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Generalized Frenkel-Kontorova model: A diatomic chain in a sinusoidal potential
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To understand modulated structures and commensurate-incommensurate transitions, we generalize the
Frenkel-Kontorova model to a diatomic chain in the presence of an external sinusoidal potential. For the
classical ground states, the diatomic effects are reflected by the phase diagram and the phonon spectrum. For
the quantum ground states, the diatomic effects are reflected by the distribution of atoms on the external
potential, the phase diagram, correspondences between the ground states and the orbits of the area-preserving
maps, the phonon spectrum, and the occurrence of a second critical pointKc8 besidesKc at which a transition
by breaking analyticity occurs.@S0163-1829~98!06325-5#
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I. INTRODUCTION

Various nonlinear phenomena in condensed matter p
ics can be described by a model where a chain of interac
particles is placed in a channel.1 Such a model arises whe
one can pick out a one-dimensional subsystem from
whole system and consider the rest of the system as
source of an external potential, and, at the same time,
thermal bath supporting an energy exchange with the s
system of interest. If one ignores displacements of the p
ticles in transverse directions and allows the particles
move only along the direction of the chain, the model
duces to a variant of the famous Frenkel-Kontorova2 ~FK!
model. The FK model describes a chain of atoms conne
by harmonic springs in the presence of a sinusoidal exte
potential. The FK model has been used to describe sup
onic conductors,3 crowdions,4 submonolayer films of atom
adsorbed on furrowed or stepped crystal surfaces,5 and hy-
drogenbonded systems along channels in biomembran6

Furthermore, the FK model is used to describe nonlin
phenomena such as dislocation dynamics, charge-de
waves, ferroelectric domain walls, magnetically order
structures, and commensurate-incommensurate~CI! transi-
tions. To understand the modulated phases and laws o
transitions, the standard FK model has been generalize
ones with nonharmonic interactions and/or nonsinusoidal
ternal potential. The FK-type models have been extensiv
studied by S. Aubry,7 S. N. Coppersmith and D. S. Fisher8

O. Biham and D. Mokamel,9 and B. Hu,et al.,10 when the
interparticles’ interactions are convex. R. B. Griffiths and
Chou11 present the effective potential method that can
applied to the study of the FK-type models with nonconv
interparticles’ interactions. Such models are studied by
PRB 580163-1829/98/58~2!/721~13!/$15.00
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Banerjea and P. L. Taylor,12 M. Marchand and co-workers,13

C. O. S. Yokoi and co-workers,14 and A. Xu, et al.15 The
models with a transverse degree of freedom are studied b
Braun and co-workers.16 Several attempts to study the qua
tum effects of the FK model are also made.17–19These stud-
ies are restricted to simple lattice systems. S. Aubry a
co-workers20 studied a variation of the discrete FK mod
with two sublattices. In their model the atoms of the fir
sublattice that have even indices 2i are submitted to a peri
odic potentialV(x) with period 2a; the atoms of the secon
sublattice that have odd indices (2i 11) are submitted to the
same period potentialV(x1a) shifted by half a perioda,
whereV(x) is piecewise parabolic. In addition the atoms a
submitted to a staggered field with amplitudeE. F. Axel and
S. Aubry21 studied a model representing a one-dimensio
elastic chain of atoms subjected to a staggered electric
and a cosine potential. Some classical properties are gi
Within all the studies mentioned above, all the atoms in
chain are identical.

Up to now, we know very little about the FK-type mode
with different atoms. The diatomic chain is very important
solid physics. It relates to the acoustic wave and the opt
wave and is a typical model studying the lattice vibration.
this paper, we generalize the standard FK model to a
atomic chain in the presence of a sinusoidal external po
tial, and study its ground states in the classical and quan
frameworks, respectively. Two subjects will be discussed
the present paper. One is the phase diagram in the (g,K)
parameter space, in which the winding number of the grou
state varies from one tongue to another. The other is
transition for a particular state with the golden mean wind
number whenK is varied. Most of the results occur in th
quantum framework.
721 © 1998 The American Physical Society
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We present the results of our studies in four sections.
model is given and its classical properties are discusse
Sec. II. We study the quantum properties of the mode
Sec. III. Section IV is the conclusion of the present pape

II. CLASSICAL PROPERTIES OF THE MODEL

The generalized FK model used in this paper is descri
by the following Hamiltonian:

H5( S pi
2

2m i
1

1

2
~xi2xi 212g!22

K

~2p!2
cos~2pxi !D ,

~2.1!

wherexi andpi are the coordinate and the momentum of t
i th atom,g is the nature length of the harmonic spring, a
m i is the effective mass of thei th atom. The chain is com
posed of two kinds of atoms that are denoted byA and B,
respectively. Without losing the generality, we letm i5mA
51 if i is an odd number and letm i5mB5m if i is an even
number. As in our previous studies,15 we define the winding
number of the whole systemv as

v5P/Q, ~2.2!

whereQ is the period of the ground state andP is the period
number of the external potential between the 1st and
(Q11)th atoms. Similarly, we define the winding number
the G subsystemvG as

vG5PG /QG , ~2.3!

whereQG is the period of theG subsystem,PG is the period
number of the external potential between the 1st and
(QG11)th G atoms. HereG5A or G5B. For the sub-
systems of the prensent model, there is no common div
betweenPG and QG , so this definition is equivalent to th
traditional definition of the winding number.

