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The Blackman-Esterling-BerkBEB) theory, generalized to nonorthogonal basis sets and complicated el-
ementary cellfK. Koepernik, B. Velicky R. Hayn, and H. Eschrig, Phys. Rev. 3, 5717 (1997)], is
inspected in great detail with respect to its analytic properties and numerical accuracy. We give a proof of the
single impurity limit fulfilled by BEB theory, thus clarifying some critical points in the derivation of the
theory. We undertake extensive numerical tests for the BEB coherent-potential approxif@&#ro check
the range of applicability of the included single-site approximation. The BEB CPA turns out to give good
results in a wide range of energy parameters.
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[. INTRODUCTION Hamiltonians. It represented a major advance in comparison
with the original TB CPA, which was suited only for the
This paper is devoted to the once famous BEB theory bysite-diagonal disorderthat is with only the site-diagonal el-
Blackman, Esterling, and Beflextending the use of the or- ements of an orbital representation of the Hamiltonian al-
bital coherent-potential approximati¢@PA) to random off-  lowed to vary stochastically according to the atomic species
diagonal matrix elements of the Hamiltonidoff-diagonal  occupying the given site. Random off-diagonal elements
disordep. Our interest in this problem grew naturally out of (“hopping integrals” clearly depend on both terminal
our recent work on a first-principles charge self-consistenpoints, and so they are seemingly beyond the reach of the
theory of the electronic structure of disordered alloys basego-calledsingle-site approximationsas represented by the
on the CPA in a linear-combination of atomic orbitals CPA. The ingenious BEB transformation is described par-
(LCAO) representatioﬁ_vve will refer to this paper as Ref. |. ticularly clearly in Ref. 4. It consisted in doubling the Hilbert
One of the conclusions of Ref. | was that the BEB CPA, afterspace(for a binary alloy by adding the atomic sort to the
proper straightforward generalization, represents the naturanatrix indices. The off-diagonal part of the extended Hamil-
formalism associated with the orbital CPA. Furthermore, itstonian became thus nonrandom, while the randomness on the
practical implementation led to results comparing very favor-site diagonal was represented by a random pseudospin vari-
ably with those obtained using techniques that represent thable indicating the actual random occupation of the site in
contemporary standard for the computation of electroniguestion. A single-site approximation in the extended space
structures of random alloys, notably, the Korringa-Kohn-yielded the BEB-CPA condition. There was a flurry of nearly
Rostocker(KKR) CPA, linear muffin-tin orbitalsLMTO)  simultaneously introduced alternative models with off-
CPA, and LMTO tight-binding(TB) CPA; see Ref. 3 as a diagonal disorder, notably, the Shiba multiplicative madel
recent general reference for these methods. In fact, the strue4th tiB=tAAtBB, t denoting the nearest-neighbor hopping
ture of the BEB CPA parallels rather closely the Korringa-integral. This model assumption led to a similarity transfor-
Kohn-Rostoke(KKR) CPA, but is free of the technical dif- mation reducing the Shiba case to the diagonal disorder, at
ficulties the KKR CPA faces when applied to complex least as far as the site diagonal quantities, like self-energy
structures. and local projected densities of states were concerned. The
All the foregoing suggests that BEB theory deserves atShiba assumption was appealing both physically and for-
tention on its own and should be revisited. This paper is themally, by simplicity of the equations, and so it soon over-
intended as a relatively independent complement to Ref. Ishadowed the BEB approach; in particular, when it became
serving as a summary and an update of the general propertiekear that the Shiba approach is a special case of BEB.
of BEB theory with several additions and clarifications. Our6) and the latter seemed to be but a pointless mild generali-
approach is both motivated and guided by the revived potereation of the former, Ref. 7, p. 128. Soon thereafter, the
tial usefulness of the BEB method. whole TB or orbital approach fell out of fashion, and the
The BEB theory was announced in Ref. 2 in 1971, that isadvances were rather sporadic. Still, a number of features of
in times prior to the KKR CPA, when the random alloy BEB were analyzed, as is summarized in Ref. 19, Chap. X B.
theory was still dominated by parameterized tight-binding A substantial deal of the results on BEB has been ob-
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tained by its authors. Thus, the separated-band limit (  problem arises in the case of an alloy with a partial long-
=0) is already given in Ref. 2 as well as the proof that therange order if some of the sublattices tend to be occupied by
first three moments of the spectral density and four of thea single species. This case, first treated in Appendix A of
total densities of states are reproduced by BEB exactly. Th&ef. |, is discussed in Sec. Il C. Finally, in Sec. Il D, we
multiple-scattering approach was used in Ref. 4. The Shibaontrast the BEB approach to other descriptions of the off-
limit, of course, including also the diagonal CPA limit, was diagonal disorder. The last section, IV, supplements the re-
obtained in Ref. 6. Much of the later work centered aroundsults obtainable analytically by a numerical analysis and
Gonis: in Ref. 8, the single-band case was treated, usingerves to deal with several selected questions. We chose to
several formalisms, including locators, propagators, and &tudy the simplest single-band case in one dimension be-
variational technique. Most notably, a proof is given that thecause it is easily treated both by the CPA and by a direct
BEB CPA guarantees that the approximate Green’s functiogimulation and because it is known to be extremely sensitive
is Herglotz, i.e., analytic in the upper half-plane of complexto the approximation of the CPA, i.e., mean-field type. On
energies, with a negative-definite anti-Hermitian part. In Refthe whole, the BEB CPA is shown to be very flexible and to
9, the first attempt to apply the BEB approximation to afaithfully reproduce the salient features of the spectra found
realistic multiband case can be found. The results wer®y direct simulation. This contrasts with other approaches
promising, but not entirely convincing. tested, namely the Shiba multiplicative ansatz, and the so-
Other open points remained concerning BEB. Thus, th&alled virtual-crystal off-diagonal CPAVCA). These meth-
locator formalism, although natural in this case, required acods lead to worse and worse results, when the alloy param-
cepting ill-defined intermediate mathematical steps such agters deviate from the restricted areas of their validity.
inversions of singular matricésThere was the claim that the
BEB CPA fails in the limit of dilute alloy, which was just
casually deniefl,but never disproved. Another problem has |I. GENERALIZED BLACKMAN-ESTERLING-BERK
been the supposedly small number of exact moments of the FORMALISM
spectral density discussed above. Finally, the BEB theory )
works not only with an extended Hamiltonian matkbg o/ A. LCAO and the BEB formalism
but also with a Green’s function matr@qq: with the same This subsection and all of Sec. Il are based on Ref. I,
structure, whose elements are component projected doublyhich attempts to apply systematically the LCAO represen-
conditional averages of the alloy resolvent. Throughout thdation to anab initio description of random alloys. There are
history of the BEB theory, starting from Ref. 2, Appendix D several requirements for such a theory to be met. First, it
and ending with the recent revie\/p. 241, this matrix was should be charge self-consistent based on spin-density-
considered unphysical, and attempts were made to introdudanctional theory(SDFT). Second, the Kohn-Sham orbitals
the sum=Gqo and a corresponding one-component effec-should be expanded to a sufficient degree of accuracy in a
tive coherent potential. In fact, however, the matrix struc-local orbital basis, consisting of a restricted set of “atomic
tures likeGqq represent the physical elements both in theorbitals” (AO’s) and associated with each site. These orbit-
KKR CPA and in the orbital CPA. This was recognized in als may be selected as reasonably compressed quasiatomic
another context already in the early eighti®$n Ref. |, this  wave functions, thus eliminating the unphysical effects of the
aspect of the orbital theory was linked directly to BEB tails of true atomic states, as described in Ref. 11 in the
theory, as will be discussed in Sec. Il. crystal case. The third natural requirement on a valid alloy
This paper has the following structure: In Sec. Il, we paratheory is just that it should be an extension of a theory for
phrase the main points of Ref. | relevant to the problem ofperfectly periodic crystals. Such a philosophy had been be-
the off-diagonal disorder and BEB. Section Il A discusseshind an early attempt to develop an LCAO-CPA thebiy.
the relation between the charge density, the orbitals, and thEhis precursor of Ref. | suffered from several limitations. It
one-electron potential in real space, on the one hand, and thveas not really charge self-consistent and the off-diagonal
algebraic structure of the random matrices representing thdisorder was treated by averaging the random matrix ele-
alloy and subjected to the averaging procedures, on the othenents(VCA CPA). Only the system chosen for application,
It is shown how the basic features of the random Hamil-the CuNi alloy, permitted limited success of the work. How-
tonian matrix lead in a nearly unique way to the generalizedver, several important ideas, described below, have been
BEB representation of the alloy problem. Section Il B servessuggested already there. Let us summarize the physical pic-
to summarize the essential equations of the generalized BEBire of a random alloy in the LCAO representation as it
formalism, including the pseudospin notation in the extendeg@merges from the analysis given in Ref. I.
space and the scattering formulation of the BEB-CPA self- (i) The atomic orbital set of a site must depend on its
consistency condition. Section Il is dedicated to the generabccupancy by a randomly selected atom, and thus it must be
properties of the generalized BEB theory: in Ill A,we briefly random itself. This permits to reproduce the random fluctua-
characterize the BEB Green’s function as a function of theions in the charge density and in the orbital amplitudes,
complex energy variable, including the analytic propertiesusing an orbital set of a small dimensionalitysually just
and the spectral bounds. Then, the BEB CPA is presented #gse minimum orbital s¢t As a consequence, the Hilbert
an interpolation scheme, including the limits of weak scat-space, spanned by the assembly of all AO, is itself random
tering and separate bands and the dilute limit. This limit of aand depends on thaloy configuration i.e., the random dis-
vanishing concentration of one component is executed in deribution of atoms of different sorts over the atomic sites. It
tail, and the result is identified with the single impurity re- becomes evident immediately that averaging over these alloy
sult, which can be derived directl{Sec. Il B). A similar  configurations in real space is unphysical and mathematically
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difficult to understand. The configuration averaging is to beagreement with the single-site nature of the averaging proce-
transferred to the matrix representation of the problem. dure. From this charge distribution, a new one-electron po-
(i) In principle, the matrix elements, involving the effec- tential is generated, and the loop is closed.

