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Photorefractive Gunn effect
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~Received 23 January 1998!

We present and numerically solve a model of the photorefractive Gunn effect. We find that high-field
domains can be triggered by phase-locked interference fringes, as has been recently predicted on the basis of
linear stability considerations. Since the Gunn effect is intrinsically nonlinear, we find that such considerations
give at best order-of-magnitude estimations of the parameters critical to the photorefractive Gunn effect. The
response of the system is much more complex, including multiple wave shedding from the injecting contact,
wave suppression, and chaos with spatial structure.@S0163-1829~98!06335-8#
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I. INTRODUCTION

Segev, Collings, and Abraham1 ~SCA! proposed an inter-
esting mechanism for producing Gunn domains by mean
a photorefractive parametric excitation. It occurs when t
optical waves of slightly different frequencies are incide
upon a biased semiconductor crystal doped with deep im
rity centers. The authors conjecture that the resulting tra
ing interference pattern excites multiple high-field Gunn d
mains that move phase locked with the interference fring
Recently, Subaciuset al.2 proposed an efficient way of cre
ating simultaneously a number of quasilocalized high-fi
Gunn domains through hot carrier transport in spatia
modulated and nonuniformly heated electron-hole plas
and presented some numerical results and preliminary
perimental confirmation.

In this paper we present a consistent model of the ph
refractive Gunn effect and carry out numerical simulations
understand the dynamics of the system. We find that h
field domains can indeed be triggered by phase-locked in
ference fringes, as suggested by SCA. However, the resp
of the system can be very complex, and it is not possible
use a simplified version of Kroemer’sNL criterion, as sug-
gested by SCA, to predict the number of high-field Gu
domains traveling through the sample. Indeed, our res
indicate that with appropriate values of the parameters of
system the response becomes chaotic and this is, there
another example of driven~sinusoidal interference pattern o
intensity I ) chaos.

II. MODEL EQUATIONS

The following equations describe the photorefract
Gunn effect:
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where Eqs.~1! and ~2! are the continuity equations for ion
ized donors and for electrons, respectively, and Eq.~3! is
Poisson’s law. In these equations,z is the space variable in
the direction of current flow,t is the time,ND

i (z,t) represents
the number density of ionized donors,ND the total donor
density,I (z,t) the incident light intensity,S the photoioniza-
tion cross section,g the recombination rate,n(z,t) the elec-
tron number density,2q the electron charge,J(z,t) the cur-
rent density,E(z,t) the space-charge field inside the cryst
NA the density of negatively charged acceptors, and«s the
low-frequency dielectric constant.

The light intensityI (z,t) is given by

I ~z,t !5I 0@11m cos~Kz1Vt !#, ~4!

which, as decribed in Ref. 1, is the intensity of the movi
interference pattern formed when two quasimonochrom
plane waves of slightly different frequencies,v and v
1V (V!v), and slightly different angles of incidence i
luminate a bulk semiconductor crystal. In Eq.~4!, K
52p/L is the interference wave number,m the modulation
depth of the interference grating, andI 0 the total average
intensity.

Following Sze3 @Eq. ~28! in Chap. 11#, the current density
J includes drift and diffusion terms,

J5qnv~E!1q
]@D~E!n#

]z
, ~5!

which is the standard form of the drift-diffusion curre
density4,5 wherev(E) is the electron drift velocity andD(E)
the diffusion coefficient. The drift velocity of the electrons
a known function of the electric field exhibiting negativ
differential resistance. In the following analysis we use
saturating drift velocity function given by,

v~E!5vsF11
E/Es21

11A~E/Es!
bG , ~6!
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FIG. 1. Level curves of intensity versus driv
ing frequency for different integer values ofN0 in
Eq. ~1!. Numerical simulations have been pe
formed for points labeledA, B, C, andD, with
dimensionless values of intensity and frecuen
( i 0 ,w): A5(0.0025,0.05),B5(0.035,0.055),
C5(0.05,0.0109),D5(0.07,0.05). The Fourier
spectrum of the current will be displayed later
Fig. 3 for the points on the horizontal lineE.
ex

c
i

en
o

-
a

r-

u

th

o
in
,

a
h
y
ar
ld
olt

hat
-

e at
.g.,

os-
not

he
ct.
ic

tact

ent
e an

is

e
e

where vs is the saturation drift velocity,Es the saturation
field, andA andb dimensionless constants that depend
plicitly on the mobility of the material (m5vs /Es).