A. Phase diagram and transition by breaking of analyticity

The two subchains have the same winding number,
vA5vB , and the winding number of the whole chain is o
half of that of the subchains, i.e.,v5 1

2 vA5 1
2 vB . At zero

temperature,pi50 for all the atoms, so the Hamiltonian o
the system is just identical to that of the standard FK mo
that has been extensively studied. If we describe the gro
state using the winding number of the whole chain, then
classical phase diagram of the present model can be re
obtained from that of the standard FK model in the followi
way: The phase diagram is just the same as that of the s
dard FK model in appearance. In a tongue withv5P/Q for
the standard FK model, ifQ is an even number, thenv
5P/Q andvA5vB5P/(Q/2) for the present model; ifQ is
an odd number, thenv52P/2Q andvA5vB52P/Q for the
present model. From above analysis, we can find that
values of the winding numbers for the whole chain confo
to the Farey tree structure, so 0<v<1; the values of the
winding numbers for the subchains do not conform to
Farey tree structure and they may be greater than 1.

For the classical incommensurate ground state of
present model, the position of thei th atom can be describe
by a hull function,
e
in
n

d

e

e
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xi5 f ~ iv1a!, ~2.4!

which is just the same as that of the standard FK mode
transition by breaking of analyticityoccurs at the same criti
cal pointKc as the standard FK model. AtK5Kc , the hull
function describing the incommensurate structure underg
a transition from an analytic function to a nonanlytic fun
tion. Many physical quantities also undergo a transition
Kc . In the following sections, we study three quantities: t
phonon gap, the coherence length, and the Peierls-Nab
barrier, for the ground state with the golden mean wind
number.

B. Phonon gap, coherence length, and Peierls-Nabarro barrier

The gap in the phonon spectrumVG is defined as the
lowest phonon frequency in the system. For the system
scribed by Eq.~2.1!, consider a small vibration of the atom
around their equilibrium positions$xi%,

xi~ t !5xi1e i~ t !. ~2.5!

The equation of motion for this vibration is described by

m i

d2xi~ t !

dt2
52

]H$@xi~ t !#%

]xi~ t !
. ~2.6!

The linearized equation of the motion for small vibration
given by

d ẍi~ t !1(
j

1

m i

]2H$@xi~ t !#%

]xi~ t !]xj~ t !
dxj~ t !50, i 51,2,•••,Q,

~2.7!

whereẍ5d2x/dt2 and

]2H

]xi]xj
5H 21, j 5 i 21,

21Kcos~2pxi !, j 5 i ,

21, j 5 i 11.
~2.8!

The time Fourier transform of Eq.~2.7! gives

2
e i 21

m i
1S 21Kcos~2pxi !

m i
2V2D e i2

e i 11

m i
50,

i 51,2,•••,Q. ~2.9!

Define a function,D(x)521Kcos(2px), then the eigen-
value equation~2.9! can be written as

3
D~x1!

m1
2V2 2

1

m1
0 ••• 2

1

m1

2
1

m2

D~x2!

m2
2V2 2

1

m2
••• 0

A

2
1

mq
0 0 •••

D~xq!

mq
2V24

50, ~2.10!
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with the periodic boundary conditionsx05xQ2P and
xQ115x11P.

The hull function xi5 f ( iv1a) is a static solution of
equation]H/]xi50 for any phasea. ForK,Kc , sincef (x)
is an analytic function, inserting this solution in]H/]xi50
and differentiating this equation with respect to the phasa
shows that

e i5 f 8~ iv1a! ~2.11!

is a solution of Eq.~2.9! for V250. Consequently, forK
,Kc the gap in the phonon spectrum vanishes. The co
sponding zero-frequency mode is the phason mode of
incommensurate structure for the generalized FK model.

In contrast, forK.Kc , the hull function f (x) becomes
discrete with a derivative which is zero almost everywhe
Therefore Eq.~2.11! no longer defines an eigenmode for E
~2.9! with V250 and the gap in phonon spectrumVG does
not necessarily vanish. Similar to standard FK model,
expectVG behaves as

VG~K !;~K2Kc!
x. ~2.12!

Figure 1 shows some examples of the phonon spectru
wherev5 89

144 for the whole chain, phonon spectrums 1,
and 3 are for the case ofm51, m50.5 andm53, respec-
tively. K50 in ~a!, K50.8 in ~b!, and K51.5 in ~c!. It is
clear that phonon frequencies decrease with the increasin
m. When 0<K,Kc , all the spectrums start from the origi
point. When K50, spectrum 1 is roughly smooth whil
spectrums 2 and 3 are divided into two segments, res
tively. SegmentsOA and OD correspond to the acousti
wave,BC andEF correspond to the optical wave, which is
well-known property of the diatomic chain. WhenK.0, all
the spectrums are divided into many segments. WhenK
.Kc , all the minimum phonon frequencies are greater th
zero. For the incommensurate state with the golden m
winding number @v5(A521)/2#, the numerical results
show thatx is just the same as that of the standard
model, i.e.,x50.9960.01, though the phonon spectrums a
different for differentm.