tive one-electron potential, depend on the total alloy configu- To summarize this overview, it appears that the task of
ration. It is natural to introduce an additional approximation,achieving simultaneously the charge self-consistency and the
stating that the site diagonal elements depend only on th&elf-consistent approximation for the alloy configuration av-

occupancy of the site, while the off-diagonal elements de£rage can be accomplished using the LCAO representation
pend on the atomic occupancy of the two sites the orbital®y Mapping repeatedly the full real-space problem on an al-
are centered aterminal point approximation While this gebraic structure suitable for the conflgurg_tlon.average and
could be simply assumed, it is important to note that one of'€N reconstructing the real-space quantities in an inverse
the main results of Ref. | represents an analysis of the rad1'@PPINg.

dom charge-density distribution and of the resulting one- !t 1S @lso apparent from this discussion that thegtural
electron potential, which indicates that the terminal point ap-2/9€Praic mapping of the alloy problem is the BEB transfor-

proximation is valid up to higher-order corrections. TheseMation which is capable of treating the combined diagonal
are of about the same degree of importance and basically &1d Off-diagonal disorder in a single-site approximation and
the same origin as the corrections to the atomic sphere aﬁ‘yhlch ,Ieads Q|rectly to the required conditionally averaged
proximation in real-space theories of the KKR type. Green’s functions. . .

(iii) This conclusion depends critically on the range of the F7om this, the BEB theory was established in Ref. | as a
AO used, which specifies also the range of nonzero matrifo0! 'fo_r realistic LCAO calculat|c_>ns. In fac;, it is very likely
elements and thus the degree to which they will sample th@ Minimum tool because a satisfactory fit of the real alloy
environment of a given site. In the alloy case, it thus appearSEB Hamiltonians by a Shiba-factorized model seems non-

that the AO’s should be even more compact than in case dg#XiStent in general. . .
crystals. Clearly, the original BEB has to be extended by including

(iv) The requirement that the orbitals are compact in rea/more orbitals_per site and more inequivalent sublattices, per-
space prompts them to be nonorthogonal between differefpitting a pgrnal long-range order. On top of that, the'formal-
sites; orthogonalization always leads to the occurence of ofSM Must incorporate necessarily the overlap matrix along
bital tails. The atomic orbital representation of the Kohn-With the Hamiltonian matrix, since the atomic orbital basis is

Sham equations in this nonorthogonal basis thus leads to diPnorthogonal. _ _ _
algebraic problem, involving not only the Hamiltonian ma- All of this can be achieved conveniently by using a sys-

trix but an overlap matrix as well. It is obvious that, in gen_tematic scattering picture, which is transparent and easily
eral, both the diagonal and the off-diagonal elements of thes@anageable.
matrices will depend on the orbital site occupancy and thus
they will be random. The off-diagonal randomness is then a B. LCAO-BEB equations
natural companion of any atomic orbital theory of alloys.
(v) One of the crucial points for the proper description of
random alloys is the identification of quantities that are sub- In this section we combine the pseudospin description
ject to configuration averagind.While it is obvious that all  with the orbital approach to the electronic structure theory of
one-electron properties for a given alloy configuration area substitutionally disordered solid with an underlying lattice.
contained in the corresponding unaveraged Green'’s functiorssentially, this leads to a generalized BEB formulation of
the object to be averaged is not the GF itself or its matrixthe scattering problem. We only focus on the algebraic and
representation but the observable quantities given by aanalytic aspects of the theory. The discussion, concerning the
(energy-dependentfunctional Tr(AG) of the one-electron charge self-consistency, is reported in Ref. I.
observable#\. Even ifA itself was nonrandom, its represen-  Let a lattice site be denoted by the multiple index
tation in the random AO basis becomes a random matrix=Rs, whereR is a lattice vector and is a basis vector
The configuration average of the trace then does not reduGgithin the unit cell. Let the lattice be occupied randomly
to Tr(A(G)), but can be shown to involve precisely the dou-with atoms of several speci€®. The pseudospin is defined
bly conditional average&qq , mentioned in the Introduc- py
tion and defined formally in the next subsection.
(vi) As has been established in Ref. |, this type of reason-
ing is essential for a charge self-consistent orbital theory in

1. Pseudospins and local orbital representation

1 atom of specie® atR+s

the single-site approximation. In the self-consistency loop, Trs 0 otherwise,

we may start from the random SDFT potential in real space. (D
This is represented algebraically as a random matrix in the

terminal point approximation. The corresponding matrix re- %: 77852 1.

solvent undergoes averaging, the outcome of which should

be the conditional averag&k,q . In this approximate treat- . _ ) )

ment, these quantities are combined with the atomic orbitalPne set ofy’s for all Rs andQ defines a configuration of the
belonging to the respective atomic species to generate tfnsemble, describing a disordered solid. Ttle consideration of
electron charge density in the real space, which fluctuatea general unit cell with several basis vect{ss includes the
from site to site depending on the occupancy, while the avpossibility of simulating long-range order via a sublattice
eraging acts to suppress the random environment effects, thependent occupation probability:
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0 0 Q we deal withN basis orbitals in the crystal for each configu-
<77Fi§>:C§ 2% c;=1, 2 ration and withM atomic species, theH is NXN andH is
MNXMN; 7 is MNXN. These algebraic features are the
while requiring statistical independence of the pseudospinsprerequisites leading directly to a generalized BEB theory,
, , oL applicable to nonorthogonal basis states and to complex sub-
(77% ng,§,>=c§c§, for R+s#R’'+s'. (3)  stitutional disorder(sublattice dependent occupation prob-

Now the basic concept of the orbital approach consists o?bmtles)'

expanding the one-electron wave function into a set of local 2. Single-particle Green’s function
overlapping AO’s. For a disordered material, the contracted
product of all possible AO’s for all species with the pseu-
dospin

Prepared with the algebraic representation of all matrices
we now come to the formulation of the scattering problem
for a substitutional disordered solid. From the pseudospins
we may construct a stochastic projector, acting in the ex-
|iM>:% iQu) 72 (49 panded Hilbert space:

selects the right orbital at the right site in a given configura- 1 T B
tion. The orbitals of neighboring sites are in general nonor- X=07 T X=7N, X7=7 -
thogonal, giving rise to an overlap matrix:

1D

This projector is a square diagonal matrixy

Siv o =(ipli'n)= > ﬁ?(iQM“'Q'M')??S’ . 5 =[S uu Soq 72)], obeying the relations
QQ’
The Hamiltonian represented by the AO’s reads 2=y, TrQXii 7 o = Bit 7 (12)
Al =S i TP, We can split the Hamiltonian and the overlap matrix into an
Hiir = (i p[H]i" >—QQ, 7(iQu[HII'Q w7y on-site and an off-site part, where the on-site parts commute

(6) with the site-diagonaj:

Now we expand the equation of motion for the retarded
single-particle Greens’s function in terms of those local or- H=H+H, (13
bitals: - = —

(07S=H)G"=1, @ S=5+5, (14
wherew*=w+i0, andG™* is given in terms of the coordi-
nates contragredient to E(): ) ]
. [Sx]=[H x]=0. (15)
Gr=s |G| )s L (8) - -

