
PHYSICAL REVIEW B 15 SEPTEMBER 1998-IVOLUME 58, NUMBER 11
Analytic properties and accuracy of the generalized Blackman-Esterling-Berk
coherent-potential approximation
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The Blackman-Esterling-Berk~BEB! theory, generalized to nonorthogonal basis sets and complicated el-
ementary cells@K. Koepernik, B. Velický, R. Hayn, and H. Eschrig, Phys. Rev. B55, 5717 ~1997!#, is
inspected in great detail with respect to its analytic properties and numerical accuracy. We give a proof of the
single impurity limit fulfilled by BEB theory, thus clarifying some critical points in the derivation of the
theory. We undertake extensive numerical tests for the BEB coherent-potential approximation~CPA! to check
the range of applicability of the included single-site approximation. The BEB CPA turns out to give good
results in a wide range of energy parameters.
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I. INTRODUCTION

This paper is devoted to the once famous BEB theory
Blackman, Esterling, and Berk2 extending the use of the or
bital coherent-potential approximation~CPA! to random off-
diagonal matrix elements of the Hamiltonian~off-diagonal
disorder!. Our interest in this problem grew naturally out
our recent work on a first-principles charge self-consist
theory of the electronic structure of disordered alloys ba
on the CPA in a linear-combination of atomic orbita
~LCAO! representation.1 We will refer to this paper as Ref. I
One of the conclusions of Ref. I was that the BEB CPA, af
proper straightforward generalization, represents the nat
formalism associated with the orbital CPA. Furthermore,
practical implementation led to results comparing very fav
ably with those obtained using techniques that represen
contemporary standard for the computation of electro
structures of random alloys, notably, the Korringa-Koh
Rostocker~KKR! CPA, linear muffin-tin orbitals~LMTO!
CPA, and LMTO tight-binding~TB! CPA; see Ref. 3 as a
recent general reference for these methods. In fact, the s
ture of the BEB CPA parallels rather closely the Korring
Kohn-Rostoker~KKR! CPA, but is free of the technical dif
ficulties the KKR CPA faces when applied to compl
structures.

All the foregoing suggests that BEB theory deserves
tention on its own and should be revisited. This paper is t
intended as a relatively independent complement to Re
serving as a summary and an update of the general prope
of BEB theory with several additions and clarifications. O
approach is both motivated and guided by the revived po
tial usefulness of the BEB method.

The BEB theory was announced in Ref. 2 in 1971, that
in times prior to the KKR CPA, when the random allo
theory was still dominated by parameterized tight-bind
PRB 580163-1829/98/58~11!/6944~19!/$15.00
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Hamiltonians. It represented a major advance in compari
with the original TB CPA, which was suited only for th
site-diagonal disorder, that is with only the site-diagonal el
ements of an orbital representation of the Hamiltonian
lowed to vary stochastically according to the atomic spec
occupying the given site. Random off-diagonal eleme
~‘‘hopping integrals’’! clearly depend on both termina
points, and so they are seemingly beyond the reach of
so-calledsingle-site approximations, as represented by th
CPA. The ingenious BEB transformation is described p
ticularly clearly in Ref. 4. It consisted in doubling the Hilbe
space~for a binary alloy! by adding the atomic sort to th
matrix indices. The off-diagonal part of the extended Ham
tonian became thus nonrandom, while the randomness on
site diagonal was represented by a random pseudospin
able indicating the actual random occupation of the site
question. A single-site approximation in the extended sp
yielded the BEB-CPA condition. There was a flurry of nea
simultaneously introduced alternative models with o
diagonal disorder, notably, the Shiba multiplicative mod5

with tAB
2 5tAAtBB , t denoting the nearest-neighbor hoppin

integral. This model assumption led to a similarity transfo
mation reducing the Shiba case to the diagonal disorde
least as far as the site diagonal quantities, like self-ene
and local projected densities of states were concerned.
Shiba assumption was appealing both physically and
mally, by simplicity of the equations, and so it soon ove
shadowed the BEB approach; in particular, when it beca
clear that the Shiba approach is a special case of BEB~Ref.
6! and the latter seemed to be but a pointless mild gene
zation of the former, Ref. 7, p. 128. Soon thereafter,
whole TB or orbital approach fell out of fashion, and th
advances were rather sporadic. Still, a number of feature
BEB were analyzed, as is summarized in Ref. 19, Chap. X

A substantial deal of the results on BEB has been
6944 © 1998 The American Physical Society
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tained by its authors. Thus, the separated-band limit (tAB

50) is already given in Ref. 2 as well as the proof that t
first three moments of the spectral density and four of
total densities of states are reproduced by BEB exactly.
multiple-scattering approach was used in Ref. 4. The Sh
limit, of course, including also the diagonal CPA limit, wa
obtained in Ref. 6. Much of the later work centered arou
Gonis: in Ref. 8, the single-band case was treated, u
several formalisms, including locators, propagators, an
variational technique. Most notably, a proof is given that
BEB CPA guarantees that the approximate Green’s func
is Herglotz, i.e., analytic in the upper half-plane of compl
energies, with a negative-definite anti-Hermitian part. In R
9, the first attempt to apply the BEB approximation to
realistic multiband case can be found. The results w
promising, but not entirely convincing.

Other open points remained concerning BEB. Thus,
locator formalism, although natural in this case, required
cepting ill-defined intermediate mathematical steps such
inversions of singular matrices.4 There was the claim that th
BEB CPA fails in the limit of dilute alloy,5 which was just
casually denied,6 but never disproved. Another problem h
been the supposedly small number of exact moments of
spectral density discussed above. Finally, the BEB the
works not only with an extended Hamiltonian matrixHQQ8
but also with a Green’s function matrixGQQ8 with the same
structure, whose elements are component projected do
conditional averages of the alloy resolvent. Throughout
history of the BEB theory, starting from Ref. 2, Appendix
and ending with the recent review,19 p. 241, this matrix was
considered unphysical, and attempts were made to introd
the sum(GQQ8 and a corresponding one-component effe
tive coherent potential. In fact, however, the matrix stru
tures likeGQQ8 represent the physical elements both in t
KKR CPA and in the orbital CPA. This was recognized
another context already in the early eighties.10 In Ref. I, this
aspect of the orbital theory was linked directly to BE
theory, as will be discussed in Sec. II.

This paper has the following structure: In Sec. II, we pa
phrase the main points of Ref. I relevant to the problem
the off-diagonal disorder and BEB. Section II A discuss
the relation between the charge density, the orbitals, and
one-electron potential in real space, on the one hand, and
algebraic structure of the random matrices representing
alloy and subjected to the averaging procedures, on the o
It is shown how the basic features of the random Ham
tonian matrix lead in a nearly unique way to the generaliz
BEB representation of the alloy problem. Section II B serv
to summarize the essential equations of the generalized
formalism, including the pseudospin notation in the extend
space and the scattering formulation of the BEB-CPA s
consistency condition. Section III is dedicated to the gene
properties of the generalized BEB theory: in III A,we briefl
characterize the BEB Green’s function as a function of
complex energy variable, including the analytic propert
and the spectral bounds. Then, the BEB CPA is presente
an interpolation scheme, including the limits of weak sc
tering and separate bands and the dilute limit. This limit o
vanishing concentration of one component is executed in
tail, and the result is identified with the single impurity r
sult, which can be derived directly~Sec. III B!. A similar
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problem arises in the case of an alloy with a partial lon
range order if some of the sublattices tend to be occupied
a single species. This case, first treated in Appendix A
Ref. I, is discussed in Sec. III C. Finally, in Sec. III D, w
contrast the BEB approach to other descriptions of the
diagonal disorder. The last section, IV, supplements the
sults obtainable analytically by a numerical analysis a
serves to deal with several selected questions. We chos
study the simplest single-band case in one dimension
cause it is easily treated both by the CPA and by a dir
simulation and because it is known to be extremely sensi
to the approximation of the CPA, i.e., mean-field type. O
the whole, the BEB CPA is shown to be very flexible and
faithfully reproduce the salient features of the spectra fou
by direct simulation. This contrasts with other approach
tested, namely the Shiba multiplicative ansatz, and the
called virtual-crystal off-diagonal CPA~VCA!. These meth-
ods lead to worse and worse results, when the alloy par
eters deviate from the restricted areas of their validity.

