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Linewidths of collective excitations of the inhomogeneous electron gas:
Application to two-dimensional quantum strips
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Department of Physics, University of Missouri, Columbia, Missouri 65211
~Received 15 January 1998; revised manuscript received 21 April 1998!

It is well known that high-frequency collective excitations in electronic systems are not Landau damped, i.e.,
they cannot decay effectively into single particle-hole pairs. The leading damping mechanism in this regime is
instead provided by dynamical exchange and correlation effects, such as multipair production. These effects
are not captured by the widely used adiabatic local-density approximation~ALDA !, which accounts for Landau
damping only. In the recently developed time-dependent current density-functional formalism@G. Vignale, C.
A. Ullrich, and S. Conti, Phys. Rev. Lett.79, 4878 ~1997!#, exchange and correlation enter as viscoelastic
stresses in the electron fluid, causing an additional damping that is not contained in the ALDA. We use this
theory to derive an explicit formula for the linewidth of collective electronic excitations that are not Landau
damped. The formula is then applied to calculate the linewidth of collective modes in two-dimensional~2D!
quantum strips. In comparison with the corresponding modes in the homogeneous 2D electron gas, we find an
order-of-magnitude enhancement of the linewidth due to the nonuniformity of the system.
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I. INTRODUCTION

Collective excitations of electrons in semiconductor na
structures such as quantum wells, quantum wires, and q
tum dots have become a research field of great theore
and experimental interest in recent years.1 This is largely due
to the tremendous improvements in semiconductor gro
techniques that allow one to tailor the potential across
electron film in a heterostructure practically to any desi
shape, through a suitable choice of the quantum well des
As a typical example we mention the widely studied pa
bolic quantum wells with and without imperfections.2 These
systems approximate the jellium model much more clos
than conventional metals, since their Fermi wavelength
substantially larger than the crystalline lattice spacings, s
pressing complicated effects of the lattice potential.

Single3 and double4 square wells represent another type
heterostructure that is of great theoretical as well as tech
logical interest. The lowest collective intersubband exc
tions in these systems have energies below the optical
non energy and have been studied in photoabsorp
experiments in the far-infrared regime. The energy relaxa
for these modes proceeds via electron-electron, elect
impurity, and acoustical-phonon scattering, as well
optical-phonon scattering~at nonzero temperature!. How-
ever, the relative importance of the various possible diss
tion mechanisms is still not well understood.

In this work, we consider the decay of collective excit
tions in inhomogeneous electronic systems due to elect
electron interaction, which is the leading effect at zero te
perature and in the absence of impurities. The main damp
mechanism of low-frequency collective electronic modes
decay into single particle-hole pairs, also known as Lan
damping.5 For high-frequency modes, however, this dec
mechanism is not effective, and damping is instead indu
by dynamical exchange and correlation~xc! effects such as
PRB 580163-1829/98/58~11!/7141~10!/$15.00
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multipair production. In the following, we shall develop
new method to calculate the linewidth of collective excit
tions related to dynamical xc effects.

The standard method for calculating collective excitatio
of the inhomogeneous electron gas is to find the poles of
density-density response function.5,6 Such a calculation is
conveniently performed within the framework of time
dependent density-functional theory.7,8 In this formalism, all
dynamic xc effects of the electron gas are accounted
through a local time-dependent xc potentialvxc(r ,t). The
latter is usually approximated as a function of the instan
neous local density,

vxc
ALDA ~r ,t !5

dexc~% !

d%
U
%5%~r ,t !

, ~1!

whereexc(%) is the xc energy density of the homogeneo
electron gas of density%. This scheme is known as the adi
batic local density approximation~ALDA !. If used to calcu-
late the full response function of the system, the ALDA a
counts for the Landau damping of high-frequency collect
modes. However, outside the regime where Landau dam
occurs, the modes calculated within the ALDA will come o
undamped.9,10To describe the relaxation of these modes o
the whole range of frequencies and wave vectors, one ha
go beyond the ALDA and include retardation effects. Th
task can be accomplished with the use of the recently de
oped time-dependent current density-functional theory.11,12

In this formalism, dynamical exchange and correlation le
to the appearance of viscoelastic stresses in the elec
fluid,13 with complex and frequency-dependent viscosity c
efficients depending on properties of the homogeneous e
tron gas. The viscosity, in particular, causes an additio
damping not contained in the ALDA.

The paper is organized as follows: In Sec. II we brie
review the main features of time-dependent current dens
functional theory in the linear regime. We then derive in S
7141 © 1998 The American Physical Society
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7142 PRB 58C. A. ULLRICH AND G. VIGNALE
III a formula to calculate the linewidth of collective excita
tions outside the regime of Landau damping. The idea is
first calculate the~undamped! modes within the ALDA and
then include the viscosity-induced damping perturbative
Relevant details of the calculation are given in the Append
In order to demonstrate the practicality of the approach,
then apply it in Sec. IV to collective modes in two
dimensional~2D! quantum strips.14 The advantage of thes
systems is that they can be treated analytically, within a
drodynamical approximation, and thus allow us to gain s
tematic insight into the damping of collective modes in
inhomogeneous model system. We find that the bound
effects caused by the confinement of the 2D electron
~2DEG! lead to a strong enhancement of the linewidth
compared to the homogeneous case. A detailed compa
of our theory with experimental results, which are availa
for systems such as the quantum wells mentioned abov
the subject of currently ongoing studies.