The coherence lengthj measures the distance over whi
a perturbationdxn propagates along the chain. For instan
an infinitesimal displacemente0 at x0 will cause a displace-
mente i at xi ,

e i;exp~2u i u/j!e0 , ~2.13!

where j is called the coherence length. WhenK,Kc , j
5`. When K.Kc , j51/g, where g is the maximum
Lyapunov exponent. The Peierls-Nabarro~PN! barrier of the
grond state is defined as to be the minimal energy barrier
must be overcome to continuously translate the chain of
oms on the external potential. For the incommensurate s
with v5(A521)/2, the behaviors of the coherent length a
PN barrier are just the same as those of the standard
model.

III. QUANTUM PROPERTIES OF THE MODEL

In the quantum mechanism, the mechanical quantities
described by Hermitian operators. The Hamiltonian opera
of the system is
e-
e

.
.

e
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r

Ĥ5( S P̂i
2

2m i
1

1

2
~X̂i2X̂i 212g!22

K

~2p!2
cos~2pX̂i !D .

~3.1!

Because of the existence of the interatomic interactions
the external potentials, the classical ground state is uniqu

FIG. 1. Examples of the phonon spectrums, wherev5
89
144, pho-

non spectrums 1, 2, and 3 are for the case ofm51, m50.5, and
m53, respectively.K50 in ~a!, K50.8 in ~b!, andK51.5 in ~c!. It
is clear that phonon frequencies decrease with the increasing om.
When 0<K,Kc , all the spectrums start from the origin poin
WhenK50, spectrum 1 is roughly smooth while spectrums 2 an
are divided into two segments, respectively. SegmentsOA andOD
correspond to the acoustic wave,BC and EF correspond to the
optical wave, which is a well-known property of the diatomic cha
When K.0, all the spectrums are divided into many segmen
WhenK.Kc , all the minimum phonon frequencies are greater th
zero.
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FIG. 2. Examples of the phase diagrams, where only the tongues withQA5QB<5 are shown. The tongues limited by the dashed lin
are for the case ofm51, the tongues limited by the solid lines are for the case ofm55. From left to right, the winding numbers for th
whole chain are0

1,
2
10,

1
4,

2
6,

4
10, and 1

2, respectively.\50.01 in ~a! and\50.1 in ~b!. It is clear that when\ is very small the boundaries o
the corresponding tongues nearly coincide.
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determined. In the quantum mechanism, the ground sta
in a bound state. Owing to the quantum fluctuation, one
the physical quantities of interest is the expectation value
the corresponding operator. The coordinate and momen
operators for thei th atom are written as

X̂i5A \

2Am i

~ai
11ai !,

~3.2!

P̂i5 iA\Am i

2
~ai

12ai !,

whereai
1 andai are boson creation and annihilation ope

tors that satisfy the canonical commutation relatio
@ai ,aj

1#5d i j , @ai ,aj #50, @ai
1 ,aj

1#50. We use the varia-
tional method19 to study the ground state of system~3.1! in
the framework of the coherent state theory. We use the
herent state,uC&5D(a)u0&, as the trial wave function of the
ground state, whereD(a)5exp(a iai

12a i* ai) is the ordi-
nary displacement operator. It is easy to get

^0uD1P̂2Du0&5
\Am

2
1p2,

^0uD1X̂2Du0&5
\

2Am
1x2, ~3.3!

^0uD1X̂i X̂i 21Du0&5xixi 21 ,

^0uD1cos~2pX̂!Du0&5e2\p2/Am cos~2px!,

wherex5^0uD1X̂Du0& andp5^0uD1P̂Du0& are the expec-
tation values of the coordinate operator and the momen
operator of thei th atom, respectively. Thus we get the qua
tum Hamiltonian, the expectation value of the quantu
Hamiltonian operator, as follows:
is
f
f
m

-
:

o-

m
-

H̄5( S 3\

4Am i

1
pi

2

2m i

1
1

2
~xi2xi 212g!2

2
K

~2p!2
e2\p2/Am i cos~2pxi !D . ~3.4!

Variation with respect topi immediately yieldspi /m i50,
and with respect toxi yields

xi 1122xi1xi 212
K

2p
e2\p2/Am i sin~2pxi !50. ~3.5!

Let yi 115xi 112xi , we get a two-dimensional area
preserving map,

xi 115xi1yi 11 ,
~3.6!

yi 115yi1
K

2p
e2\p2/Am i sin~2pxi !.

Because of the correspondence between the ground s
and the orbits of the area-preserving map, we can transc
many results of the map to those of the generalized
model.

A. Phase diagram in the„g,K… space

Since the interatomic interaction is a convex function,
can use the gradient method,7,10 Newton method,10 to deter-
mine the periodic ground states.

