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Near-field images of a monolayer of periodically arrayed dielectric spheres
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A theoretical analysis is given for the near-field images of a monolayer of periodically arrayed dielectric
spheres, obtained by monochromatic external light. Depending on the frequency and the incident angle of
exciting light, the near-field intensity exhibits a large enhancement due to the resonant excitation of photonic
bands with two-dimensional band dispersion. The various near-field patterns, sometimes quite unlike the image
by natural light, are shown to occur and are analyzed using the plane-wave amplitudes of excited Bloch waves.
The resonant pattern is well understood by the group-theoretical characters of photonic bands. Also, an
analytical expression is given for the field in the long wavelength limit, which can reproduce all the numerical
characteristics quite successfully. Especially, it can explain why the near-field image becomesv independent,
while the reflectivity varies asv2. @S0163-1829~98!05935-9#
ed

ing
in
a
n
n

on

on
ow
x
o
s
o

fo
om
no
th
sy
,
n

ar
d

h

ic
p
re

ta
a
i
ic
rth
e

p-
just

sed
ms
lies

cy-
nd
e

the
ined
ed
ing

of
ec-

m

ho-
of
use

for
c
onic

ly
eral
ore,
teral
r in
of

and
n-
the
al
I. INTRODUCTION

Recently dielectric objects arrayed periodically, call
photonic crystals, have attracted much attention.1 The inter-
est mainly originates from technological incentives of us
the photonic states of such systems in optically controll
the electron dynamics. Photonic band structure appears
result of periodic modulation of the dielectric constant, a
resembles in many ways the more familiar electronic ba
structures of ordinary solid state systems. There is a l
history of research of the properties of one-dimensional~1D!
photonic crystals, periodic multilayer stacks in one directi
Their peculiar frequency ranges of total reflection are n
well understood in the photonic-band picture. A typical e
ample of 2D or 3D photonic crystals is a periodic array
polymer spheres formed in aqueous suspensions. Such a
tem of microspheres provides us with the field for photons
visible range that plays the role of periodic array of atoms
electrons in ordinary solids. As an electron hops from at
to atom to form a tight-binding band, the same phenome
occurs in the photonic case. Though the formulation for
photonic band theory and the optical response of such
tems were completed in the late 1970s and early 1980s2–4

systematic research of 2D and 3D photonic crystals has
been carried out until recently, when people realized a v
ety of their technological applications such as single-mo
light-emitting diodes5 and optical waveguides with hig
resolution.6

A variety of periodic structures of 2D and 3D photon
crystals, in size and shape of arrayed units, have been
posed, fabricated, and investigated extensively both theo
cally and experimentally.1,7,8 However, the efforts to date
have been restricted to the search for a photonic crys
which has an absolute band gap prohibiting the electrom
netic propagation in all directions. Of course this situation
desirable from a technological point of view, but photon
bands have in themselves many physical properties wo
of fundamental investigation. One of them is the massiven
PRB 580163-1829/98/58~11!/6920~18!/$15.00
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of photons in photonic crystals, which stems from their pro
erty as a coherent hopping mode of localized states, i.e.,
an electromagnetic version of heavy fermions.

Most of the theoretical treatments have so far been ba
on the expansion of the Bloch electromagnetic fields in ter
of plane waves. Although this method is handy and app
widely, it has a limitation of very slow convergence.9,10 The
formulation due to one of the authors~K.O.! is to use the
completeness relation of the set of vector spherical and
lindrical waves in the system of arrayed spheres a
cylinders.2,10 This is conceptually a natural extension of th
familiar approach for electrons to photons. Making use of
much faster convergence and greater accuracy, he exam
various optical properties of photonic bands and explain
successfully how they change from band to band depend
on the individual band characteristics.11–14 These previous
works were mainly concerned with the far-field properties
photonic bands, i.e., such properties as involved in the refl
tivity or transimittivity observed by a detector far away fro
the photonic crystals.

The present paper treats the near-field properties of p
tonic bands, for a single layer of 2D periodic array
spheres. Near-field optics attracts growing attention beca
of its remarkably high spatial resolution.15,16 Though some
analyses based upon Fourier decomposition are found
grating geometries,17–20 the near-field optics for the periodi
system has not yet been discussed in relation to the phot
bands.