The mainy dependence of E¢6) is given by the dependen- (The matrixS contains the orbital normalization, which may
cies at both terminal pointsA more complicated structure deviate from unity, e.g., by core orthogonalization correc-

of H would result from core orthogonalization correctionstions) Inserting Egs.(9),(10) into Eq. (7) we arrive at a
and from third center potentials which, however, are self-Q-expanded equation of motion:

averaging quantitie¥. For the following we assume both the
Hamiltonian and the overlap matrix to have a bilinear struc-

ture with respect tay WT(w§— H)7nG=1. (16)
S=7"Sy 9) Multiplying Eq. (16) with % on the left and withyn' on the
- right, we obtain an equation for the new quantify

H=7"H7, (10) =G7', representing the Green’s function in the expanded

Hilbert space, which, of course, depends on all pseudospins,
the meaning of which is the following: We introduced a that is, ony:
compact method of notation of a matrix of the pseudospins
n=[(5;; ,'W,n?)] for a given ensemble configuration. Now
H andS are matricegwith respect to site indicé®f a given
configuration, whiIeHz[(Hi?(i;L,)] and S:[(S‘.??L’,ﬂ)] are _
matrices, acting in the expanded Hilbért space of the whol&OW we use the properties af [Eq. (11)] and the commu-
ensemble, which is provided with the full orbital basis. Thet@tion rules Eq(15):
pseudospins yield a connection between the operators of the
ensemble with those describing a special configuration. The ar 1
first kind of matrices(systematicgally dpenoted Witr? an under- [w§_ﬂ+X(w§_ E)X]g—)(- (18)
ban is translational invariant and nonstochastic while theThe expression on the left is Herglotz and thus can be in-
second kind is stochastic and not translational invariant. Iiverted in the upper complex half plane:

X(0S=H)nG7y'=yx. (17)
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G=nGn'=xnGn'
= x[wS—H+ x(0S—H)x] *x (19)

-1
= \'[wﬁ—ﬁ_—x(w—ﬁ)wr,\'(w—E+wi—ﬂ)><] X -

=-a

(20

=r-t

Here we introduced the complex self-eneify the invert- These equations define the twofold conditionally averaged
ible scattering potentizha and the coherent Green’s matrix Green’s matrice_s. From the coherent Green’s matrix we cal-
I'. Now we use general rules for projectors to write culate the density of states:

G=x(xI 'x—a) 'x=—xa 'x[T " 'xa 'x-1171,

1 , .
E (1) Pl Wlmn’,og,,mf S"",w'fww (28)

and theQ-projected densities of states:
G=b(b-T) I=r+I'(b-TI) " I=r+Ir TT.

S 1 1
Thus, we expressed the multiple scattering in terms of a co- pow)=— M 2 , SSSM{%,%/#_Q- (29
herent motionl” and an incoherent stochastic part, the scat- QN mp Ci

tering matrixT. The CPA condition reads

Both expressions reduce to the normal trace in orthogonal
(9=T <= (T)=((b—T) ")=0. (23 pasis schemes.
. L e Up to this point, all formulas are exact on the basis of
This condition defmc_es Fhe self-ener@_}y . Egs.(5) and (6). They provide an orbital representation of
The charge density is needgd for a charge seIf—conssteme multiple scattering theory in analogy to the KKR ap-
band-structure scheme. For this purpose the twofold condis;5ach. For most practical calculations the CPA condition,
tional configurational averages Q_I are required. These Eq. (23), has to be simplified by using a single-site approxi-
quantities may be derived using projection propertiexof mation. We neglect the site off-diagonal matrix elements of

From Eq.(19) we deduce 3. Thenb becomes site diagonal and the scattering matrix
decouples: -
G=x9x.  xi%g-i=bqq. (24)
¥l a1 =G| avi Siqqrers (29 T=(1-tT)7Y% =8 (b=~ (30
— q/*\i/ — q"’i, _— —_—— -_ —_ —_— —

where the subscripg—i means to fix the specias at the
sitei. We sometimes use a block matrix notation and drop Fi’i,=(1—5“,)1“”, . (31
the subscriptsup’. The connection to the unconditionally - -
averaged Greens’ matriX is given by

- The CPA condition now reads

FRY=(GR)=2 cHGR¥)q 10u0'q
q (t)=0. (32
=G %q-i%0q (26) _

and For the conditional averaged Green’'s matrix we get the pre-
Vious expressions:

QQ' _ /QQ"\ _ Q' QQ’
I =(Gi >_2 ciey (Gii™ ) i SQaQ'a
aq

N
q' =1 ’

I's ' FQQ

— ~QaQ"/RQ (GDoi=—e, (G2 i
=crcy (G , i1/Q—-1"" Zir / g-i = - (33

i v <_|| >Q(?::, (27 C; Qrﬂ:, CiQCiQ'
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which are now correct, except for terms of the order(DOS).? This number is obviously smaller than in the origi-

o({t%). nal CPA. Nevertheless, the moment expansion of certain
- functions is known to converge extremely slowly. Thus, the
IIl. ANALYTIC PROPERTIES OF THE BEB THEORY numper of preserved momgnts should be very Iargg to assure
o the right shape of the density of states. Our numerical calcu-
A. Limiting cases lations show that, despite the poor number of preserved mo-

Up to this point, we have introduced the generalized BEBMents, the overall shape of the DOS is reproduced astonish-
theory and a single-site approximation for practical applicaingly well in BEB. Obviously, there is some other important
tions. The propagator formalism of Sec. Il works in analogyinformation preserved in this theory, making it very appeal-
to the original propagator formulation of the standard CPA.ing in real applications.

The main difference is the treatment of nonorthogonal basis One major advantage of the original CPA was due to the
sets, the inclusion of complex substitutional disorleng-  fact that it provides an interpolation scheme between several
range ordey;, and the BEB feature: diagonal and off-diagonal imits known exactly in alloy theory. The first pair of limits

disorder ofH andS are accounted for in the same manner. concerns two extremal situations with respect to the scatter-

In applying the CPA to band-structure calculations, it ising strength, that is, the weak-scattering limit and the split
important to know the accuracy with which this approxima-pand Iimit. The latter occurs if the distance of the atomic
tion treats the disorder problem. In the present section Wgsye|s by far exceeds the hopping integrals. The resulting

will concentrate on the analytic properties of the generalizegyqg consists of two separated bands, reducing to the pure

BEB thefqry. ‘ hat th N , __atomic level in cases, when the hopping integrals are ap-
As a first remark, we note that the BEB theory is equlVa’proaching zero. This limit is discussed in Ref. 13. In the

lent to the original CPA if no off-diagonal disorder is -
present. This limit was already proved in the first BEB paperBEB theory the numt_)er OT energy parameters is larger, thus,
there are more possible limiting procedures. Blackman, Es-

Ref. 2. In the f(_)llowing discussion of the limiting behavior tFrIing and Berk have given an analysis of the independent
of BEB, there is thus at least one set of parameters thaband limit, which sets in if the mixed hopping integral van-

fulfills all discussed limits, since the original CPA does. ) ; . oY .
An important prerequisite to assure the physicality of thelshes. Then no hopping between different species is possible

energy dependent quantities, like the self-energy and th@nd two independent bands should be expected. We again
Green’s matrix, is the analyticity of these functions in the®ach the split band limit in the sense discussed above by
upper complex half-plane, the Herglotz property. It is met byincreasing now the distance between the atomic levels while
the original CPA as well as by the Shiba transformation keeping the hopping integrals constant. The opposite situa-
Most of the attempts to construct a cluster CPA, first to gention, having very small difference in the energy parameters,
eralize the CPA beyond the single-site level and second té called the weak-scattering limit. Here, the self-energy may
include off-diagonal disorder, were suffering from nonanaly-Pe expanded with respect to the energy parameters around
ticities of some of the relevant functions. The inclusion ofthe virtual crystal approximation, say, the averaged Hamil-
the off-diagonal disorder within the philosophy of single-sitetonian. Setting the off-diagonal hopping elements to the
theories as done by BEB preserves the Herglotz proferty. same value, we get the regime discussed in Ref. 13. Thus,
The density of states of a tight-binding Hamiltonian is the BEB theory provides an interpolation between the ex-
nonzero only within a certain energy range. The boundarie§eme situations with respect to the scattering parameters,
of this interval, the spectral bounds, are determined solely bgimilar to the original CPA.
the matrix elements of the Hamiltonian, see the Discussion The second pair of limits concerns the behavior with van-
in Sec. IV. These spectral bounds should be observed by ari§hing concentrations, called the dilute limit. First, one
approximate alloy theory. At least, the density of states musghould note that the equations are symmetric with respect to
not have any Spectra| We|ght outside of the Spectra| regiorﬁ.n intel’change of both SDECieS, thUS, a subdivision into host
For the original CPA this was shown in Ref. 13 to be ful- SPecies and impurity species is an arbitrary choice, as it
filled. The structure of the BEB theory is mathematically should be. We will show that the BEB CPA becomes accu-
more involved, and a proof for the correct limiting behavior fate in the dilute limit, for which—to the authors’ best
has not been given. However, our numerical calculation&nowledge—no proof exists up to now in the literature. This
have shown in no case a violation of the Spectra| boundé_jilute limit is not trIVIaIIy fulfilled due to the concentrations
The reproduction of all gaps, in contrast, is not possible within the denominator in Eq33).
a single-site theory. Note, however, that the theorem, con-
cerning the spectral bounds, does not yield any statement ) o
about the position of gaps, unless they are of split band na- B. Dilute limit
ture, in which case the BEB CPA provides correctly the split  The generalized BEB CPA in the limit of vanishing con-
band gap. centration yields the single impurity Green’s functions, for
A seemingly crucial test of an alloy theory is the numberarbitrary off-diagonal matrix elements. The proof holds for