For the generalized FK model, the values of the windi
numbers in the classical phase diagram conform to the F
tree structure, though their fraction forms do not. We exp
that the values of the winding numbers in the quantum ph
diagram also conform to the Farey tree structure. We c
struct the phase diagram of the system~3.1! in the following
way: For a given commensurate statev5P/Q, whereQ is
always aneven number, its left boundary is determined b
equating the energies of the tongue and the incommensu
statev̄ in its immediate left neighborhood. In practice,v̄ is
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FIG. 3. Two examples of the KAM curves, wherev5
89
72 for mapI 2I 1 or mapI 1I 2, andv5

89
144 for map~3.6!; \50.1,m52; K50.7 in

~a! andK52 in ~b!. Here we usev5
89
144 to approximate the golden mean winding number. To gain this figure, we use the Newton m

to locate the ground state, then plot it in the (x,y) space.KAM1 is for theA subchain~also for mapI 2I 1) andKAM2 is for theB subchain
~also for mapI 1I 2).
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approximated by a left neighboring tonguev5(Pm21)/
Qm, where m is an equitable positive integer. The rig
boundary is determined in a similar way.

The average energy of each atom in the ground stat
given by

h5
1

Q
(
i 51

Q S 3\

4Am i

2
K

~2p!2
e2\p2/Am i cos~2pxi !

1
1

2
~xi2xi 21!2D 1

g2

2
2

1

Q
(
i 51

Q

~xi2xi 21!g

[hl~v!1
g2

2
2vg. ~3.7!

Let h(v,gB)5h(v̄,gB), and we get

gB5
hl~v!2hl~v̄ !

v2v̄
. ~3.8!

When \;0, the boundaries of the tongues vary ve
slowly with m. That is to say, the diatomic effects is ve
weak in this case. With the deepening of the quantizat
the diatomic effects become strong. Figure 2 shows two
amples, where only the tongues withQA5QB<5 are shown.
The tongues limited by the dashed lines are for the cas
m51 and the tongues limited by the solid lines are for t
case ofm55. We use the winding number of the who
chain to describe the tongue. From left to right, the wind
numbers are01,

2
10,

1
4,

2
6,

4
10, and 1

2, respectively.\50.01 in~a!
and\50.1 in ~b!. From Fig. 2 we expected that the thresho
is

,
x-

of

valueKc , at which thetransition by breaking of analyticity
occurs, increases with the deepening of the qauntization
decreases with the increasing ofm.

B. Map and critical point

It is easy to find that the map~3.6! reduces to the standar
map if m51. Otherwise, it can be decomposed as

I 1 :H x2m 5 x2m211y2m ,

y2m 5 y2m211
K

2p
e2\p2

sin~2px2m21!,

~3.9a!

I 2 :H x2m11 5 x2m1y2m11 ,

y2m11 5 y2m1
K

2p
e2\p2/Am sin~2px2m!.

~3.9b!

The equilibrium configurations of theA subchain correspond
to the orbits of mapI 2I 1, and the equilibrium configuration
of theB subchain correspond to the orbits of mapI 1I 2. When
m51, the Kolmogorov-Arnold-Moser~KAM ! curve of I 1I 2
is identical to that ofI 2I 1. Whenm5” 1 the two KAM curves
are different. The period of the orbit for mapI 2I 1 or I 1I 2 is
one half of that for the map~3.6!, so the value of the winding
number for mapI 2I 1 or I 1I 2 is two times of that for the map
~3.6! and it may be greater than 1. Figure 3 shows two
amples of the KAM curves, wherev5 89

72 for map I 2I 1 or
I 1I 2, andv5 89

144 for map~3.6!; \50.1, m52; K50.7 in ~a!
and K52 in ~b!. Here we usev5 89

144 to approximate the
304
561
TABLE I. Variation of Kc with \ andm.

m51.0 m51.2 m51.4 m51.6 m51.8 m52.0

\50.01 1.072 422 1.005 991 0.984 596 0.956 965 0.947 970 0.924
\50.1 2.606 962 1.937 208 1.607 026 1.487 817 1.406 315 1.293
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FIG. 4. Two examples of the quantum hull functions, where the values of parameters are just the same as those given in Fig. 3qh f1’’
is for theA subchain and ‘‘qh f2’’ is for the B subchain.
th
th

o

e

golden mean winding number. To gain this figure, we use
Newton method to locate the ground state, then plot it in
(x,y) space.KAM1 is for the A subchain~also for map
I 2I 1) andKAM2 is for theB subchain~also for mapI 1I 2).

It is easy to find thatI 1 can be written as a product of tw
involutions I 15J1J2, where

J1S x

yD 5S 2x

y1
K

2p
e2\p2

sin~2px!D ,

J2S x

yD 5S y2x

y D . ~3.10!

Similarly, I 25J3J4, where
e
e

J3S x

yD 5S 2x

y1
K

2p
e2\p2/Amsin~2px!D ,

J4S x

yD 5S y2x

y D . ~3.11!