A monolayer system of 2D periodicity has two mutual
contrasting characteristics: it is a closed system in the lat
plane and is an open system in the third direction. Theref
a photon behaves therein as a heavy photon in the la
motion but presents simultaneously a dissipative behavio
the third direction. The dissipation is caused by leakage
electromagnetic energy into the surrounding free space
accordingly is the origin of the coupling between the eige
modes of the monolayer and the plane-wave states of
external world. A photonic band couples to an extern
6920 © 1998 The American Physical Society
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plane-wave probe through this mechanism. The near-fi
response to an external probe thus provides us with fru
information on the photonic bands. The purpose of this pa
is to show in a quantitative way how the near-field image
indeed explained by the properties of photonic bands.

The near-field is examined by SNOM~scanning near-field
optical microscopy!.21 In this paper we restrict ourselves
the field excited near the system by an external plane-w
light, which we shall often call ‘‘the local field.’’ As ana
lyzed in Ref. 22, the time-reversal symmetry shows that
intensity of the local field at a point near the specimen
nothing but the field that is obtained at infinity, using t
probing light coming in the reverse direction from a po
source placed where the local field is measured. By a p
source we mean here the SNOM tip. The analysis of
present paper will show that the monolayer system can
tentially be used as a standard measure of the resolutio
SNOM, because this system allows a thorough study us
the concept of photonic bands, as done in this paper. Also
near-field image in the long wavelength limit, i.e., that o
tained by the light of wavelength much larger than the pe
odicity of the array, is shown to be given by a compa
analytical expression.

In Sec. II, we summarize the formulation of the light sc
tering from a monolayer of spheres to obtain the near-fi
expression. Section III is devoted to the numerical prese
tion of the reflectivity spectrum and near-field images. W
restrict ourselves to the resonant features in this section.
interpretation in relation to the dissipative 2D photonic ba
is also introduced. In Sec. IV, we attempt to reproduce
resonant near-field images discussed in Sec. III by using
group-theoretical knowledge of 2D photonic bands. Sect
V deals with the light scattering in the long wavelength lim
Short comments in Sec. VI conclude the paper.

II. MODEL AND FIELD EQUATIONS

We consider a single layer of periodically arrayed diele
tric spheres in free space. Each sphere has a uniform die
tric constant« and radiusa. The origin of the coordinates i
taken at the center of one of the spheres and thexy plane is
chosen to be the plane of the monolayer, with thez axis
normal to the plane. Let the plane-wave electromagnetic fi
of wave vectork0 be incident from below the layer (z
,0):

E~r !5E0exp~ ik0•r !, ~2.1!

where

k05~k,G0
1! and G0

656A~k0!22~k!2, ~2.2!

k5(kx ,ky) andG0
1 being the in-plane andz components of

k0 , respectively. Throughout the present paper we cons
only the electric field.

The incident photon suffers from multiple scattering
the layer and hops from sphere to sphere. It emerges fin
out of the monolayer with an in-plane wave vectork1h, h
being a 2D reciprocal lattice vector acquired by umkla
scattering. The transmitted and reflected fields are expre
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as a sum of the plane waves specified by varioush. Let kh
6

be the 3D wave vector of the outgoingh wave. By energy
conservation,

kh
65~k1h,Gh

6! and Gh
656A~k0!22~k1h!2.

~2.3!

Here the square root is chosen to be positive imaginary w
its argument is negative and the superscripts1 and 2 cor-
respond to the transmitted~to be observed in the regionz
.0! and reflected (z,0) fields, respectively.

The scattering channel specified byh is called open
~closed! when Gh

6 is real ~imaginary!. Only the channel of
h50 is always open. The others have their threshold f
quencies for the channel opening. The open channels c
away the energy in the direction ofkh

6 from the monolayer
and determine the far-field intensity of the scattered fie
They satisfy the unitarity condition, i.e., the flux conserv
tion in the z direction. The closed channels, on the oth
hand, are specified by evanescent waves, their Poynting
tor being directed in the lateral direction. They are not
volved in flux conservation in thez direction, and hence thei
amplitudes can be arbitrarily large. The closed channels t
play a dominant role in the enhancement of the field inten
near the monolayer.