II. CURRENT DENSITY-FUNCTIONAL THEORY
IN THE LINEAR REGIME

We consider an interacting electronic system w
ground-state density%0(r ) that is perturbed by a weak ex
ternal vector potentiala1(r ,v)e2 ivt. The current-density re
sponsej1(r ,v)e2 ivt, to first order ina1, is given by

j 1,m~r ,v!5(
n
E d3r 8xKS,mn~r ,r 8,v! aeff1,n ~r 8,v!.

~2!

Here, xKS,mn(r ,r 8,v) is the current-current response fun
tion of a system of noninteracting electrons with the sa
density%0(r ), defined as

xKS,mn~r ,r 8,v!5
%0~r !

m
d~r2r 8!dmn1

1

m2(a,b
~ f a2 f b!

3
ca* ~r !¹mcb~r !cb* ~r 8!¹n8ca~r 8!

v2~«b2«a!1 ih
, ~3!

whereca are the solutions of the unperturbed static Koh
Sham equation, with eigenvalues«a ~note that we sete5c
51 in this and the following section!. The effective vector
potential entering Eq.~2! is

aeff1~r ,v!5a1~r ,v!1
¹

~ iv!2E d3r 8
¹8• j1~r 8,v!

ur2r 8u

1axc1~r ,v!. ~4!

axc1(r ,v) is the first-order xc vector potential~which in gen-
eral contains both longitudinal and transverse terms!. It may
be expressed as

axc1~r ,v!5E d3r 8fxc~r ,r 8,v!• j1~r 8,v!, ~5!

where the 333 tensor kernelf xc,mn is defined as
to

.
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f xc,mn ~r ,r 8,v!5xKS,mn
21 ~r ,r 8,v!2xmn

21~r ,r 8,v!

2
1

~ iv!2
¹m

1

ur2r 8u
¹n8 ~6!

(xmn is the full response function of the interacting system!.
A local-density approximation foraxc1(r ,v) has recently

been derived by Vignale and Kohn.11 Their expression be-
comes exact when the equilibrium density and external
tential are slowly varying in space, on length scales set
kF

21 andvF /v, wherekF andvF are, respectively, the loca
Fermi wave number and velocity. It can be written in t
following form:13

iv axc1,m~r ,v!5¹mvxc1
ALDA ~r ,v!2

1

%0~r !(n
¹nsxc,mn~r ,v!.

~7!

The first term is the linearized ALDA expression~1!, and the
dynamical correction is the divergence of the viscoelas
stress tensor

sxc,mn5hxc~¹num1¹mun2 2
3 ¹•udmn!1zxc¹•udmn .

~8!

Here, u(r ,v)5 j1(r ,v)/%0(r ) is the velocity field, and
hxc„v,%0(r )… andzxc„v,%0(r )… are complex viscosity coef
ficients. They are related to the longitudinal and transve
homogeneous electron gas functionsf xcL

h (v,%) and
f xcT

h (v,%):

hxc~v,% !52
%2

iv
f xcT

h , ~9!

zxc~v,% !52
%2

iv F f xcL
h 2

4

3
f xcT

h 2
d2exc~% !

d%2 G . ~10!

The functionsf xcL(T)
h are defined in terms of the dynam

local field factors15 GL(T)(k,v) as f xcL(T)
h 5

2 limk→04pGL(T)(k,v)/k2. Explicit parametrizations of the
frequency-dependentf xcL(T)

h have recently been calculated
2D and 3D by Nifosı`, Conti, and Tosi16,17 using an approxi-
mate decoupling scheme of the equation of motion for
current density, which accounts for processes of excitatio
two electron-hole pairs.

III. LINEWIDTH OF COLLECTIVE EXCITATIONS

The collective modes of an electronic system can
found by determining the polesVn of the full response func-
tion in the complexv plane. In this special case, the r
sponse equation~2! will have finite solutions if the externa
perturbation is set to zero in Eq.~4!. One has to solve the
integral equation

(
n
E d3r 8@xALDA, mn

21 ~r ,r 8,Vn!

2 f xc,mn
visc ~r ,r 8,Vn!# Jn,n~r 8,Vn!50 ~11!
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to determine the collective mode frequenciesVn and associ-
ated mode profilesJn(r ,Vn). Here, the ALDA inverse re-
sponse function is given by

xALDA, mn
21 ~r ,r 8,v!5xKS,m n

21 ~r ,r 8,v!1
¹m

v2F 1

ur2r 8u

1d~r2r 8!
d2exc~% !

d%2 U
%5%0~r !