II. GENERALIZED BLACKMAN-ESTERLING-BERK
FORMALISM

A. LCAO and the BEB formalism

This subsection and all of Sec. II are based on Ref
which attempts to apply systematically the LCAO repres
tation to anab initio description of random alloys. There ar
several requirements for such a theory to be met. Firs
should be charge self-consistent based on spin-den
functional theory~SDFT!. Second, the Kohn-Sham orbita
should be expanded to a sufficient degree of accuracy
local orbital basis, consisting of a restricted set of ‘‘atom
orbitals’’ ~AO’s! and associated with each site. These orb
als may be selected as reasonably compressed quasia
wave functions, thus eliminating the unphysical effects of
tails of true atomic states, as described in Ref. 11 in
crystal case. The third natural requirement on a valid al
theory is just that it should be an extension of a theory
perfectly periodic crystals. Such a philosophy had been
hind an early attempt to develop an LCAO-CPA theory12

This precursor of Ref. I suffered from several limitations.
was not really charge self-consistent and the off-diago
disorder was treated by averaging the random matrix
ments~VCA CPA!. Only the system chosen for applicatio
the CuNi alloy, permitted limited success of the work. Ho
ever, several important ideas, described below, have b
suggested already there. Let us summarize the physical
ture of a random alloy in the LCAO representation as
emerges from the analysis given in Ref. I.

~i! The atomic orbital set of a site must depend on
occupancy by a randomly selected atom, and thus it mus
random itself. This permits to reproduce the random fluct
tions in the charge density and in the orbital amplitud
using an orbital set of a small dimensionality~usually just
the minimum orbital set!. As a consequence, the Hilbe
space, spanned by the assembly of all AO, is itself rand
and depends on thealloy configuration, i.e., the random dis-
tribution of atoms of different sorts over the atomic sites.
becomes evident immediately that averaging over these a
configurations in real space is unphysical and mathematic
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difficult to understand. The configuration averaging is to
transferred to the matrix representation of the problem.

~ii ! In principle, the matrix elements, involving the effe
tive one-electron potential, depend on the total alloy confi
ration. It is natural to introduce an additional approximatio
stating that the site diagonal elements depend only on
occupancy of the site, while the off-diagonal elements
pend on the atomic occupancy of the two sites the orbi
are centered at~terminal point approximation!. While this
could be simply assumed, it is important to note that one
the main results of Ref. I represents an analysis of the
dom charge-density distribution and of the resulting o
electron potential, which indicates that the terminal point
proximation is valid up to higher-order corrections. The
are of about the same degree of importance and basical
the same origin as the corrections to the atomic sphere
proximation in real-space theories of the KKR type.

~iii ! This conclusion depends critically on the range of t
AO used, which specifies also the range of nonzero ma
elements and thus the degree to which they will sample
environment of a given site. In the alloy case, it thus appe
that the AO’s should be even more compact than in cas
crystals.

~iv! The requirement that the orbitals are compact in r
space prompts them to be nonorthogonal between diffe
sites; orthogonalization always leads to the occurence of
bital tails. The atomic orbital representation of the Koh
Sham equations in this nonorthogonal basis thus leads t
algebraic problem, involving not only the Hamiltonian m
trix but an overlap matrix as well. It is obvious that, in ge
eral, both the diagonal and the off-diagonal elements of th
matrices will depend on the orbital site occupancy and t
they will be random. The off-diagonal randomness is the
natural companion of any atomic orbital theory of alloys.

~v! One of the crucial points for the proper description
random alloys is the identification of quantities that are s
ject to configuration averaging.10 While it is obvious that all
one-electron properties for a given alloy configuration
contained in the corresponding unaveraged Green’s func
the object to be averaged is not the GF itself or its ma
representation but the observable quantities given by
~energy-dependent! functional Tr(AG) of the one-electron
observablesA. Even ifA itself was nonrandom, its represe
tation in the random AO basis becomes a random ma
The configuration average of the trace then does not red
to Tr(A^G&), but can be shown to involve precisely the do
bly conditional averagesGQQ8 , mentioned in the Introduc
tion and defined formally in the next subsection.

~vi! As has been established in Ref. I, this type of reas
ing is essential for a charge self-consistent orbital theory
the single-site approximation. In the self-consistency lo
we may start from the random SDFT potential in real spa
This is represented algebraically as a random matrix in
terminal point approximation. The corresponding matrix
solvent undergoes averaging, the outcome of which sho
be the conditional averagesGQQ8 . In this approximate treat
ment, these quantities are combined with the atomic orbit
belonging to the respective atomic species to generate
electron charge density in the real space, which fluctua
from site to site depending on the occupancy, while the
eraging acts to suppress the random environment effect
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agreement with the single-site nature of the averaging pro
dure. From this charge distribution, a new one-electron
tential is generated, and the loop is closed.

To summarize this overview, it appears that the task
achieving simultaneously the charge self-consistency and
self-consistent approximation for the alloy configuration a
erage can be accomplished using the LCAO representa
by mapping repeatedly the full real-space problem on an
gebraic structure suitable for the configuration average
then reconstructing the real-space quantities in an inve
mapping.

It is also apparent from this discussion that thenatural
algebraic mapping of the alloy problem is the BEB transfo
mation, which is capable of treating the combined diagon
and off-diagonal disorder in a single-site approximation a
which leads directly to the required conditionally averag
Green’s functions.

From this, the BEB theory was established in Ref. I a
tool for realistic LCAO calculations. In fact, it is very likely
a minimum tool because a satisfactory fit of the real al
BEB Hamiltonians by a Shiba-factorized model seems n
existent in general.

Clearly, the original BEB has to be extended by includi
more orbitals per site and more inequivalent sublattices, p
mitting a partial long-range order. On top of that, the form
ism must incorporate necessarily the overlap matrix alo
with the Hamiltonian matrix, since the atomic orbital basis
nonorthogonal.

All of this can be achieved conveniently by using a sy
tematic scattering picture, which is transparent and ea
manageable.

B. LCAO-BEB equations

1. Pseudospins and local orbital representation

In this section we combine the pseudospin descript
with the orbital approach to the electronic structure theory
a substitutionally disordered solid with an underlying lattic
Essentially, this leads to a generalized BEB formulation
the scattering problem. We only focus on the algebraic a
analytic aspects of the theory. The discussion, concerning
charge self-consistency, is reported in Ref. I.

Let a lattice site be denoted by the multiple indexi

5RW sW, where RW is a lattice vector andsW is a basis vector
within the unit cell. Let the lattice be occupied random
with atoms of several speciesQ. The pseudospin is define
by

hRW sW
Q

5H 1 atom of speciesQ at RW 1sW

0 otherwise,
~1!

(
Q

hRW sW
Q

51.

One set ofh ’s for all RW sW andQ defines a configuration of the
ensemble, describing a disordered solid. The consideratio
a general unit cell with several basis vectors$sW% includes the
possibility of simulating long-range order via a sublatti
dependent occupation probability:
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^hRW sW
Q

&5csW
Q⇒(

Q
csW

Q
51, ~2!

while requiring statistical independence of the pseudosp

^hRW sW
Q hRW 8sW8

Q8 &5csW
Q

csW8
Q8 for RW 1sWÞRW 81sW8. ~3!

Now the basic concept of the orbital approach consists
expanding the one-electron wave function into a set of lo
overlapping AO’s. For a disordered material, the contrac
product of all possible AO’s for all species with the pse
dospin

u im&5(
Q

u iQm&h i
Q ~4!

selects the right orbital at the right site in a given configu
tion. The orbitals of neighboring sites are in general non
thogonal, giving rise to an overlap matrix:

Sii 8,mm85^ imu i 8m8&5 (
QQ8

h i
Q^ iQmu i 8Q8m8&h i 8

Q8 . ~5!

The Hamiltonian represented by the AO’s reads

Hii 8,mm85^ imuĤu i 8m8&5 (
QQ8

h i
Q^ iQmuĤu i 8Q8m8&h i 8

Q8 .

~6!

Now we expand the equation of motion for the retard
single-particle Greens’s function in terms of those local
bitals:

~v1S2H !G151, ~7!

wherev15v1 i0, andG1 is given in terms of the coordi
nates contragredient to Eq.~4!:

G15S21^ uĜ1u &S21. ~8!

The mainh dependence of Eq.~6! is given by the dependen
cies at both terminal points.~A more complicated structure
of H would result from core orthogonalization correctio
and from third center potentials which, however, are s
averaging quantities.1! For the following we assume both th
Hamiltonian and the overlap matrix to have a bilinear str
ture with respect toh

S5hTSh, ~9!

H5hTHh, ~10!

the meaning of which is the following: We introduced
compact method of notation of a matrix of the pseudosp
h5@(d i i 8,mm8h i

Q)# for a given ensemble configuration. No
H andS are matrices~with respect to site indices! of a given

configuration, whileH5@(Hii ,mm8
QQ8 )# and S5@(Sii ,mm8

QQ8 )# are
matrices, acting in the expanded Hilbert space of the wh
ensemble, which is provided with the full orbital basis. T
pseudospins yield a connection between the operators o
ensemble with those describing a special configuration.
first kind of matrices~systematically denoted with an unde
bar! is translational invariant and nonstochastic while t
second kind is stochastic and not translational invariant
s:

f
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-
r-

d
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-

-

s
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If

we deal withN basis orbitals in the crystal for each config
ration and withM atomic species, thenH is N3N andH is
MN3MN; h is MN3N. These algebraic features are th
prerequisites leading directly to a generalized BEB theo
applicable to nonorthogonal basis states and to complex
stitutional disorder~sublattice dependent occupation pro
abilities!.