To express compactly the fields outside the system
spheres, we introduce transmission and reflection amplitu
Ti j (hh8) and Ri j (hh8), respectively. The quantityTi j (hh8)
is the transmission amplitude of thej th Cartesian componen
of the incoming plane wave of wave vectorkh8

1 into the i
component of the outgoing plane wave ofkh

1 . Ri j (hh8) de-
scribes similarly the reflection of the incomingkh8

1 wave into
the kh

2 wave. In terms of them, thei th component of the
electric fields outside the monolayer is expressed as

Ei~r !5H (
h, j

Ti j ~h0!exp~ ikh
1
•r !Ej

0 for z.0,

(
h, j

Ri j ~h0!exp~ ikh
2
•r !Ej

0 for z,0,

~2.4!

where the summation overh covers all possible channels
open or closed. To express the flux continuity in thez direc-
tion, we introduce the total transmission and reflection co
ficients,T andR, defined by

T5(
h

8 S (
i

U(
j

Ti j ~h0!Ej
0U2D cos~ k̂h

1
• ẑ!,

~2.5!

R5(
h

8 S (
i

U(
j

Ri j ~h0!Ej
0U2D cos~ k̂h

1
• ẑ!.

Here, the primed summation is only overh of open channels
and the vectors with carets are unit vectors. Then, for
incident field of unit amplitude, the continuity of thez com-
ponent of the incoming and outgoing Poynting vectors
expressed by

T1R5cos~ k̂0• ẑ!. ~2.6!
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This identity serves as a check of the numerical proced
Note that the lack of the mixing between differenth in these
formulas is due to the integral in a lateral plane over the
unit cell.

In the frequency range in which only the channel 0
openT andR are given by

T5(
i

U(
j

Ti j ~00!Ej
0U2

cos~ k̂0• ẑ!,

R5(
i

U(
j

Ri j ~00!Ej
0U2

cos~ k̂0• ẑ!, ~2.7!

which describe direct transmission and specular reflect
respectively.

The transmission and reflection amplitudesTi j (hh8) and
Ri j (hh8) involved in Eq.~2.5! or Eq. ~2.7! are obtained by
expanding the incident and scattered fields in terms of
vector spherical fields ofMElm(r ) and NElm(r ), in the nota-
tion of Stratton.23 Multiple scattering within a sphere is take
into account by the intraspheret matrix. The multiple scat-
tering in the periodic array as a whole is then expressed a
infinite series of the intrasphere scattering followed by
photon propagation between spheres. Finally, converting
spherical waves into the sum of the outgoing plane wa
yields Ti j (hh8) andRi j (hh8). The details of the mathemat
cal procedure are given in Ref. 4, and we simply quote
final expressions:

Tii 8~hh8!5d i i 8dhh81
g0

Gh
1 Yt~ k̂h

1!ti i 8Y* ~ k̂h8
1

!,

~2.8!

Rii 8~hh8!5
g0

Gh
1 Yt~ k̂h

2!ti i 8Y* ~ k̂h8
1

!.

Here, the first term ofTii 8(hh8) represents the incident plan
wave whenh850, and g052 i /S, S being the area of the
unit cell. Y( k̂h

2) is a vertical array of the spherical harmo
ics: Y( k̂h

2)5$Y00( k̂h
2),Y121( k̂h

2),Y10( k̂h
2),Y11( k̂h

2),...% t.
Y( k̂h

1) is similarly defined. Note that thez component ofk̂h
6

of closed channels is imaginary in the arguments of
spherical harmonics. The matricesti j are given by

ti j 5U* S (
bb8

Pi
btbb8L ~Pj

b8!†DU, ~2.9!

where the sum runs overb5M andN ~likewise forb8! and
the matrix elements ofU and L are given by (U) lm; l 8m8
54p i ld l l 8dmm8 and (L ) lm; l 8m85d l l 8dmm8/@ l ( l 11)#. The
matrix Pj

b gives the expansion coefficients of thej th compo-
nent of the vector spherical waves into the spherical harm
ics. They are written in terms of the Clebsch-Gord
coefficients.2 In the matrix element (Pj

b) lm; l 8m8 , l runs over

l>0 but l 8 over l 8>1. The matricestbb8 ~there are four
such matrices,tMM, tMN, etc.! are square matrices define
within the spacel ,l 8>1. They are the (bb8) block of the
layer t matrix t, defined by

t5S tM, 0

0, tNDB,
e.

n,

e

an
e
he
s

e

e

n-

B5S I2gMMtM, 2gMNtN

2gNMtM, I2gNNtND 21

. ~2.10!

