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Generalized Frenkel-Kontorova model: A diatomic chain in a sinusoidal potential
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To understand modulated structures and commensurate-incommensurate transitions, we generalize the
Frenkel-Kontorova model to a diatomic chain in the presence of an external sinusoidal potential. For the
classical ground states, the diatomic effects are reflected by the phase diagram and the phonon spectrum. For
the quantum ground states, the diatomic effects are reflected by the distribution of atoms on the external
potential, the phase diagram, correspondences between the ground states and the orbits of the area-preserving
maps, the phonon spectrum, and the occurrence of a second criticakKjdietsidesK ;. at which a transition
by breaking analyticity occur§S0163-18208)06325-3

. INTRODUCTION Banerjea and P. L. Tayld? M. Marchand and co-workers,
C. O. S. Yokoi and co-worker$,and A. Xu, et al!® The
Various nonlinear phenomena in condensed matter physnodels with a transverse degree of freedom are studied by O.
ics can be described by a model where a chain of interactingraun and co-worker® Several attempts to study the quan-
particles is placed in a channeBuch a model arises when tum effects of the FK model are also made'® These stud-
one can pick out a one-dimensional subsystem from thées are restricted to simple lattice systems. S. Aubry and
whole system and consider the rest of the system as theo-worker$? studied a variation of the discrete FK model
source of an external potential, and, at the same time, asWith two sublattices. In their model the atoms of the first
thermal bath supporting an energy exchange with the sutsublattice that have even indices @&e submitted to a peri-
system of interest. If one ignores displacements of the paredic potentialV(x) with period 2a; the atoms of the second
ticles in transverse directions and allows the particles teublattice that have odd indicesi®1) are submitted to the
move only along the direction of the chain, the model re-same period potentiaV(x—+a) shifted by half a period,
duces to a variant of the famous Frenkel-KontofougK) whereV(x) is piecewise parabolic. In addition the atoms are
model. The FK model describes a chain of atoms connectesubmitted to a staggered field with amplitugeF. Axel and
by harmonic springs in the presence of a sinusoidal externas. Aubry’* studied a model representing a one-dimensional
potential. The FK model has been used to describe superélastic chain of atoms subjected to a staggered electric field
onic conductors, crowdionst submonolayer films of atoms and a cosine potential. Some classical properties are given.
adsorbed on furrowed or stepped crystal surfdcasd hy-  Within all the studies mentioned above, all the atoms in the
drogenbonded systems along channels in biomembfaneshain are identical.
Furthermore, the FK model is used to describe nonlinear Up to now, we know very little about the FK-type models
phenomena such as dislocation dynamics, charge-densityith different atoms. The diatomic chain is very important in
waves, ferroelectric domain walls, magnetically orderedsolid physics. It relates to the acoustic wave and the optical
structures, and commensurate-incommensu(@t¢ transi-  wave and is a typical model studying the lattice vibration. In
tions. To understand the modulated phases and laws of Ghis paper, we generalize the standard FK model to a di-
transitions, the standard FK model has been generalized ®&tomic chain in the presence of a sinusoidal external poten-
ones with nonharmonic interactions and/or nonsinusoidal extial, and study its ground states in the classical and quantum
ternal potential. The FK-type models have been extensivelframeworks, respectively. Two subjects will be discussed in
studied by S. Aubry,S. N. Coppersmith and D. S. Fister, the present paper. One is the phase diagram in $hK)(
0. Biham and D. Mokamél,and B. Hu,et al.° when the  parameter space, in which the winding number of the ground
interparticles’ interactions are convex. R. B. Griffiths and W.state varies from one tongue to another. The other is the
Chou'! present the effective potential method that can beransition for a particular state with the golden mean winding
applied to the study of the FK-type models with nonconvexnumber wherK is varied. Most of the results occur in the
interparticles’ interactions. Such models are studied by Aguantum framework.
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We present the results of our studies in four sections. The xi=f(lo+a), (2.9
model is given and its classical properties are discussed in.
Sec. Il. We study the quantum properties of the model |n\Nh|Ch IS jUSt the same as that of the standard FK model. A

Sec. lIl. Section 1V is the conclusion of the present paper. transition by breaking of analyticitpccurs at the same criti-
cal pointK, as the standard FK model. &t=K_, the hull

Il. CLASSICAL PROPERTIES OF THE MODEL function _describing the incqmmen;urate structure u'ndergoes
a transition from an analytic function to a nonanlytic func-
The generalized FK model used in this paper is describetion. Many physical quantities also undergo a transition at
by the following Hamiltonian: K.. In the following sections, we study three quantities: the
phonon gap, the coherence length, and the Peierls-Nabarro

barrier, for the ground state with the golden mean winding
cog2mx;) |, number.