2. Single-particle Green’s function

Prepared with the algebraic representation of all matri
we now come to the formulation of the scattering proble
for a substitutional disordered solid. From the pseudosp
we may construct a stochastic projector, acting in the
panded Hilbert space:

x5hhT, hTx5hT, xh5h . ~11!

This projector is a square diagonal matrixx
5@(d i i 8,mm8dQQ8h i

Q)#, obeying the relations

x25x, TrQx i i 8,mm85d i i 8,mm8 . ~12!

We can split the Hamiltonian and the overlap matrix into
on-site and an off-site part, where the on-site parts comm
with the site-diagonalx:

H5Ḣ1Ȟ, ~13!

S5Ṡ1Š, ~14!

@Ṡ,x#5@Ḣ,x#50. ~15!

~The matrixṠ contains the orbital normalization, which ma
deviate from unity, e.g., by core orthogonalization corre
tions.! Inserting Eqs.~9!,~10! into Eq. ~7! we arrive at a
Q-expanded equation of motion:

hT~vS2H !hG51. ~16!

Multiplying Eq. ~16! with h on the left and withhT on the
right, we obtain an equation for the new quantityG
5hGhT, representing the Green’s function in the expand
Hilbert space, which, of course, depends on all pseudosp
that is, onx:

x~vS2H !hGhT5x. ~17!

Now we use the properties ofx @Eq. ~11!# and the commu-
tation rules Eq.~15!:

@vṠ2Ḣ1x~vŠ2Ȟ !x#G5x. ~18!

The expression on the left is Herglotz and thus can be
verted in the upper complex half plane:
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G[hGhT5xhGhT

5x@vṠ2Ḣ1x~vŠ2Ȟ !x#21x ~19!

~20!
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Here we introduced the complex self-energyS, the invert-
ible scattering potentiala and the coherent Green’s matr
G. Now we use general rules for projectors to write

~21!

G5b~b2G!21G5G1G~b2G!21G[G1G T G.
~22!

Thus, we expressed the multiple scattering in terms of a
herent motionG and an incoherent stochastic part, the sc
tering matrixT. The CPA condition reads

^G&5G ⇐ ^T&5^~b2G!21&[0. ~23!

This condition defines the self-energyS.
The charge density is needed for a charge self-consis

band-structure scheme. For this purpose the twofold co
tional configurational averages ofG are required. These
quantities may be derived using projection properties ofx.
From Eq.~19! we deduce

G5xGx, x i i
QQuq→ i5dqQ , ~24!

G i i 8
QQ8u q→ i

q8→ i 8
5G i i 8

qq8u q→ i
q8→ i 8

dqQ,q8Q8 , ~25!

where the subscriptq→ i means to fix the speciesq at the
site i . We sometimes use a block matrix notation and d
the subscriptsmm8. The connection to the unconditionall
averaged Greens’ matrixG is given by

G i i
QQ85^G i i

QQ8&5(
q

ci
q^G i i

QQ8&q→ idQq,Q8q

5ci
Q^G i i

QQ&Q→ idQQ8 ~26!

and

G i i 8
QQ85^Gi i 8

QQ8&5(
qq8

ci
qci 8

q8^Gi i 8
QQ8& q→ i

q8→ i 8

dQq,Q8q8

5ci
Qci 8

Q8^Gi i 8
QQ8& Q→ i

Q8→ i 8
. ~27!
o-
t-

nt
i-

p

These equations define the twofold conditionally averag
Green’s matrices. From the coherent Green’s matrix we
culate the density of states:

r~v!52
1

p
Im (

i i 8,QQ8,mm8
Sii 8,mm8

QQ8 G i 8 i ,m8m
Q8Q ~28!

and theQ-projected densities of states:

rQ~v!52
1

p
Im (

i i 8,Q8,mm8
Sii 8,mm8

QQ8 G i 8 i ,m8m
Q8Q 1

ci
Q

. ~29!

Both expressions reduce to the normal trace in orthogo
basis schemes.

Up to this point, all formulas are exact on the basis
Eqs. ~5! and ~6!. They provide an orbital representation
the multiple scattering theory in analogy to the KKR a
proach. For most practical calculations the CPA conditi
Eq. ~23!, has to be simplified by using a single-site appro
mation. We neglect the site off-diagonal matrix elements
S. Thenb becomes site diagonal and the scattering matriT
decouples:

T5~12t G8!21t, t i i 85d i i 8~bii 2G i i !
21, ~30!

G i i 8
8 5~12d i i 8!G i i 8 . ~31!

The CPA condition now reads

^t&[0. ~32!

For the conditional averaged Green’s matrix we get the p
vious expressions:

^G i i
Q&Q→ i5

G i i
QQ

ci
Q

, ^Gi i 8
QQ8& Q→ i

Q8→ i 8
5

G i i 8
QQ8

ci
Qci 8

Q8
, ~33!
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which are now correct, except for terms of the ord
O(^t4&).

III. ANALYTIC PROPERTIES OF THE BEB THEORY

A. Limiting cases

Up to this point, we have introduced the generalized B
theory and a single-site approximation for practical appli
tions. The propagator formalism of Sec. II works in analo
to the original propagator formulation of the standard CP
The main difference is the treatment of nonorthogonal ba
sets, the inclusion of complex substitutional disorder~long-
range order!, and the BEB feature: diagonal and off-diagon
disorder ofH andS are accounted for in the same manne

In applying the CPA to band-structure calculations, it
important to know the accuracy with which this approxim
tion treats the disorder problem. In the present section
will concentrate on the analytic properties of the generali
BEB theory.

As a first remark, we note that the BEB theory is equiv
lent to the original CPA if no off-diagonal disorder
present. This limit was already proved in the first BEB pap
Ref. 2. In the following discussion of the limiting behavio
of BEB, there is thus at least one set of parameters
fulfills all discussed limits, since the original CPA does.

An important prerequisite to assure the physicality of
energy dependent quantities, like the self-energy and
Green’s matrix, is the analyticity of these functions in t
upper complex half-plane, the Herglotz property. It is met
the original CPA as well as by the Shiba transformatio
Most of the attempts to construct a cluster CPA, first to g
eralize the CPA beyond the single-site level and secon
include off-diagonal disorder, were suffering from nonana
ticities of some of the relevant functions. The inclusion
the off-diagonal disorder within the philosophy of single-s
theories as done by BEB preserves the Herglotz propert8

The density of states of a tight-binding Hamiltonian
nonzero only within a certain energy range. The bounda
of this interval, the spectral bounds, are determined solely
the matrix elements of the Hamiltonian, see the Discuss
in Sec. IV. These spectral bounds should be observed by
approximate alloy theory. At least, the density of states m
not have any spectral weight outside of the spectral reg
For the original CPA this was shown in Ref. 13 to be fu
filled. The structure of the BEB theory is mathematica
more involved, and a proof for the correct limiting behavi
has not been given. However, our numerical calculati
have shown in no case a violation of the spectral boun
The reproduction of all gaps, in contrast, is not possible w
a single-site theory. Note, however, that the theorem, c
cerning the spectral bounds, does not yield any statem
about the position of gaps, unless they are of split band
ture, in which case the BEB CPA provides correctly the s
band gap.

A seemingly crucial test of an alloy theory is the numb
of moments of the density of states that are reproduced
rectly. This is due to the fact that the first few moments g
some physically important information, such as the num
of electrons, the band center, and widths. The BEB C
gives correctly the first three moments of the spectral den
and the first four moments of the total density of sta
r
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~DOS!.2 This number is obviously smaller than in the orig
nal CPA. Nevertheless, the moment expansion of cer
functions is known to converge extremely slowly. Thus, t
number of preserved moments should be very large to as
the right shape of the density of states. Our numerical ca
lations show that, despite the poor number of preserved
ments, the overall shape of the DOS is reproduced aston
ingly well in BEB. Obviously, there is some other importa
information preserved in this theory, making it very appe
ing in real applications.

One major advantage of the original CPA was due to
fact that it provides an interpolation scheme between sev
limits known exactly in alloy theory. The first pair of limits
concerns two extremal situations with respect to the sca
ing strength, that is, the weak-scattering limit and the s
band limit. The latter occurs if the distance of the atom
levels by far exceeds the hopping integrals. The result
DOS consists of two separated bands, reducing to the p
atomic level in cases, when the hopping integrals are
proaching zero. This limit is discussed in Ref. 13. In t
BEB theory the number of energy parameters is larger, th
there are more possible limiting procedures. Blackman,
terling, and Berk have given an analysis of the independ
band limit, which sets in if the mixed hopping integral va
ishes. Then no hopping between different species is poss
and two independent bands should be expected. We a
reach the split band limit in the sense discussed above
increasing now the distance between the atomic levels w
keeping the hopping integrals constant. The opposite si
tion, having very small difference in the energy paramete
is called the weak-scattering limit. Here, the self-energy m
be expanded with respect to the energy parameters aro
the virtual crystal approximation, say, the averaged Ham
tonian. Setting the off-diagonal hopping elements to
same value, we get the regime discussed in Ref. 13. T
the BEB theory provides an interpolation between the
treme situations with respect to the scattering paramet
similar to the original CPA.