Here,tb is the intraspheret matrix andgbb8 is the structure
factor that specifies the light propagation between sphe
When expanded into a power series with respect totb, t is
seen to involve an infinite sequence of Mie scattering.
off-diagonal blockstMN and tNM describe the mixing be-
tween theM andN spherical waves in the course of scatte
ing.

III. RESONANT NEAR-FIELD IMAGES

In this section, we present the numerical results of
reflectivity spectra and near-field images. We have in m
the experiment of SNOM on a single layer of polystyre
spheres of radiusa and dielectric constant«, which are ar-
rayed in a triangular lattice of lattice constantd. We set«
51.62 and a/d50.5. The refractive index of 1.6 is that o
polystyrene spheres in the visible range, and the second
dition corresponds to the close-packed triangular lattice
spheres in contact with each other.

Figure 1 shows the geometry of the lattice. The shad
square is the region where the intensity map of the local fi
will be calculated. By the Bloch theorem the field-intens
outside the square is obtained by periodic extention. Pa
~b! shows the reciprocal lattice with lattice consta
2/)(2p/d), which is obtained by rotating the real-spa

FIG. 1. Real~a! and reciprocal~b! spaces of triangular lattice
The shaded square of panel~a! is the region of~x,y! with 20.6d
<x,y<0.6d, where the local-field profile is displayed in this pape
In ~b!, the reciprocal lattice pointsh in the NN and 2NN shells are
shown. Those in the NN shell are numbered for later purpose.



l
ce

ts

e
e

-

a

d

ne
ly

-
in

om-

pe
e

rter
in-

the
of
in-

ec-
cy
ld

-

of
x-

as
e

e

that
eva-
cter-
the

.g.,
nd
open
en-

e

of
ling

PRB 58 6923NEAR-FIELD IMAGES OF A MONOLAYER OF . . .
lattice by p/6. We call a group of lattice points of equa
length uhu as belonging to a shell of the reciprocal latti
points. The pointh50 defines by itself the first shell, which
we shall call the 0 shell. Six lattice points nearest to the
shell form the second shell, which we call the NN~nearest-
neighbor! shell. The third shell is called the 2NN~second-
nearest-neighbor! shell. For later purpose, the lattice poin
of the NN shell are numbered in Fig. 1.

We consider the incident electric field of unit amplitud
and wave vectork0 at normal and oblique incidence. In th
oblique incidence we keep the wave vectork0 within the xz
plane and tilt it from thez axis by the incidence angleu. The
incident light ofs polarization is polarized in they direction
while that ofp is within thexzplane. We employ this naming
of s or p even for normal incidence by calling they (x)
polarized ass (p). We measure the wave numberk in units
of 2/)(2p/d) and the frequencyv in units of c times this
quantity, c being the light velocity. In terms of the wave
lengthl of light in free space,k andv are thus given by

k5v5
)d

2l
. ~3.1!

For normal incidence the six channels forh in the NN shell
open simultaneously atv51, and the channels of the 2NN
shell open atv5). In the numerical results given below,
good convergence is achieved forv,1.7 by consideringl
<8.

A. Normal incidence

Let us start with the normal incidence case. Figure
shows the reflectivityR, defined by Eq.~2.5!, as a function
of v. By symmetry the result is identical fors andp polar-
izations. Sharp peaks arise atv50.71, 0.85, 1.00, 1.34, an
1.55. The asymmetry of the peak atv50.85 is due to the
resolution-limited degeneracy, as shown in the inset obtai
with a finer frequency step. We see that the peak is real

FIG. 2. ReflectivityR versusv for the light in the normal inci-
dence. The refractive indexn and the radiusa of spheres aren
51.6 anda50.5d, d being the lattice constant. The inset is a clos
look of R nearv50.85, which shows the peak aroundv50.85 to
be actually composed of two peaks.
0

2

d
a

doublet consisting of a broad peak atv50.854 and a sharp
one atv50.870. The peak atv51.00 occurs at the thresh
old for the opening of the NN-shell channels. As analyzed
Ref. 24, the occurrence of such a peak is a textbook phen
enon observed at the frequency for channel opening.

