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It is well known that high-frequency collective excitations in electronic systems are not Landau damped, i.e.,
they cannot decay effectively into single particle-hole pairs. The leading damping mechanism in this regime is
instead provided by dynamical exchange and correlation effects, such as multipair production. These effects
are not captured by the widely used adiabatic local-density approxim@iddA ), which accounts for Landau
damping only. In the recently developed time-dependent current density-functional forrh@lisrignale, C.

A. Ullrich, and S. Conti, Phys. Rev. Let?9, 4878(1997], exchange and correlation enter as viscoelastic
stresses in the electron fluid, causing an additional damping that is not contained in the ALDA. We use this
theory to derive an explicit formula for the linewidth of collective electronic excitations that are not Landau
damped. The formula is then applied to calculate the linewidth of collective modes in two-dimer(&Dpal
guantum strips. In comparison with the corresponding modes in the homogeneous 2D electron gas, we find an
order-of-magnitude enhancement of the linewidth due to the nonuniformity of the system.
[S0163-182698)05436-9

I. INTRODUCTION multipair production. In the following, we shall develop a
new method to calculate the linewidth of collective excita-
Collective excitations of electrons in semiconductor nano+ions related to dynamical xc effects.
structures such as quantum wells, quantum wires, and quan- The standard method for calculating collective excitations
tum dots have become a research field of great theoretic&f the inhomogeneous electron gas is to find the poles of the
and experimental interest in recent yeaTis is largely due ~ density-density response functioh.Such a calculation is
to the tremendous improvements in semiconductor growti§onveniently performed within the framework of time-
techniques that allow one to tailor the potential across aflependent density-functional thed§In this formalism, all
electron film in a heterostructure practically to any desiredlynamic xc effects of the electron gas are accounted for
shape, through a suitable choice of the quantum well desigifirough a local time-dependent xc potentigi(r,t). The
As a typical example we mention the widely studied para_Iatter is usually a_pprommated as a function of the instanta-
bolic quantum wells with and without imperfectiohThese neous local density,
systems approximate the jellium model much more closely de (o)
. . . . . ALDA XC Q

than conventional metals, since their Fermi wavelength is Uye (r,it)= d ,
substantially larger than the crystalline lattice spacings, sup- ¢ lo=otrw

pregsing complicated effects of the lattice potential. wheree, (o) is the xc energy density of the homogeneous

Single’ and doublé square wells represent another type of glectron gas of densitg. This scheme is known as the adia-
heterostructure that is of great theoretical as well as techngsatic [ocal density approximatiofALDA ). If used to calcu-
logical interest. The lowest collective intersubband excita{ate the full response function of the system, the ALDA ac-
tions in these systems have energies below the optical ph@ounts for the Landau damping of high-frequency collective
non energy and have been studied in photoabsorptiomodes. However, outside the regime where Landau damping
experiments in the far-infrared regime. The energy relaxatioccurs, the modes calculated within the ALDA will come out
for these modes proceeds via electron-electron, electronindamped:'°To describe the relaxation of these modes over
impurity, and acoustical-phonon scattering, as well aghe whole range of frequencies and wave vectors, one has to
optical-phonon scatteringat nonzero temperatyreHow-  go beyond the ALDA and include retardation effects. This
ever, the relative importance of the various possible dissipatask can be accomplished with the use of the recently devel-
tion mechanisms is still not well understood. oped time-dependent current density-functional thébfy.

In this work, we consider the decay of collective excita-In this formalism, dynamical exchange and correlation lead
tions in inhomogeneous electronic systems due to electrorie the appearance of viscoelastic stresses in the electron
electron interaction, which is the leading effect at zero tem+luid,*® with complex and frequency-dependent viscosity co-
perature and in the absence of impurities. The main dampingfficients depending on properties of the homogeneous elec-
mechanism of low-frequency collective electronic modes idron gas. The viscosity, in particular, causes an additional
decay into single particle-hole pairs, also known as Landaulamping not contained in the ALDA.
damping® For high-frequency modes, however, this decay The paper is organized as follows: In Sec. Il we briefly
mechanism is not effective, and damping is instead induceceview the main features of time-dependent current density-
by dynamical exchange and correlatiow) effects such as functional theory in the linear regime. We then derive in Sec.
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[Il a formula to calculate the linewidth of collective excita- fxc,w(f,f',w):X;Zsl,w(fyf',w)—)(,:yl(f,f',w)

tions outside the regime of Landau damping. The idea is to ' '

first calculate thgundampegl modes within the ALDA and 1 1

then include the viscosity-induced damping perturbatively. -—V v, (6)