The second pair of limits concerns the behavior with va
ishing concentrations, called the dilute limit. First, on
should note that the equations are symmetric with respec
an interchange of both species, thus, a subdivision into h
species and impurity species is an arbitrary choice, a
should be. We will show that the BEB CPA becomes ac
rate in the dilute limit, for which—to the authors’ bes
knowledge—no proof exists up to now in the literature. Th
dilute limit is not trivially fulfilled due to the concentration
in the denominator in Eq.~33!.

B. Dilute limit

The generalized BEB CPA in the limit of vanishing co
centration yields the single impurity Green’s functions, f
arbitrary off-diagonal matrix elements. The proof holds f
nonorthogonal basis sets and for multiband cases as we

1. Green’s function of a general impurity

We start with deriving the Green’s function for a sing
impurity. We consider a monoatomic lattice, occupied by
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sort A. In the origin we place an impurity atomB. The
on-site elementsḢ and the off-site elementsȞ of the Hamil-
tonian take the values

Ḣ ii 5H VA, iÞ0

VB, i 50
~34!

and

Ȟ ii 85Wii 8
QQ8,

Q

Q8
J 5A if

i

i 8J Þ0 and

Q

Q8
J 5B if

i

i 8J 50. ~35!

The numbersWii 8
QQ8 are not bound to the multiplicative con

dition Wii 8
QQ85aQWii 8a

Q8, used in the Shiba transformatio
In the following, we will omit the site indices if their

values are obvious from the context. To distinguish betw
the impurity site and theA sites, we introduce projectorsP
andQ in real space, with

Pi i 85d i0d i i 8 , Q512P. ~36!

Furthermore, we abbreviatel i i 8
Q

5(v2VQ)d i i 8 . We are in-
terested in the elements of the Green’s matrix at the impu
site 0. Using the projectors we write

gB[P @v2H#21P, P~v2H !P5 l B,

P~v2H !Q5PWBAQ, ~37!

Q~v2H !P5QWABP, Q~v2H !Q5Q~ l A2WAA!Q.

~38!

For any matrix A5PAP1PAQ1QAP1QAQ one can
show

PA21P5FPAP2PAQ
Q
QAQQAPG21

. ~39!

Thus, gB can be expressed in terms of the Green’s ma
GA5@ l A2WAA#21 of a pureA-medium~whereWAA is also
used fori 50, i 850):

gB5F l B2PWBAQ
Q

QGA
21Q
QWABPG21

. ~40!

Note that the only nonzero matrix elements inl B are l 00
B .

Equation ~40! contains a term that may be called a
origin-avoiding propagatorGÖ . It describes the propagatio
in the A medium under the condition that the site 0 is e
cluded from the path:

GÖ5
Q

QGA
21Q

. ~41!

Using a relation, obtained from Eq.~39! by exchangingP
with Q, we have

GÖ5QFGA2GAP
P
gA
PGAGQ ~42!
n

ty

x

-

with gA5PGAP. The result is origin-avoiding, since the in
verse of2gA in Eq. ~42! represents the single-site scatteri
matrix of an infinite energy barrier, eliminating the orig
from the path.~See for instance Ref. 14.! Finally, we insert
GÖ in Eq. ~40! and usePȞP50→PȞQ5PȞ:

gB5F l B2PWBAQS GA2GAP
P
gA
PGADQWABPG21

5F l B2PWBAS GA2GAP
P
gA
PGADWABPG21

, ~43!

gB5F l B2gM1gL

1

gA
gRG21

. ~44!

Here, the definitionsgM[PWBAGAWABP, gL[PWBAGAP,
and gR[PGAWABP, are introduced. Equation~44! is the
Green’s function of the impurity and gives the density
states of oneB atom in theA medium.

Furthermore, the propagator from theB atom into theA
medium is an interesting element of the Green’s matrix
can be calculated from@v2H#21 via a relation similar to
Eq. ~39!:

GBA5P@v2H#21Q5gBPWBAQ
Q

QGA
21Q

,

~45!

GBA5gBPWBAFGA2GAP
P
gA
PGAGQ.

It is worth noting that all formulas in this section hold for th
most general case of an impurity, which means that the h
ping elementsȞ may take any value. The condition of mu
tiplicative disorder is not required.~Note, however, that for
nearest-neighbor hopping only, multiplicative disord
would not be a restriction in the present context, sinceWBB

does not figure here and can be put to any value.!

2. The dilute-limit in the BEB CPA

In Sec. II B 2 we generalized the BEB CPA on the ba
of a pseudospin description. There were some peculiari
First, some elements of the self-energy are known ana
cally for vanishing concentrations~Sec. III C!. They give rise
to undefined expressions in the formalism if the correspo
ing rows and columns are not removed from the very beg
ning. Second, the physically meaningful, component p
jected elements of the Green’s matrix are given by Eq.~33!
with the concentrations appearing in the denominator. N
ertheless, the system of equations for the determination
the physical Green’s matrix is well defined. This will b
shown in the present subsection.

We will restrict ourselves to the case of a binary co
pletely disordered alloy. Without loss of generality we m
set the overlap matrixS to unity in the present context.

We recall briefly the basic formulas. The components
A with concentrationy5cA andB with concentrationx51
2y5cB . All entities of the BEB CPA are matrices in th
expanded Hilbert space. The coherent Green’s matrix
given by
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G5@v2S2Ȟ#21 . ~46!

The self-energyS is assumed to be site diagonal. Withl

5v2Ḣ andg[PGP we may write

a52 l 1x~v2S!x, ~47!

b5xa21x, ~48!

t5@b2g#21, ~49!

^t&50. ~50!

~Here,P is a projection to an arbitrary site. Since all sites a
identical,P may be thought to project to the origin.! To-
gether with the projection properties of thex matrices imply-
ing

gQQ8}dQQ8 , ~51!

the set of equations of the BEB CPA is completely defin

The physical matrix elementŝG i i
Q&Q→ i and ^G i i 8

QQ8& Q→ i
Q8→ i 8

and hence the DOS are given by Eq.~33!.
From the definition Eq.~34! the matrix elements of the

matrix b for a special choice of the site occupationq are
given by

b~q!QQ85dQQ8,Qq

1

VQ2SQQ8
. ~52!

~Site indices suppressed.! Thus t takes the form

t ~q!QQ85dQQ8F dQqF 1

VQ2SQQ8
2gQG21

1~dQq21!
1

gQ8G .

~53!

From the CPA condition(qcqt (q)QQ850 we get two equa-
tions:

SQQ5VQ2
12cQ

gQ
, Q5A,B. ~54!

The remaining two conditions are fixed by Eq.~51!. We
insert the elements of the self-energy and the off-site
ments of the Hamiltonian, Eq.~35!, in Eq. ~46!:

~G21!QQ85S v2VQ1
12cQ

gQ D dQQ82WQQ8

2SQQ8~12dQQ8!. ~55!

We will elucidate the 232-matrix structure of this superma
trix by writing G as a 232 matrix, the elements of which ar
matrices in the real space:
e

.

-

G5S GA
211

x

gA
2~SAB1WAB!

2~SBA1WBA! GB
211

y

gB

D 21

. ~56!

GQ5( l Q2WQQ)21 denotes the Green’s functions in th
pureQ media. The inversion of the super matrix structure
Eq. ~56! results in

GQQ5F GQ
211

cQ̃

gQ
2~SQQ̃1WQQ̃!

3
1

GQ̃
21

1
cQ

gQ̃

~SQ̃Q1WQ̃Q!G 21

, ~57!

GQQ̃5F2~SQ̃Q1WQ̃Q!1S GQ̃
21

1
cQ

gQ̃D 1

SQQ̃1WQQ̃

3S GQ
211

cQ̃

gQD G21

. ~58!

We usedQ̃ as an abbreviation for the component comp
mentary toQ. All self-consistency equations of the BE
CPA are now contained in

PG@g#P[g. ~59!

Now, we expand Eqs.~57!,~58! with respect to the impu-
rity concentrationcB5x. We insert

gQ5g~0!
Q 1xg~1!

Q 1x2g~2!
Q 1O~x3!, ~60!

SQQ̃5S~0!
QQ̃1O~x! ~61!

in these equations. The zeroth order of the functionGBB is

G~0!
BB5@g~0!

B GB
21112g~0!

B ~S~0!
BA1WBA!

3GA~S~0!
AB1WAB!#21g~0!

B . ~62!

The requirementPGBBP[gB allows the unique solution
g (0)

B 50. Remembering the formulas for the physical Gree
function in Eq.~33! we see that this solution circumvents
divergence.

Furthermore,we get

G~0!
AA5FGA

212~S~0!
AB1WAB!