(2.9

wherex; andp; are the coordinate and the momentum of the
ith atom, y is the nature length of the harmonic spring, and The gap in the phonon spectrufdg is defined as the

w; is the effective mass of thigh atom. The chain is com- owest phonon frequency in the system. For the system de-
posed of two kinds of atoms that are denotedbwandB,  Scribed by .Eq(2..1}, qonsider_g small vibration of the atoms
respectively. Without losing the generality, we |et=u,  around their equilibrium positionf;},

=1 if i is an odd number and let;= ug=w if i is an even

2

_ Pi 1 2
H=> 2—M+§(Xi Xi—1—7)

(2m)?

B. Phonon gap, coherence length, and Peierls-Nabarro barrier

number. As in our previous studiéswe define the winding Xi(D) =i+ €(1). 29

number of the whole system as The equation of motion for this vibration is described by
©=PlQ 22 a0 IO}

whereQ is the period of the ground state aRds the period Hi a2z ox (2.6

number of the external potential between the 1st and the
(Q+1)th atoms. Similarly, we define the winding number of The linearized equation of the motion for small vibration is

theI” subsystemor as given by
wr=Pr/Qr, 2.3 . 1 PH{[x;(t
. . I r r . . 5X|(t)+2 _M&J(t):o’ i:1,2,"',Q,
whereQy is the period of thd” subsystemP;- is the period T M 9%(t)ax;(t)
number of the external potential between the 1st and the 2.7

(Qr+1)th I' atoms. Here'=A or I'=B. For the sub-
systems of the prensent model, there is no common divisol/
betweenPr and Qr, so this definition is equivalent to the

herex=d?x/dt? and

traditional definition of the winding number. 2 L J=1-1
I°H | 2+Kcog2mx), j=i, 2.9
A. Phase diagram and transition by breaking of analyticity IX;9X; -1, j=i+1.
The two subchains have the same winding number, i.e.,
wp=wg, and the winding number of the whole chain is one The time Fourier transform of E¢2.7) gives
half of that of the subchains, i.ew=3w,s=3wg. At zero
temperaturep;=0 for all the atoms, so the Hamiltonian of _ G 2+Kcog27X;) _ 02| St g
the system is just identical to that of the standard FK model Wi i €i wi
that has been extensively studied. If we describe the ground
state using the winding number of the whole chain, then the i=1,2:--,0. (2.9

classical phase diagram of the present model can be readily

obtained from that of the standard FK model in the following Define a function,D(x) =2+ Kcos(2rx), then the eigen-
way: The phase diagram is just the same as that of the stamalue equatior{2.9) can be written as

dard FK model in appearance. In a tongue witk P/Q for

the standard FK model, i) is an even number, them D(x1) _0? 1 0 ... 1
=P/Q andw,= wg=P/(Q/2) for the present model; § is o M1 M1
an odd number, thetn=2P/2Q andw,= wg=2P/Q for the 1 D(x,) 1

present model. From above analysis, we can find that the - Z_02 - — 0

values of the winding numbers for the whole chain conform M2 M2 M2
to the Farey tree structure, sc<w=<1; the values of the :
winding numbers for the subchains do not conform to the
Farey tree structure and they may be greater than 1. S 0 0 e

For the classical incommensurate ground state of the Mq Hq
present model, the position of thth atom can be described -
by a hull function, =0, (2.10
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with the periodic boundary conditiong,=xo—P and 3 T T T T v T '
Xg+1=X1+P.

The hull functionx;=f(iw+a) is a static solution of
equationdH/dx; =0 for any phaser. ForK<K., sincef(x)
is an analytic function, inserting this solution ét/dx;=0
and differentiating this equation with respect to the phase
shows that

e=f'(lo+a) (2.11)
is a solution of Eq.2.9 for Q?=0. Consequently, foK

phonon frequency

<K, the gap in the phonon spectrum vanishes. The corre- o sl . . . . . 2
sponding zero-frequency mode is the phason mode of the 0 20 40 60 80 100 120 140 160
incommensurate structure for the generalized FK model. 1
In contrast, forK >K,, the hull functionf(x) becomes
: . - L (a)
discrete with a derivative which is zero almost everywhere. 3 . r r r . r Y

Therefore Eq(2.11) no longer defines an eigenmode for Eq.
(2.9 with Q2=0 and the gap in phonon spectruy; does
not necessarily vanish. Similar to standard FK model, we
expect(l; behaves as

Qa(K)~ (K=K )X, (2.12

Figure 1 shows some examples of the phonon spectrums,
where w= & for the whole chain, phonon spectrums 1, 2,
and 3 are for the case @f=1, u=0.5 andu=3, respec-
tively. K=0 in (a), K=0.8 in(b), andK=1.5in (c). It is
clear that phonon frequencies decrease with the increasing of
©. When O0=sK<K, all the spectrums start from the origin
point. WhenK=0, spectrum 1 is roughly smooth while
spectrums 2 and 3 are divided into two segments, respec- — 2

phonon frequency

o} 20 40 60 80 100 120 140 160

tively. SegmentsOA and OD correspond to the acoustic 3- 25| o 4

wave,BC andEF correspond to the optical wave, which is a g - [

well-known property of the diatomic chain. Whé&a>0, all f,’. 2F T e 5

the spectrums are divided into many segments. WKen @ — _

>K,, all the minimum phonon frequencies are greater than .f_‘, s r — 7

zero. For the incommensurate state with the golden mean il e i

winding number [w=(\/5—1)/2], the numerical results 9 T T

show thaty is just the same as that of the standard FK 'g 0.5 P—Eﬁ—-/ .