G¹n8 ,

~12!

and the viscosity termf xc,mn
visc is defined in terms of the stres

tensor~8! as

(
n
E d3r 8 f xc,mn

visc ~r ,r 8,v! j n~r 8,v!

5
i

%0~r ! v (
n

¹nsxc,mn~r ,v!. ~13!

The next step is to multiply Eq.~11! from the right with
Jn,m* (r ,Vn) and integrate overr :

(
mn

E d3r E d3r 8 @xALDA, mn
21 ~r ,r 8,Vn!

2 f xc,m n
visc ~r ,r 8,Vn!#Jn,n~r 8,Vn!Jn,m* ~r ,Vn!50.

~14!

In the following, we restrict ourselves to the case where
only effective damping occurs via dynamical xc effects,
discussed in the introduction. We further assume that
in
it

re
e
s
e

damping is only a small effect, i.e., ReVn@uImVnu. In other
words, the viscosity term in Eq.~11! can be viewed as a
small perturbation to the ALDA response function~12!. This
means that if we solve the~undamped! ALDA response
equation

(
n
E d3r 8xALDA, mn

21 ~r ,r 8,vn! j n,n~r 8,vn!50 ~15!

~wherevn is real!, we expect the resultingvn and j n,n(r ,vn)
to be close to ReVn andJn,n(r ,Vn), obtained from solving
the full response equation~11!. We can then perform an
expansion ofJn,n(r 8,Vn) around the undamped mode fre
quencyvn :

Jn,n~r 8,Vn!' j n,n~r 8,vn!1~Vn2vn!
] j n,n~r 8,j!

]j U
j5vn

~16!

and similarly for Jn,m* (r ,Vn), xALDA, mn
21 (r ,r 8,Vn) and

f xc,m n
visc (r ,r 8,Vn). Introducing these expansions into Eq.~14!,

we get

(
mn

E d3r E d3r 8F ~Vn2vn!
]

]vn
xALDA, mn

21 ~r ,r 8,vn!

2 f xc,mn
visc ~r ,r 8,vn!G

3 j n,n~r 8,vn! j n,m* ~r ,vn!50. ~17!

To arrive at this relation, we dropped terms of second or
in (Vn2vn) and f xc,m n

visc , and made use of Eq.~11!. We thus
obtain the viscosity-induced frequency shift as
Vn2vn5
(mn*d3r *d3r 8 f xc,m n

visc ~r ,r 8,vn! j n,n~r 8,vn! j n,m* ~r ,vn!

(mn*d3r *d3r 8$~]/]vn! xALDA, mn
21 ~r ,r 8,vn!% j n,n~r 8,vn! j n,m* ~r ,vn!

. ~18!
rt
e

-
cal
To simplify this expression, we rewrite the numerator us
definition ~13!. For the denominator, we employ an explic
expression forxKS,m n

21 (r ,r 8,v), valid for small density varia-
tion, which is derived in the Appendix, see Eq.~A13!. Using
this approximation,xALDA, mn

21 (r ,r 8,v) is explicitly known
and real, and we can easily calculate its derivative with
spect tov:

]

]v
xALDA, mn

21 ~r ,r 8,v!

52
2

vFxALDA, mn
21 ~r ,r 8,v!2

m

%0~r !
dmnd~r2r 8!G .

~19!

Using Eq. ~11! and introducing the velocity fieldun,m
5 j n,m /%0, we thus end up with
g

-

Vn2vn5
i

2m

(mn*d3r un,m* ~r ,vn!¹nsxc,mn~r ,vn!

*d3r %0~r !uun~r ,vn!u2
.

~20!

Vn2vn is in general a complex quantity. The imaginary pa
of it leads to a broadening of the intensity profile of th
collective mode. To be precise, thed shape obtained within
the ALDA is converted into a Lorentzian with FWHM~full
width at half-maximum! Gn , where

Gn5
uRe (mn*d3r un,m* ~r ,vn!¹nsxc,mn~r ,vn!u

m*d3r %0~r !uun~r ,vn!u2
. ~21!

The linewidth formula~21! has a very simple physical inter
pretation that clearly shows the analogy with classi
hydrodynamics.18 It can be written as
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Gn5
uĒ8u

Ē
, ~22!

where

Ē852Re(
mn

E d3r un,m* ~r ,vn! ¹nsxc,mn~r ,vn! ~23!

is the average energy dissipated per unit time by the vis
ity, and

Ē52mE d3r %0~r !uun~r ,vn!u2 ~24!

is the mechanical energy stored in the oscillation of the e
tron fluid, regarded as slowly decaying in time.

IV. COLLECTIVE MODES IN QUANTUM STRIPS

A. Solution of the linearized classical equation of motion

We consider in the following a single quantum strip
wire of width 2W and infinite length, defined in theyz plane
of a 2DEG by the application of a parabolic confining pote
tial v5m* V2y2/2, wherem* is the electron effective mass
The strip is oriented along thez axis, and we assume th
density to be uniform in this direction. The collective mod
in this system have been studied14,19 using a classical ap
proach ~which does not include damping!, and we here
briefly summarize the results. The classical equation of m
tion for the velocity fieldu(y,t) of the 2D electron fluid
~without external driving field! reads

m*
]u~y,t !