Note that J1
25J2

25J3
25J4

251 and detJ15detJ25detJ3

5detJ4521. Whenm51, J15J3, J25J4. Greene has ob-
served that for anyQi cycle at least two out of itsQi points
are fixed points ofJ1 or J2, and that the existence of th
KAM curve is strongly connected with the stability of theQi

cycles. He introduced two functions,Ri
e(K) and Ri

h(K), as
the residues of the elliptic and hyperbolicQi cycles at a
given value ofK:
FIG. 5. Two examples of the quantumg functions, where the values of parameters are just the same as those given in Fig. 3. ‘‘qg f1’’
is for theA subchain and ‘‘qg f2’’ is for the B subchain.
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FIG. 6. Examples of the phonon gaps forK.Kc , wherev5
89
144 andpg1, pg2, pg3, pg4, pg5 correspond to the casesm51.2, 1.4, 1.6,

1.8, and 2.0, respectively.\50.01 in~a! and\50.1 in ~b!. It is clear that the phonon gaps behave very differently from that of the stan
FK model. There are two critical points,Kc andKc8 , for each curve. WhenK,Kc , VG50. WhenKc,K,Kc8 , VG has a maximum value
When K.Kc8 , VG increases monotonically withK. Kc and Kc8 both increases with the increasing of\. With the increasing ofm, Kc

decreases andKc8 increases. When\→0 or m→1, Kc8→Kc .
ro

ries

e

at
or

m

dic

n,
lim
i→`

Ri
e~K !55

01, K,Kc ,

a, K5Kc ,

`, K.Kc ,

lim
i→`

Ri
h~K !55

02, K,Kc ,

2b, K5Kc,

2`, K.Kc,
~3.12!

wherea, b are positive constants less than unity. This p
vides an extremly accurate way to determineKc . When
mÞ1, we expect that the mapI 1I 2 and I 2I 1 have the same
properties. The fixed points ofJ1, J2, J3, andJ4 locate on
the following four lines, respectively:

a5$~x,y!ux50%,

b5H ~x,y!ux5
1

2J ,
~3.13!

c5H ~x,y!ux5
y

2J ,

d5H ~x,y!ux5
y11

2 J .
-

There are altogether four symmetry lines. The symmet
imply that the task of finding theQi cycle can be greatly
simplified. We expect that thea line is the dominant sym-
metry line. After findingQi cycles one can calculate th
values ofRi at the given values ofK. Map I 1I 2 and mapI 2I 1
have the sameKc for given \ and m. The value ofKc de-
pends on the winding number. The KAM curve that breaks
last is the one with the golden mean winding number. F
this curve, some examples ofKc are listed in Table I. It is
clear thatKc increases with the increasing of\ and with the
decreasing ofm.

C. Hull function and transition by breaking of analyticity

In the absence of the external potential the equilibriu
positions of atoms in theA subchain are given by

x2m215~2m21!vA1a, ~3.14!

the equilibrium positions atoms in theB subchain are given
by

x2m5~2m!vB1a, ~3.15!

wherea is an arbitary phase. In the presence of the perio
external potential the equilibrium positions of atoms in theA
subchain are given by a hull function,

x2m215 f A@~2m21!vA1a#5~2m21!vA1a

1gA@~2m21!vA1a#, ~3.16!

and those in theB subchain are also given by a hull functio
412
437
TABLE II. Variation of Kc8 with \ andm.

m51.0 m51.2 m51.4 m51.6 m51.8 m52.0

\50.01 1.072 424 1.116 861 1.136 066 1.149 078 1.158 771 1.166
\50.1 2.606 962 3.048 760 3.236 015 3.361 974 3.454 558 3.526
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FIG. 7. Examples of the maximum Lyapunov exponents forK.Kc , wherev5
288
466 andlyak1, lyak2, lyak3, lyak4, lyak5 correspond

to the casesm51.2, 1.4, 1.6, 1.8, and 2.0, respectively.\50.01 in ~a! and\50.1 in ~b!. The maximum Lyapunov exponents also beha
very differently from that of the standard FK model. WhenK,Kc , g50. WhenKc,K,Kc8 , g has a maximum value. WhenK.Kc8 , g
increases monotonically withK.
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x2m5 f B@~2m!vB1a#5~2m!vB1a1gB@~2m!vB1a#,
~3.17!

where theg functionsgA andgB are periodic with the same
period as the external potential while the hull functionsf A
and f B are strictly increasing functions that depend on
winding numbervA or vB . For the incommensurate phase
the properties of the hull functions andg functions are
closely related to those of the KAM curves because they
describe the ground state. WhenK,Kc , the KAM curve
with the winding numbervA ~or vB) does not break, so th
corresponding hull functionf A ~or f B) is continuous. When
K.Kc , the KAM curve with the winding numbervA ~or
vB) breaks, so the corresponding hull functionf A ~or f B) is
discontinuous. So does the correspondingg function. That is
to say,the transition by breaking of analyticityoccurs atKc .

Figure 4 shows two examples of the quantum hull fun
tions. Figure 5 shows two examples of two quantumg func-
tions. Here the values of parameters are just the sam
those given in Fig. 3.qh f1 andqg f1 are for theA subchain
andqh f2 andqg f2 are for theB subchain.

D. Phonon gap, coherence length, and Peierls-Nabarro barrier

Similar to the classical model, many physical quantit
also undergo a transition atKc . In the following sections, we
still study the three quantities, namely, phonon gap, coh
ence length, and the Peierls-Nabarro barrier.