model, i.e.,x=0.99+ 0.01, though the phonon spectrums are & "

different for differenty. 0 v v v v . . :

The coherence length measures the distance over which ¢ 2 4 e 10(; 120140180

a perturbationdx,, propagates along the chain. For instance, (<)

an infinitesimal displacemer, at x, will cause a displace-

mente; atx;, FIG. 1. Examples of the phonon spectrums, whﬂre%, pho-

non spectrums 1, 2, and 3 are for the caseuefl, ©=0.5, and

e~exp —|i|l/€)eo, (213 =3, respectivelyk=0 in (a), K=0.8 in(b), andK=1.5 in (). It

is clear that phonon frequencies decrease with the increasipg of
When 0sK<K,, all the spectrums start from the origin point.

foo' When K>K,, 15'; 1{37’. V\1he|\rleg/ :E‘:'Nthbe 'T‘ax”fn‘;]m WhenK =0, spectrum 1 is roughly smooth while spectrums 2 and 3
yapunov exponent. The Peierls-Nabaf®N) barrier of the are divided into two segments, respectively. Segmé&msandOD

grond state is defined as to be the minimal energy ba_rrier th%rrespond to the acoustic wav@C and EF correspond to the
must be overcome to continuously translate the chain of atytical wave, which is a well-known property of the diatomic chain.
oms on the external potential. For the incommensurate staighen k>0, all the spectrums are divided into many segments.
with o= (y5—1)/2, the behaviors of the coherent length andwhenk >K_, all the minimum phonon frequencies are greater than
PN barrier are just the same as those of the standard Fiero.

model.

where ¢ is called the coherence length. Wh&<K., ¢

p) (IS L S
2 2\ i-1— 7Y (277)2 i)|-
In the quantum mechanism, the mechanical quantities are 3.1
described by Hermitian operators. The Hamiltonian operatoBecause of the existence of the interatomic interactions and
of the system is the external potentials, the classical ground state is uniquely

q

Ill. QUANTUM PROPERTIES OF THE MODEL
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FIG. 2. Examples of the phase diagrams, where only the tongueQuithQg=<5 are shown. The tongues limited by the dashed lines
are for the case oft=1, the tongues limited by the solid lines are for the casg.of5. From left to right, the winding numbers for the
whole chain aré, 2, 3 2 & and3, respectivelys=0.01 in(a) and%=0.1 in (b). It is clear that wheri is very small the boundaries of

the corresponding tongues nearly coincide.

determined. In the quantum mechanism, the ground state is 37 p2 1

; : . — i

in a bound state. Owing to the quantum fluctuation, one of H=D | ——+ — +=(X—X_1— )2
the physical quantities of interest is the expectation value of ANpi 2mi 2

the corresponding operator. The coordinate and momentum
operators for théth atom are written as

- e "Ik cog2mx;) | . (3.9
. (2m)?
Xi= \/ﬁ(f*‘ai), Variation with respect tq; immediately yieldsp;/u;=0,
Hi 3.2  and with respect ta; yields
K
) i P VI S 3 i N
p.—i - I(ar—ai), Xi41— 2X;+X{_1 27Te VM sin(2wx;)=0. (3.5

Let yi+1=X+1—X, we get a two-dimensional area-
wherea;” anda; are boson creation and annihilation opera-preserving map,
tors that satisfy the canonical commutation relations:
[ai.a" 1= 6, [a;,a;]=0, [a; ,a; ]=0. We use the varia- Xi+1=Xi+Yit1,
tional method® to study the ground state of systéfl) in
the framework of the coherent state theory. We use the co-
herent statg,W)=D(«)|0), as the trial wave function of the
ground state, wher® (a)=exp(e;a; — ;) is the ordi-
nary displacement operator. It is easy to get

fip

(3.6
K —hm? i o
Yira=Yi+ 5—e "I sin2mx;).
Because of the correspondence between the ground states

and the orbits of the area-preserving map, we can transcribe
many results of the map to those of the generalized FK

(0|D" P?D|0)= —~ +p?, model.
A. Phase diagram in the(vy,K) space
s fi Since the interatomic interaction is a convex function, we
+y2 — 2 ’
(0lp*X*D]0)= 2\/;+X ’ (33 can use the gradient meth6d® Newton method? to deter-

mine the periodic ground states.