Differentiating the Poisson equation~3! with respect to
time, inserting the result in the continuity equation for ele
trons ~2!, and integrating with respect to space, results
«s]E/]t1J5Jtotal. Here the constant of integration,Jtotal, is
the total current density. Introducing the electron curr
density given by Eq.~5! in the previous equation leads t
Ampère’s equation,

Jtotal5qnv~E!1q
]@D~E!n#

]z
1«s

]E

]t
. ~7!

Notice that in Eq.~6! of Ref. 1 the current density errone
ously includes the displacement term, and this leads to
incorrect Ampe`re’s equation in which the displacement cu
rent drops out.

In addition to these equations, the electric field distrib
tion must satisfy thereverse biascondition for a given ap-
plied voltageV,

E
0

L

E dz5V. ~8!

Thus, to model the photorefractive Gunn effect we use
correct form of Ampe`re’s law~7!, the continuity equation for
ionized donors~1!, Poisson’s law~3!, the bias condition~8!,
and appropriate initial and boundary conditions. Solution
these equations using the known functions for the light
tensity~4! and drift velocity~6! provide the four unknowns
ND

i (z,t), n(z,t), E(z,t), andJtotal(t).
It should be emphasized that boundary conditions play

essential role in the existence of the Gunn effect. Althoug
can be debated which are the correct conditions to appl
order to simulate a particular experiment, periodic bound
conditions, as used in Ref. 1, should be avoided: they yie
total current density that is constant in time when a dc v
age bias is imposed. In fact, integrating Ampe`re’s law we
find Jtotal5L21@«sdV/dt1*0

LJ dx#. Then imposing periodic
-
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boundary conditions and a dc voltage bias we find t
dJtotal/dt5(c/L)*0

L(]J/]x)dx50 ~provided we have a do
main moving at constant speedc; note that with physically
reasonable boundary conditions, the domain cannot mov
constant speed as it arrives at a realistic contact, e
Ohmic!. Since the Gunn effect refers to time-dependent
cillations of the current under dc voltage bias, one should
use periodic boundary conditions when discussing it.

The most important boundary condition in a study of t
Gunn effect in long samples is that for the injecting conta
In fact, the formation of Gunn domains is due to a period
destabilization of the boundary layer attached to such con
during the oscillations.4,5 During the formation of a new
wave at the injecting boundary, the displacement curr
plays a crucial role and cannot be neglected. Thus, we us
Ohmic condition at the injecting contact,E5rJtotal,

5–8 and
]E/]z50 at the receiving contact~which is thus passive and
integration time is saved!. When r is such thatE/(rqNA)
intersectsv(E) on its decreasing branch, the Gunn effect
found for m50 and appropriate values of the biasV.4,5

In order to solve numerically our model equations, w
will first write them in nondimensional form. Let us redefin
our variables in dimensionless form as follows:

y5
1

L
z, s5
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L
t, F5

E

Es
,

j 5
Jtotal

vsqNA
, p5

ND
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, h5

n

NA
, n~F !5

v~FEs!

vs
.

~9!

Inserting this in Eqs.~1! and ~3!–~8!, we obtain

eS ]F

]s
1d

]h

]y D5 j ~ t !2hn~F !, ~10!

e
]F

]y
5p212h, ~11!
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FIG. 2. Numerical simulations for values o
the current and the oscillation frequency corr
sponding to points~a! A, ~b! B, ~c! C, and~d! D
in Fig. 1. All other parameters correspond exac
to those proposed in Ref. 1~see text!. Each figure
contains four graphics in dimensionless variable
a spatiotemporal density plot of the electric fiel
F(y,s) ~density scale on the upper right part!, a
plot of the current densityj (s) ~upper left!, the
power spectra of thej (s) signal in arbitrary units
~lower right!, and the electric field as a functio
of y for the fixed time marked with a white hori
zontal line in theF(y,s) density plot~lower left!.
m

]p

]s
5 i 0@11m cos~ky1ws!#~12ap!2bhp, ~12!