of moments of the density of states that are reproduced cofonorthogonal basis sets and for multiband cases as well.
rectly. This is due to the fact that the first few moments give

some physically important information, such as the number
of electrons, the band center, and widths. The BEB CPA
gives correctly the first three moments of the spectral density We start with deriving the Green’s function for a single
and the first four moments of the total density of statesmpurity. We consider a monoatomic lattice, occupied by the

1. Green’s function of a general impurity
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sort A. In the origin we place an impurity atorB. The

on-site elementsl and the off-site elements of the Hamil-
tonian take the values

B VA, i#0
HII_+VB, i=0 (34)
and
Hi =Wo2, Q,]—A iff,Jio and
Q I
Q i
Q’J_B |fI,J=O (35

The numberav®?" are not bound to the multiplicative con-

i’

dition Wﬁ,QV: a®W;;,a?', used in the Shiba transformation.
In the following, we will omit the site indices if their
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with ga="PG,P. The result is origin-avoiding, since the in-
verse of—g, in EqQ. (42) represents the single-site scattering
matrix of an infinite energy barrier, eliminating the origin
from the path.(See for instance Ref. )4Finally, we insert

G, in Eq. (40) and usePHP=0—PHQ="PH:

-1

P
Og= { | B—P\NBAQ< Ga— GAPg—PGA) QWABP
A

73 -1
=[IB—PVVBA< GA—GAPaPGA)WABP .43
=[|1B- 1 - 44
Js gM+ngAgR (44)

Here, the definitiongy=PWBAG,WABP, g, =PWBAG,P,
and gr=PG,W"BP, are introduced. Equatiofd4) is the
Green’s function of the impurity and gives the density of

values are obvious from the context. To distinguish betweeRtates of on8 atom in theA medium.

the impurity site and thé\ sites, we introduce projectof@
and Q in real space, with
Piir=6i06ijr, Q=1-P.

Furthermore, we abbreviaig%,:(w—VQ) Siir . We are in-

(36)

terested in the elements of the Green’s matrix at the impurity

site 0. Using the projectors we write

9s=Plw—H]"'P, Plo—H)P=I5,

Plo—H)Q=PWBAQ, (37
Q(w—H)P=QW"BP,  Q(w—H)Q=Q(I*~WA%Q.
(39

For any matrix A=PAP+PAQ+ QAP+ QAQ one can
show

PAL1p= (39

QAQ

Q -1
PAP—PA Q—QAP} .

Thus, gg can be expressed in terms of the Green’s matrix

Ga=[1"—WAA]"1 of a pureA-medium(where WA is also
used fori=0,i’'=0):

-1

IB—WVBAQ—?l QWABP
QG Q

Note that the only nonzero matrix elementd fare!5,.

0= (40

Furthermore, the propagator from tBeatom into theA
medium is an interesting element of the Green’s matrix. It
can be calculated frohw—H] ™! via a relation similar to
Eq. (39):

Gea=Plo—H] 'Q=ggPWBAQ

0G0’
(45

Gga=0ggPWEA Q.

P
Gpo—GAP—PG,4
da

It is worth noting that all formulas in this section hold for the
most general case of an impurity, which means that the hop-

ping elementdd may take any value. The condition of mul-
tiplicative disorder is not requiredNote, however, that for
nearest-neighbor hopping only, multiplicative disorder
would not be a restriction in the present context, sii&®
does not figure here and can be put to any value.

2. The dilute-limit in the BEB CPA

In Sec. Il B 2 we generalized the BEB CPA on the basis
of a pseudospin description. There were some peculiarities.
First, some elements of the self-energy are known analyti-
cally for vanishing concentratior{Sec. Il C. They give rise
to undefined expressions in the formalism if the correspond-
ing rows and columns are not removed from the very begin-
ning. Second, the physically meaningful, component pro-

'Equation (40) contains a term that may be called anjecied elements of the Green’s matrix are given by B8)
origin-avoiding propagatoB,. It describes the propagation \yith the concentrations appearing in the denominator. Nev-

in the A medium under the condition that the site 0 is eX-grtheless, the system of equations for the determination of

cluded from the path:

_ 9
0G0’

Using a relation, obtained from E@39) by exchangingP
with Q, we have

G, 41

G,=0Q Q (42)

)
Gao—GaP—PG,
da

the physical Green’s matrix is well defined. This will be
shown in the present subsection.

We will restrict ourselves to the case of a binary com-
pletely disordered alloy. Without loss of generality we may
set the overlap matri$ to unity in the present context.

We recall briefly the basic formulas. The components are
A with concentratiory=c, andB with concentratiork=1
—y=cg. All entities of the BEB CPA are matrices in the
expanded Hilbert space. The coherent Green’s matrix is
given by
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-1

I=[w—3—-H]*. 46
1 [w E _] (46) G;l+iA — (SABLWAB)
The self- energyE is assumed to be site diagonal. With = Y (56)
=w— H andy PFPwe may write - —(EBA+WBA) GBl+%
a=—l+x(o—2)yx, (47) =
- - - Go=(12—WR?) ! denotes the Green's functions in the
| pureQ media. The inversion of the super matrix structure in
E Xa X (“48) Eg. (56) results in
t=[b—y]"% (49 cQ _ -
- T - [0=| G+ —5 — (29%+WRQ)
(ty=0. (50) Y
(Here,P is a projection to an arbitrary site. Since all sites are 1
identical, P may be thought to project to the originTo- % 1 (25Q+W€3Q) (57)
gether with the projection properties of thenatrices imply- ., C ’
ing Ga + 3
Y
7= 00q1, (5)

re=| — 6Q+W6Q 4
the set of equations of the BEB CPA is completely defined. — { (E )

The physical matrix element&”)Q%, and <g“, ) Qi

[

Q 1
Gl | ———
Q Q) 3004 WeR

-1

and hence the DOS are given by Eg3). (58)

From the definition Eq(34) the matrix elements of the
matrix b for a special choice of the site occupatignare
given by

Gol+ Cé)
ot —
ZQ

We usedQ as an abbreviation for the component comple-
mentary toQ. All self-consistency equations of the BEB
CPA are now contained in

p(@QQ = s ; (52)
= - QQ’quVQ_EQQ’ : PE[Z]'PEZ. (59

Now, we expand Eq€57),(58) with respect to the impu-

(Site indices suppressed?husE takes the form rity concentrationsB=x. We insert

-1
Q=,Q 3

t@Q' =5 s ;_YQ U= Y0 +X7(1 +x? 7(2 +0(x%), (60)

_ Qe R4\ o_yoo

1
+ (5Qq_ 1) ?1 .
Y - -
T (53 390=330+0(x) (61)

From the CPA conditior® cqt(‘”QQ =0 we get two equa- in these equations. The zeroth order of the funcliG is
tions: BB oA o
1-c@
30Q=yQ— o Q=A,B. (54 XGA(E(O)"'WAB)] 17(0)- (62)

Y
- The requirementPI'®8P=+8 allows the unique solution

The remaining two conditions are fixed by E1). We y(Bo)zo. Remembering the formulas for the physical Green’s
insert the elements of the self-energy and the off-site elefunction in Eq.(33) we see that this solution circumvents a
ments of the Hamiltonian, Eq35), in Eq. (46): divergence.