For the generalized FK model, the values of the winding
numbers in the classical phase diagram conform to the Farey
tree structure, though their fraction forms do not. We expect

<O|D+cos(277)A()D|0>=e‘ﬁ”2’V% cog2mx), that the values of the winding numbers in the quantum phase
diagram also conform to the Farey tree structure. We con-
wherex=(0|D*XD|0) andp=(0|D*PD|0) are the expec- Struct the phase diagram of the systédrl) in the following
tation values of the coordinate operator and the momenturay: For a given commensurate staie= P/Q, whereQ is
operator of théth atom, respectively. Thus we get the quan-always aneven numberits left boundary is determined by
tum Hamiltonian, the expectation value of the quantumeduating the energies of the tongue and the incommensurate
Hamiltonian operator, as follows: statew in its immediate left neighborhood. In practiae,is

(0|D*X;X;_1D[0)=xiX;_1,
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FIG. 3. Two examples of the KAM curves, whese= 5 for map!,l, or mapl,l,, andw= 2 for map(3.6); #=0.1, u=2; K=0.7 in
(@) andK=2 in (b). Here we usev= %to approximate the golden mean winding number. To gain this figure, we use the Newton method

to locate the ground state, then plot it in they) spaceKAM1 is for theA subchain(also for map ,I;) andKAM2 is for theB subchain
(also for mapl415).

approximated by a left neighboring tongue=(Pm—1)/  valueK,, at which thetransition by breaking of analyticity

Qm, wherem is an equitable positive integer. The right occyrs, increases with the deepening of the qauntization and

The average energy of each atom in the ground state is

given by B. Map and critical point
1 3% K ) It is easy to find that the ma(3.6) reduces to the standard
h=— > | ——— e "™ INK cog 2mX;) map if w=1. Otherwise, it can be decomposed as
Q= \avu (2m)?
L 2 2 1 9 Xom = sz—1+Y}2<m-
+§(Xi_xi*1) +?_6i§l (Xi=Xi—1)y 115) yom Yom-1t Ee_ﬁWZSin(Zszm—D,
y (3.93
Ehl(w)-f-?—w‘}/. (3.7
Xom+1 = XomtYom+1s
Let h(w,yg) =h(w,vs), and we get : K _
( YB) ( 78) g |2. YZm+1 — y2m+ Eefﬁﬂ-z/vl-ﬁ SII’](27TX2m)
hi(@)—hi(w)
YVp=—————. (3.8 (3.9p
w—w

The equilibrium configurations of th& subchain correspond

When 7~0, the boundaries of the tongues vary veryto the orbits of map,l 4, and the equilibrium configurations
slowly with . That is to say, the diatomic effects is very of the B subchain correspond to the orbits of map,. When
weak in this case. With the deepening of the quantizationu=1, the Kolmogorov-Arnold-MosetKAM ) curve ofl,l,
the diatomic effects become strong. Figure 2 shows two exis identical to that of ,I ;. Whenu# 1 the two KAM curves
amples, where only the tongues wiih= Qg=<5 are shown. are different. The period of the orbit for mapl, or |41, is
The tongues limited by the dashed lines are for the case ajne half of that for the maf8.6), so the value of the winding
pn=1 and the tongues limited by the solid lines are for thenumber for mag,l, or |41, is two times of that for the map
case ofu=5. We use the winding number of the whole (3.6) and it may be greater than 1. Figure 3 shows two ex-
chain to describe the tongue. From left to right, the windingamples of the KAM curves, where= 2 for map|,l, or
numbers aré, 3, 3, £, 1, and3, respectively=0.01in(@ 1,1, ando= 2 for map(3.6); #=0.1, u=2; K=0.7 in (a)
andz=0.1in(b). From Fig. 2 we expected that the thresholdand K=2 in (b). Here we usew= 3% to approximate the

TABLE |. Variation of K with # and u.

n=1.0 n=12 pu=14 n=1.6 n=1.8 n=2.0
£=0.01 1.072 422 1.005 991 0.984 596 0.956 965 0.947 970 0.924 304
7=0.1 2.606 962 1.937 208 1.607 026 1.487 817 1.406 315 1.293 561
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FIG. 4. Two examples of the quantum hull functions, where the values of parameters are just the same as those given gqhfig. 3. “
is for the A subchain and ghf2” is for the B subchain.

golden mean winding number. To gain this figure, we use the —X
Newton method to locate the ground state, then plot it in the X K
(x,y) space.KAM1 is for the A subchain(also for map Jal y | =| y+ —e " Esin2ax) |

I,1,) andKAM?2 is for theB subchain(also for mapl,l5,). 2m
It is easy to find that, can be written as a product of two
involutions|;=J;J,, where

X y—X
X
J = K —% 2 .
1y y+=—e ""sin(2mx) |’ 9 w2 2 o
2m Note that J2=J3=J3=J2=1 and del,=detl,=detl,
=detl,=—1. Whenp=1, J;=J3, J,=J,. Greene has ob-
served that for an®; cycle at least two out of it®; points
X y—X are fixed points of]; or J,, and that the existence of the
Js yI=l y | (3.10 KAM curve is strongly connected with the stability of tkg
cycles. He introduced two function®7(K) and Rih(K), as
the residues of the elliptic and hyperbol@; cycles at a
Similarly, 1,=J3J,4, where given value ofK:
0.35 T T T
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FIG. 5. Two examples of the quantugnfunctions, where the values of parameters are just the same as those given in EjgfB.
is for the A subchain and tgf2” is for the B subchain.