3
1

g~0!
B GB

2111
g~0!

B ~S~0!
BA1WBA!G21

5GA , ~63!
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which leads immediately tog (0)
A 5gA[PGAP. The mixed

elements are given to zeroth order by

G~0!
BA5g~0!

B F2~S~0!
AB1WAB!g~0!

B 1GA
21 1

S~0!
BA1WBA

3~GB
21g~0!

B 11!G21

505G~0!
AB ~64!

and usingg (0)
B 50 to first order by

G~1!
BA5g~1!

B FGA
21 1

S~0!
BA1WBAG21

5g~1!
B ~S~0!

BA1WBA!GA .

~65!

The self-consistency conditions Eqs.~59!,~51! result in

0[g~1!
B P~S~0!

BA1WBA!GAP ~66!

and analogously in

0[PGA~S~0!
AB1WAB!Pg~1!

B . ~67!

Thus we need one further equation to determineg (1)
B . After

insertingg (0)
B 50 the first order ofGBB only leads to an iden-

tity:

G~1!
BB5g~1!

B [PG~1!
BBP. ~68!

A peculiarity of the BEB theory is the fact that the seco
order ofGBB under the condition~59! does not introduce new
unknown quantities:

G~2!
BB5g~2!

B 1@12g~1!
B GB

211g~1!
B ~S~0!

BA1WBA!

3GA~S~0!
AB1WAB!#g~1!

B . ~69!

Thus we get withg (2)
B [PG (2)

BBP and withPGB
21P5 l B ~see

the definition ofȞ) an equation forg (1)
B :

g~1!
B 5@ l B2P~S~0!

BA1WBA!GA~S~0!
AB1WAB!P#21 ~70!

From Eqs.~66!,~67!, using the definitions of the last sectio
we obtain the zeroth-order self-energies

S~0!
BA52PWBAGAP

P
PGAP

[2gL

1

gA
, ~71!

S~0!
AB52

P
PGAP

PGAWABP[2
1

gA
gR ~72!

and finally from Eq.~70!,

g~1!
B 5F l B2gM1gL

1

gA
gRG21

~73!

and from Eq.~65!

PG~1!
BAQ5g~1!

B PS 2gL

1

gA
1WBADGAQ ~74!
5g~1!
B PWBAS 2GAP

P
gA
PGA1GADQ.

~75!

All together, the coherent Green’s matrixG fits in the fol-
lowing scheme:

G i i 85d i i 8S O~1! 0

0 O~x!
D 1~12d i i 8!S O~1! O~x!

O~x! O~x2!
D .

~76!

Thus, no divergence problems occur while calculating
physical Green’s function in Eq.~33!. The Green’s functions
in the dilute limit read now

gB5F l B2gM1gL

1

gA
gRG21

~77!

and

GBA5gBPWBAS 2GAP
P
gA
PGA1GADQ. ~78!

These are the same formulas as for a single impurity in S
III B 1. All derivations were made, observing the commut
tion rules for matrices. This assures the validity of the pro
even for the multiband case. The inclusion of the over
matrix is straightforward by replacingḢ with Ḣ2Ṡv andȞ

with Ȟ2Šv. We proved that the BEB CPA yields the sing
impurity Green’s functions in the case of vanishing conce
trations.

C. Self-energy

In cases of partially disordered alloys, some elements
the self-energy are known analytically. A proof is given
Ref. I. We give here a short summary of these results.

We will keep the full CPA equations without approxima
tion. Then, the self-energy is not diagonal in real space
the case of partially disordered alloys, there are sites wh
occupation is fixed. Now we are going to investigate e
ments ofS with respect to those sites~we call the indicesf ).
It turns out that these elements are given by the exp
expressions

S i f 5d i f „v~12Ṡf !1Ḣ f…. ~79!

Becausea thus vanishes in the case of fixed site occupati
we have to exclude these sites from the CPA equations~23!,
~32! by deleting the corresponding rows and columns.

This result is somewhat unexpected. The physical pict
behind the CPA is to put a single impurity atom in a latti
of the effective medium and to require that the averag
scattering at this impurity atom should vanish. This impur
atom is a local perturbation in the original CPA. However,
BEB theory this no longer holds, since here a coupling s
energy between different species exists. This self-energy
deed is local but the structure of the equations is differ
compared to the original CPA. The meaning of both se
energies is different. If transforming the BEB equations to

form comparable to the simple CPA equations,S i i
QQ8 would

transform into a nonlocal self-energy expression in the or
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nal sense. This, finally, leads to the conclusion that the s
energy in BEB is extended over the whole lattice.@See the
coupling of the self-energy to the off diagonal Hamiltoni
elements in Eq.~57!.#

Having this in mind, the result shown in this section
surprising. Even if the sublattices are coupled, the BEB s
energy between the sublattices will vanish for zero disor
at one site. The effective self-energy in the above-discus
sense, however, is not zero. The matrix structure of BEB
responsible for those properties. The mapping of disor
effects to the self-energy is well chosen. Obviously, disor
effects appear only in those matrix elements correspond
to disordered sites. Altogether, this is an indication for
BEB theory to be an extension of the CPA, going far beyo
what is seen directly in comparing the equations. The lo
BEB self-energy has indeed a nontrivial nonlocal meanin

This general peculiarity ofS is preserved in the single
site approximation, where we set by definition all site o
diagonal elements ofS to zero. Thus, it is clear that the BE
CPA will be the better, the less stochastic sites do exist in
unit cell. That provides us with an especially good justific
tion of the single-site approximation in such cases. On
other hand, this feature allows us to reduce drastically
calculation time. The CPA equations for the fixed sublattic
need not be solved numerically.

D. Comparison with other CPA extensions

We briefly summarize some other approaches to ext
the original CPA. There is, first, the special case of the B
theory, when the matrix elements fulfill the condition of mu
tiplicative disorder, treated by the Shiba transformation. T
method, based on a similarity transformation, maps the p
lem onto the original single-site CPA. It has obviously, all
the analytical features of the CPA. However, in general,
Hamiltonian, obtained by a LCAO method, and the cor
sponding overlap matrix never do fit simultaneously t
multiplicative condition. In TB LMTO this special form is
given automatically by the TB transformation, thus Shi
CPA is the appropriate tool for describing alloys in T
LMTO.

Besides the BEB and Shiba methods there are a coup
cluster CPA’s to incorporate not only the off-diagonal diso
der but also the disorder effects on the neighbor ato
These methods suffer in general from two disadvantag
First, the Herglotz condition is violated in some of tho
theories, making the physical meaning dubious. Howev
the traveling cluster approximation15,16 and the augmented
space method of Mookerjee17,18 appeared to be free of suc
problems and represent a reasonable generalization be
the single-site level. The second, may be more impor
point is the enormous numerical effort, implied by the c
cumstance that the matrices, describing clusters of atoms
now larger by an order of magnitude. This is especia
troublesome for applications to more complex lattices. Th
is at least one quite simple cluster extension, the molec
cluster CPA, which unfortunately lowers the translation
symmetry of the underlying lattice by grouping the atoms
a lattice of larger molecular clusters, thus increasing eff
tively the lattice constant. A survey of these methods
found in Ref. 19.
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The form of the BEB Hamiltonian is still not the mos
general one. It is possible to construct more complicated
pendencies of the matrix elements on the stochastic occ
tion of the neighbors. Those models are discussed, e.g
Ref. 20. The special form of the BEB Hamiltonian wa
called in that work a canonical random operator. Howeve
was pointed out in Ref. I that the canonical form of th
matrices appeared to be a direct consequence of the or
approach.

IV. NUMERICAL TESTS OF BEB THEORY

A. Model Hamiltonian

In the preceding sections we introduced a version of
BEB-CPA generalized to nonorthogonal basis sets and
complex, sublattice-dependent substitutional disorder.
main progress of BEB, in comparison with the original CP
is the proper treatment of the off-diagonal disorder. With t
help of the powerful tool of projection techniques we ha
shown that the BEB CPA fulfills some rules, giving th
hope, that it will be fortunate in band-structure schem
Here we focus on a numerical test of the BEB CPA, both
complete and for partial disorder. This will also illustrate t
analytical results of the preceding sections. We will comp
components of the Green’s matrix, calculated by the C
with those given by direct simulation of an ensemble. Su
numerical tests for the classical CPA were performed, i.e.
Ref. 21 or may be found in Refs. 14 and 19, but they w
never done to our knowledge for the BEB theory.

We restrict ourselves to one-dimensional chains of ato
well knowing that this type of model reveals some peculia
ties, that are not as pronounced in higher-dimensional
tices. The effects, shown here, are common to all dimens
alities but are best seen in one-dimensional models.
canonical random tight-binding Hamiltonian of the chain h
the form

Ĥ5(
iQ

« i
Qh i

Qai
†ai1 (

iÞ i 8,QQ8
h i

Qt ii 8
QQ8h i 8

Q8ai
†ai 8 . ~80!