E
0

1

F dy5f. ~13!

Here we have defined the following nondimensional para
eters@we assume constant diffusivity,D(F)5D]:
-

e5
esEs

qNAL
, f5

1

EsL
V, d5

qDNA

vsesEs
, b5

esEs

evsq
g,

a5
NA

ND
, i 05

SesEsND

evsqNA
2

I 0 , w5
esEs

evsqNA
V,

k5
esEs

eqNA
K. ~14!
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FIG. 2. ~Continued!.
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III. RESULTS

We have solved Eqs.~10!–~13! numerically for different
values of the parametersw and i 0 , keeping fixed e
54.13831024, m50.1, r51.8, k52p, d50.05, a
50.01, b53.5294, andf53. These numerical values co
respond to those used by SCA.1 We were particularly inter-
ested in testing a central piece of SCA’s analysis, nam
their particular use of Kroemer’sNL criterion, their Eq.~20!.
Prompted by SCA’s suggestion that the length in Kroeme
criterion may be the distance between multiple domains,
combine their Eq.~20! with their Eq. ~17! for the electron
densityn1 , and usel 5L/N, wherel is the distance betwee
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FIG. 3. Fourier power spectra ofj (t) for w
50.05 and diferent values ofi 0 in the range
0.04520.065~line E of Fig. 1!. Each FFT is rep-
resented by a narrow horizontal band with gr
scaled frecuency mode amplitudes: white~large!
and black~small!, in arbritary units. The arrows
correspond to the simulations of a periodic sign
(F) and a chaotic one (G) carried out in Fig. 4.
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adjacent domains. Then we obtain a formula for the ma
mum number (N) of high-field domains which may coexis

N,N0[
195.565

11
1011

I 0
2100S V

I 0
D 2 . ~15!

We have used SCA’s numerical values (I 0 andV are mea-
sured in W m22 and Hz, respectively!. Figure 1 depicts the
level curvesV(I 0), which are obtained whenN0 takes on
different integer values. If SCA’s theory holds,N5 i be-
tween the level curvesN05 i 21 andN05 i . However, we
observed Gunn domains~Fig. 2, A) where Segevet al.’s
theory predicts they should not be~point A in Fig. 1!. Points
C andD in Fig. 1 would correspond to a coexistence ofN
52 andN53 domains, respectively, but we find four d
mains and a periodic response~Fig. 2,C) and a quasichaotic
response~Fig. 2, D), respectively. Finally, at pointB corre-
sponding to the conditions proposed by SCA to illustr
their theory, one domain is created during each oscillat
period~Fig. 2,B). In fact, the response of the system is ve
complex and within each of those zones in theV(I 0) plane,
where a constant number of high-field domains is predic
it is possible to find all kinds of behavior: periodic with
single frequency, periodic with a high number of freque
cies, and chaotic.

The discrepancy between the computed and predicted
sponse should not be surprising. In fact, the Gunn effect
periodic oscillation of the current (}Jtotal) in a dc voltage
biased semiconductor presenting negative differential ve
ity. It is due to periodic shedding and motion of charge
pole waves~high field domains! at a boundary or a nucle
ation site. It is intrinsically nonlinear3–8 so that the relevance
of linear approximations such as those used in Ref. 1 is q
tionable. We think that Kroemer’s NL criterion implies th
i-
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for a given model~equations, bias, boundary, and initial co
ditions! it can be proved that no oscillatory instability
possible unless theNL product ~whereL is semiconductor
length andN is doping density! is above a certain number
For Kroemer’s model of the Gunn effect inn-GaAs under dc
voltage bias, see Fig. 3 of Ref. 9. An analytical estim
~probably not a very precise one! could be obtained by
adapting to the Kroemer model the arguments in the App
dix of Ref. 10. This said, SCA have used a particular vers
of theNL criterion in whichN is an electron density andL is
either the semiconductor length~one domain! or the distance
between domains~multiple domains!. It is not surprising that
this usage produces results that are not quantitatively cor
Furthermore, the Gunn effect is due to the instability of t
ground state and the effect of light is only to trigger th
instability. Thus, very small perturbations of light instens
can result in large density perturbations, in contradict
with the linear relationship between the intensity modulat
and the electron density perturbation derived by SCA. T
has been confirmed by numerical simulations that show
existence of a Gunn effect for very small light intensities