PRB 58 GENERALIZED FRENKEL-KONTOROVA MODEL: A ... 727

045 ' ' r v 0.5 ey v Y v r
o ! gt — |
) : % 045 -
o . o o} Lo
o] o] 035 b ‘pgs’ === o
0 1 0
g g 03k d
e 1 ,8 0.25
[ | e |
o 02} 4
| 3H ;
1 o1p o
1 005 b "
0 bl -
18 1 2 3 4 5 6

(b)

FIG. 6. Examples of the phonon gaps K., wherew= %andpgl, pg2, pg3, pg4, pgs correspond to the casps=1.2, 1.4, 1.6,
1.8, and 2.0, respectivel§.=0.01 in(a) andA=0.1 in(b). It is clear that the phonon gaps behave very differently from that of the standard
FK model. There are two critical pointk,, andK/, for each curve. WheK <K, Q5=0. WhenK <K<K/, Qg has a maximum value.
WhenK>K/, Qg increases monotonically witk. K. and K. both increases with the increasing f&of With the increasing ofu, K,
decreases ankl/ increases. Wheh—0 or u—1, K(—K..

0", K<Kg, There are altogether four symmetry lines. The symmetries
imply that the task of finding th&; cycle can be greatly
lim RE(K)= a, K=K, simplified. We expect that tha line is the dominant sym-
-0 o, K>K, metry line. After findingQ; cycles one can calculate the

values ofR; at the given values df. Map|4l, and map ,I
have the sam&. for given# and . The value ofK, de-
pends on the winding number. The KAM curve that breaks at
07, K<K, last is the one with the golden mean winding number. For
b K=K this curve, some examples &f; are listed in Table I. It is
lim RV(K)= ' ¢ (3.12  clear thatk, increases with the increasing ®dfand with the
i—o —o, K>K,, decreasing oju.

i, . . C. Hull function and transition by breaking of analyticity
wherea, b are positive constants less than unity. This pro-

vides an extremly accurate way to determike. When In the absence of the external potential the equilibrium
u#1, we expect that the mal, andl,l; have the same Positions of atoms in thé subchain are given by
properties. The fixed points aF;, J,, J3, andJ, locate on

the following four lines, respectively: Xom—1=(2M—1)wp+ «, (3.19

the equilibrium positions atoms in th& subchain are given
a={(x,y)[x=0}, by

n=(2 , 3.1
b=[(x,y)|x=%], Xom=(2M)wg + a (319

(3.13 where« is an arbitary phase. In the presence of the periodic
' external potential the equilibrium positions of atoms in ghe
subchain are given by a hull function,

c=[(x,y>|x= %}

Xom—1=fal(2M—1)wp+ a]=(2Mm—1)wp+ @
y ] +gal(2Mm—1)wp+ a], (3.16

+1
d= ( (x.y)[x= 2 | and those in th8 subchain are also given by a hull function,

TABLE IlI. Variation of K, with 7 and u.

n=1.0 n=12 pu=14 n=1.6 n=1.8 n=2.0

£=0.01 1.072 424 1.116 861 1.136 066 1.149078 1.158 771 1.166 412
7=0.1 2.606 962 3.048 760 3.236 015 3.361 974 3.454 558 3.526 437
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FIG. 7. Examples of the maximum Lyapunov exponent¥forK ., wherew= i—gg andlyakl,lyak2,lyak3, lyak4,lyak5 correspond

to the caseqt=1.2, 1.4, 1.6, 1.8, and 2.0, respectively=0.01 in(a) and%=0.1 in (b). The maximum Lyapunov exponents also behave
very differently from that of the standard FK model. Wh€r<K., y=0. WhenK <K<K/, y has a maximum value. Whet>K/, y
increases monotonically witk.

Xom=fal(2M)wg+ a]=(2M)wg+ a+gg[ (2M)wg+ a], andf;=fg wheni=2m. Sincef,(x) is an analytic function,
(3.19 inserting this solution irPH/dx;=0 and differentiating this

where theg functionsg, andgg are periodic with the same equation with respect to the phaseshows that

period as the external potential while the hull functidns _

and fg are strictly increasing functions that depend on the e=f(ivt+a) (3.19
winding numberw or wg. For the incommensurate phases, . . 2
the properties of the hull functions amgl functions are '22 st(r)]lutlon (.)f 'th'(sﬁ& for (2 _to. Cons.ec;]uently, foK
closely related to those of the KAM curves because they all™ "¢ € gap In thé phonon Spectrum vanisnhes.

describe the ground state. Whé&n<K,, the KAM curve d'sge(:tgntriﬁt,goézr? gtc.’ethtﬁar:u.! fugf;'ogrzilggt Ze:(r)mehsere
with the winding numbe, (or wg) does not break, so the & Wi vativ IS z verywhere.