Furthermore,we get

’ 1_CQ ’
(Fil)QQ = (U_VQ+ Q 5QQ,_WQQ AB
B 4 Ilo=| Ga'~ o+ W)
-39 (1- 550). (55) i,
- 1
- BA
We will elucidate the X2-matrix structure of this superma- X Y(O)GB +17<0>(2<0>+W )

trix by writing I as a 22 matrix, the elements of which are
matrices in the real space: =Gap, (63
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which leads immediately to/{,=ga=PGaP. The mixed
elements are given to zeroth order by

Lo ="70| — (o +W®) ?’(BOWGA SBAL \WBA
-1
X(Gg (o)1)
=0= F(O) (64)
and usingy(Bo)=0 to first order by
-1
FBA: YB G—l— (2 +WBA)G
(D~ Y] PA $BA_L \£BA <(0)
- - otW
(65)
The self-consistency conditions Ed59),(51) result in
0=y, P(2 g+ WEH GAP (66)
and analogously in
0=PGa(X() + W*®)Pypy, (67)

Thus we need one further equation to determyﬁlq After
msertmgy(o) 0 the first order ofBB only leads to an iden-
tity:

A peculiarity of the BEB theory is the fact that the second
order of"BB under the conditioi59) does not introduce new

unknown quantities:

BB B B -1 B BA BA
L= 7ot 1= 70)Ce vy (Z )T W)

X GA(E<AOE;+ WAB ]'y(Bl) . (69)

Thus we get W|thy(2)—7>l“(2)7> and with PGg'P=1B (see
the definition ofH) an equation fory(l)

'y(l) [1B— P, 0)+WBA)GA(E(O)+WAB)P]_1 (70)

From Eqs.(66),(67), using the definitions of the last section,

we obtain the zeroth-order self-energies

1
. BA =_q —
E(O) PW GAPPGAP_ ngA, (71
P 1
2(0) G PPGAWABP=—g—gR (72)
and finally from Eq.(70),
2 [ 1
=[1B—gu+o.— 73
Y Im ngAgR (73
and from Eq.(65)
BA B 1 BA
PLEQ= i P —gLaer GAQ (74)
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Q.

P
= y(Bl)P\NBA( ~GAPy PGa+Ga
— A
(79

All together, the coherent Green’s mat|1'|3< fits in the fol-
lowing scheme:

- (0(1) 0
Eii’_‘sii’ 0

O(X)) +(1_ i

(0(1)
O(x)

O(X) )
ox?) )"
(76)

Thus, no divergence problems occur while calculating the
physical Green'’s function in E¢33). The Green'’s functions
in the dilute limit read now

B 1]
| _gM"_gLagR (77)

Js=

and

P
GBA=gBPWBA( —GAPg—PGA+ Gal Q. (78)

A
These are the same formulas as for a single impurity in Sec.
Il B 1. All derivations were made, observing the commuta-
tion rules for matrices. This assures the validity of the proof
even for the multiband case. The inclusion of the overlap

matrix is straightforward by replacirg with H—Se andH

with H—Sw. We proved that the BEB CPA vyields the single
impurity Green'’s functions in the case of vanishing concen-
trations.

C. Self-energy

In cases of partially disordered alloys, some elements of
the self-energy are known analytically. A proof is given in
Ref. I. We give here a short summary of these results.

We will keep the full CPA equations without approxima-
tion. Then, the self-energy is not diagonal in real space. In
the case of partially disordered alloys, there are sites whose
occupation is fixed. Now we are going to investigate ele-
ments of, with respect to those sitéwe call the indiced).

It turns out that these elements are given by the explicit
expressions

2it=i1(w(1—S) +Hy). (79
Because thus vanishes in the case of fixed site occupation,
we have to exclude these sites from the CPA equati@8s
(32 by deleting the corresponding rows and columns.

This result is somewhat unexpected. The physical picture
behind the CPA is to put a single impurity atom in a lattice
of the effective medium and to require that the averaged
scattering at this impurity atom should vanish. This impurity
atom is a local perturbation in the original CPA. However, in
BEB theory this no longer holds, since here a coupling self-
energy between different species exists. This self-energy in-
deed is local but the structure of the equations is different
compared to the original CPA. The meaning of both self-
energies is different. If transforming the BEB equations to a

form comparable to the simple CPA equatioB§? would
transform into a nonlocal self-energy expression in the origi-
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nal sense. This, finally, leads to the conclusion that the self- The form of the BEB Hamiltonian is still not the most
energy in BEB is extended over the whole lattifBee the general one. It is possible to construct more complicated de-
coupling of the self-energy to the off diagonal Hamiltonian pendencies of the matrix elements on the stochastic occupa-
elements in Eq(57).] tion of the neighbors. Those models are discussed, e.g., in
Having this in mind, the result shown in this section is Ref. 20. The special form of the BEB Hamiltonian was
surprising. Even if the sublattices are coupled, the BEB selfealled in that work a canonical random operator. However, it
energy between the sublattices will vanish for zero disordewas pointed out in Ref. | that the canonical form of the
at one site. The effective self-energy in the above-discussethatrices appeared to be a direct consequence of the orbital
sense, however, is not zero. The matrix structure of BEB ispproach.
responsible for those properties. The mapping of disorder
effects to the self-energy is well chosen. Obviously, disorder
effects appear only in those matrix elements corresponding
to disordered sites. Altogether, this is an indication for the A. Model Hamiltonian
BEB theory to be an extension of the CPA, going far beyond
what is seen directly in comparing the equations. The Iocaiss
BEB self-energy has indeed a nontrivial nonlocal meaning.C

_ This general peculiarity of. is preserved in the single- 1 ain hrogress of BEB, in comparison with the original CPA,
site approximation, where we set by definition all site off-js the proper treatment of the off-diagonal disorder. With the
diagonal elements (§t0 zero. Thus, it is clear that the BEB help of the powerful tool of projection techniques we have
CPA will be the better, the less stochastic sites do exist in thghown that the BEB CPA fulfills some rules, giving the
unit cell. That provides us with an especially good justifica-hope, that it will be fortunate in band-structure schemes.
tion of the single-site approximation in such cases. On thejere we focus on a numerical test of the BEB CPA, both for
other hand, this feature allows us to reduce drastically th@omplete and for partial disorder. This will also illustrate the
calculation time. The CPA equations for the fixed Sublattice%na|ytica| results of the preceding sections. We will compare
need not be solved numerically. components of the Green’s matrix, calculated by the CPA
with those given by direct simulation of an ensemble. Such
numerical tests for the classical CPA were performed, i.e., by
Ref. 21 or may be found in Refs. 14 and 19, but they were

We briefly summarize some other approaches to extendever done to our knowledge for the BEB theory.
the original CPA. There is, first, the special case of the BEB We restrict ourselves to one-dimensional chains of atoms,
theory, when the matrix elements fulfill the condition of mul- well knowing that this type of model reveals some peculiari-
tiplicative disorder, treated by the Shiba transformation. Thidies, that are not as pronounced in higher-dimensional lat-
method, based on a similarity transformation, maps the proltices. The effects, shown here, are common to all dimension-
lem onto the original single-site CPA. It has obviously, all of alities but are best seen in one-dimensional models. The
the analytical features of the CPA. However, in general, the&anonical random tight-binding Hamiltonian of the chain has
Hamiltonian, obtained by a LCAO method, and the corre-the form
sponding overlap matrix never do fit simultaneously this
multiplicative condition. In TB LMTO this special form is . P
given automatically by the TB transformation, thus Shiba H:% elnlala+ X I S ala;. (80

IV. NUMERICAL TESTS OF BEB THEORY

In the preceding sections we introduced a version of the
EB-CPA generalized to nonorthogonal basis sets and to
omplex, sublattice-dependent substitutional disorder. The

D. Comparison with other CPA extensions

CPA is the appropriate tool for describing alloys in TB 1#i".QQ’
LMTO'. . T{:e overlap matrix is not considered here and hence set to
Besides the BEB and Shiba methods there are a couple gfiy Equation(80) forms a one-band single-electron model

cluster CPA’s to incorporate not only the off-diagonal disor- . 0 ] T QQ’

der but also the disorder effects on the neighbor atomgVith on-site energies;” and with hopping integrals;,” .
These methods suffer in general from two disadvantages.he selection of the actual kind of atom at the positids
First, the Herglotz condition is violated in some of thosechosen by the pseudospip®. All derivations of the last
theories, making the physical meaning dubious. Howeversections apply to this model. It is general enough not only to
the traveling cluster approximatibh® and the augmented test the original BEB CPA but also the Shiba transformation,
space method of Mookerjte'® appeared to be free of such the VCA CPA and partially disordered chains.

problems and represent a reasonable generalization beyond With one exception we will consider in the following
the single-site level. The second, may be more importanfiearest-neighbor hopping only. All chains contain two kinds
point is the enormous numerical effort, implied by the cir- of atoms @ andB) with the energy parameters

cumstance that the matrices, describing clusters of atoms, are

now larger by an order of magnitude. This is especially eh=0, B tM=1
troublesome for applications to more complex lattices. There

is at least one quite simple cluster extension, the moleculaFhe occupation probability of a sublattice site with the atom
cluster CPA, which unfortunately lowers the translationalA is denoted by, while the probability o8 at the same site
symmetry of the underlying lattice by grouping the atoms inis denoted byy=1—x. They should be allowed to take site
a lattice of larger molecular clusters, thus increasing effecspecific values, to simulate partial disorderg.,x=0 is pos-
tively the lattice constant. A survey of these methods issible). For this model we will calculate the density of states
found in Ref. 19. given by

, tAB:tBA, tBB. (81)
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1
plo)== p Im Tr E(w). (82) FIG. 2. DOS for a hinaryX-X-X- chain atx= 0.5 with varying

diagonal energy parameters.