H 2 ML
Relevant details of the calculation are given in the Appendix. (io) r=r’]

In order to demonsrate the practicality of the approach, W& x ., is the full response function of the interacting system
then apply it in Sec. IV to aollecnve modes in two- A |ocal-density approximation foa,(r,») has recently
dimensional(2D) quantum strips? The advantage of these been derived by Vignale and Kol Their expression be-
systems is that they can be treated analytically, within @ hytomes exact when the equilibrium density and external po-

drodynamical approximation, and thus allow us to gain SyStengial are slowly varying in space, on length scales set by

tematic insight into the damping of collective modes in an -1 andvg/w, wherekgs andv are, respectively, the local

; ! F
inhomogeneous model system. We find that the boundarP'fermi wave number and velocity. It can be written in the
effects caused by the confinement of the 2D electron gaﬁ)llowing form:13

(2DEQG) lead to a strong enhancement of the linewidth as

compared to the homogeneous case. A detailed comparison 1

of our theory with experimental results, which are availablej o a,q ,(r,0)=V ALDA(F w)— TE V0l @).
[~ '

Uxcl
for systems such as the quantum wells mentioned above, is e
the subject of currently ongoing studies. (7)
The first term is the linearized ALDA expressi@h, and the
Il. CURRENT DENSITY-FUNCTIONAL THEORY dynamical correction is the divergence of the viscoelastic
IN THE LINEAR REGIME stress tensor

We consider an interacting electronic system with )
ground-state densitp,(r) that is perturbed by a weak ex-  Oxeur™ Mxe Vilu+ VU, = 5V-US,,) 4V -USy, .
ternal vector potentiadil(r,w)e‘i“’t. The current-density re- ®
sponsg(r,w)e”"", to first order inay, is given by Here, u(r,w)=j,(r,w)/oo(r) is the velocity field, and
Nx(w,00(r)) and £, (w,0(r)) are complex viscosity coef-
ficients. They are related to the longitudinal and transverse
homogeneous electron gas functionﬁ}cL(w,Q) and

2  fhw0):

Here, xks,.,(r,r",w) is the current-current response func- 02 A
tion of a system of noninteracting electrons with the same Nyl @,0)=— . fers ()
densityoq(r), defined as

jl,p.(rvw)zz fdsr’XKS,ﬂv(rvrliw) aeffl,v(r,!w)'

e? . 4 de.(0)

, Qo(r) , 1 ®,0)=——|fyo— - 10
XksulToF @)= == 3(r=r")8,,+ FaEB (fo—Tp) O @,0) == =) Txe. = 3 Ter do? (10
YEDY a5V (1) The functionsff(‘cL(T) are defined in terms of theh dynamic

, (3 local field factor$® Guq(kw) as fim=
—Iimk_,o47rGL(T)(k,w)/k2. Explicit parametrizations of the
frequency—dependemch(T) have recently been calculated in
2D and 3D by Nifosi Conti, and Tosf'*” using an approxi-
mate decoupling scheme of the equation of motion for the
current density, which accounts for processes of excitation of
two electron-hole pairs.

w—(gg—g,)tin

where ¢, are the solutions of the unperturbed static Kohn-
Sham equation, with eigenvalueg (note that we seeé=c

=1 in this and the following sectignThe effective vector
potential entering Eq2) is

, Vi e)

=]

lll. LINEWIDTH OF COLLECTIVE EXCITATIONS

\Y
Beira(1, 0) =ay(r,w) + — 2j d3r
(iw) The collective modes of an electronic system can be
+ay(r,w). (4)  found by determining the pole3,, of the full response func-
tion in the complexw plane. In this special case, the re-
a,q1(r,w) is the first-order xc vector potentiaihich in gen-  sponse equatiof?) will have finite solutions if the external
eral contains both longitudinal and transverse teriiisnay  perturbation is set to zero in E¢4). One has to solve the

be expressed as integral equation

axclu,w):fd?’r'fXC(r,r',w)-jl(r',m, (5) Ey fd3r’[x;6m,m<r,r’,ﬂn)

where the %3 tensor kernef, ,, is defined as —free, (1,1, Q0)] 35,1, Q) =0 (11



PRB 58

to determine the collective mode frequendies and associ-
ated mode profiled,(r,Q,). Here, the ALDA inverse re-
sponse function is given by

-1 ’ -1 ’ V,‘L 1
XALDA,/.LV(r’r 1w)=XKS,#V(r1r ,(1))+—2 E
o?||r—r’|
d%e
+5(r—r’)—x°(29) A
dQ 0=0¢(r)
(12

and the viscosity terni’s® ' is defined in terms of the stress

XC,uv
tensor(8) as
f '

Qo(r)

The next step is to multiply Eql1) from the right with
J:VM(r,Qn) and integrate over:

visc
f Xc ,u.l/

L) j,(r )

E \Y ch,uv(r w). (13

r [ " Lo, (11700

visc
- fXC;/, V(

n)]‘Jn W1, n)J:,#(r,Qn)IO.