. . . . Therefore Eq(3.19 no longer defines an eigenmode for Eq.
corresponding hull functiori, (or fg) is continuous. When . .
K>K p the IgAM curve Wit?] (the 3\3inding numbew 5 (or (3.18 with Qz_zo ar_ld the_gap in phonon spectrdiy, does
©g) bcreaks s0 the corresponding hull functibp(or fg) is not necessarily vanish. Figure 6 show some examples of the

_ 89 ;
discontinuous. So does the correspondirfgnction. That is gzgnonlgapsz fOKgKC ,4Wher5ecz;rrlgsfc:)rntgliovﬁcgecggaln
to say,the transition by breaking of analyticityccurs aK. . P9, Pge, PG, PGS, PY P 6

Figure 4 shows two examples of the quantum hull func-

=1.2,1.4, 1.6, 1.8, and 2.0, respectively=0.01 in(a) and
tions. Figure 5 shows two examples of two quantgrfunc- £=0.1in (b). It is clear that the phonon gaps behave very
tions. Here the values of parameters are just the same

géfferently from that of the standard FK model. There are
those given in Fig. 3ghfl andqgfl are for theA subchain wo critical points, K and K, for each curve. WherK
andghf2 andqgf2 are for theB subchain.

<K¢, Qg=0. When K. <K<K[, Qg has a maximum
value. WhenK>K/, Q¢ increases monotonically witK.

¢! . : .
D. Phonon gap, coherence length, and Peierls-Nabarro barrier K¢ décreases ani; increases with the increasing pf K,

Similar to the classical model, many physical quantities ox10° . . . . .
also undergo a transition Kt; . In the following sections, we 5 .
; e 8x10° F
still study the three quantities, namely, phonon gap, coher- ]
ence length, and the Peierls-Nabarro barrier. S 710"
H a0}
1. Phonon gap 2 .
5x10° F
After considering the quantum effects, the eigenvalue ﬁ axigh
equation of the square of the phonon frequency is 'g .
3x10 p
. N E 2x10° |
€i_1 2+Ke VHi CO&Z’]TXi) 2 €i+1
- + —Q0°e— =0, 1x10° |
Mi Mi Mi
0 1
i=1,2,--,Q. (3.18

For K<K., x;=f;(io+ «) is a static solution of equation FIG. 8. Behavior of the PN barrier, whefe=0.1, u=2, o=

dH/dx;=0 for any phaser, wheref;=f, wheni=2m-1 =
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FIG. 9. Two examples of the ground states, whme%, A=0.1, =2, and all the atoms denoted by?" are plotted in one period

of the external potentialk=0.7 in (@) andK=2 in (b). “VX1"” denotes the curve o¥/(x)= —[K/(Zw)z]e"’vzcos(erx) and “VX2"
denotes the curve of(x) = —[K/(2m)2]e """ Ecos(2rX).

K¢ and the interva K ,K(] increases with the increasing of Equation(3.20 is identical to Eq.(3.18 where()=0 and

. Whens—0 or u—1, K.—K.. We use the greater sys- thus forK<K¢ it is satisfied by the solutio(3.19. Conse-

tems to check and get the same result. We determine tHguently, we have

value ofK{ in the light of the phonon gap. Some examples

are shown in Table II. 0
Before we investigate the second critical polff, we éi:f,(a)

first finish our study on the coherence length and the PN 0

flliota),

(3.2)

barrier.

2. Coherence length

The linear expansion of E¢3.5) yields:

wheref/(x) is a positive continuous periodic functi¢fi(x)
is analytic and strictly increasingAs a consequence; has
positive upper and lower bounds far—*«~. From Eq.
(2.13 we conclude thag=« whenK<K_,.

For K>K,, definem; . 1=¢€;.1— ¢, from Eq.(3.20 we

have
61— [2+Ke "™ cog2mx;) €+ e 1= i €i €i
i1 wX;)]€+€_1=0, (i#0). i+1 i
(3.20 R (3.22
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FIG. 10. Two other examples of the ground states, whet®.1, =2, “gsl” denotes the ground state with= % and “gs” denotes

1974 1974

the ground state witlv= 575 K=2.5in(a) andK=4 in (b). Fromw= %to = 3754 the period of the ground state is enlarged by about

twenty times, but there is no evident change that occut¥ jrand ¥ .
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0.07 T T T
0.06
e FIG. 11. Plot of() versusk,
0.05 where #=0.01, u=1.2, 0= 22
phgap ph2,ph3, ph4, ph5 cor-
0.04 respond to the phonon gap, the
second minimum, the third mini-
0.03 mum, the fourth minimum, and
0.02 the fifth minimum of the phonon
: frequencies. There are two evident
0.01 intersecting pointsA and B, in
) the figure.
o]
0.
where E. The second critical pointK. and a new transition

It has been showft??>~?4that FK-type models with certain
periodic potentials can have more than one transitieour-
. (3.23 rence of KAM torj for incommensurate states as the strength
Ke "™k cog2mx;) 1 ' of the external potential is increased. In the following sub-
sections, we will show that no KAM torus recurs and a new
transition occurs aK/ in the present model.