The overlap matrix is not considered here and hence se
unity. Equation~80! forms a one-band single-electron mod

with on-site energies« i
Q and with hopping integralst i i 8

QQ8 .
The selection of the actual kind of atom at the positioni is
chosen by the pseudospinh i

Q . All derivations of the last
sections apply to this model. It is general enough not only
test the original BEB CPA but also the Shiba transformati
the VCA CPA and partially disordered chains.

With one exception we will consider in the followin
nearest-neighbor hopping only. All chains contain two kin
of atoms (A andB) with the energy parameters

«A[0, «B, tAA[1, tAB5tBA, tBB. ~81!

The occupation probability of a sublattice site with the ato
A is denoted byx, while the probability ofB at the same site
is denoted byy512x. They should be allowed to take sit
specific values, to simulate partial disorder~e.g.,x50 is pos-
sible!. For this model we will calculate the density of stat
given by
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r~v!52
1

p
Im Tr G~v!. ~82!

We computed thek-dependent Hamiltonian matrix an
solved the BEB equations for a number of energy points. T
mesh ofk points was refined to obtain convergence of t
density of states with respect to visible changes in the figu
below. We chose 600 energy points in the depicted interv
In order to get converged calculations, one has to obey
retardation condition by adding a small imaginary part to
energy; here we take the 1.5-fold of one energy step. T
small imaginary partd goes to zero with decreasing ener
steps. Since the number ofk-points depends on the smallne
of d, we are restricted to a certain choice. Nevertheless,
pictures do not change further with refinement of the me
The effect of broadening of the band edges, due to finited, is
discussed below.

For the sake of comparison we will perform ‘‘exact’’ nu
merical simulations. We create an ensemble of stocha
configurations with specified energy parameters, Eq.~81!,
and specified concentrations with a sufficiently large num
of members and build the Hamiltonian, corresponding to
~80!. Each member of the ensemble represents a chain of
sites with periodic boundary conditions. This length of t
chains turned out to be large enough to give converged
sults. The random occupations of the sites were generate
a way to assure the right number ofA and B atoms corre-
sponding to the desired concentrations. That means, e
member of the ensemble contains exactly the same num
of atoms of the considered species. Since the DOS is s
averaging, a set of 200 configurations per ensemble tur
out to be enough to obtain converged results. For each c
of the ensemble we diagonalized the Hamiltonian and ca
lated the density of states via

r~v!52
1

p
Im (

l

1

v1 id2« l
, ~83!

FIG. 1. Sketch of the parameter space of the binary -X- chain.
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where« l are the eigenvalues of the Hamiltonian. Finally, t
results for the ensemble were obtained by averaging the D
over the set of configurations. As in the CPA calculatio
we used 600 points along the energy axis in the shown
tervals. The imaginary partd of the energyv was chosen
again to be 1.5-fold of an energy step. This should assure
comparability of both results.

B. Binary model alloys

At the beginning we test completely disordered bina
tight-binding chains of the shape -X-X-X- (X5A,B).

Figure 1 serves as a guide through the parameter spa
the considered chain. It shows a sketch of the relevant reg
with respect to varyingtAB andtBB. The numbers refer to the
next five cases discussed below. From physical argum
one would expect, that the mixed hopping integrals are l
than or equal to the pure hopping integrals. The shaded
gion represents these most probable sets of hopping
grals. It is worth noting that the hopping integrals, steam
form an LCAO Hamiltonian, are given in terms of matr
elements between local orbitals. Thus, their sign depend
the choice of phase factors. This leads to a unitary trans
mation describing the symmetry with respect to the ph
changes. Fortunately, the BEB equations have this sym
try, thus, the choice of the phases of the orbitals is not s
nificant.

Later on, we will compare the BEB CPA with the VCA
CPA and Shiba CPA. The VCA CPA is the original CP
calculation, performed with a special choice of the o
diagonal hopping energy, which is not different for differe
species. The dashed line represents the relation betwee
hopping energy for the case of the VCA where all hoppi
elements are approximated bytVCA

AB 5xtAA1ytBB.

FIG. 2. DOS for a binary -X-X-X- chain atx50.5 with varying
diagonal energy parameters.
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The Shiba CPA is characterized by the multiplicative co
dition for the values of the hopping integrals. For our pu
pose of testing the various CPA methods with respect to t
applicability, in LCAO-CPA calculations we simulate a mu
tiplicative fit of all Hamiltonian matrix elements by takin
the geometric meantShiba

AB 5AtAAtBB. The solid curve shows
the connection of the hopping energies for this case. Th
are two points where both curves intersect, but only if
elements are unity both methods are equivalent.

The effects of disorder are most pronounced in conc
trated alloys. Thus, we compare first the densities of state
the CPA and exact solution forx50.5 in four rows in order
to inspect the influence of the parameters«B, tBB, andtAB.

In Fig. 2 pure diagonal disorder is considered. All ho
ping integrals are set to unity. The only remaining parame
is the displacement of the band centers«B2«A5«B. It is
called scattering strength. The partial and the total dens
of states are shown. These partial densities of states ar
concentration weighted, local, component-projected dens

21/pImG i i
QQ8(v). They give the energetic properties of

componentQ, placed on a sitei in an otherwise average
crystal. For small diagonal disorder the CPA reproduces
DOS quite well. The shape is similar to the shape of the p
constituents bands with the bandwidthW54 and square-roo
van-Hove singularities at the band edges. The only effec
disorder is a change in the band shape of the partial dens
With increasing scattering strength the split band regime
in. Two subbands form, each of them lying in an ener
region that is not occupied by states of the correspond
complementary pure component. Usually, such regions s
peaks of local states. The CPA only gives bands there. T
may be interpreted as arising from smearing out those pe
By «B increasing to infinity, the ratio between the bandwid
of the split bands and their distance«B is decreasing. This
results in two separate levels for«B→`, called the split
band limit. In this case the CPA turns out to become exac13

FIG. 3. Convergence of the band tails of the DOS towards
band edges for the -X- chain from Fig. 1 with increasing number o
energy points per unit interval.
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There are simple rules concerning the spectral region
tight-binding models.22 The position of the energy levels an
the hopping integrals to the nearest-neighbor sites of all p
sible local configurations determine the spectral region.
any arbitrary eigenvaluev of the stochastic Hamiltonian, Eq
~80!, there are one energy level« i

Qi and one constellation
Qi , Qi 8 , which fulfill the condition

uv2« i
Qiu< (

iÞ i 8
ut

i i 8

QiQi 8u. ~84!

We will call the v region where each possible inequality
the above kind holds the main band. All regions outside
the main band possess more or less pronounced loca
character: the spectral weight originate from clusters of
stronger scattering components. The union of all those in
vals give the spectral bounds of the considered model Ha
tonian.

The two intervals, marked in the last panel of Fig. 2, gi
the spectral region, stated by this theorem, Eq.~84!. An alloy
theory must not give any spectral weight outside of this
gion. As is also seen in later figures, the BEB CPA does
violate this theorem. At the band edges the DOS has li
tails reaching outside of the spectral intervals. This is due
the band broadening, induced by the finite imaginary pad
of the energy in those calculations. Figure 3 shows that, w
increasing number of energy points per unit interval~and
therefore with decreasingd!, these tails converge to the stee
band edges.

In Fig. 4 the changes in the densities of states with va
ing bandwidth of theB component are shown for fixed diag
onal disorder. It is an example for general off-diagonal d
order. The mixed hopping integraltAB equals unity. That
means, in each case, when a small connected clusterB

e

FIG. 4. DOS for a binary -X-X-X- chain atx50.5 with varying
B–off-diagonal energy parameters.
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atoms has formed, the hopping probability within this clus
is larger than the hopping out of it. This leads to an increa
weight of the states lying outside of the pureA band, but
inside the largerB band. Here, the BEB CPA provides sim
lar but smoother shapes of the DOS within the main ba
compared to the results of the simulations. In the region o
side of the pureA band the BEB CPA broadens the larg
spectral peaks, while the rough shape is conserved. Th
partially connected with the conservation of the first fo
moments of the density of states in the BEB CPA. Again,
marked the spectral regions in two panels. From now on,
always give two intervals. The shorter one is the reg
where all inequalities of Eq.~84! hold, the ‘‘main band,’’
while the longer interval is the union of all intervals, stat
by the theorem: the maximum spectral region.

Additionally, we gave in one figure the integrated dens
of states~IDOS!. ~It saturates to unity, the scale is not given!
It is clearly seen that the overall shape of the IDOS is rep
duced in BEB. Even in the spiky regions the exact IDO
fluctuates around the BEB result. Since the IDOS is the
portant quantity for real applications, this result is encour
ing.