]t
52m* V2y12e* 2E dy8

%~y8,t !

y2y8
. ~25!

Here,e* 25e2/e accounts for the screening of the electron
chargee by a background with dielectric constante, and
%(y,t) is the 2D number density. The leading corrections
this equation of motion arising from kinetic and xc ener
can be shown19 to be negligible compared to the classic
electrostatic energy as long asW@a0* , where a0*
5\2/m* e* 2 is the effective Bohr radius. This condition
safely fulfilled for the systems we are going to treat here

The equilibrium density distribution%0(y) of the quan-
tum strip is given by

%0~y!5
2l

pW
A12 ỹ2, uyu<W. ~26!

Here, ỹ5y/W, l is the number of electrons per unit leng
in z direction, and

V25
4le* 2

m* W2
5%0~0!

2pe* 2

m* W
. ~27!

To determine the collective modes, Eq.~25! is linearized
about the equilibrium density distribution~26!:

%~y,t !5%0~y!1%1~y!e2 ivt. ~28!

Furthermore, the linearized continuity equation
s-

c-

-

-

o

l

2 iv%11
]

]y
~%0u1!50 ~29!

is used, where it is assumed thatu1(y,t) varies ase2 ivt. In
this fashion, thenth normal mode in the quantum strip
found to be14

%1,n~y!5hn

Tn~ ỹ!

A12 ỹ2
, n51,2,3,... , ~30!

whereTn denotes Chebyshev polynomials of the first kind20

andhn is a normalization constant which has the dimensio
of a 2D density. The associated mode frequencies are g
by

vn
25n V25

2p%0~0!e* 2

m*

n

W
. ~31!

The velocity profileu1,n of the nth mode is obtained in a
straightforward manner from the continuity equation~29!.
We make use of the connection

d

dỹ
@A12 ỹ2 Un21~ ỹ!#52n

Tn~ ỹ!

A12 ỹ2
~32!

between the Chebyshev polynomials of the first and sec
kind,20 and we end up with

u1,n~y,vn!52
ivnWhn

%0~0!n
Un21~ ỹ!. ~33!

The first mode,u1,1(y,v1), is the well-known center-of-mas
mode withv15V. SinceU0( ỹ)51, it has a uniform veloc-
ity profile.

B. Calculation of the linewidth

Let us now insert the collective modes of the 2D quant
strip into the linewidth formula~21!. First of all, with Eqs.
~26! and ~33! the denominator becomes

m* E d3r %0~r !uu1,n~r ,vn!u2

5m* L
vn

2W3hn
2

%0~0!n2E21

1

dỹ A12 ỹ2 Un21
2 ~ ỹ!,

~34!

whereL denotes the length of the strip~we assumeL→`).
Due to the orthogonality of the Chebyshev polynomials20

the integral on the right-hand side yields a value ofp/2.
Next, consider the stress tensor~8!, which in two dimen-

sions reduces to

sxc,mn
2D 5hxc~¹num1¹mun2¹•udmn!

1zxc¹•udmn , ~35!

so that
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(
mn

E d3r un,m* ¹nsxc,mn
2D

5L
vn

2Whn
2

%0~0!2n2E21

1

dỹ Un21~ ỹ!
]

] ỹ

3F ~zxc1hxc!
]Un21~ ỹ!

] ỹ
G . ~36!

From Eqs. ~9! and ~10! it follows that Re(zxc1hxc)5
2(%0

2/v) Imf xcL
h (%0 ,v) ~it can be shown that this relation i

valid both in 2D and in 3D!. Thus, performing a partial in
tegration in Eq.~36! and dividing by Eq.~34!, we get the
ratio between linewidth and mode frequency of thenth col-
lective mode in the quantum strip:

Gn

vn
5

n

p2e* 2W
E

21

1

dỹ ~12 ỹ2!

3uImf xcL
h

„%0~ ỹ!,vn…uS 1

n

]Un21~ ỹ!

] ỹ
D 2

. ~37!

We see immediately that the center-of-mass mode (n51) is
undamped since]U0 /] ỹ50. All modes withn>2 will have
a nonvanishing linewidth, however.

By construction, Eq.~37! is appropriate for modes with
small indexn, which are the most important cases in pra
tice. However, the situation gets more complicated as
mode indexn increases (n * 10). The Chebyshev polyno
mialsUn21( ỹ) then become more and more rapidly oscilla
ing, especially towards the edges of the strip. In the limit
n,W→` for fixed ratio n/W, application of Eq.~37! as it
stands would lead to a logarithmically diverging linewidt
The reason for this clearly unphysical behavior is that
hydrodynamical modes, which we take as unperturbed s
tions for our linewidth formula, are well defined only whe
they are slowly varying. In reality, for largen the modes
enter the regime where Landau damping~creation of single
electron-hole pairs! becomes possible, which will suppre
the short-wavelength components of the mode. In orde
account for this effect, the formalism to calculate the lin
width will be suitably modified in the following.