1+Ke "™ E cog2mx,) 1
‘]i:

is just the Jacobian matrix of the gauntum m@p). Thus

we haveé=1/y, wherevy is the maximum Lyapunov expo-
nent in the quantum map. F&>K_, v is nonzero and 1. Configuration of the ground state
behaves similar to the phonon gap. Figure 7 show some ex-

amples of the maximum Lyapunov exponents koK.,
288

To understand the occurrence Kf , we first investigate
wherew= 22 for the whole chain antyakl, lyak2, lyak3, the configuration of the ground states. Figure 9 shows two
lyaké, lyaks correspond to the casgs=1.2, 1.4, 1.6, 1.8, examples of the grqund states_, where all the atoms de_noted
and 2.0, respectivelyi =0.01 in(a) and#=0.1 in (b). The by “ & are ploted in one period of the_ external potential,
maximum Lyapunov exponents also behave very differenty2nd all the values of the parameters are just the same as those
from that of the standard FK model. There are two critical9iven in Fig. 3. “VX1" denotes the curve ofV(x)=
points, K. and K/, for each curve. WhelK<K., y=0. —[K/(Zw)z]e‘ﬁwzcos(an) and “VX2" denotes the curve
WhenK <K<K/, y has a maximum value. Whed@>K/, of V(x)= —[K/(zw)z]e‘ﬁﬁz’w’ﬁcos(zrx), We defineV, is

v increases monotonically witl. The numerical results the minimum distance from th& atoms to the top o¥/(x)

show that the value df; for the coherence length is just the — —[K/(Za-r)z]e‘ﬁﬂzcos(an), and define¥y is the mini-
same as that for the phonon gap. Owing to the numericahym distance from thed atoms to the top ofV(x)=
precision, we could not judge whether or fog=0 or/and —[K/(Zq-r)z]e*ﬁ'"2’¢ﬁcos(2zrx). Figure 10 shows two other
y=0 whenK= Ke If =0 andy=0 atK, then aslide o, mples of the ground states, whére 0.1, u=2, “gsl”
state occurs & . denotes the ground state with= £, and “gs” denotes the
_ _ ground state withw= 34 K=2.5 in (@) and K=4 in (b).
3. Peierls-Nabarro barrier From w= 2 to w= 32 the period of the ground state is

For K<K_,, the PN barrieHpy vanishes since no extra €nlarged by about twenty times, but there is no evident
energy is needed to shift the chain in the sliding mode. Foghange that occurs i , andWg. For ground states with a
K>K,, the ground state is described by a discontinuous hul¢ertain winding numbew=P/Q, whereP andQ are finite
function which in the k,y) space is represented by a Cantor Fibonacci numbers or both are two times of the correspond-
set. The PN barrigH py is the energy difference between the ing Fibonacci numbers, the numerical results show that:
minimizing (min) orbit and its companion minimagmax) ~ For B atoms,Wz>0 and ¥y increases withK; (ii) For A
orbit. The numerical results show that the PN barrier onlyatoms,K has two threshold valuex, and K;. When K
undergo a transition & and behaves similarly to that of <K., ¥4>0 and¥, decreases with the increasing Kf
the standard FK model. Figure 8 shows an example of th&VhenK . <K<K[, ¥,=0. WhenK>K[, ¥,>0 and¥ 4
behavior of PN barrier, wherk=0.1, u=2, o= for the  increases with the increasing Bf, (i) WhenK <K, ¥,
whole chain. That is to say, there is no slide state that occurand ¥y both evidently decrease with the increasing of the
atkK., andQg#0, y#0 atK(. size of the system(iv) WhenK <K<K/, ¥, and ¥ do

The PN barrier behaves very differently from the phononnot vary with the size of the systerfy) WhenK>K/, ¥
gap and coherence length. The occurrenc& pfdoes not and¥g do not vary with the size of the system. Hence, the
affect the behavior of the PN barrier. To understand thigollowing conclusions for the incommensurate ground state
feature, an investigation o€/ is needed. with the golden mean winding number are reasonathig:
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=0 and ¥3=0 whenK<K;; ¥,=0 and ¥5z>0 when

K<K<K(; ¥,>0 and¥z>0 whenK>K/.

2. Minimal phonon frequencies

fifth minimum of the phonon frequencies, besides the pho-
non gap, with the increasing of the strength of the external
potential. There are at least two different vibration modes
that intersect in theK,()) space, wherd) is the phonon

In order to understand the mechanism for the occurrencffeauency. Figure 11 shows an example, whére0.01,

288

of the second critical point, we investigate the variation of#=1.2, ®=%¢ phgap ph2, ph3, ph4, phS correspond to
the second minimum, third minimum, fourth minimum, and the phonon gap, the second minimum, the third minimum,
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the fourth minimum, and the fifth minimum of the phonon V. CONCLUSION
frequencies, respectively. There are two evident intersectin
q b y 9 To understand the modulated structures and com-

points,A andB, in the figure. To gain the phonon gap, the . e .