We computed th&k-dependent Hamiltonian matrix and ) o )
solved the BEB equations for a number of energy points. Thavheres, are the eigenvalues of the Hamiltonian. Finally, the
mesh ofk points was refined to obtain convergence of theresults for the ensemble were obtained by averaging the DOS
density of states with respect to visible changes in the figuregVer the set of configurations. As in the CPA calculations,
below. We chose 600 energy points in the depicted intervaldve used 600 points along the energy axis in the shown in-
In order to get converged calculations, one has to obey thiervals. The imaginary pard of the energyo was chosen
retardation condition by adding a small imaginary part to the2gain to be 1.5-fold of an energy step. This should assure the
energy: here we take the 1.5-fold of one energy step. Thi§omparability of both results.
small imaginary par goes to zero with decreasing energy
steps. Since the number kfpoints depends on the smallness B. Binary model alloys
of 8, we are restricted to a certain choice. Nevertheless, the . , )
pictures do not change further with refinement of the mesh, At the beginning we test completely disordered binary

The effect of broadening of the band edges, due to finits ~ 19ht-binding chains of the shapX-X-X- (X=A,B).
discussed below. Figure 1 serves as a guide through the parameter space of

For the sake of comparison we will perform “exact” nu- the considered chain. It shows a sketch of the relevant region

- AR BB
merical simulations. We create an ensemble of stochasti¥ith réspect to varying™* andt®*. The numbers refer to the

configurations with specified energy parameters, @d), next five cases discussed below. From physical arguments

and specified concentrations with a sufficiently large numbePN€ Would expect, that the mixed hopping integrals are less
of members and build the Hamiltonian, corresponding to Eqthan or equal to the pure hopping integrals. The shaded re-

(80). Each member of the ensemble represents a chain of 36800 represents these most probable sets of hopping inte-
sites with periodic boundary conditions. This length of thedrals. It is worth noting that the hopping integrals, steaming
chains turned out to be large enough to give converged rd®m an LCAO Hamiltonian, are given in terms of matrix

sults. The random occupations of the sites were generated flements between local orbitals. Thus, their sign depends on
a way to assure the right number Afand B atoms corre- the choice of phase factors. This leads to a unitary transfor-

sponding to the desired concentrations. That means, evef)ation describing the symmetry with respect to the phase
member of the ensemble contains exactly the same numb&Panges. Fortunately, the BEB equations have this symme-
of atoms of the considered species. Since the DOS is selfty: thus, the choice of the phases of the orbitals is not sig-

averaging, a set of 200 configurations per ensemble turnggfficant.

out to be enough to obtain converged results. For each chaig Later on, we will compare the BEB .CPA With t.he VCA
of the ensemble we diagonalized the Hamiltonian and calcu= PA an_d Shiba CPA. Thg VCA CPA IS thg original CPA
lated the density of states via calculation, performed with a special choice of the off-

diagonal hopping energy, which is not different for different
species. The dashed line represents the relation between the
83) hopping energy for the case of the VCA where all hopping

1
w)=——1Im
plo)=-7 2 elements are approximated HyE, =xt "+ ytB8,

| w+i5—s|’
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The Shiba CPA is characterized by the multiplicative con-  giG. 4. DOS for a binaryX-X-X- chain atx=0.5 with varying
dition for the values of the hopping integrals. For our pur-B—off-diagonal energy parameters.
pose of testing the various CPA methods with respect to their
applicability, in LCAO-CPA calculations we simulate a mul-  There are simple rules concerning the spectral region of
tiplicative fit of all Hamiltonian matrix elements by taking tight-binding model€? The position of the energy levels and
the geometric meatff, = Vt*EE. The solid curve shows the hopping integrals to the nearest-neighbor sites of all pos-
the connection of the hopping energies for this case. Thergible local configurations determine the spectral region. For
are two points where both curves intersect, but only if allany arbitrary eigenvalue of the stochastic Hamiltonian, Eqg.
elements are unity both methods are equivalent. (80), there are one energy levef’ and one constellation
The effects of disorder are most pronounced in concen®;, Q;., which fulfill the condition
trated alloys. Thus, we compare first the densities of states of
the_ CPA and e_xact solution for=0.5 in four rows in order |w—s.Qi|s E |t.9i,Q"|. (84)
to inspect the influence of the parametefs t8, andt”B. P
In Fig. 2 pure diagonal disorder is considered. All hop-

ping integrals are set to unity. The only remaining parametethe above kind holds the main band. All regions outside of

is the displacement of the band centefs—e”*=¢8B. It is : .
the main band possess more or less pronounced localized

c?llfdtscatterlnr? strer_lrgr:h. The Ft).ajtlgl ar?f.' the ftottalt densm?éharacter: the spectral weight originate from clusters of the
ot stales are shown. 1hese partial densities ot stales are. ﬁonger scattering components. The union of all those inter-
concentrat|orl1 weighted, local, component-projected denSIt'e\§als give the spectral bounds of the considered model Hamil-
—1/7ImI'?% (). They give the energetic properties of a tonian.

componentQ, placed on a sité in an otherwise averaged The two intervals, marked in the last panel of Fig. 2, give
crystal. For small diagonal disorder the CPA reproduces théhe spectral region, stated by this theorem, B4). An alloy
DOS quite well. The shape is similar to the shape of the pur¢heory must not give any spectral weight outside of this re-
constituents bands with the bandwidth=4 and square-root gion. As is also seen in later figures, the BEB CPA does not
van-Hove singularities at the band edges. The only effect ofiolate this theorem. At the band edges the DOS has little
disorder is a change in the band shape of the partial densitiesils reaching outside of the spectral intervals. This is due to
With increasing scattering strength the split band regime setthe band broadening, induced by the finite imaginary part
in. Two subbands form, each of them lying in an energyof the energy in those calculations. Figure 3 shows that, with
region that is not occupied by states of the correspondinincreasing number of energy points per unit inter(ahd
complementary pure component. Usually, such regions shotherefore with decreasing, these tails converge to the steep
peaks of local states. The CPA only gives bands there. Thelgand edges.

may be interpreted as arising from smearing out those peaks. In Fig. 4 the changes in the densities of states with vary-
By B increasing to infinity, the ratio between the bandwidthing bandwidth of theB component are shown for fixed diag-
of the split bands and their distane& is decreasing. This onal disorder. It is an example for general off-diagonal dis-
results in two separate levels fef—o, called the split order. The mixed hopping integraf® equals unity. That
band limit. In this case the CPA turns out to become eXact. means, in each case, when a small connected clustBr of

Wwe will call the  region where each possible inequality of
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FIG. 5. DOS for a binaryX-X-X- chain atx=0.5 with varying
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FIG. 6. DOS for a binaryX-X-X- chain atx=0.5 with varying

mixed off-diagonal energy parameter.

atoms has formed, the hopping probability within this clusterordered A-B- chain possesses a gap in the energy interval
is larger than the hopping out of it. This leads to an increaseti0,2] and to the right and to the left of the gap it shows
weight of the states lying outside of the pukeband, but Pronounced subbands. The statistical mixture of the compo-
inside the largeB band. Here, the BEB CPA provides simi- nents forx=0.5 creates largeA-B- chains as well as clus-

lar but smoother shapes of the DOS within the main bandters of pure components. In the interyal 2,2] the A-cluster
compared to the results of the simulations. In the region outstates accumulate while in the interjdl,4] the B-cluster

side of the pureA band the BEB CPA broadens the large states accumulate. In this special case the van Hove singu-

spectral peaks, while the rough shape is conserved. This is
partially connected with the conservation of the first four
moments of the density of states in the BEB CPA. Again, we
marked the spectral regions in two panels. From now on, we
always give two intervals. The shorter one is the region
where all inequalities of Eq84) hold, the “main band,”
while the longer interval is the union of all intervals, stated
by the theorem: the maximum spectral region.

Additionally, we gave in one figure the integrated density

of stateqIDOY). (It saturates to unity, the scale is not given.
It is clearly seen that the overall shape of the IDOS is repro-
duced in BEB. Even in the spiky regions the exact IDOS
fluctuates around the BEB result. Since the IDOS is the im-
portant quantity for real applications, this result is encourag-
ing.