Now, we fix the hopping elements of the componentsA
andB to unity and increase the mixed elementtAB. Then we
obtain forx50.5 pictures similar to the case of pure diagon
disorder, Fig. 5. For weak mixed disorder the BEB CP
describes the shape of the DOS quite well. If the disorde
increasing, extended regions of local states occur, wh
again are given by the CPA in a smeared out manner.
structure of the exact densities of states can be unders
from considering the limiting cases. We restrict ourselves
the discussion of the casetAB54. Chains, consisting of pur
components, form typical one-dimensional densities of sta
with bandwidth W54, centered at«A50 and «B52. An

FIG. 5. DOS for a binary -X-X-X- chain atx50.5 with varying
mixed off-diagonal energy parameter.
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ordered -A-B- chain possesses a gap in the energy inter
@0,2# and to the right and to the left of the gap it show
pronounced subbands. The statistical mixture of the com
nents forx50.5 creates large -A-B- chains as well as clus
ters of pure components. In the interval@22,2# theA-cluster
states accumulate while in the interval@0,4# the B-cluster
states accumulate. In this special case the van Hove si

FIG. 6. DOS for a binary -X-X-X- chain atx50.5 with varying
mixed off-diagonal energy parameter.

FIG. 7. DOS for a binary -X-X-X- chain with varying concen-
tration for small mixed off-diagonal disorder.
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FIG. 8. DOS for a completely disordered binary chain at various concentrations: Comparison between the BEB CPA, Shiba C
VCA CPA.
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larities of the pure component DOS coincide even with
edges of the gap of the -A-B- chain. Both intervals of pure
components overlap in the region@0,2#. This in consequence
leads to an accumulation of states in this interval, in ot
words: the spectral weight in this region originates fro
cluster effects. The peaks outside of the elementary spe
intervals (-A- or -B- chains! have a strongly local characte
The reasons are -A-B-A-B- clusters whose large hoppin
rate tAB is favoring the trapping of an electron within th
cluster. All the effects described above are strongly c
nected with a correlated occupation of neighboring sit
Surely, a single-site CPA never can account for this. Rat
it produces an interpolation between the densities of the p
chains. In the present case, the largetAB, in connection with
the neglect of cluster effects, yields a DOS, resembling
of the ordered -A-B- chain. The single-site CPA overemph
sizes the alternating occurrence of the components. T
means, in the region of the gap filled with cluster states in
exact solution, that the CPA supplies a low density of sta
Nevertheless, the similarity of the smeared out CPA re
with the exact DOS is seen at least for smalltAB. It should be
clear from the above discussion that this set of paramete
quite critical for a single-site theory. Otherwise, this cho
seems to be not quite physical.

If we now increase the hopping energy of theB atom
while fixing a largetAB, the strongly scattering -A-B- clus-
ters are perturbed by -A-A- transitions only. Thus, the num
ber of subchains with a large hopping rate is increasing
the gaps in the spectrum are filled. In Fig. 6 this behavio
shown for fixedB hoppingtBB and growing mixed hopping
e

r

ral

-
s.
r,
re

at

at
e
s.
lt

is

d
s

tAB. The density of peaks is growing with increasingtAB,
since the number of energetically interrupted bonds is
creasing.

The strong broadening of the DOS with growingtAB in
Fig. 3 or the bandwidths in general can be understood w
the help of the theorem Eq.~84!.

A last example of this class of model chains is depicted
Fig. 5. Here, the mixed hopping is much smaller than
pure hopping elements. Again, the above statements h
The shape of the BEB CPA is a smeared version of the sp
exact results. Note the resonance peak forx50.1 which is
reproduced quite well.

It becomes clear from Figs. 2, 4, and 5–7 that the B
CPA yields reasonable results for moderately strong diso
if one accepts the broadening of spectral peaks in reg
with strong localization character. We argue that this is no
critical point since many other reasons for broadening are
contained in our model. So, many-particle correlations wo
lead to a finite lifetime of all states.

Now, we turn to compare the BEB CPA with the Shib
CPA and with the VCA CPA, both being methods design
for the approximate treatment of off-diagonal disorder. F
this we chose a chain with general~nonmultiplicative! off-
diagonal disorder. Figure 8 shows the densities of states
these three methods together with the exact solutions w
varying concentration. To apply the Shiba CPA to th
model, it is necessary to perform the geometric aver
tShiba
AB 5AtAAtBB5AtBB. For the VCA CPA we have to take

the arithmetic meantVCA
AB 5xtAA1ytBB. The most important
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FIG. 9. DOS for a completely disordered binary chain with extreme mixed off-diagonal disorder at various concentrations: Com
between the BEB CPA, Shiba CPA, and VCA CPA.
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conclusion is that the off-diagonal disorder produces effe
which can never be covered by a VCA CPA. The seco
conclusion is the observation that the Shiba transforma
gives results similar to the BEB results for the actual para
eter set. But only the BEB theory ensures that the first m
ments of the DOS are conserved. The shape of the S
DOS is similar by accident since the chosentAB51 is close
to thetShiba

AB 5A3. For other parameter sets, the shapes will
completely different, except for those that fulfill the mult
plicative condition. A last statement concerns the low- a
high-concentration case. Here, the BEB-CPA results
close to the exact ones, since BEB fulfills the single-impur
limit.

If the mixed hopping elements are larger than the p
hopping integrals, the Shiba CPA and VCA CPA start to f
completely even in predicting the bandwidths. Here, only
BEB CPA gives quite reasonable results. Such an extre
situation is drawn in Fig. 9. The pure hopping elements b
are unity, thustShiba

AB 5tVCA
AB 51 holds and the Shiba DOS an

VCA DOS are identical. BEB again yields a broaden
shape in regions of highly localized character. Even
-A-B–cluster peaks outside of the main band are reprodu
approximately at low concentrations. The energy parame
are those from Fig. 3.

C. Partial disorder

This section is dedicated to partially disordered chains.
mentioned in Sec. III C the matrix elements of the se
energy between a site with fixed occupation and any o
ts
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site is identically zero. Furthermore, the on-site elements
S at nonstochastic sites are known exactly and, theref
they are included in the theory in a non approximate mann

Hence, every nonstochastic site should improve the
sults of the generalized BEB CPA. We will see that this

FIG. 10. DOS for a binaryX-X-A- chain with partial disorder.
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indeed the case, except for special parameter sets, whic
critical especially in connection with the peculiarities of on
dimensional models.

In Fig. 10 we consider a chain, constructed from
quences -X-X-A. A denotes a site with fixedA occupation,
while X denotes a stochastic place occupied byA with prob-
ability x and byB with probability y. The index 1 in the
figure distinguishes theA atom at siteX form theA atom at
the fixedA site. It shows that both sitesX have the same
symmetry. The parameters are chosen to give a pureA band
with bandwidthW54 centered at«A50. TheB band has a
bandwidth ofW512 and is centered at«B51. The mixed
hopping energy is unity and therefore lies within the ene
regime of the pureA chain. This means that aB cluster is
quite isolated energetically, since the highB-hopping rate
favors a trapping of the electron within such a cluster. T
arrangement of the components allows forB clusters with
maximum length 2 only. This gives quite a large contributi
from pair scattering events not contained in the single-
BEB. These strong correlations are especially important
concentrated alloys (x'0.5). Even there, those pairs a
present with large statistical weight. This lack of pair cor
lations is seen in the energy interval@2,4#. Here, the CPA
closes a gap present in the exact solution. Obviously,
peak to the right is aB-B–cluster peak. Its height scales wi
the square of the probabilityy. Thus, the structure of the
chain leads to strongly pronounced gaps, not described p
erly by a single-site CPA. Surely, the limiting cases of t
pureA chain and theB-B-A chain are reproduced well.

Discussing the applicability of BEB CPA to realistic sy
tems, it is worth noting that our one-dimensional mod
possess some peculiarities. First of all, every state is lo
ized. Inevitably, each perturbation represents an obstacle
the propagation of excitations. In higher dimensions there
always paths avoiding the impurity for topological reaso
Therefore, the localization and cluster effects are less p
nounced in higher-dimensional systems. Second, only the
ergy integral up to the Fermi energy of the Green’s matrix
needed in charge self-consistent band-structure meth
Naturally, this quantity is much smoother than, for examp
the density of states. Since, the BEB CPA yields smea
densities of states in the problematic energy regions,
shapes of which may be considered as average over
peaks, we would expect the BEB CPA to supply suita
expressions for an application in self-consistent calculatio
Third, the tight-binding character of our model is very r
strictive. We only allowed for nearest-neighbor hopping. R
leasing this condition, the influence of an impurity is e
pected to be less dramatic. Figure 11 shows such
example. All parameters are identical with those in Fig.
except for the hopping integrals, which are changed acc
ing to

t i i 8
QQ85tQQ8e2a~ u i 82 i u21! ~85!

with tQQ8 taken from Eq.~81!. That means, the neares
neighbor hopping energies are the same. Additionally,
introduced exponentially decreasing hopping integrals
more distant sites. We chosea51, this corresponds to a re
duction of the next-nearest-neighbort compared to the near
est neighbort by about 36%. This numerically small mod
are
-

-

y

e

e
r

-

e

p-

s
l-
or
re
.
o-
n-
s
ds.
,
d
e
he
e
s.

