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Conductance fluctuations of semiconductor-superconductor microjunctions
in the quantum Hall regime
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~Received 5 May 1998!

We numerically study the high-magnetic-field conductance of two-dimensional electron-gas–superconductor
junctions in the presence of a short-range disorder. The disorder-induced multiple Andreev reflection leads to
a dip in the conductance at the depopulation thresholds of the Landau levels. The dip evolves into rapid
fluctuations when increasing the magnetic field. In such a high-field regime, the correlation magnetic field of
the conductance fluctuations changes enormously depending on the location of the Fermi level relative to the
Landau levels. Correspondingly, the amplitude of the conductance fluctuations varies significantly as the Fermi
level sweeps through the Landau levels.@S0163-1829~98!06236-5#
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The conductance of normal-conductor–supercondu
~NS! junctions is strongly influenced by the Andreev refle
tion of quasiparticles from the NS interface.1 The single-
particle excitations localize in the normal region, and so th
behavior is primarily determined by the nature of the norm
conductor. If a high-mobility two-dimensional electron g
~2DEG! is employed as the normal conductor, the transp
of the quasiparticles can be made ballistic. Although the s
face potential of semiconductors makes the interf
nonideal,2 the recent technological progress has succeede
prepare good quality 2DEG-superconductor junctions3–5

The use of the 2DEG also provides a possibility to inve
gate the Andreev reflection in the quantum Hall regime.
this extent, more progress was made. In previous invest
tions, the external magnetic fieldB was absent or very wea
as the magnetic field destroyed the superconductivity. H
ever, a very recent experiment reported the Josephson
pling in superconductor-2DEG-superconductor junctions
B;8 T by choosing a magnetic-field-robust material for t
superconductor.6

Motivated by this experiment, the conductance of N
junctions in high magnetic fields was studied theoretically
Ref. 7. The edge states in the quantum Hall regime inev
bly undergo multiple Andreev reflections when they trav
along the NS interface. The Andreev-reflected edge state
revealed to produce a transmission resonance.7 In intermedi-
ate magnetic fields, it was found that the conductance ex
its an oscillation that resembles the Shubnikov–de H
~SdH! oscillation in the resistivity of 2DEG’s, provided tha
the normal reflection probability at the NS interface is
creased by a difference of the Fermi energies in the 2D
and the superconductor.7 An interesting feature of this oscil
lation is that the conductance reaches a maximum at
magnetic depopulation thresholds of the Landau lev
However, one needs to take into account the presenc
disorder in comparing experimental data6,5 with the theoret-
ical prediction. The disorder is anticipated to suppress
conductance, in particular near the depopulation thresho8

Therefore, the interplay between the Andreev reflection
the disorder needs to be clarified.

In this paper, the influence of disorder on the conducta
of NS junctions is investigated in the quantum Hall regim
PRB 580163-1829/98/58~11!/7162~4!/$15.00
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As expected, the conductance drops significantly at the
population thresholds when short-range disorder is taken
account. Consequently, the dip leads to split conducta
peaks when the partial normal reflection is allowed at the
interface. In larger fields, where the edge states produce
transmission resonance, the conductance develops rapid
tuations around the depopulation thresholds while a smo
variation is found between the thresholds. The fluctuat
amplitude is found to behave roughly as a function of t
mean conductance, except that the amplitude is enhan
considerably at the thresholds.

Our model structure is schematically shown in the inse
Fig. 1. We calculate the conductance of the NS wires in
presence of a perpendicular magnetic fieldB. For simplicity,
the magnetic field is assumed to be absent in the super
ductor ~hatched area!. We also neglect the self-consistenc
of the pair potential amplitude. A constant valueD is as-

FIG. 1. Magnetoconductance of NS junction whenmS5mN .
The strength of disorder isd50.5mN . The dotted line shows the
conductance in the absence of disorder (d50). Other parameters
arekFW/p510.5,D/mN50.01, andL/W53. The vertical bars in-
dicate the depopulation threshold of the transverse modes.
number of occupied modesN is shown. The inset shows a sch
matic of the NS junction. Potential disorder is introduced in t
shaded area. The hatched region represents the superconduct
7162 © 1998 The American Physical Society
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PRB 58 7163CONDUCTANCE FLUCTUATIONS OF SEMICONDUCTOR- . . .
sumed in the superconductor, and the pair potential am
tude is set to be zero in the 2DEG. The conditions in wh
these assumptions can be justified were discussed
Beenakker1 for the 2DEG-based material systems. We
strict our discussion to the zero-bias conductance, and so
quasiparticles do not propagate in the superconductor.
two-terminal conductanceG is hence related to the Andree
reflection amplitudeshe as9

G5~4e2/h!Tr@she
† she# . ~1!