(14)
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damping is only a small effect, i.e., Rg>|Im£,|. In other
words, the viscosity term in Eq11) can be viewed as a
small perturbation to the ALDA response functig®). This
means that if we solve théundampe@l ALDA response
equation

2 j dsr,X;L].DA,,uv(r'r,’wn)jn,v(r,!wn)zo (15)

(wherew, is rea), we expect the resulting, andj, ,(r, o)

to be close to R&@, andJ, ,(r,(},), obtained from solving
the full response equatiofill). We can then perform an
expansion ofJ, ,(r’,€,) around the undamped mode fre-
quencywy:

Qn)%jn,v(r,a(‘)n)'*_(ﬂn_(J')n) o0&

Jn,v(r’1
£=w,

(16)

(120, Xaiba, ulrr'.Qn) and
). Introducing these expansions into Efj4),

i *
a\?g S|m|/IarIy for J7 .
fxcw(r,r ,Q

we get

2 | dr fdf* '[(n —on) 3 XAEDAMrr ,@n)

_ fuisc

XC,Lw(r r

", @p)

17

X jnu(r', wn)jzﬂ(r w,)=0.

In the following, we restrict ourselves to the case where thel'o arrive at this relation, we dropped terms of second order

only effective damping occurs via dynamical xc effects, asn (Q,

visc
fXC v

- w,) and and made use of Eqll). We thus

discussed in the introduction. We further assume that thebtain the viscosity- mduced frequency shift as

O —w derde f\)ilcsf;y(r r',on) jn A1 wn)j:,u,(ran) (19)
ne derfdsr'{w/awn)waA w110 o1 @) (1, @)
|
To simplify this expression, we rewrite the numerator using i S [d3r Ut (re)V,o (r,op)
definition (13). For the denominator, we employ an explicit O, — w,==— —— . Mpr ' N7V XC"‘; n
expression fopyg, (1.1, @), valid for small density varia- 2m J&r @o(r)|un(r, wp) 0

tion, which is derived in the Appendix, see E&13). Using
this approximation,X;,_lDA’W(r,r’ ,w) is explicitly known

and real, and we can easily calculate its derivative with reQ)  — w,, is in general a complex quantity. The imaginary part

spect tow:
J -1 ’
a_wXALDA,;w(rvr ,0)
2l , m
= Z XALDA,,uV(r!r ,(1)) Q (r) ,uvé(r_r )

(19

Using Eg. (11) and introducing the velocity fieldu, ,
=]jn,u/€0, we thus end up with

of it leads to a broadening of the intensity profile of the
collective mode. To be precise, tl#eshape obtained within
the ALDA is converted into a Lorentzian with FWHMull
width at half-maximumTI',, where

_ | Re E,uvfdsr u:,ﬂ(r vwn)vvo'xc,/w(rawn”

n mfd3 0o(r)|un(r,wn)|?

(21)

The linewidth formula(21) has a very simple physical inter-
pretation that clearly shows the analogy with classical
hydrodynamics? It can be written as
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E'| Ciwpit -
Fnz?, (22) lw@+ ay (QOul) 0 (29
where is used, where it is assumed thg{(y,t) varies ase™'“. In
this fashion, thenth normal mode in the quantum strip is
found to bé*
2Re2 d3 U} L (rwn) V050 u(ron) (23
Ta(y)
is the average energy dissipated per unit time by the viscos- C1n(Y) =m0 N n=123,..., (30
ity, and y

whereT, denotes Chebyshev polynomials of the first kifid,
EZZmJ d3 o(N)|un(r,wy)|? (24) andyp,isa no_rmalization constant which has the_dimensiqns
of a 2D density. The associated mode frequencies are given

is the mechanical energy stored in the oscillation of the elecby
tron fluid, regarded as slowly decaying in time.
2w0(0)e*? n

2_ 2_
=n Q°= —. 31
IV. COLLECTIVE MODES IN QUANTUM STRIPS “n m* w (31)