second minimum, the third minimum,.., of the phonon mensurate-incommensurate transitions, we generalize the
frequencies, we have to sort the phonon spectrum from Smalﬁrenkel-Kontoroya quel toa d|§1tom|c chain in th.e presence
of an external sinusoidal potential. For the classical ground

to big. Whenu =1, the present model reduces to the stan- : . ) ;
dard FK model, there is no intersection between differenStates; the diatomic effect is reflected by the phase diagram

vibration modes in the K,Q) space. The diatomic effect and the phonon spectrum. The phase diagram of the classical

results in the difference between the quantum modificationground. state is just the same as Fhat of the standard FK
model in appearance. When the period of the ground ate

on different atoms, then results in a more complex interaciS an even number, the winding number is just the same as
tion between different vibration modes. that of the standard FK model. Whé is an odd number,
3. Minimax orbit and minimizing orbit the winding numberwy=2P/2Q if »s=P/Q, whereawy is
for the generalized FK model anad is for the standard FK
To understand the occurrencekof and to check whether  model. The classical phonon spectrum is different from that
or not the KAM torus may recur &, we investigate the of the standard FK model, but the critical expongris just
behaviors of the minimax orbit and the companion minimiz-the same.
ing orbit aroundK /. For the quantum ground states, the diatomic effects are
In the calculation of the PN barrier, the minimizing orbit reflected by the distribution of the atoms on the external
(the ground stadeis easy to find by using the Newton potential, the phase diagram, correspondences between the
method. We need only to use the following initial ground states and the orbits of the area-preserving maps, the
configuration®® phonon spectrum, the coherence length, and the occurrence

of a second critical poinK/ besidesK at which thetransi-

o = tion by breaking of analyticityoccurs. WhenK<K., ¥4
Xi Z(i6>, i=12,...0Q, (324  =0,W¥z=0, the phonon gaflg=0 and the Lyapunov ex-
ponenty=0, the system is sliding. Whel. <K<K/, ¥,
and a periodic condition =0 and¥z>0, so an extra energy is needed to shift the
chain on the external potential, the system is pinned. Each of
Xo=Xg—P.Xqs1=X, + P (3.29 Q¢ and y has a maximum value in this interval. Whén

>K{, ¥,>0 and¥z>0, so more extra energy is needed to
is imposed. That is to say; takes the integral part 8P/Q.  shift the chain¢ and y both increase monotonically with
The basic idea is to put the atoms initially in the valleys ofK. At the second critical poink ., a new transition occurs.
the external potential. The system will then be trapped withThe behavior of the PN barrier is similar to that of the stan-
certainty in the ground state before reaching a nonminimizyard FK model. It is not affected by the occurrencekdf.
ing periodic orbit. To gain the companion minimax orbit, we \yith the deepening of the quantization, the diatomic effect
start with a suitabl& which is lessK,, using the following  pecomes strong. With the increasing fof the differences

initial configuration: between the phase diagrams for differgntboecome more
prominent. The correspondences between the ground states
X?: L(x+x%41), i=12,...Q, (3.2 and the orbits of the area-preserving maps are more complex

than those of the standard FK model. The equilibrium con-
wherex; is the gained minimizing orbit point. When we get figurations of theA subchain correspond to the orbits of map
the companion minimax orbit, then we use this configuration,|,, and the equilibrium configurations of tH& subchain
for the calculation of the next minimax orbit with a small correspond to the orbits of mdpl,. The critical pointsK .
increment ink. _ _ and K. both increase with the increasing &f With the
Figure 12 shows three cases in tfresidue,K) space, jncreasing ofu, K. decreases and/ increases. The interval
where the sqlld lines correspond to the m|n_|m|2|n_g_orb|t anc K..K.] decreases with the decreasingiobr u— 1. When
;/Lhi gafheg grlleszcglrr.eSpond tjge. co?panéonrgm_raﬁ( orbif _o oru=1, K=K . We expect the results given in this
1, 4=2; =5 in (@, 0=z in (b) and w=17 The [paper to contribute to understanding the modulated structures

?nbc;sr%ltjct;i\c/::luesin(():frégesergs:/(\j/iltjr?(s f?ggzegézgéﬁgglfrbg;rs and CI transitions in the complex lattice systems, especially
y ’ y in the systems with different particles.

creases withK, when K>K/ it again monotonically in-
creases withK. The residue of the minimax orbit may
change its sign at ., but for all the cases the residues of the
minimizing orbit keep its sign. It does not satisfy the condi-
tions for which the KAM torus can recur. The work of Aiguo Xu, Guangrui Wang, and Shigang

To identify the minimizing orbit corresponds to the Chen was supported by the National Natural Science Foun-
ground state, we compared its energy with that of the comeation of China and the Science Foundation of China Acad-
panion minimax orbit for each value &f. We found thatits emy of Engineering Physics. The work of Bambi Hu was
energy is always the less one and the difference monotonsupported in part by grants from the Hong Kong Baptist
cally increases witliK. So we believe that there is no KAM University (FRG) and the Hong Kong Research Grant Coun-
torus that recurs & . cil (RGO
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