The scattering coefficients are calculated by solving
Bogoliubov–de Gennes equation using the lattice Gree
function technique.10 In the following numerical calcula-
tions, the NS wires are simulated with 100 transverse lat
sites. A disorder potential is taken into account in the norm
region adjacent to the NS interface~shaded area!. The disor-
der is introduced as on-site potential fluctuations. The r
dom potential is assumed to be distributed uniformly with
@2d,d#. The superconducting wave function penetrates
2DEG over the coherence lengthjN5\vF/2D, wherevF is
the Fermi velocity in the 2DEG.11 For the parameters w
have assumed,jN53.0W. The lengthL of the disordered
region is chosen to be comparable tojN .

The conductance is plotted in Figs. 1 and 2 as a func
of \vc /mN for mS /mN51 and 4, respectively. Here,mS and
mN5\2kF

2/2m are the Fermi energies respectively in the s
perconductor and 2DEG, andvc5eB/m is the cyclotron fre-
quency. The dotted lines show the conductance in the
sence of disorder. AsD (50.01mN) is very small in
comparison to the Fermi energy, quasiparticles are alm
perfectly Andreev reflected from the NS interface whenmS
5mN .12 The nearly perfect Andreev reflection is proved
Fig. 1 by the quantization of the zero-field conductance
units of 4e2/h. The conductance decreases in a steplike m
ner in Fig. 1 whenever the one-dimensional subbands
magnetically depopulated.

The Fermi energy in metals is much larger than that
2DEG’s. The nonuniformity of the Fermi energy is take

FIG. 2. Magnetoconductance of the NS junction whenmS

54mN . The solid and dotted lines show the conductance w
d/mN50.5 and 0, respectively. The depopulation threshold of
Landau levels in the normal wire is indicated by the vertical ba
The number of occupied modesN in the normal wire is shown.
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into account in Fig. 2. IncreasingmS relative to mN , the
quasiparticles are partially normal reflected, resulting in
decrease of the conductance in zero and weak magn
fields. In this case, the conductance exhibits an oscilla
which resembles the SdH oscillation. Notice that the cond
tance becomes maximum near the depopulation thresho7

Thus the oscillation is anticipated to be vulnerable aga
disorder.

The variation of the conductance is dominated by
Landau-level depopulation for\vc /mN,0.2;0.3. The
high-field oscillation, however, is no longer associated w
the Landau-level depopulation. When 2l c,W, with l c
52\kF /eB being the cyclotron diameter which is satisfie
for \vc /mN.0.24, the oscillation arises from the comme
surability of the skipping orbit along the NS interface.7 In
addition, the quantum interference effect gives rise to
nearly zero conductance at the minima.