1. Phonon gap

After considering the quantum effects, the eigenva
equation of the square of the phonon frequency is

2
e i 21

m i
1S 21Ke2\p2/Am i cos~2pxi !

m i
2V2D e i2

e i 11

m i
50,

i 51,2,•••,Q. ~3.18!

For K,Kc , xi5 f i( iv1a) is a static solution of equation
]H/]xi50 for any phasea, where f i5 f A when i 52m21
e
,

ll

-

as

s

r-

e

and f i5 f B when i 52m. Sincef i(x) is an analytic function,
inserting this solution in]H/]xi50 and differentiating this
equation with respect to the phasea shows that

e i5 f i8~ iv1a! ~3.19!

is a solution of Eq.~3.18! for V250. Consequently, forK
,Kc the gap in the phonon spectrum vanishes.

In contrast, forK.Kc , the hull functionf i(x) becomes
discrete with a derivative that is zero almost everywhe
Therefore Eq.~3.19! no longer defines an eigenmode for E
~3.18! with V250 and the gap in phonon spectrumVG does
not necessarily vanish. Figure 6 show some examples of
phonon gaps forK.Kc , wherev5 89

144 for the whole chain
and pg1, pg2, pg3, pg4, pg5 correspond to the casesm
51.2, 1.4, 1.6, 1.8, and 2.0, respectively.\50.01 in ~a! and
\50.1 in ~b!. It is clear that the phonon gaps behave ve
differently from that of the standard FK model. There a
two critical points,Kc and Kc8 , for each curve. WhenK
,Kc , VG50. When Kc,K,Kc8 , VG has a maximum
value. WhenK.Kc8 , VG increases monotonically withK.
Kc decreases andKc8 increases with the increasing ofm. Kc ,

FIG. 8. Behavior of the PN barrier, where\50.1, m52, v5
89
144.
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FIG. 9. Two examples of the ground states, wherev5
89
144, \50.1, m52, and all the atoms denoted by ‘‘L ’’ are plotted in one period

of the external potential.K50.7 in ~a! and K52 in ~b!. ‘‘ VX1’’ denotes the curve ofV(x)52@K/(2p)2#e2\p2
cos(2px) and ‘‘VX2’’

denotes the curve ofV(x)52@K/(2p)2#e2\p2/Amcos(2px).
f
-
t

es

P

Kc8 and the interval@Kc ,Kc8# increases with the increasing o
\. When\→0 or m→1, Kc8→Kc . We use the greater sys
tems to check and get the same result. We determine
value ofKc8 in the light of the phonon gap. Some exampl
are shown in Table II.

Before we investigate the second critical pointKc8 , we
first finish our study on the coherence length and the
barrier.

2. Coherence length

The linear expansion of Eq.~3.5! yields:

e i 112@21Ke2\p2/Am i cos~2pxi !#e i1e i 2150, ~ i 5” 0!.
~3.20!
he

N

Equation~3.20! is identical to Eq.~3.18! whereV50 and
thus forK,Kc it is satisfied by the solution~3.19!. Conse-
quently, we have

e i5
e0

f 08~a!
f i8~ iv1a!, ~3.21!

wheref i8(x) is a positive continuous periodic function@ f (x)
is analytic and strictly increasing#. As a consequence,e i has
positive upper and lower bounds fori→6`. From Eq.
~2.13! we conclude thatj5` whenK,Kc .

For K.Kc , definep i 115e i 112e i , from Eq. ~3.20! we
have

S e i 11

p i 11D 5JiS e i

p i D , ~3.22!
out

FIG. 10. Two other examples of the ground states, where\50.1,m52, ‘‘gs1’’ denotes the ground state withv5

89
144, and ‘‘gs’’ denotes

the ground state withv5
1974
3194. K52.5 in ~a! andK54 in ~b!. Fromv5

89
144 to v5

1974
3194, the period of the ground state is enlarged by ab

twenty times, but there is no evident change that occurs inCA andCB .
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FIG. 11. Plot ofV versusK,
where \50.01, m51.2, v5

288
466.

phgap, ph2, ph3, ph4, ph5 cor-
respond to the phonon gap, th
second minimum, the third mini-
mum, the fourth minimum, and
the fifth minimum of the phonon
frequencies. There are two eviden
intersecting points,A and B, in
the figure.
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where

Ji5S 11Ke2\p2/Am i cos~2pxi ! 1

Ke2\p2/Am i cos~2pxi ! 1D ~3.23!

is just the Jacobian matrix of the qauntum map~3.6!. Thus
we havej51/g, whereg is the maximum Lyapunov expo
nent in the quantum map. ForK.Kc , g is nonzero and
behaves similar to the phonon gap. Figure 7 show some
amples of the maximum Lyapunov exponents forK.Kc ,
wherev5 288

466 for the whole chain andlyak1, lyak2, lyak3,
lyak4, lyak5 correspond to the casesm51.2, 1.4, 1.6, 1.8,
and 2.0, respectively.\50.01 in ~a! and\50.1 in ~b!. The
maximum Lyapunov exponents also behave very differen
from that of the standard FK model. There are two critic
points, Kc and Kc8 , for each curve. WhenK,Kc , g50.
WhenKc,K,Kc8 , g has a maximum value. WhenK.Kc8 ,
g increases monotonically withK. The numerical results
show that the value ofKc8 for the coherence length is just th
same as that for the phonon gap. Owing to the numer
precision, we could not judge whether or notVG50 or/and
g50 whenK5Kc8 . If VG50 andg50 at Kc8 , then a slide
state occurs atKc8 .