A. Solution of the linearized classical equation of motion . ) . . .
The velocity profileu,, of the nth mode is obtained in a
We consider in the following a single quantum strip or straightforward manner from the continuity equati(#9).
wire of width 2W and infinite length, defined in thez plane  We make use of the connection
of a 2DEG by the application of a parabolic confining poten-

tial v =m* Q2y?/2, wherem* is the electron effective mass. d _ _ T.(%)
The strip is oriented along the axis, and we assume the —[V1-y? U, 1(y)]=— = (32
density to be uniform in this direction. The collective modes dy vi=y

in this system have been studté®® using a classical ap-
proach (which does not include dampinhgand we here
briefly summarize the results. The classical equation of mo-
tion for the velocity fieldu(y,t) of the 2D electron fluid

between the Chebyshev polynomials of the first and second
kind,?° and we end up with

(without external driving fieltireads Uy (Vo) = — twn Wy Uy a(3). 33)
Mo 20(0)n
J |t . .
* u(a_i')_ *sz+2e*2f dy’ ey, ,)_ (25)  The first modeyy 4(y, 1), is the well-known center-of-mass
y—y

mode withw;=0. SinceU,(y)=1, it has a uniform veloc-

Here,e* 2= e?/ e accounts for the screening of the electronicity Profile.

chargee by a background with dielectric constaat and

o(y,t) is the 2D number density. The leading corrections to B. Calculation of the linewidth

this equation of motion arising from kinetic and xc energy

can be showh to be negligible compared to the classical

electrostatic energy as long a%v>aj, where aj

=#%2/m*e*? is the effective Bohr radius. This condition is

safely fulfilled for the systems we are going to treat here.
The equilibrium density distributiom(y) of the quan- m*f d3r 0o(r)|ugn(r,wpy)|?

tum strip is given by

Let us now insert the collective modes of the 2D quantum
strip into the linewidth formula21). First of all, with Egs.
(26) and(33) the denominator becomes

2\©\/3,.2
2)\ — — m* wnW nnfl ~ Y 2 ~
0o(y)= 1=V, Iyl=W. (26 Moz Y VY Uy,
~ . . (34)
Here,y=y/W, \ is the number of electrons per unit length
in z direction, and whereL denotes the length of the strigze assume.— o).
Due to the orthogonality of the Chebyshev polynomfAls,
, 4ne*? 2mwe*? the integral on the right-hand side yields a valuemd®.
0= WP =00(0) W (27) Next, consider the stress teng8y, which in two dimen-
sions reduces to
To determine the collective modes, E@5) is linearized
about the equilibrium density distributiai26): Toour= MoV U, TV ,u,~V-us,,)
e(y.t)=eo(y)+e1(y)e ' (28 + eV Uy, (35)

Furthermore, the linearized continuity equation so that



PRB 58

3, % 2D
d°r un’MV,,chCW

>

nv

J

w2Wr, j 1
90(0)2n2 -1

U, _q(y
(Lxct Mxe) ~l(y)1
ay

~ d
dy Unfl(Y)_,v
ady

X (36)

From Egs. (9) and (10) it follows that Re{,.+ 7)) =
—(Qélw) Imf'QcL(QO,w) (it can be shown that this relation is
valid both in 2D and in 3 Thus, performing a partial in-
tegration in Eq.(36) and dividing by Eq.(34), we get the
ratio between linewidth and mode frequency of tith col-
lective mode in the quantum strip:

I'n

oy gler W

[ a-p
1 aUn—l(S‘/)

2
x|Imtlg (o) wnll| & == ) 37

We see immediately that the center-of-mass made ) is
undamped sinceU,/dy=0. All modes withn=2 will have
a nonvanishing linewidth, however.

By construction, Eq(37) is appropriate for modes with

small indexn, which are the most important cases in prac-
tice. However, the situation gets more complicated as the

mode indexn increasesif = 10). The Chebyshev polyno-

mialsU,_4(y) then become more and more rapidly oscillat-
ing, especially towards the edges of the strip. In the limit of

n,W—oo for fixed ration/W, application of Eq.(37) as it

stands would lead to a logarithmically diverging linewidth.
The reason for this clearly unphysical behavior is that thel_
hydrodynamical modes, which we take as unperturbed solu-
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the local wave vectog,(y). We first consider the center of
the strip wherey~0. Making use of the identify

_sin(n arccosy)

Un_1(y)= (39

1-y?
and expanding arccos# (#/2) —y for smally, it is easy to
see that the normal collective mod@&s) reduce for}wo to

n even

i w7 W [ — (= 1)"3sin(ny),
ul,n(y)_>

~ 2o(O)n (—1)(""Y2cogny), n odd.