C. Landau versus xc damping

Let us first consider the case of a homogeneous 2DEG

density%̄51/pr s
2 and Fermi wave vectorq̄F5A2p%̄. Lan-

dau damping sets in when the plasmon dispersion cu
v 2DEG(q) ~see below! enters the particle-hole continuum
This occurs at a certain cutoff wave vectorq̄c , which may be
determined by solving21

v 2DEG~ q̄c!5q̄c q̄F1
q̄c

2

2
. ~38!

In order to obtain a comparable criterion for the inhom
geneous quantum strips, we need to introduce the conce
-
e

f

e
u-

to
-

of

e

-
of

the local wave vectorqn( ỹ). We first consider the center o
the strip whereỹ'0. Making use of the identity20

Un21~ ỹ!5
sin~n arccosỹ!

A12 ỹ 2
, ~39!

and expanding arccos y˜ ' ~p/2! 2ỹ for small ỹ, it is easy to
see that the normal collective modes~33! reduce forỹ'0 to

u1,n~ ỹ!→2
ivnhnW

%0~0!n H 2~21!n/2sin~nỹ!, n even

~21!~n21!/2cos~nỹ!, n odd.
~40!

We can therefore assign to each collective mode a w
vectorqn(0)5n/W in the center of the strip. Assuming tha
the modes behave locally as sin@qn(ỹ)y# or cos@qn(ỹ)y# for all
values ofuyu,W, we can determine the local wave vector
qn( ỹ)5p/@WDn( ỹ)#, where Dn( ỹ) denotes the local dis
tance between two nodes ofu1,n( ỹ,vn). To determine
Dn( ỹ), we make use of the fact20 that themth zero of the
Chebyshev polynomialUn21( ỹ) is located at the position
ỹm5cos@(m/n)p#. Therefore,

Dn~ ỹ!5cosS m

n
p D2cosS m11

n
p D

'
p

n
sinS m

n
p D5

p

n
A12 ỹm

2 , ~41!

where we assumen,m@1. This yields the local wave vecto

qn~ ỹ!5
n

W

1

A12 ỹ 2
. ~42!

The local cutoff wave vectorqc( ỹ) now follows from Eq.
~38! by replacing the homogeneous density%̄ with the equi-
librium density profile%0( ỹ)5%0(0)A12 ỹ2, see Eq.~26!,

thus defining a local Fermi wave vectorqF( ỹ)5A2p%0( ỹ).
We then use relation~31! in place of the plasmon dispersio
v2DEG(q). This yields the following equation forqc( ỹ):

qc~ ỹ!S qF~ ỹ!1
qc~ ỹ!

2
D 2

52p%0~0!
e* 2

m*
A12 ỹ 2.

~43!

To illustrate this concept, we consider the concrete
merical example of a quantum strip with%0(0)52.0
31011 cm22 and arbitrary width 2W (W@a0* ). Having in
mind systems based on GaAs/AlxGa12xAs, we set m*
50.07m and e513. This means that the Bohr radius b
comesa0* 598.3 Å, and we use Hartree energy units w
1 Hartree*511.27 meV.

In Fig. 1 we plot the local cutoff wave vectorqc( ỹ) for
this strip, together with the local wave vectorsqn( ỹ) of some
collective modes withqn(0)5n/W5aqc(0), wherea var-
ies between 0.1 and 0.9. We see thatqn lies well belowqc in
the interior of the strip as long asa is still small, andqc( ỹ)
and qn( ỹ) intersect atỹc

(n) close toỹ561. For a→1, the
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curves forqn( ỹ) move upwards and the points of interse
tion with qc( ỹ) move towards the center of the strip (u ỹc

(n)u
→0!. For a.1, qn( ỹ) lies entirely aboveqc( ỹ), which
means that corresponding modes are completely Lan
damped. In all other cases (0,a,1), however, Landau
damping will affect the modes only partially.

Let us now form the limitn,W→` where the ration/W
5qn(0) is kept fixed. In this regime it is well justified~see
below! to assume that Landau damping is so strong as
suppress the mode locally in the regionsu ỹc

(n)u,u ỹu,1 in

which it occurs,22 i.e., for qn( ỹ).qc( ỹ). The linewidth for-
mula ~37! then becomes

FIG. 1. Full line: cutoff wave vectorqc( ỹ) @Eq. ~43!# for a
quantum strip of width 2mm and density in the center%0(0)52

31011 cm22. Dashed lines: local wave vectorqn( ỹ) @Eq. ~42!# of
collective modes withqn(0)5aqc(0), with values ofa between
0.1 and 0.9, as indicated. In the case of largen and W, Landau
damping occurs mostly in the regions of the strip whereqn.qc ,

i.e., between the points of intersectionỹc
(n) and the boundaries o

the strip. In the interior region, damping is mainly caused by
much weaker dynamical xc effects. Forqn(0).qc(0), themodes
are completely Landau damped.
e-

a
th

e

au

to

Gn

vn
——→
n,W→` qn~0!