It is interesting to compare the response of the system
pointsC andD of Fig. 1. We observe that the dimensionle
current density,j (t), in caseC is periodic~Fig. 2! although
it contains a large number of frequencies, as can be see
the FFT spectrum shown in the lower right of the figur
Instead, the response in caseD is not periodic and the FFT
spectrum appears chaotic. The difference between these
cases can be understood by looking at the electric field p
files as a function of time. In caseC, there are several wave
that originate at the injecting contact~right contact! and
propagate towards the receiving contact. Neither of th
waves overtakes the previous one and this leads to a smo
periodic response. In caseD, however, a wave originates a
the injecting contact and propagates through the sam
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FIG. 4. Numerical simulations for the~a!
point F and ~b! point G in Fig. 3. The layout of
the graphics is the same as in Fig. 2.
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Later, a new wave is injected that moves faster than
previous one, and that overtakes it before reaching the
ceiving contact. The interaction between waves inside
sample leads to a complex response that may become
otic.

To understand the transition between the periodic
chaotic solutions we carried out numerical simulations fo
e
e-
e

ha-

d
a

fixed value ofV and varying the intensityI 0 within a certain
small range corresponding to lineE in Fig. 1. The results of
these simulations are summarized in Fig. 3, which shows
intensity of each mode of the FFT spectrum as a function
I 0 . Notice that there is a frequency, which is very close
the excitation frequencyV, that appears for all values ofI 0 .
Also, all integer multiples of this frequency are present in t
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current density history. It can also be observed that there
sharp transition between a periodic solution and a cha
one. Figure 4 shows the current density history and fi
profiles for caseF in the periodic region, and for caseG
inside the chaotic region.

The bias condition imposes a conservation of area in
electric field profileE(z) for all time. Thus, the size of a
traveling wave must decrease when a new wave is gener
in the injecting contact~right contact!. If the new wave
grows fast enough, the old wave must disappear to keep
area constant. In both cases, seeF andG in Fig. 4, several
waves are born at the injecting contact and propagate
wards the receiving contact during a period. In caseF, all
the waves reach the left contact and this leads to a peri
response in the density current. As the intensityI 0 increases,
the wave formation velocity increases until a critical val
above which the waves that propagate through the sam
disappear before reaching the receiving contact. This p
duces a complex behavior with different patterns
formation-disappearance of waves. Larger values ofI 0 result
in chaotic responses such as that shown in caseG as an
example.
K

J.
a
ic
d

e

ted

he

o-

ic

le
o-
f

It is also interesting to observe that within the chao
region there are windows in which the response again
comes periodic, with frecuency given by the fundamen
frequency divided by 2, 3, or 4. In these specific ranges
I 0 , the interaction between waves inside the sample p
duces a simple pattern with a periodic sequence.

IV. CONCLUSIONS

We have thus found that high field domains could inde
be triggered by phase-locked interference fringes, as s
gested by SCA. However, a literal use of their version
Kroemer’s NL criterion does not often agree with numeric
simulations of the model for the photorefractive Gunn effe
In addition, we have found very interesting examples
natural and driven~sinusoidal interference pattern of inten
sity I ) chaos when appropriate parameter values are use
the regime for which the high field domains carry a lar
fraction of the bias, an asymptotic theory of the Gu
effect5–8 can be extended and applied to the photorefrac
model, and used to interpret and predict the results of
numerical simulations with greater accuracy than SCA’s l
earized approach. These results will be presented elsew
ı
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