(40)
We can therefore assign to each collective mode a wave
vector(,(0)=n/W in the center of the strip. Assuming that

the modes behave locally as [gi(y)y] or co$a,(y)y] for all
values ofly|<W, we can determine the local wave vector as

an(y) =m/[WA,(y)], where A,(y) denotes the local dis-
tance between two nodes ojlyn("f/,wn). To determine
A.(y), we make use of the fa&that themth zero of the
Chebyshev polynomial,,_;(y) is located at the position
Y= cos(m/n)7]. Therefore,

~ m m+1
An(y)=cos(ﬁ 77) —cos( T
~ T 2 = T 132 41
-~ n sin n T = n ym! ( )

where we assume,m>1. This yields the local wave vector

~ n 1
an(y)= V_V\/?y? (42)

he local cutoff wave vectog(y) now follows from Eq.

tions for our linewidth formula, are well defined only when (38) by replacing the homogeneous dengityith the equi-

they are slowly varying. In reality, for large the modes
enter the regime where Landau dampilegeation of single

librium density profilee,(¥) = 00(0)V1—y2, see Eq.(26),
thus defining a local Fermi wave vectgg(y) = vV2moo(y).

electron-hole paijsbecomes possible, which will suppress We then use relatiofB1) in place of the plasmon dispersion

the short-wavelength components of the mode. In order tg,, _ (q). This yields the following equation fay.(y):
account for this effect, the formalism to calculate the line-

width will be suitably modified in the following.

C. Landau versus xc damping

ac(y)
2

2 * 2
qc&)(qF@H ) =2weo<0>%¢1—92.
(43)

To illustrate this concept, we consider the concrete nu-

Let us first consider the case of a homogeneous 2DEG dherical example of a quantum strip witgo(0)=2.0

densityo = 1/7r2 and Fermi wave vectaye= V2mp. Lan-

dau damping sets in when the plasmon dispersion curve

w opec(q) (see below enters the particle-hole continuum.

This occurs at a certain cutoff wave vectgyr, which may be
determined by solvirg

~2

3
o 2peddc) =0c e+ ?C (39

X 10 cm™2 and arbitrary width 2V (W>a}). Having in
mind systems based on GaAs/Blk; .., We set m*
=0.0"m and e=13. This means that the Bohr radius be-
comesa} =98.3 A, and we use Hartree energy units with
1 Hartreé =11.27 meV.

In Fig. 1 we plot the local cutoff wave vectay,(y) for
this strip, together with the local wave vectaggy) of some
collective modes withg,(0)=n/W= «q.(0), where « var-
ies between 0.1 and 0.9. We see thaties well belowq,. in

In order to obtain a comparable criterion for the inhomo-the interior of the strip as long asis still small, andqc(y)
geneous quantum strips, we need to introduce the concept ahd q,(y) intersect aty(c”) close toy=*1. Fora—1, the
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‘1(03_1) Lo I, "W== q,(0)
R In
, @n 27me*?
0.8 f !
06 i 1) ~(n)dy (1- yz) 1||m f cL(QO( )wn)|
6 | —
J ~(ndy(l y?) Y2
4
’ (44
02 1\ To arrive at this relation, we have utilized the identitfes
dUp_1
0 — ~—=——5[Uy=(n+1)Ty], (45
-1 08 -06 04 02 0 02 04 06 08 1 ay  1-y
(]
FIG. 1. Full line: cutoff wave vecton.(y) [Eq. (43)] for a Uﬁ,l— n)- (46)

guantum strip of width 2m and density in the centgry(0)=2

x 10" cm™?. Dashed lines: local wave vectar(y) [Eq. (42] of  Recognizing the fact that th&, become more and more

collective modes withg,(0)=aq(0), with values ofa between  yaniqly oscillating between-1 and 1 for increasing, we

0.1 and 0.9, as indicated. In the case of langand W, Landau can replace them by their average value 0.5.

damping occurs mostly in the regions of the strip wheye-dc, Clearly, the simple notion of “local damping” will not be

i.e., between the points of intersectiTq@‘) and the boundaries of \,31id in the regime where both andW are finite. Here, we

the strip. In the interior region, damping is mainly caused by theneeq 4 more refined, nonlocal criterion to account for Landau

much weaker dynamical xc effects. Fgi(0)>qc(0), themodes 4o mning The idea is to perform a global Fourier analysis of

are completely Landau damped. the mode and to define a cutoff in momentum space rather
that in real space. This procedure may be viewed as a “fil-

curves forg,(y) move upwards and the points of intersec-ter” to remove the larger components of the mode, which

tion with g.(y) move towards the center of the strify{”|  are the ones to be suppressed by Landau damping. In prac-

—0). For a>1, q,(y) lies entirely aboveq.(y), which tice, we replace the Chebyshev polynomidis ;(y) in Eq.
means that corresponding modes are completely Landa®3) by their convolution with the Fourier transform of a
damped. In all other cases {Qx<1), however, Landau rectangular window irg space:
damping will affect the modes only partially.