2pe* 2

3

*
2 ỹ

c
~n!

ỹc
~n!

dỹ ~12 ỹ 2!21uIm f xcL
h ~%0~ ỹ!,vn!u

*
2 ỹ

c
~n!

ỹc
~n!

dỹ ~12 ỹ2!21/2
.

~44!

To arrive at this relation, we have utilized the identities20

]Un21

] ỹ
5

1

12 ỹ 2
@Un2~n11!Tn#, ~45!

Un21
2 5

1

12 ỹ 2
~12Tn

2!. ~46!

Recognizing the fact that theTn become more and mor
rapidly oscillating between21 and 1 for increasingn, we
can replace them by their average value 0.5.

Clearly, the simple notion of ‘‘local damping’’ will not be
valid in the regime where bothn andW are finite. Here, we
need a more refined, nonlocal criterion to account for Land
damping. The idea is to perform a global Fourier analysis
the mode and to define a cutoff in momentum space ra
that in real space. This procedure may be viewed as a ‘
ter’’ to remove the large-q components of the mode, whic
are the ones to be suppressed by Landau damping. In p
tice, we replace the Chebyshev polynomialsUn21( ỹ) in Eq.
~33! by their convolution with the Fourier transform of
rectangular window inq space:

Ūn21~ ỹ!5
1

pE21

1

dx Un21~x!
sin@ q̃c,n~ ỹ2x!#

ỹ2x
. ~47!

For a given width 2W of the strip, q̃c,n is defined asq̃c,n

[qn( ỹc
(n))W. The ratio between linewidth and mode fre

quency of thenth collective mode then reads

e

Gn

vn
5

qn~0!

2pe* 2

*21
1 dỹ ~12 ỹ 2!uImf xcL

h ~%0~ ỹ!,vn!u@~1/n!~]Ūn21~ ỹ!/] ỹ!#2

*21
1 dỹA12 ỹ 2Ūn21

2 ~ ỹ!
. ~48!
es
In the limit n,W→` with n/W fixed, Ūn21( ỹ) tends to

Un21( ỹ) for u ỹu,u ỹc
(n)u and zero otherwise, which a post

riori justifies the limit ~44! of local damping.

D. Numerical results and discussion

Before applying the linewidth formulas~37!, ~44! and
~48! to a concrete example, it is instructive to have a look
the homogeneous 2DEG. The long-wavelength limit of
random-phase approximation plasmon dispersion is w
known:21,23
t
e
ll

v2DEG~q!25
2p%̄e* 2

m*
q, ~49!

where%̄ is the homogeneous 2D density andq is the wave
vector. The ratio between the linewidth of collective mod
and the mode frequency is given~for small q) by

G2DEG

v2DEG
5

q

2pe* 2
uIm f xc

h ~ %̄,v2DEG!u. ~50!
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Similar to the 3D case,6,15 this result follows from finding the
zeros of the dielectric function in the long-waveleng
limit.21 Note that we define the linewidthG as twice the
imaginary part of the mode frequency.

In the following, we shall compare the linewidths of co
lective modes in quantum strips with the plasmon linewid
in a homogeneous 2DEG. Density%̄ and wave vectorq in
the 2DEG are taken to be the same as the equilibrium den
%0(0) and the local wave vectorqn(0)5n/W in the center
of the strips. The plasmon frequency~49! then exactly
matches the corresponding mode frequency in the strip,
~31!. However, it will turn out that the imaginary parts of th
mode frequencies are strikingly different.

To evaluate the homogeneous and inhomogeneous
width formulas, we furthermore need the imaginary part
f xcL

h (%0 ,v) in two dimensions as input. For this we emplo
the parametrization by Nifosı`, Conti, and Tosi,17 given for
discrete values ofr s and variablev, and use cubic splines t

interpolatef xcL
h for fixed vn and variabler s>1/Ap%̄. Note

that theq dependence off xcL
h has been neglected.

Our numerical results are summarized in Fig. 2, wh
showsG/v versus wave vector for the homogeneous 2D
and two different quantum strips. In the latter case,q refers
to the center of the strip, i.e.,q[n/W. As in the example
treated in Sec. IV C, we consider here systems based
GaAs/AlxGa12xAs with %0(0)5%̄52.031011 cm22.

The dashed line showsG 2DEG/v 2DEG for the homoge-
neous system, up to a cutoff wave vectorqc50.614a0*

21.
We find thatG 2DEG/v 2DEG grows asq3/2 for smallq. This is
easily seen from Eq.~50! by noting thatf xcL

h (%0 ,v) starts
out linearly with v ~see Ref. 17!, while from Eq. ~49! we
havev}Aq.