Now, we fix the hopping elements of the componehts
andB to unity and increase the mixed eleméff. Then we
obtain forx= 0.5 pictures similar to the case of pure diagonal
disorder, Fig. 5. For weak mixed disorder the BEB CPA
describes the shape of the DOS quite well. If the disorder is
increasing, extended regions of local states occur, which
again are given by the CPA in a smeared out manner. The
structure of the exact densities of states can be understoor
from considering the limiting cases. We restrict ourselves to
the discussion of the cas®=4. Chains, consisting of pure

density of states (arb. units)

components, form typical one-dimensional densities of states FIG. 7. DOS for a binaryX-X-X- chain with varying concen-
tration for small mixed off-diagonal disorder.

with bandwidthW=4, centered at*=0 and ¢8=2. An
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FIG. 8. DOS for a completely disordered binary chain at various concentrations: Comparison between the BEB CPA, Shiba CPA, and
VCA CPA.

larities of the pure component DOS coincide even with thet”B. The density of peaks is growing with increasitftf,
edges of the gap of theA-B- chain. Both intervals of pure since the number of energetically interrupted bonds is de-
components overlap in the regip,2]. This in consequence creasing.

leads to an accumulation of states in this interval, in other The strong broadening of the DOS with growitftf in
words: the spectral weight in this region originates fromrig. 3 or the bandwidths in general can be understood with
cluster effects. The peaks outside of the elementary spectrgle help of the theorem E¢84).

intervals (A- or -B- chaing have a strongly local character. A |ast example of this class of model chains is depicted in
The reasons areA-B-A-B- clusters whose large hopping Fig. 5. Here, the mixed hopping is much smaller than the
rate t"* is favoring the trapping of an electron within the pure hopping elements. Again, the above statements hold.

cluster. All the effects described above are strongly conpq shape of the BEB CPA is a smeared version of the spiky
nected with a correlated occupation of neighboring sites,, - results. Note the resonance peakxfer0.1 which is

Surely, a single-site CPA never can account for this. Ratherreproduced quite well,

it produces an interpolation between the densities of the pure It becomes clear from Figs. 2, 4, and 5-7 that the BEB

chains. In the present case, the Iar@& in connection with PA vyields reasonable results for moderately strong disorder
the neglect of cluster effects, yields a DOS, resembling thal y y 9

of the ordered A-B- chain. The single-site CPA overempha- I one accepts the proadening of spectral peaks .in .regions
sizes the alternating occurrence of the components. Théﬁ”,th strong Ioc_:ahzatlon character. We argue that th|s is not a
means, in the region of the gap filled with cluster states in th&"itic@! point since many other reasons for broadening are not
exact solution, that the CPA supplies a low density of statescontained in our model. So, many-particle correlations would
Nevertheless, the similarity of the smeared out CPA resulte@d to a finite lifetime of all states. . _
with the exact DOS is seen at least for sméH. It should be Now, we turn to compare the BEB CPA with the Shiba
clear from the above discussion that this set of parameters [8PA and with the VCA CPA, both being methods designed
quite critical for a single-site theory. Otherwise, this choicefor the approximate treatment of off-diagonal disorder. For
seems to be not quite physical. this we chose a chain with gener@onmultiplicative off-

If we now increase the hopping energy of tBeatom diagonal disorder. Figure 8 shows the densities of states for
while fixing a larget”B, the strongly scatteringA-B- clus-  these three methods together with the exact solutions with
ters are perturbed byA-A- transitions only. Thus, the num- varying concentration. To apply the Shiba CPA to this
ber of subchains with a large hopping rate is increasing anfodel, it is necessary to perform the geometric average
the gaps in the spectrum are filled. In Fig. 6 this behavior ig&hp= VI"*E2= \t®B. For the VCA CPA we have to take
shown for fixedB hoppingt®® and growing mixed hopping the arithmetic meat{;e, =xt**+yt®E. The most important
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FIG. 9. DOS for a completely disordered binary chain with extreme mixed off-diagonal disorder at various concentrations: Comparison
between the BEB CPA, Shiba CPA, and VCA CPA.

conclusion is that the off-diagonal disorder produces effectsite is identically zero. Furthermore, the on-site elements of
which can never be covered by a VCA CPA. The second at nonstochastic sites are known exactly and, therefore,
conclusion is the observation that the Shiba transformatiofhey are included in the theory in a non approximate manner.
gives results similar to the BEB results for the actual param- Hence, every nonstochastic site should improve the re-
eter set. But only the BEB theory ensures that the first mosults of the generalized BEB CPA. We will see that this is
ments of the DOS are conserved. The shape of the Shiba {93 ¢P={ tes
. : ; =3 £°=1 t**=1 X XA

DOS is similar by accident since the chogéf=1 is close BEB-CPA " act
to thet5E, = /3. For other parameter sets, the shapes willbe 0.4 . ‘ ‘
completely different, except for those that fulfill the multi- 03l |
plicative condition. A last statement concerns the low- and
high-concentration case. Here, the BEB-CPA results are
close to the exact ones, since BEB fulfills the single-impurity 011
limit. 0.0 H—es '

If the mixed hopping elements are larger than the pure & 0.3 -
hopping integrals, the Shiba CPA and VCA CPA startto fail 5 g2 |

04 F [

completely even in predicting the bandwidths. Here, only the §
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situation is drawn in Fig. 9. The pure hopping elements both
are unity, thug&p, =t5&,=1 holds and the Shiba DOS and
VCA DOS are identical. BEB again yields a broadened % 0.2
shape in regions of highly localized character. Even the & o1 |-
-A-B—cluster peaks outside of the main band are reproduced 4
approximately at low concentrations. The energy parameters
are those from Fig. 3.

density of states
x
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o
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C. Partial disorder

This section is dedicated to partially disordered chains. As
mentioned in Sec. Ill C the matrix elements of the self-
energy between a site with fixed occupation and any other FIG. 10. DOS for a binar)X-X-A- chain with partial disorder.
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indeed the case, except for special parameter sets, which art =3 =1 t*=1 X.X,A (0=1)
BEB-CPA exact

critical especially in connection with the peculiarities of one-
dimensional models.

In Fig. 10 we consider a chain, constructed from se-
guences X-X-A. A denotes a site with fixeA occupation,
while X denotes a stochastic place occupiedfbyith prob-
ability x and byB with probability y. The index 1 in the
figure distinguishes thA atom at siteX form the A atom at
the fixed A site. It shows that both site¥ have the same
symmetry. The parameters are chosen to give a pusand
with bandwidthw=4 centered at”*=0. TheB band has a
bandwidth ofW=12 and is centered at®=1. The mixed
hopping energy is unity and therefore lies within the energy
regime of the puréd chain. This means that B cluster is
quite isolated energetically, since the higxhopping rate
favors a trapping of the electron within such a cluster. The
arrangement of the components allows Brclusters with
maximum length 2 only. This gives quite a large contribution
from pair scattering events not contained in the single-site
BEB. These strong correlations are especially important for
concentrated alloysx&0.5). Even there, those pairs are
present with large statistical weight. This lack of pair corre- : L
lations is seen in the energy interd@,4]. Here, the CPA 4 6 -4 -2 0
closes a gap present in the exact solution. Obviously, the energy (arb. units)
peak to the right is 8-B—cluster peak. Its height scales with FIG. 11. DOS for a binar)-X-A- chain with partial disorder
the square of the probability. Thus, the structure of the .4 more than nearest-neighbor hopping.
chain leads to strongly pronounced gaps, not described prop-
erly by a single-site CPA. Surely, the limiting cases of the
pureA chain and theB-B-A chain are reproduced well.

Discussing the applicability of BEB CPA to realistic sys-
tems, it is worth noting that our one-dimensional models
possess some peculiarities. First of all, every state is localz
ized. Inevitably, each perturbation represents an obstacle f

the propagation Of. e_xcitations. In _higher dimens_ions there argnough, since the hopping energies for different distances are
always paths avoiding the impurity for topological reasons.g..»jing with the same factor. This restriction may be raised.