Let us now form the limin,W— o where the ratia/W 3 Si Qe n(y— X)]
—q,(0) is kept fixed. In this regime it is well justifietsee Una(¥)= f A Un-a(0) —=72 (47)
below) to assume that Landau damping is so strong as to
suppress the mode locally in the regiofyd”|<[y|<1 in  For a given width & of the strip,q., is defined asy,

which it occur?? i.e., for g,(y)>a.(y). The linewidth for- =g,(y")W. The ratio between linewidth and mode fre-
mula (37) then becomes quency of thenth collective mode then reads

I'h (0 ) JEidy (1-y?)|Imfl (0o(Y wn)l[(l/n)(ﬂUn 1(Y)/(9Y)]2

n (48)
®,  27e*?2 fl 1dy\/1 y Un 1(Y)
|
In the limit n,W—o with n/W fixed, U,_;(y) tends to , 2moe*?
U,_1(y) for [y|<[y{"| and zero otherwise, which a poste- wz0ec(Q)"= P 49

riori justifies the limit(44) of local damping.

Wherea is the homogeneous 2D density agds the wave
D. Numerical results and discussion vector. The ratio between the linewidth of collective modes

Before applying the linewidth formula37), (44) and ~ and the mode frequency is givefor smallq) by

(48) to a concrete example, it is instructive to have a look at
the homogeneous 2DEG. The long-wavelength limit of the
random-phase approximation plasmon dispersion is well
known?%23 W2DEG 277e*2

1—‘ZDEG

|Im (0, waped)|- (50
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0.01

(3]l

=20um (diamonds. The points represent the collective
modes with increasing indem=qW. Let us first consider
small values oh, for which Eq.(37) applies. For the lowest
mode with nonvanishing linewidtm&2), I',,/ w, is in both
cases only slightly higher than the corresponding
I'>pee/ wopeg- IN contrast to the latter, howevel,,,/w,
grows initially asq® and therefore reaches values that are
considerably higher thad,peg/wopeg. Comparing Egs.

] (37) and(50), we see that this enhancement is mainly due to
le06 | s W =1um - the Chebyshev polynomiald,,_;, which have the form of

o W = 20pm sines and cosines f&wo, see EQq(40), but oscillate more
and more rapidly as one moves away from the center of the

0.001 0.01 . 0.1 1 strip, so that §U,,_,/dy)? strongly increases. In addition to
q(a™) this, Imfh, (0o(y),®,) grows with decreasing density
FIG. 2. Ratio of linewidthl' and mode frequency vs wave  Qo(Y). On the other hand, the factor {ly?) goes to zero for
vector. Dashed linel" ype/ wopee for a homogeneous 2DEG of 'y— +1, but is too weak to suppress the enhancement over
density o =2x 10" cm~2. Full line: limiting curvel../w.. for an  the homogeneous case.
infinitely large quantum strip, witleo(0)=g¢ and fixedg=n/W. After the initial rapid increase over the first fem the
SymbolsT',/w, vs g,=n/W for two different quantum strips with modes start picking up Fourier components beyond the cut-
0,(0)=p and widthsW=1 um (squares and W=20 um (dia-  Off momentum, which have to be removed to account for
monds. Each symbol denotes a collective mode with indestart-  Landau damping as discussed above, see (B8. The
ing with n=2. I'y/w, for both strips then approach the limiting curve
I'./w. (see below. For W=1 um this happens at around
n=10, and forW=20um at aroundn=40. For the nar-

Similar to the 3D cas&!®this result follows from finding the rower strip, the highest mode belog; has the indexn

zeros of the dielectric function in the long-wavelength =62. All higher modes will be completely Landau damped,
limit.2X Note that we define the linewidtR as twice the as discussed in Sec. IV C. For the wider strip, only the first

imaginary part of the mode frequency' 150 modes have been indicated. The h|gher m(ﬁdpio n