The two broad peaks near the origin are similar in sha
to the interference fringes of a uniform dielectric slab. W
can in fact see that four, eight,... peaks appear with sho
periodicity in frequency, as 2,4,... layers are stacked to
crease the thickness~see Ref. 11!. It is remarkable that the
Mie resonance due to spherical confinement, which is
origin of the series of sharp peaks of Fig. 2, is orders
magnitude sharper than these two peaks of the thin-film
terference effects.

To check the coincidence between the peaks of the refl
tivity and near-field intensity, we plot in Fig. 3 the frequen
dependence of the maximum intensity of the local fie
uE(r )u2 on two sampling planes above the layer atz5a
~solid line! andz51.2a ~dotted line!. By positivez we mean
that the observation pointr lies on the exit side. The fre
quency step is the same as that of Fig. 2.

Comparison of Fig. 3 with Fig. 2 shows that the peaks
the reflectivity and local-field intensity are positioned in e
act agreement, including those of the doublet atv50.85. It
is remarkable that the local-field intensity is sometimes
large as 102. This type of large enhancement is the sam
phenomenon as calculated for the 3D lattice of spheres.12 A
marked decrease of the local-field intensity at the planz
51.2a, as compared to that atz5a, is the third notable
feature of Fig. 3. The rapid decrease obviously shows
the resonant enhancement is due predominantly to the
nescent waves from the closed channels. All these chara
istics of the resonant peaks are similarly observed when
local field is calculated on the entrance side at, e
z52a. The similarity in the responses between the exit a
entrance sides shows that the interference between the
and closed channels has a minor effect in the resonant

r

FIG. 3. Frequency dependence of the maximum intensity
near field. The solid line shows the maximum value on the samp
plane atz5a and the dotted line on the plane atz51.2a. The
incident light of normal incidence isp-polarized~polarized parallel
to thex axis!. The inset showsR aroundv50.85 with the enlarged
horizontal scale.
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FIG. 4. Contour maps of the near-field intensity for the square region of Fig. 1. The intensity profiles are calculated on the sampl
of z5a at several resonances. The resonant frequencies arev50.71 for~a! and~d!, v50.87 for~b! and~e!, andv51.52 for~c! and~f!. The
incident wave is taken to bep-polarized from~a! to ~c! and to bes-polarized from~d! to ~f!.
t

sit
ws
hancement, because a peak ofR on the entrance side mus
accompany the corresponding dip inT on the exit side.

We next examine the spatial dependence of the inten
obtained at the frequency of just resonance. Figure 4 sho
map of the total electric-field intensityuE(r )u2 for p-
y,
a

polarized incident field atr5(x,y,a), i.e., on the sampling
plane atz5a. The panels~a!–~c! show the results at the
resonances of Figs. 2 or 3, observed atv50.71, 0.870, and
1.52, respectively. The results for thes incidence are given in
~d!–~f!. In the figures,x andy axes are scaled in units ofd, so
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PRB 58 6925NEAR-FIELD IMAGES OF A MONOLAYER OF . . .
that the tops of the spheres are located at~0,0!, ~1,0!, ~1/2,)/
2!,... ~see Fig. 1!. The maximum and minimum values of th
intensity are given in the panels.

It is interesting to note that none of the figures gives
brightest spot at the top of spheres, and that the contour m
are different for different resonances. Note that the field
ages of thes polarization in panels~d! and ~f! are obtained
basically from those of thep polarization by ap/2 rotation
about the origin. Let us take a closer look at them.