In the presence of a short-range disorder, the low-fi
conductance exhibits universal conductance fluctuati
~UCF’s!. Deviations from the universality generally tak
place in the quantum Hall regime. The conductance sho
sharp dips at the depopulation thresholds in the intermed
magnetic fields,\vc /mN,0.24. The dips are attributed t
the fact that the scattering from the disorder is enhan
when the Fermi energy lies around the threshold ener
because of the small kinetic energy for the topmost mo
However, these dips deserve a few comments. In nor
conductors, more incident electrons are backscattered
increasing disorder strength, resulting in a lower cond
tance. In the NS system, however, the quasiparticles are
tally reflected from the NS interface irrespective of the pr
ence of disorder. All the incident electrons are backscatte
from the system, partly as holes and partly as electro
Therefore, the disorder-induced scattering does not nece
ily suppress the conductance even in the classical limit. If
quasiparticles experience frequent reflections between
disordered region and the NS interface, the Andreev refl
tion probability is expected to be;N/2, while the other half
of the quasiparticles leave the system as electrons.13 Hence,
the conductance is, on average, given by 2Ne2/h, i.e., the
maximum conductance of the normal system. As some of
incident quasiparticles are directly backscattered by the
order potential before reaching the NS interface, the m
conductance is expected to be identical to that without
superconductor segment in the strong disorder limit. It f
lows that the conductance may be enhanced by disorde
the strong-magnetic-field regime, where the conductance
be close to zero because of the transmission resonance.
simple argument reasonably explains the conductance va
at the thresholds. Although the influence of the superc
ductor is obscured in the mean conductance when the tr
port in the normal conductor is diffusive, the existence of t
superconductor is still reflected in the amplitude of the co
ductance fluctuations, as we will show below.

When the quantum interference effect of the edge sta
dominates the conductance variation,\vc /mN.0.24, the
conductance fluctuates rapidly with magnetic field near
thresholds. The rapid fluctuation is strongly restricted in
vicinity of the thresholds. The conductance suddenly
haves smoothly when the magnetic field is between
thresholds. This abrupt change is actually consistent with
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7164 PRB 58Y. TAKAGAKI AND K. H. PLOOG
behavior of the conductance of normal conductors in
quantum Hall regime.14 In normal conductors, the conduc
tance is quantized in units of 2e2/h when the edge states a
well established, and so the fluctuations can be obse
only near the transition between the plateaus. Unlike the n
mal conductors, the conductance of the NS system is mo
lated by the multiple Andreev reflection even when the ed
states are established.7

To investigate the difference between the normal and
systems further, we also examined the sample-to-sam
fluctuations of the conductance. We show the amplitude
the conductance fluctuationsDG5(^G2&2^G&2)1/2 in Figs.
3 and 4. The ensemble average is taken over several hun
samples. The mean conductance^G& and the fluctuation am
plitude DG show similar variation against the magne
field.14 However, an exception is found at the depopulat
thresholds, wherê G& drops whereasDG grows larger.
There are several studies on the UCF’s of NS systems.15,16,1

It was recognized that, due to the presence of two carri
the conductance fluctuation in NS junction wires is enhan
in magnitude compared to that in normal-conduc
wires.15–17 The random-matrix theory predictsDG
51.46e2/h when the time-reversal symmetry is broken by
magnetic field.16 The peak values ofDG at the thresholds are
in agreement with this prediction. This can be interpreted

FIG. 3. The mean conductance^G& and the amplitude of the
conductance fluctuationsDG for parameters corresponding to Fi
1. The vertical bars indicate the depopulation threshold of the tr
verse modes.
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mean that the fluctuations at the thresholds are caused b
disorder in the bulk of the normal region. Conversely, t
disorder near the interface~over the width of; l c50.15W at
\vc /mN50.4) which can act on the skipping orbits contri
utes to the fluctuations between the thresholds. The sca
ing is thus less effective in the latter case as the edge s
propagate adiabatically. When the conductance exhibits s
peaks formS /mN54, DG tends to be suppressed at the co
ductance maxima. Although the reason for this is not und
stood, it is expected to be related to the enhancement me
nism of the conductance at the thresholds.

In conclusion, the magnetoconductance of NS junctio
has been calculated numerically in the presence of a sh
range disorder. The disorder produces sharp dips at the
population thresholds of the Landau levels. Consequen
SdH-type oscillations are smeared by the disorder. In
high-magnetic-field regime, where the quantum interfere
effect of the edge states running along the NS interface g
rise to the transmission resonance, the conductance sh
distinct features for magnetic fields in the vicinity of th
thresholds and between the thresholds. In the respec
magnetic-field regions, the fluctuations are caused by
bulk scattering and by the scattering near the interface.
fluctuation amplitude also reflects the difference of the flu
tuation mechanism.

s-

FIG. 4. The mean conductance^G& and the amplitude of the
conductance fluctuationsDG for parameters corresponding to Fig
2. The vertical bars indicate the depopulation threshold of the tra
verse modes.
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