The discrete symbols refer toGn /vn for two quantum
strips with different widths:W51 mm ~squares! and W

FIG. 2. Ratio of linewidthG and mode frequencyv vs wave
vector. Dashed line:G2DEG/v2DEG for a homogeneous 2DEG o

density%̄5231011 cm22. Full line: limiting curveG` /v` for an

infinitely large quantum strip, with%0(0)5%̄ and fixedq5n/W.
Symbols:Gn /vn vs qn5n/W for two different quantum strips with

%0(0)5%̄ and widthsW51 mm ~squares! and W520 mm ~dia-
monds!. Each symbol denotes a collective mode with indexn, start-
ing with n52.
s

ity

q.

e-
f

on

520mm ~diamonds!. The points represent the collectiv
modes with increasing indexn5qW. Let us first consider
small values ofn, for which Eq.~37! applies. For the lowes
mode with nonvanishing linewidth (n52), Gn /vn is in both
cases only slightly higher than the correspondi
G2DEG/v2DEG. In contrast to the latter, however,Gn /vn

grows initially asq3 and therefore reaches values that a
considerably higher thanG2DEG/v2DEG. Comparing Eqs.
~37! and~50!, we see that this enhancement is mainly due
the Chebyshev polynomialsUn21, which have the form of

sines and cosines forỹ'0, see Eq.~40!, but oscillate more
and more rapidly as one moves away from the center of

strip, so that (]Un21 /] ỹ)2 strongly increases. In addition t

this, Im f xcL
h

„%0( ỹ),vn… grows with decreasing densit

%0( ỹ). On the other hand, the factor (12 ỹ2) goes to zero for

ỹ→61, but is too weak to suppress the enhancement o
the homogeneous case.

After the initial rapid increase over the first fewn, the
modes start picking up Fourier components beyond the
off momentum, which have to be removed to account
Landau damping as discussed above, see Eq.~48!. The
Gn /vn for both strips then approach the limiting curv
G` /v` ~see below!. For W51 mm this happens at aroun
n510, and forW520mm at aroundn540. For the nar-
rower strip, the highest mode belowqc has the indexn
562. All higher modes will be completely Landau dampe
as discussed in Sec. IV C. For the wider strip, only the fi
150 modes have been indicated. The higher modes~up to n
51249) are very densely spaced and all fall on the limiti
curve.

Letting W and n approach infinity for a givenq5n/W
and fixed%0(0), we obtain the limitG` /v` from Eq. ~44!,
as shown by the full line. We note thatG` /v` grows asAq
for small q and is almost three orders of magnitude abo
G2DEG/v2DEG for q50.001a0*

21. As q increases, the dis
tance between the curves becomes less, and they mer
q5qc . To understand this behavior, recall thatu ỹcu→0 for
q→qc . In this limit one integrates in Eq.~44! only over a
narrow stretch in the interior region of the strip where t
density is practically uniform.

To summarize, the viscosity-induced linewidth of colle
tive modes in finite quantum strips is found to be subst
tially higher than in the homogeneous 2DEG, in particu
for small wave vectors. This enhancement is due to
strong inhomogeneity in the strips, and it persists even if
let their width become infinitely large. The explanation f
this lies in the equilibrium density distribution~26!, the
shape of which scales withy/W and is therefore invariant if
the width of the strip changes. This means that the prese
of the boundaries is always felt over the whole interior
gion of the quantum strip, regardless of its width. This str
ing feature can be traced back to the parabolic shape of
confining potential. A limiting process that for increasin
width eventually leads to the homogeneous 2DEG wo
have to eliminate the influence of the boundaries. This m
for instance be accomplished by letting the confining pot
tial gradually approach a square-well form for large width
thus arriving at a uniform equilibrium density distributio
over the whole strip.
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V. CONCLUSION

In this paper, we have proposed a simple way to calcu
the linewidths of collective electronic excitations induced
damping through dynamical xc effects. The method is ba
on time-dependent current density-functional theory, an
includes exchange and correlation effects in terms of
coelastic stresses in the electron fluid. The basic idea i
first calculate the collective modes using the adiabatic lo
density approximation. The latter accounts for sing
particle-hole production~Landau damping! only, i.e., high-
frequency, long-wavelength modes will be undamped. T
viscosity-induced damping effects are then added on pe
batively.

We have applied the formalism to calculate the linewid
of collective modes in 2D quantum strips. The advantage
these systems is that the mode profiles are known ana
cally through solution of the linearized classical equation
motion. It was found that the modes in the strips are mu
more strongly damped than the corresponding plasm
modes in a homogeneous 2DEG. For small wave vectors
observed an order-of-magnitude enhancement over
2DEG due to the inhomogeneity of the strips. As the regi
of Landau damping is approached for growing wave vecto
the enhancement disappears. Contrary to expectation
found that the behavior of the quantum strips with a pa
bolic confining potential does not approach that of a 2DEG
the width is increased to infinity.
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APPENDIX

In this appendix, we derive an explicit expression for t
Kohn-Sham current-current response functi
xKS,m n (r ,r 8,v), see Eq.~3!, valid for systems in which the
unperturbed static density%0(r ) is slowly varying on the
scales of the localkF

21 andvF /v. Besides its importance in
the present work, this formula forxKS,mn could also be of use
in the study of van der Waals interactions.24,25 For this rea-
son we supply here some details of the derivation.