In panel~a! for the p case ofv50.71, the contour looks
like a lemniscate, while that ofv51.52 in~c! shows double-
egg contour. A double-egg shaped contour is also obse
in the resonance patterns ofv50.857 and 1.35~not shown
here!. In contrast to~a! and~c!, image~b! of v50.870 shows
a ladder with two maxima lying parallel to thex axis. Four
secondary maxima are found at four of the six contact po
of spheres. Two other contact points on thex axis remain
dark. In the case ofs polarization shown in~e!, these two
points are the maximum-intensity points. Secondary max
of the s case are obtained by ap/2 rotation from the maxi-
mum points of thep case. From these observations it
found that the strictp/2 rotational symmetry betweenp and
s does not exist. We can also guess that the bright spot
the near-field images forv50.870 consist of two patterns
one attaining its maximum within each sphere and the o
at the projected contact points. Whether a contact point tu
out to be a bright spot or not depends on its local envir
ment and the polarization of the incident field.

We next decompose the total field into its Cartesian co
ponents. Figures 5~a!–5~c! show, respectively, thex, y, andz
components of the resonance pattern atv50.71 andz5a
for p incidence. We see thatEx(r ) and Ez(r ) dominate in
uE(r )u2 with negligible Ey(r ) contribution.Ex presents al-
most concentric circular contours in the central region, wh
Ez has a double peak along thex axis within a sphere. There
fore, we conclude that the two maxima of Fig. 4~a! is z-
polarized and the region between them isx-polarized. This
is, however, not always the case. In the case ofv50.870, for
example, we find that three components are all appreci
@see Fig. 6~b! below#.

The characteristic feature of the near-field images can
more directly analyzed by decomposing the total field in
contributions from each channel. We introduceEi(h) for the
transmitted field of channelh at heighta:

Ei~h!5(
j

Ti j ~h0!exp~ ikh
1
•r 0!Ej

0, ~3.2!

with r05(0,0,a). Then, thei th component of the outgoing
field for z.a is given by

Ei~r !5(
h

Ei~h!exp@ ikh
1
•~r2r0!#. ~3.3!

Figure 6 displays complex amplitudesEi(h), with i 5x,y,z
for severalh for p incidence. The three panels~a!, ~b!, and
~c! correspond tov50.71, 0.870, and 1.52, respectively. Th
arrows drawn from pointh show the nonzero components
@Ex(h),Ey(h),Ez(h)#, whose real~imaginary! part is given
by the horizontal~vertical! component of the respective a
rows. Some points have an additional arrow that shows tz
e
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a
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-

-

e
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component ofs incidence~thex andy components ofs inci-
dence are obtained by thep/2 rotation of thep result!.

For v,1.0, Figs. 6~a! and 6~b! show that appreciable
amplitudes are seen only in the open channelh50 and the
closed NN-shell channels. The field in the channelh50 has

FIG. 5. Contour maps of the field components on the samp
plane atz5a. The panels~a!, ~b!, and ~c! show, respectively,
uEx(r )u2, uEy(r )u2, anduEz(r )u2 with r5(x,y,a) for thep-polarized
light of v50.71.
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6926 PRB 58HIROSHI MIYAZAKI AND KAZUO OHTAKA
FIG. 6. Complex amplitudesE~h! for h50 and several smallh.
The frequencies arev50.71 in ~a!, 0.870 in ~b!, and 1.52 in~c!.
The solid, dotted, and dashed lines, respectively, show thex, y, and
z components ofE~h! for thep-polarized light of normal incidence
while the dash-dotted line shows thez component of thes-polarized
light. The components not shown are zero or negligibly small. O
in ~c! are the amplitudes of 2NN and 3NN shells appreciable. T
amplitudes 0 and NN shells are doubled in~c! as a guide to the
eyes.
the same polarization as the incident light and determines
far-field intensity, i.e.,R andT of Eq. ~2.7!. Panel~a! shows
that atv50.71 the NN-shell channels contribute mainly
the x and z components of the near field with negligibley
component. In contrast, at the resonance ofv50.870 shown
in ~b!, the y component is large. Thus, whether or not they
component is appreciable is the main origin for the diffe
ence in the two images. Atv51.52, panel~c! shows that the
NN-shell channels, which are already open, have small
plitudes, their contribution to the near-field being acco
ingly minor. They in turn contribute to the far-field imag
by giving rise to six diffracted waves. Then, the near-fie
images are mainly governed by the 2NN-shell chann
which are still closed.

The features of the NN-shell plane waves, seen co
monly in the three panels of Fig. 6, are summarized as
lows.