3. Peierls-Nabarro barrier

For K,Kc , the PN barrierHPN vanishes since no extr
energy is needed to shift the chain in the sliding mode.
K.Kc , the ground state is described by a discontinuous
function which in the (x,y) space is represented by a Can
set. The PN barrierHPN is the energy difference between th
minimizing ~min! orbit and its companion minimax~max!
orbit. The numerical results show that the PN barrier o
undergo a transition atKc and behaves similarly to that o
the standard FK model. Figure 8 shows an example of
behavior of PN barrier, where\50.1, m52, v5 89

144 for the
whole chain. That is to say, there is no slide state that oc
at Kc8 , andVG5” 0, g5” 0 at Kc8 .

The PN barrier behaves very differently from the phon
gap and coherence length. The occurrence ofKc8 does not
affect the behavior of the PN barrier. To understand t
feature, an investigation ofKc8 is needed.
x-

y
l

al

r
ll

r

y

e

rs

s

E. The second critical pointKc8 and a new transition

It has been shown10,22–24that FK-type models with certain
periodic potentials can have more than one transition~recur-
rence of KAM tori! for incommensurate states as the stren
of the external potential is increased. In the following su
sections, we will show that no KAM torus recurs and a ne
transition occurs atKc8 in the present model.

1. Configuration of the ground state

To understand the occurrence ofKc8 , we first investigate
the configuration of the ground states. Figure 9 shows
examples of the ground states, where all the atoms den
by ‘‘ L ’’ are ploted in one period of the external potentia
and all the values of the parameters are just the same as
given in Fig. 3. ‘‘VX1’’ denotes the curve ofV(x)5

2@K/(2p)2#e2\p2
cos(2px) and ‘‘VX2’’ denotes the curve

of V(x)52@K/(2p)2#e2\p2/Amcos(2px). We defineCA is
the minimum distance from theA atoms to the top ofV(x)
52@K/(2p)2#e2\p2

cos(2px), and defineCB is the mini-
mum distance from theB atoms to the top ofV(x)5

2@K/(2p)2#e2\p2/Amcos(2px). Figure 10 shows two othe
examples of the ground states, where\50.1, m52, ‘‘gs1’’
denotes the ground state withv5 89

144, and ‘‘gs’’ denotes the
ground state withv5 1974

3194. K52.5 in ~a! and K54 in ~b!.
From v5 89

144 to v5 1974
3194, the period of the ground state i

enlarged by about twenty times, but there is no evid
change that occurs inCA andCB . For ground states with a
certain winding numberv5P/Q, whereP andQ are finite
Fibonacci numbers or both are two times of the correspo
ing Fibonacci numbers, the numerical results show that:~i!
For B atoms,CB.0 andCB increases withK; ~ii ! For A
atoms,K has two threshold values,Kc and Kc8 . When K
,Kc , CA.0 andCA decreases with the increasing ofK.
WhenKc,K,Kc8 , CA50. WhenK.Kc8 , CA.0 andCA

increases with the increasing ofK; ~iii ! When K,Kc , CA
and CB both evidently decrease with the increasing of t
size of the system;~iv! WhenKc<K<Kc8 , CA andCB do
not vary with the size of the system;~v! WhenK.Kc8 , CA

andCB do not vary with the size of the system. Hence, t
following conclusions for the incommensurate ground st
with the golden mean winding number are reasonable:CA
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FIG. 12. Plot in the~residue,
K) space, where the solid line
correspond to the minimizing or
bit and the dashed lines corre
spond to the companion minima
orbit; \50.1, m52; v5

21
34 in ~a!,

v5
89
144 in ~b!, andv5

110
178. The ab-

solute values of the residues fo
the minimizing orbit first mono-
tonically increases withK, then
monotonically decreases withK,
when K.Kc8 it again monotoni-
cally increases withK. The resi-
due of the minimax orbit may
change its sign atKc8 , but for all
the cases the residues of the min
mizing orbit keep its sign.
n
o
d

ho-
nal
es

m,
50 and CB50 when K,Kc ; CA50 and CB.0 when
Kc,K,Kc8 ; CA.0 andCB.0 whenK.Kc8 .

