowe
doubly degenerate band with the frequency~a!, ~b! va/2pc51.0208, and to the lowest nondegenerate mode at theX̄ point with the
frequency~c! va/2pc50.5125.
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try
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we
ine the energy flow in the system with lossless compone
By evaluating the spatial distribution of the electric fie

associated with the eigenmodes propagating through the
dissipative system we have identified the symmetry of
bands at the points of high symmetry and along the h
symmetry directions in the first Brillouin zone, even in cas
when a definite symmetry cannot be assigned by gr
theory. We have examined the individual bands, in particu
s.

n-
e
h
s
p
r

with respect to the interpretation of the features observe
the photonic band structures in the systems characterize
a frequency-dependent dielectric function. The patterns a
ciated with the individual eigenvectors at the high-symme
points of the first Brillouin zone possess the symmetry pr
erties predicted by group theory. As a notable feature,
results predict that the amplitude of the electric field asso
ated with some of the eigenmodes vanishes. Specifically,
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FIG. 15. The group velocity of the three lowest bands that correspond to the photonic band structure shown in Fig. 1, when t
fraction of the rods isf 50.1 evaluated in the first Brillouin zone as a function of the two-dimensional wave vectorki . The distribution of
the group velocities associated with the individual bands is tabulated everyp/15a in the first Brillouin zone, wherea is the lattice constant.
te
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so

in-
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the
found a vanishing amplitude of the electric fields associa
with the orthogonal eigenvectors which correspond to dou
degenerate modes ofE symmetry at theM̄ and Ḡ points. A
vanishingly small amplitude of the electric field was al
found in the case of the lowest frequency band at theX̄ point.
In order to explore the origin of this behavior we have
spected the eigenfunctions, and have found that the van
d
ly

h-

ing of the electric field associated with the doubly degener
states ofE symmetry at theḠ point is due to the opposite
signs of the coefficients of the plane waves in the expans
~2.11! within each of the shells of reciprocal lattice vector
while the vanishing of the electric fields associated with
doubly degenerate modes ofE symmetry at theM̄ point and
the nondegenerate mode ofB1 symmetry at theḠ point is
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FIG. 16. The same as in Fig. 15, except that the filling fraction isf 50.7.
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due to the alternating signs of the terms from the shells
increasing order, which converge to zero as the distance f
the origin to a shell goes to infinity.

We have analyzed the behavior of the coefficients p
duced by the diagonalization procedure associated with
doubly degenerate states in the vicinity of theḠ point and
compared them to those obtained by using a projection
erator technique. We found that the symmetrized pla
waves produced by the latter method are consistent w
those generated by the numerical procedure. Thus, we t
f
m

-
e

p-
e
th
nk

that the vanishing of the electric field at theḠ point is not an
artifact of the diagonalization procedure, and represen
real effect. To interpret this effect we suggest solutions
Eqs. ~2.11! and ~2.23! that yield a vanishing field with a
nonzero frequency represent trivial solutions, indicating t
a mode with such a frequency is absent in the system.

The analysis of the eigenfunctions associated with
modes propagating through a nondissipative system has
used as the starting point for exploring the relation betwe
the dispersion curves and the components of the com
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valued photonic band structure, which describes the pro
gation of electromagnetic waves in systems with meta
components characterized by a complex frequen
dependent dielectric function. We have found that the disp
sion curves determined from the resulting complex photo
band structure obtained by the linearization technique
negligibly changed when a damping term with a typic
value for metalsg50.01vp is used. The presence of diss
pation, however, significantly affects the nature of the eig
functions. In contrast to the nondissipative system, the dia
nalization of the non-Hermitian matrix yields right and le
eigenvectors. We have proved that both right and left eig
vectors are equivalent and therefore we can restrict ourse
to either of the two eigenvectors.

The analysis of our results reveals that the intensities
the electric fields associated with the modes resemble
field patterns associated with the corresponding modes in
nondissipative case. The presence of dissipation, howe
significantly affects the nature of the spatial distribution
the electric field at the points of high symmetry at which t
electric field in the case of lossless rods vanishes. Spe
cally, we have shown that the complex electric fields ass
ated with the doubly degenerate states ofE symmetry at the
M̄ and Ḡ points and with the nondegenerate states ofB1

symmetry at theX̄ point possess a dominant imaginary pa
In contrast to the field patterns associated with the dou
degenerate modes in the nondissipative system that va
the intensity of the electric field associated with the deg
erate modes at theM̄ andḠ points, determined by diagona

ization of the non-Hermitian matrixWJ (GW iuGW i8), display pat-
terns that reflect the symmetry of the basis functionsE(xz),
E(yz) of the two-dimensional irreducible representationE of
the point groupC4v .