-

n
,
d-

e
o

fication shows strong effects on the shape of the DOS.
reduced influence of impurities is seen clearly. It is intere
ing to note that the BEB results are almost identical to
numerical results. The contribution of the cluster peaks to
spectral weight is decreased or their width is broadened.
want to point out that the ansatz, Eq.~85!, is not yet general
enough, since the hopping energies for different distances
scaling with the same factor. This restriction may be rais
We also tested cases where the ratiotAA/tBB for next-nearest
neighbors was inverted with respect to the ratio for nea
neighbors. Even in such extreme cases we could draw c
clusions similar to the preceding ones.

We want to present two further examples, including p
tial disorder to elucidate under which circumstances we m
hope to obtain good results by applying the BEB CPA. T
first chain has the unit cell -X-A-B-, Fig. 12. It is similar to
the chain in Fig. 10. The limiting cases are the -A-A-B- and
the B-A-B- chains. The latter one is identical with that o
Fig. 10. Again, depending on the occupation of the siteX,
there are isolatedB-B clusters. Nevertheless, the CPA res
is now much better, since the correlation effects due to thB
pairs are taken into account in a more accurate way by vi
of the properties of the self-energy. In particular, the se
energy at the fixedB site and all coupling elements betwee
this site and any other are included in an exact way in
single-site BEB CPA. First approximations occur due to t
neglect of the coupling between two stochastic sitesX in
different unit cells, separated by at least two sites. This c
pling has not much influence on the DOS.

Figure 13 shows the chain -X-B-. The statistical occupa
tion of a couple of neighboring unit cells withX5B leads to
large connected clusters ofB atoms. Since the bandwidth o
the pureB chain is much larger than that one of theA-B-
chain, such clusters give rise to pronounced localizat

FIG. 11. DOS for a binaryX-X-A- chain with partial disorder
and more than nearest-neighbor hopping.
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6960 PRB 58KOEPERNIK, VELICKÝ, HAYN, AND ESCHRIG
peaks outside of the main band. This effect again is give
the CPA by broadened and smooth curves.

D. Off-site elements of the Green’s matrix

The last part of our inspection relates to a quantity, wh
to the authors’ knowledge was not considered up to now

FIG. 12. DOS for a binaryX-A-B- chain with partial disorder.

FIG. 13. DOS for a binaryX-B- chain with partial disorder.
in

h
n

judging the quality of a CPA method. The most importa
questions while developing the CPA in earlier days we
connected to the shape of the DOS. However, for the ap
cation to band-structure schemes with nonorthogonal b
sets, the off-site elements of the Green’s matrix are as
portant as the on-site elements. Even the total charge is
culated, using the whole Green’s matrix. We will exami
some of those off-site matrix elements for two examples
disordered chains.

The first example is the completely disordered bina
chain from Fig. 8. The energy parameters are taken fr
there and the concentration is set tox50.5. ~Here, we expect
the largest effects of disorder.! Figure 14 shows the imagi
nary parts of the energy-dependent off-site elements of
Green’s matrix:

2
1

p
Im GRW RW 8

sWsW 8

QQ8
~v!, ~86!

denoted byGRR8
ss8

in the figure for simplicity. For the com-

pletely disordered case, the unit cell is simply -X-, hencesW

5sW850 holds. The indices at Fig. 14 thus refer to the latt
sitesRW , RW 8. The different component-projected functions a
marked. We see that the rough shape of the exact solutio
reproduced by the CPA and that the deviations take plac
the same energy regions as discussed for the DOS, nam
outside the main band. Furthermore, we see that the sig
the functions is essentially reproduced by the CPA. T
smearing out is similar to the DOS case. All together,
off-site elements of the Green’s matrix behave in the sa
way as the DOS.

FIG. 14. Imaginary part of the energy-dependent off-site e
ments of the component projected Green’s matrix for a comple
disordered binary chain.
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The second example corresponds to the partially dis
dered alloy in Fig. 12. The unit cell is -X-A-B-. Therefore,
the indicessW andsW 8 may take the values 0, 1, and 2 for th
sitesX, A, andB, respectively. In Fig. 15 the indices relate
to the indices atG in Eq. ~86!. Once again we show different
component-projected functions, but not for all index comb
nations there are all variants. Here, in principle, the sam
statements hold as before. For this chain, the density of sta
was reproduced well by the CPA, now the same is true f
the off-site elements. The energy regions, where deviatio
occur due to cluster peaks, are again the same either for
DOS or for the off-site elements. Thus, we expect the resu
and conclusions, obtained by analyzing the densities
states, to be applicable to the off-site elements of the Gree
matrix, too.

V. CONCLUSION

We presented a generalized single-site CPA theory tha
based on the concept introduced by Blackman, Esterling, a
Berk. This theory is applicable to band-structure schem
including nonorthogonal basis sets. Those orbital approac
to the density-functional theory naturally result in a structu
of the Hamiltonian used in the BEB theory. Moreover, it i
extended to complex disorder, including the possibility o
simulating structural long-range order.

The outcome of the present work is a detailed inspecti
of some features of the BEB CPA. First, we developed t

FIG. 15. Imaginary part of the energy-dependent off-site el
ments of the component projected Green’s matrix for a partia
disorderedX-A-B- chain.
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formalism within an orbital description of the scatterin
theory, the matrix form of which may be considered an an
ogy to the real-space theories~KKR!. Then, we performed
some analysis on the properties of the self-energy, holdin
the single-site approximation as well as in the nonappro
mate theory. These features give arguments in suppor
expecting the single-site BEB CPA to be a good approxim
tion, particularly for partially disordered alloys. These an
lytic insights are further supported by the results obtained
numerical test in Sec. IV. The second analytic proof co
cerns the limit of small concentration. Here it turned out th
the BEB CPA fulfills the condition to give the Green’s fun
tion of a single impurity for vanishing concentration. Th
feature is fulfilled by the classical CPA and by the Shi
transformation~if the multiplicative condition for the off-
diagonal disorder is appropriate!. To the authors knowledge
this property was never proved before for the BEB CPA.

The last part of the present work gives an investigation
the range of parameters in which the CPA should be ap
cable. We think that the tests presented cover the esse
patterns of behavior of the generalized BEB CPA, so tha
generalization of the results is justified.

~i! It turned out that the CPA yields satisfactory results
a large parameter region of diagonal and off-diagonal dis
der, respectively.

~ii ! The statistical correlations between different sites g
rise to peaks of local states, lying outside the main band
these regions the single-site CPA supplies smeared
shapes of the DOS, which may be considered a reason
smoothing of the exact DOS. This is supported by the sta
ment that the first four moments of the DOS are conserve
the BEB theory.2 Therefore, the energy integrated CPA
Green’s matrix should give a suitable approximation to
exact one.

~iii ! The observed deviations are expected to be sma
for realistic systems and higher dimensions.

~iv! For partially disordered systems, the results are u
ally quite good. The described exceptions are mainly c
nected to the special peculiarities of one-dimensional mod
with nearest-neighbor hopping only.

~v! Beside the on-site elements of the Green’s matrix,
off-site elements were tested. They are needed in charge
consistent bandstructure schemes, and therefore shoul
reproduced in equal accuracy. Our investigations assure
indeed off-site as well as on-site elements are given with
same quality.

All together, our inspection points out that the generaliz
BEB CPA represents a suitable and meaningful tool for
description of disordered and partially disordered alloys
the framework of band-structure schemes based on ma
formalisms.
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1K. Koepernik, B. Velický, R. Hayn, and H. Eschrig, Phys. Rev.
55, 5717~1997!.

2J. A. Blackman, D. M. Esterling, and N. F. Berk, Phys. Rev. B4,
2412 ~1971!.

3In Methods of Electronic Structure Calculations, edited by V.
Kumar, O. K. Andersen, and A. Mookerjee~World Scientific,
Singapore, 1992!.

4D. M. Esterling, Phys. Rev. B12, 1596~1975!.
5H. Shiba, Prog. Theor. Phys.46, 77 ~1971!.
6J. A. Blackman, J. Phys. F3, L31 ~1973!.
7I. Turek, V. Drchal, J. Kudrnovsky´, and M. Šob,Electronic Struc-

ture of Disordered Alloys, Surfaces and Interfaces~Kluwer Aca-
demic, Boston, 1997!.

8A. Gonis and J. W. Garland, Phys. Rev. B16, 1495~1977!.
9D. A. Papaconstantopoulos, A. Gonis, and P. M. Laufer, Ph

Rev. B40, 12 196~1989!.
10J. S. Faulkner and G. M. Stocks, Phys. Rev. B21, 3222~1980!.
11H. Eschrig,Optimized LCAO Method and the Electronic Stru
s.

ture of Extended Systems~Springer, Berlin, 1989!.
12R. Richter, H. Eschrig, and B. Velicky´, J. Phys. F17, 351~1987!.
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