In the following, we shall compare the linewidths of col- =1249) are very densely spaced and all fall on the limiting
lective modes in quantum strips with the plasmon linewidthsCurve.

in a homogeneous 2DEG. Density and wave vectoq in Letting W and n approach infinity for a giverq=n/W

the 2DEG are taken to be the same as the equilibrium densi§nd fixed@o(0), we obtain the limitl'../w,, from Eq. (44),
00(0) and the local wave vectar,(0)=n/W in the center 25 shown by the full line. We note thBt, /w., grows asyq

of the strips. The plasmon frequend#9) then exactly for small g and is almost thre(f orders' of magnitude apove
matches the corresponding mode frequency in the strip, Ed.20ec/ @2pec for q=0.001ag ™" As g increases, the dis-
(31). However, it will turn out that the imaginary parts of the tance between the curves becomes less, anfi they merge at
mode frequencies are strikingly different. g=d.. To understand this behavior, recall thgt|—0 for

To evaluate the homogeneous and inhomogeneous ling—(q.. In this limit one integrates in Eq44) only over a
width formulas, we furthermore need the imaginary part ofnarrow stretch in the interior region of the strip where the
£ (00, ) in two dimensions as input. For this we employ density is practically uniform.
the parametrization by NifosConti, and Tost’ given for To summarize, the viscosity-induced linewidth of collec-
discrete values afg and variablew, and use cubic splines to tive modes in finite quantum strips is found to be substan-
interpolateff(‘cL for fixed w, and variabler ;> 1/\/77_5_ Note tially higher than in the hompgeneous 2DEG,_ in particular

for small wave vectors. This enhancement is due to the

that theq dependence of,_has been neglected. strong inhomogeneity in the strips, and it persists even if we
Our numerical results are summarized in Fig. 2, which 9 9 y PS, P

showsT'/ e versus wave vector for the homogeneous 2DEGIet their width become infinitely large. The explanation for

. : this lies in the equilibrium density distributio26), the
and two different quantum strips. In the latter cagegfers shape of which scales wityyW and is therefore invariant if
to the center of the strip, i.eq=n/W. As in the example P

treated in Sec. IV C, we consider here systems based (;EBD%etr\:\g dgguor:(jtgﬁez[r;g gmgges. This means that the presence
) = L, ys felt over the whole interior re-

GaAs/ALGa, _xAs with 04(0)=g=2.0x 10" cm "2, gion of the quantum strip, regardless of its width. This strik-

The dashed line showb ;peg/w 2peg for the homoge-  ng feature can be traced back to the parabolic shape of the
neous system, up to a cutoff wave vectr=0.61485 "*.  confining potential. A limiting process that for increasing
We find thatl" ,pec/ @ spec grows asy¥? for smallg. Thisis  width eventually leads to the homogeneous 2DEG would
easily seen from Eq(50) by noting thatf (¢¢.®) starts  have to eliminate the influence of the boundaries. This may
out linearly with v (see Ref. 1), while from Eq.(49) we for instance be accomplished by letting the confining poten-
have wo \/q. tial gradually approach a square-well form for large widths,

The discrete symbols refer t6,/w, for two quantum thus arriving at a uniform equilibrium density distribution
strips with different widths:W=1 um (squares and W  over the whole strip.

0.001 |

0.0001 |

le-05 ¢

le-07
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vo(r)=1vy cos@-r) that is both small and slowly varying.
p+k,u Thus,

0o(r) =0+ yx"(q,0)codq-r), (A1)

where q<kg,w/ve and y<1. Here, x"(q,0) is the static
noninteracting response function, whose smallimit is
FIG. 3. First-order diagrams contributing to the paramagnetlcglven by’LS k,2:/(35m). Let us now denote the secofice.,
part of the noninteracting current-current response function. the paramagnetigart on the right-hand side of definitic¢8)
by R,,(r,r",). We introduce the momentum representation
of R,, as
In this paper, we have proposed a simple way to calculate
the linewidths of collective electronic excitations induced byR J(k+s0,k,w)
damping through dynamical xc effects. The method is based
on time-dependent current density-functional theory, and it
includes exchange and correlation effects in terms of vis- :J' d3rf d3r' R, (1.1’ w)efi(kJrsq)reikr’ (A2)
coelastic stresses in the electron fluid. The basic idea is to prR ’
first calculate the collective modes using the adiabatic local-
density approximation. The latter accounts for singlewheres is an integer. The inverse of this relation reads
particle-hole productioriLandau dampingonly, i.e., high-
frequency, long-wavelength modes will be undamped. The ' '
viscosity-induced damping effects are then added on pertur—RW(r,r’,w)=2 f dgkR,w(k+sq,k,w)e'“‘*sq)re*'k".
batively. s
We have applied the formalism to calculate the linewidths (A3)
of collective modes in 2D quantum strips. The advantage of _
these systems is that the mode profiles are known analytil© first order iny, only those components @&, with s
cally through solution of the linearized classical equation of=0,=1 are nonvanishing, and we have
motion. It was found that the modes in the strips are much
more strongly damped than the corresponding plasmon Rw(k,k,w)szy(k,w)_ (A4)
modes in a homogeneous 2DEG. For small wave vectors, we