2. Minimal phonon frequencies

In order to understand the mechanism for the occurre
of the second critical point, we investigate the variation
the second minimum, third minimum, fourth minimum, an
ce
f

fifth minimum of the phonon frequencies, besides the p
non gap, with the increasing of the strength of the exter
potential. There are at least two different vibration mod
that intersect in the (K,V) space, whereV is the phonon
frequency. Figure 11 shows an example, where\50.01,
m51.2, v5288

466. phgap, ph2, ph3, ph4, ph5 correspond to
the phonon gap, the second minimum, the third minimu
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the fourth minimum, and the fifth minimum of the phono
frequencies, respectively. There are two evident intersec
points,A andB, in the figure. To gain the phonon gap, th
second minimum, the third minimum,. . . , of the phonon
frequencies, we have to sort the phonon spectrum from s
to big. Whenm51, the present model reduces to the sta
dard FK model, there is no intersection between differ
vibration modes in the (K,V) space. The diatomic effec
results in the difference between the quantum modificati
on different atoms, then results in a more complex inter
tion between different vibration modes.

3. Minimax orbit and minimizing orbit

To understand the occurrence ofKc8 and to check whethe
or not the KAM torus may recur atKc8 , we investigate the
behaviors of the minimax orbit and the companion minim
ing orbit aroundKc8 .

In the calculation of the PN barrier, the minimizing orb
~the ground state! is easy to find by using the Newto
method. We need only to use the following initi
configuration:10

xi
05S i

P

QD , i 51,2, . . . ,Q, ~3.24!

and a periodic condition

x05xQ2P,xQ115x11P ~3.25!

is imposed. That is to say,xi
0 takes the integral part ofiP/Q.

The basic idea is to put the atoms initially in the valleys
the external potential. The system will then be trapped w
certainty in the ground state before reaching a nonminim
ing periodic orbit. To gain the companion minimax orbit, w
start with a suitableK which is lessKc , using the following
initial configuration:

xi
05 1

2 ~xi1xi 11!, i 51,2, . . . ,Q, ~3.26!

wherexi is the gained minimizing orbit point. When we g
the companion minimax orbit, then we use this configurat
for the calculation of the next minimax orbit with a sma
increment inK.

Figure 12 shows three cases in the~residue,K) space,
where the solid lines correspond to the minimizing orbit a
the dashed lines correspond to the companion minimax o
\50.1, m52; v5 21

34 in ~a!, v5 89
144 in ~b! and v5 110

178. The
absolute values of the residues for the minimizing orbit fi
monotonically increases withK, then monotonically de-
creases withK, when K.Kc8 it again monotonically in-
creases withK. The residue of the minimax orbit ma
change its sign atKc8 , but for all the cases the residues of t
minimizing orbit keep its sign. It does not satisfy the con
tions for which the KAM torus can recur.

To identify the minimizing orbit corresponds to th
ground state, we compared its energy with that of the co
panion minimax orbit for each value ofK. We found that its
energy is always the less one and the difference monot
cally increases withK. So we believe that there is no KAM
torus that recurs atKc8 .
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IV. CONCLUSION

To understand the modulated structures and co
mensurate-incommensurate transitions, we generalize
Frenkel-Kontorova model to a diatomic chain in the prese
of an external sinusoidal potential. For the classical grou
states, the diatomic effect is reflected by the phase diag
and the phonon spectrum. The phase diagram of the clas
ground state is just the same as that of the standard
model in appearance. When the period of the ground statQ
is an even number, the winding number is just the same
that of the standard FK model. WhenQ is an odd number,
the winding numbervg52P/2Q if vs5P/Q, wherevg is
for the generalized FK model andvs is for the standard FK
model. The classical phonon spectrum is different from t
of the standard FK model, but the critical exponentx is just
the same.

For the quantum ground states, the diatomic effects
reflected by the distribution of the atoms on the exter
potential, the phase diagram, correspondences between
ground states and the orbits of the area-preserving maps
phonon spectrum, the coherence length, and the occurr
of a second critical pointKc8 besidesKc at which thetransi-
tion by breaking of analyticityoccurs. WhenK,Kc , CA
50, CB50, the phonon gapVG50 and the Lyapunov ex-
ponentg50, the system is sliding. WhenKc,K,Kc8 , CA

50 and CB.0, so an extra energy is needed to shift t
chain on the external potential, the system is pinned. Eac
VG and g has a maximum value in this interval. WhenK
.Kc8 , CA.0 andCB.0, so more extra energy is needed
shift the chain,VG andg both increase monotonically with
K. At the second critical pointKc8 , a new transition occurs
The behavior of the PN barrier is similar to that of the sta
dard FK model. It is not affected by the occurrence ofKc8 .
With the deepening of the quantization, the diatomic eff
becomes strong. With the increasing of\, the differences
between the phase diagrams for differentm become more
prominent. The correspondences between the ground s
and the orbits of the area-preserving maps are more com
than those of the standard FK model. The equilibrium co
figurations of theA subchain correspond to the orbits of ma
I 2I 1, and the equilibrium configurations of theB subchain
correspond to the orbits of mapI 1I 2. The critical pointsKc

and Kc8 both increase with the increasing of\. With the
increasing ofm, Kc decreases andKc8 increases. The interva
@Kc ,Kc8# decreases with the decreasing of\ or m→1. When
\50 or m51, Kc5Kc8 . We expect the results given in thi
paper to contribute to understanding the modulated struct
and CI transitions in the complex lattice systems, especi
in the systems with different particles.
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