By studying the spatial distribution of the electric fie
associated with the eigenmodes propagating through the
dimensional system consisting of lossy metallic rods we
tained a deeper physical insight into the effects exhibited
the lifetimes of the modes. We have shown that the existe
of the separated branches of the lifetimes is due to the s
metry of the modes. The lifetimes associated with the mo
of A symmetry belong to the lower band, while those th
correspond to the antisymmetric uncoupled modes give
to the upper band. The existence of branches of the lifetim
is closely linked to the difference in the spatial variation
the fields associated with the symmetric modes, which
hibit predominant variation in the region of the rods, wh
the variation of the uncoupled modes occurs mostly betw
the rods. Consequently, for the lifetimes determined from
imaginary part of the complex photonic band structure a
therefore, for small values of the filling fraction of the rod
the difference between the spatial variation of the symme
and antisymmetric modes tends to affect the difference
tween the imaginary components of the complex eigenva
more significantly than in the case of the real compone
and implies the existence of separated branches of the
times. Such behavior is consistent with a simple phys
explanation, which assumes longer lifetimes of the mo
that are mostly extended in the region with low dielect
constant than of those that are more localized in the regio
the rods. Specifically, the modes with the dominant spa
a-
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variation in the air region have a negligible overlap with t
thin metal rods, which act as a repulsive potential, and
hibit smaller dissipation than those whose variation is loc
ized at the positions of the rods and have a significan
larger overlap with the rods and therefore dissipate their
ergy into the system to a greater degree. It is worth emp
sizing that this effect is predicted to occur when the fillin
fraction of the metallic rods is smaller than 5%.

The eigenvalues and eigenvectors determined in the p
tonic band-structure calculations have been utilized to ca
late the group velocities of the individual bands, which allo
examining the flow of energy associated with each of
eigenmodes. We have shown that the dependence of
group velocities on the wave vectorki reveals a vanishing
amplitude at the symmetry points and along the hig
symmetry directions in the first Brillouin zone. This effe
may have important practical applications. It has been de
onstrated that in a one-dimensional photonic band-gap st
ture a vanishing group velocity increases the optical path
to the multiple reflections of photons near the photonic ba
gap, and can lead to the enhancement of gain in an ac
medium.16 The vanishing group velocity at a photonic ban
edge may also lead to the enhancement of nonlinear
cesses compared with their strengths in a uniform mate
as was shown in the case of the enhancement of the ind
second-harmonic field intensity caused by a vanishing gr
velocity near the photonic band edge in a two-dimensio
photonic crystal in the presence of nonlinearity.17 The distri-
bution of the group velocities associated with the bands
plays a rich variety of patterns as the band number increa
and the nodal structure of the higher frequency bands
comes more complicated. This strong directional depende
indicates the existence of channels of energy flow, wh
may prove be an effective mechanism in controlling pho
propagation through a photonic crystal.

The propagation of electromagnetic waves in absorb
media is described by a complex valued dispersion law,
the associated group velocities also become complex. Le
first consider the components of the electric field and
complex group velocity associated with the right eigenv
tor. While the real part of the complex group veloci
“ki

Re@vm(ki)# determines the propagation direction of th

maximum energy density, the imaginary part is related to
directions in which the maximum dissipation of the ener
density occurs. It can be explicitly expressed
“ki

Im@vm(ki)#5@1/2tm(ki)2#¹ki
tm(ki), and represents the

rate of dissipation of the photon’s energy into the system
the direction of the maximum dissipated energy dens
where tm(ki) is the lifetime associated with themth band
defined in Eq.~2.15!.18

This topic is part of a more general problem concern
with the properties of the macroscopic fields inside diel
trics, which has been studied both theoretically and exp
mentally. One of the crucial questions raised is that of
general expression for the Poynting vector in scattering
absorbing media. It has been shown that if a Gaussian w
packet is chosen for the initial wave packetC0(r ), then the
propagation direction of the maximum of the energy dens
is determined by the real part of the group velocity, a
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inhomogeneous, strongly scattering media can be rega
as absorbing media, when the ensemble-averaged ampl
is considered.19,20 To our knowledge, the relation betwee
the Poynting vector and the group velocities, which con
tute the crucial quantities describing the propagation of e
tromagnetic waves in absorbing photonic crystals, has
been addressed as yet, and will be investigated in a fo
coming publication.
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