observed an order-of-magnitude enhancement over thgg ere, R“ ,(k,) denotes the paramagnetic current response

2DEG due to the inhomogeneity of the strips. As the regimgensor of the homogeneous electron gas, which is givéh by
of Landau damping is approached for growing wave vectors,

the enhancement disappears. Contrary to expectation, we

found that the behavior of the quantum strips with a para- h Qk;zz
bolic confining potential does not approach that of a 2DEG if Rw(k""):
the width is increased to infinity.

V. CONCLUSION

[2k k,+k25,,]. (A5)

To calculate the off-diagonal contributidR,,,(k+q,K, ),
we start with the expression
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APPENDIX +(g——q,k— —k,0— —w), (A6)

In this appendix, we derive an explicit expression for the

Kohn-Sham current-current response functionWhich follows from the first-order diagrams shown in Fig. 3

Xxs (1.1 ), see Eq(3), valid for systems in which the accordlng to the usual rules of diagrammatic many-body
unperturbed static densitg,(r) is slowly varying on the theory® G denotes the free-particle Green’s function:
scales of the locak; ! andv/w. Besides its importance in
the present work, this formula fars ., could also be of use G(p,w)=[w—e,—in signke—p)]~!, 7=0%,
in the study of van der Waals interactiod< For this rea- (A7)
son we supply here some details of the derivation.

In order to obtain the coefficients of the gradient expan-wheree,= p2/2m. The frequency integral in EGA6) is eas-
sion of ks, , Up to second order in the gradients, we firstily carried out using contour integration, and we obtain, after
consider an electron gas subject to a potential modulatiosome rearrangement,
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k+q

(k0K 0)= 12(
m p

"

k 1
Pt5

, €p+k+q™ €p+k

% (Nprk=Np)(€psk—€p)
w2+(6p+k—ep)2
np)(€p+k+q_ ep)]

2
w _(€p+k+q_ Ep)

_ (np+k+q_

(A8)

with ny= (kg — p) In the limit of smallk and g we can
neglect €, x— ep) and (ep+k+q— ep) with respect taw in
the denominators. EquatiqA8) thus simplifies to

k

K+
a) (o K

(P+T

np)(6p+k_ 6p)

€p+k

7
Ru(K+0k,0)= ——

M

(Npk—
x| —P*

€p+k+q™

_ (np+k+q_ np)(5p+k+q_ ep)

€p+k+q~ €p+k

(A9)

Expandingn,,, and n, .4 aroundn,, the terms in the
square brackets reduce to

np k? (k+Qq)? “
“l kPt g k) pr o —{(k-p)?
+[(k+0)-pl?+(k-p)[(k+q)-pl}. (A10)

The momentum integration can now be carried out, and after

some lengthy algebra we end up with
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3
R, (k+ 0,k 0)=— ———
wlktako) 2mlw?
X[qﬂqv+k'(k+q)5,uv+2kp,(kv+qv)]-
(A11)

We now insert the zero- and first-order contributiddsb)
and (Al11) into Eg. (A3) to transform back into coordinate

space. From the resulting expression, we can identify the

coefficients of the gradient expansion gfs ,,. The final
result is

Qolr) %

S(r—r")é

wv

Xks, w11 @)= (2v,V,

V25,,)8( ) i
+ Wo(r—r’)—
# 3mie?

o(r—r’)

X[V, V,=(V-V'6,,+2V, V,)]oo(r).

(A12)

From this, the inverse, correct up to second order in the

gradients, is easily obtained as

-1 / Qo(r)
1 L = - 5
XS0 ) eo(r)| m 2
Qo(NkE 2 ,
— 5 2V, V,+V%5,,)8(r—r")
5m3w
2
+ 3mPa? S(r=r")[V,V,—(V-V'é,,
+2V;LV,,)]QO(Y)]. (A13)
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