In order to obtain the coefficients of the gradient expa
sion of xKS,m n up to second order in the gradients, we fi
consider an electron gas subject to a potential modula

FIG. 3. First-order diagrams contributing to the paramagn
part of the noninteracting current-current response function.
te
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v0(r )5g cos(q–r ) that is both small and slowly varying
Thus,

%0~r !5%̄1gxh~q,0!cos~q–r !, ~A1!

where q!kF ,v/vF and g!1. Here, xh(q,0) is the static
noninteracting response function, whose small-q limit is
given by15 2kF

2/(3%̄m). Let us now denote the second~i.e.,
the paramagnetic! part on the right-hand side of definition~3!
by Rmn(r ,r 8,v). We introduce the momentum representati
of Rmn as

Rmn~k1sq,k,v!

5E d3r E d3r 8 Rmn~r ,r 8,v!e2 i ~k1sq!reikr 8, ~A2!

wheres is an integer. The inverse of this relation reads

Rmn~r ,r 8,v!5(
s
E d3kRmn~k1sq,k,v!ei ~k1sq!re2 ikr 8.

~A3!

To first order ing, only those components ofRmn with s
50,61 are nonvanishing, and we have

Rmn~k,k,v!>Rmn
h ~k,v!. ~A4!

Here,Rmn
h (k,v) denotes the paramagnetic current respo

tensor of the homogeneous electron gas, which is given12

Rmn
h ~k,v!5

%̄kF
2

5m3v2
@2kmkn1k2dmn#. ~A5!

To calculate the off-diagonal contributionRmn(k1q,k,v),
we start with the expression

Rmn~k1q,k,v!5
g

2m2 (
p,v8

S p2
k

2
1

q

2D
m
S p2

k

2D
n

3G~p2k,v8!G~p,v1v8!

3G~p1q,v1v8!

1~q˜2q,k→2k,v→2v!, ~A6!

which follows from the first-order diagrams shown in Fig.
according to the usual rules of diagrammatic many-bo
theory.6 G denotes the free-particle Green’s function:

G~p,v!5@v2ep2 ih sign~kF2p!#21, h501,
~A7!

whereep5p2/2m. The frequency integral in Eq.~A6! is eas-
ily carried out using contour integration, and we obtain, af
some rearrangement,

c
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Rmn~k1q,k,v!5
g

m2(p
S p1

k1q

2 D
m

3S p1
k

2D
n

1

ep1k1q2ep1k

3F ~np1k2np!~ep1k2ep!

v21~ep1k2ep!2

2
~np1k1q2np!~ep1k1q2ep!

v22~ep1k1q2ep!2 G ,

~A8!

with np5u(kF2p). In the limit of small k and q we can
neglect (ep1k2ep)

2 and (ep1k1q2ep)
2 with respect tov in

the denominators. Equation~A8! thus simplifies to

Rmn~k1q,k,v!>
g

m2v2(p
S p1

k1q

2 D
m
S p1

k

2D
n

3F ~np1k2np!~ep1k2ep!

ep1k1q2ep1k

2
~np1k1q2np!~ep1k1q2ep!

ep1k1q2ep1k
G .

~A9!

Expandingnp1k and np1k1q aroundnp , the terms in the
square brackets reduce to

2
np8

mFk–p1
k2

2
1~k1q!•p1

~k1q!2

2 G1
np9

2m2
$~k–p!2

1@~k1q!•p#21~k–p!@~k1q!•p#%. ~A10!

The momentum integration can now be carried out, and a
some lengthy algebra we end up with
G

.
Sc
-
A

r-
m

p-
e

,
nd

rd
er

Rmn~k1q,k,v!52
g%̄

2m2v2

3@qmqn1k•~k1q!dmn12km~kn1qn!#.

~A11!

We now insert the zero- and first-order contributions~A5!
and ~A11! into Eq. ~A3! to transform back into coordinat
space. From the resulting expression, we can identify
coefficients of the gradient expansion ofxKS,mn . The final
result is

xKS,mn~r ,r 8,v!5
%0~r !

m
d~r2r 8!dmn2

%0~r !kF
2

5m3v2
~2¹m¹n

1¹2dmn!d~r2r 8!2
kF

2

3m3v2
d~r2r 8!

3@¹m¹n2~¹•¹8dmn12¹m8 ¹n!#%0~r !.

~A12!

From this, the inverse, correct up to second order in
gradients, is easily obtained as

xKS,mn
21 ~r ,r 8,v!5

m2

%0
2~r !

H %0~r !

m
d~r2r 8!dmn

1
%0~r !kF

2

5m3v2
~2¹m¹n1¹2dmn!d~r2r 8!

1
kF

2

3m3v2
d~r2r 8!@¹m¹n2~¹•¹8dmn

12¹m8 ¹n!#%0~r !J . ~A13!
.
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