Therefore, the localization and cluster effects are less pra; e also tested cases where the r#fi®ytBB for next-nearest

nounced in higher-dimensional systems. Second, only the ?rﬁ'eighbors was inverted with respect to the ratio for nearest

ergy integral up to the Fermi energy of the Green’s matrix ISneighbors. Even in such extreme cases we could draw con-
needed in charge self-consistent band-structure method

. o Clusions similar to the preceding ones.
Naturally, this quantity is much smoother than, for example, We want to present two further examples, including par-

the density of states. Since, the BEB CPA yields smearegal disorder to elucidate under which circumstances we may

densities of states in the probl_ematic energy regions, thﬁope to obtain good results by applying the BEB CPA. The
shapes of which may be considered as average over tr}'rarst chain has the unit cellx-A-B-, Fig. 12. It is similar to
peaks, we would expect the BEB CPA to supply Su'tablethe chain in Fig. 10. The limiting cases are ti#e A-B- and
expressions for an application in self-consistent calculationg, . g_a_g. cha.ins .The latter one is identical with that of
Th.ird.‘ the tight-binding character of our model is Very re- Fig. 10. Again debending on the occupation of the Xite
strictive. We only g_llowed fo_r nearest—nelghb_or hoppln_g. Re'there are isolaieB-B clusters. Nevertheless, the CPA result
leasing this condition, the influence of an impurity is ex- is now much better, since the correlation eff’ects due tdthe
pected to be less dramatic. Figure 11 shows such an_. . ; .

: : : I pairs are taken into account in a more accurate way by virtue
example. All parameters are identical with those in Fig. 10,

o . of the properties of the self-energy. In particular, the self-
ﬁ:;cfgt for the hopping integrals, which are changed accomgnergy at the fixe® site and all coupling elements between

this site and any other are included in an exact way in the
single-site BEB CPA. First approximations occur due to the
neglect of the coupling between two stochastic sike
different unit cells, separated by at least two sites. This cou-
with t9Q" taken from Eq.(81). That means, the nearest- pling has not much influence on the DOS.

neighbor hopping energies are the same. Additionally, we Figure 13 shows the chaifX-B-. The statistical occupa-
introduced exponentially decreasing hopping integrals tdion of a couple of neighboring unit cells witk=B leads to
more distant sites. We chosge=1, this corresponds to a re- large connected clusters Bfatoms. Since the bandwidth of
duction of the next-nearest-neighiocompared to the near- the pureB chain is much larger than that one of thAeB-

est neighbot by about 36%. This numerically small modi- chain, such clusters give rise to pronounced localization

density of states (arb. units)

fication shows strong effects on the shape of the DOS. The
reduced influence of impurities is seen clearly. It is interest-
ing to note that the BEB results are almost identical to the
umerical results. The contribution of the cluster peaks to the
ectral weight is decreased or their width is broadened. We
ant to point out that the ansatz, E85), is not yet general

tfi?f?’:toq’e—adi’fi\fl) (85)
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FIG. 12. DOS for a binar)x-A-B-

chain with partial disorder.

D. Off-site elements of the Green’s matrix
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FIG. 13. DOS for a binar)X-B- chain with partial disorder.
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FIG. 14. Imaginary part of the energy-dependent off-site ele-
ments of the component projected Green’s matrix for a completely
disordered binary chain.
peaks outside of the main band. This effect again is given in
the CPA by broadened and smooth curves.

judging the quality of a CPA method. The most important
guestions while developing the CPA in earlier days were
connected to the shape of the DOS. However, for the appli-
cation to band-structure schemes with nonorthogonal basis
] . . _sets, the off-site elements of the Green’s matrix are as im-
The last part of our inspection relates to a quantity, whichyortant as the on-site elements. Even the total charge is cal-
to the authors’ knowledge was not considered up to now irgylated, using the whole Green’s matrix. We will examine
some of those off-site matrix elements for two examples of

disordered chains.

The first example is the completely disordered binary
chain from Fig. 8. The energy parameters are taken from
there and the concentration is seite 0.5. (Here, we expect
the largest effects of disordgrmigure 14 shows the imagi-
nary parts of the energy-dependent off-site elements of the

Green’s matrix:

1 QQ’
——ImTI'gr (),
T =g

(86)

denoted byl'rr in the figure for simplicity. For the com-

ss’

pletely disordered case, the unit cell is simpk-; hences
=s'=0 holds. The indices at Fig. 14 thus refer to the lattice

sitesR, R’. The different component-projected functions are
marked. We see that the rough shape of the exact solution is
reproduced by the CPA and that the deviations take place in
the same energy regions as discussed for the DOS, namely,
outside the main band. Furthermore, we see that the sign of
the functions is essentially reproduced by the CPA. The
smearing out is similar to the DOS case. All together, the
off-site elements of the Green’s matrix behave in the same

way as the DOS.



he range of parameters in which the CPA should be appli-

:able. We think that the tests presented cover the essential
)atterns of behavior of the generalized BEB CPA, so that a

jeneralization of the results is justified.

(i) It turned out that the CPA yields satisfactory results in
1 large parameter region of diagonal and off-diagonal disor-
Jer, respectively.

FIG. 15. Imaginary part of the energy-dependent off-site ele- | (ii) The statistical correlation_s betwe_en different_ sites give
ments of the component projected Green’s matrix for a partiallyiS€ t0 peaks of local states, lying outside the main band. In
disorderedX-A-B- chain. these regions the single-site CPA supplies smeared out

shapes of the DOS, which may be considered a reasonable

The second example corresponds to the partially disorsmoothing of the exact DOS. This is supported by the state-
dered alloy in Fig. 12. The unit cell isx-A-B-. Therefore, ~Ment that the first four moments of the DOS are conserved in

L o >, the BEB theony. Therefore, the energy integrated CPA-
the indicess ands ' may take the values 0, 1, and 2 for the Green’s matrix should give a suitable approximation to the
sitesX, A, andB, respectively. In Fig. 15 the indices relate

to the indices at in Eq. (86). Once again we show different exact one.

. ; ) . (iii) The observed deviations are expected to be smaller
component-projected functions, but not for all index comb|—for realistic systems and higher dimensions

gg;gnmse;rt]: Leolilrgsallle;/grgagt; tﬂiirsﬁallinn F)trr:gcél[)elﬁ’si:h%fssa:;nt: (v) For partially disordered systems, the results are usu-
was reproduced well b the CPA, now t,he same isytrue fof'ﬁy quite good. The described exceptions are mainly con-
pr y ro ... ~nected to the special peculiarities of one-dimensional models

the off-site elements. The energy regions, where deviations : . .
with nearest-neighbor hopping only.

occur due to cluster peaks, are again the same either for the (v) Beside the on-site elements of the Green’s matrix, the

DOS or for the off-site elements. Thus, we expect the resultsﬁc ; .
. i ) . -site elements were tested. They are needed in charge self-
and conclusions, obtained by analyzing the densities of st band h d theref hould b
states, to be applicable to the off-site elements of the Green%onsmtent andstructure schemes, and therefore shou €
= reproduced in equal accuracy. Our investigations assure that
matrix, too. . . ; ; .
indeed off-site as well as on-site elements are given with the
same quality.
All together, our inspection points out that the generalized

%‘QEB CPA represents a suitable and meaningful tool for the
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‘'ormalism within an orbital description of the scattering
t*=3 £’=1 t**=1 x=0.5 X,AB heory, the matrix form of which may be considered an anal-
BEB-CPA exact )gy to the real-space theori¢€kKR). Then, we performed
0.10 ‘ I ’ some analysis on the properties of the self-energy, holding in
0.05 - N he single-site approximation as well as in the nonapproxi-
0.00 ' nate theory. These features give arguments in support of
= _0.05 :xpecting the single-site BEB CPA to be a good approxima-
v —V. . . . .
= ion, particularly for partially disordered alloys. These ana-
2 o0 ytic insights are further supported by the results obtained via
& 005 umerical test in Sec. IV. The second analytic proof con-
E 000 |- serns the limit of small concentration. Here it turned out that
E 005 he BEB CPA fulfills the condition to give the Green'’s func-
e ion of a single impurity for vanishing concentration. This
g -0.10 eature is fulfilled by the classical CPA and by the Shiba
© 005 ransformation(if the muiltiplicative condition for the off-
£ 000 liagonal disorder is appropriatélo the authors knowledge,
£ _0.05 his property was never proved before for the BEB CPA.
‘::_0.10 The last part of the present work gives an investigation of
©
£
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V. CONCLUSION

We presented a generalized single-site CPA theory that i
based on the concept introduced by Blackman, Esterling, an
Berk. This theory is applicable to band-structure schemej
including nonorthogonal basis sets. Those orbital approach
to the density-functional theory naturally result in a structure
of the Hamiltonian used in the BEB theory. Moreover, it is
extended to complex disorder, including the possibility of The authors acknowledge discussions with V. Drchal con-
simulating structural long-range order. cerning the TB-LMTO CPA. Furthermore, we thank H.

The outcome of the present work is a detailed inspectioriFehske for useful hints related to the different types of off-
of some features of the BEB CPA. First, we developed theliagonal disorder.

scription of disordered and partially disordered alloys in
e framework of band-structure schemes based on matrix
’grmalisms.
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