~i! Except for the twoh on theky axis, pointsh2 andh5 of
Fig. 1, Ex(h)’s are all directed in the same direction, show
ing that they are all in phase. The phases ofEx(h2) and
Ex(h5) are identical but they are different from those of t
remaining fourh.

~ii ! Ey(h)’s always vanish at the pointsh2 andh5. Within
any pair ofh related by the mirror reflection in thexz or yz
plane,Ey(h)’s are mutually out of phase byp.

~iii ! Ez(h)’s also vanish ath2 and h5. For otherh the
arrows are mutually parallel~antiparallel! in a pair connected
by the mirror reflection in thexz plane~yz plane!.

The statement~i! explains the almost concentric circula
contour of theuEx(r )u2 of Fig. 5~a!, for it leads to the lateral
dependence of the form coshxx coshyy, (hx ,hy) being the
lattice point in the first quadrant~point h1!. Theh2 andh5 on
the y axis introduce a modification of the profile ofEx(r ),
due to the coshy8y dependence,hy8 being they component of
h2. This modification is indeed seen in Fig. 5~a!. From the
statement~ii !, which shows that they component is ex-
pressed by sinhxx sinhyy, we can understand why theEy(r )
vanishes on bothx andy axes, as shown in Fig. 5~b!. Like-
wise, thexy dependence of the form sinhxx coshyy, deduced
from the fact~iii !, explains the presence of the double pe
of Fig. 5~c!.

The analysis for thes case is similarly possible. In the
lateral components of electric field,p and s cases give an
identical picture if we interchange the suffixesx and y. No
such relation exists in thez component. The symmetry rela
tions summarized above hold only for normal incidence a
will be partly lost in the case of oblique incidence.

Finally, Fig. 7 shows the change of the near-field imag
with varying height of the sampling plane. Two cases oz
51.2a and 2.0a for the resonances atv50.71 and 1.52 of
the p incidence are plotted. Panel~a! of v50.71, as com-
pared with Fig. 3~a!, shows that a slight increase ofz from a
to 1.2a reduces the field intensity drastically without signi
cantly modifying the field pattern. Since the maximum val
of the intensity is roughly 4, the evanescent waves from
NN-shell channels are still the main origin of the intens
map. Atz52a shown in panel~b!, the evanescent waves a
largely suppressed. Since channelh50 cannot by itself pro-
duce the contrast, the contrast must be due to the interfer
between the plane wave of channelh50 and the suppresse
evanescent waves. Since the field in channelh50 is x-

y
e
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FIG. 7. Dependence of the near-field images on the distance of the sampling plane from the layer. The contour maps are giv
50.71. The panels~a! and ~b! show the results on the sampling planes atz51.2a and z52.0a, respectively. The contour maps for th
frequencyv51.52 are given in~c! and ~d!.
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polarized, it will be thex component of the evanescent wav
that interferes appreciably. The statement~i! above thus ex-
plains why the circular contrast of panel~b! is obtained. Note
that the limiting value of the field intensity with increasingz
tends precisely to that of the transmittivityT, which is equal
to (12R) when v<1.0, R being shown in Fig. 2. The
marked decrease of the peak intensity with higherz is also
observed in the case ofv51.52, as shown in Fig. 7~c!. How-
ever, the maximum intensity remains rather large so that
can still observe a clear contrast even whenz52a, as shown
in Fig. 7~d!. These behaviors are natural consequences o
presence of the open NN-shell channels abovev51.0.

B. Oblique incidence

We turn to the case of oblique incidence. Figure 8 sho
R and the maximum field intensity atu520° for the fre-
quency rangev<1.0. The reflectivity is normalized by
cos(k̂0• ẑ) in accordance with Eq.~2.6!, so that the unitarity
condition of Eq.~2.6! turns out to beT1R51. Below v
50.5 the reflectivity has a single broad hump as in Fig.
Above v50.5, the spectra are very complicated. Betwe
the reflectivity and the maximum field intensity, the pe
e

he

s

.
n

positions agree exactly. However, the peak positions of
responses top ands lights are not identical, implying that the
degeneracy seen in the case of normal incidence is lifte
the oblique incidence.

We give in Figs. 9~a! and 9~b! the near-field images o
u520° for p ands polarizations, respectively. The freque
cies are chosen at the peak positions ofv50.73 in ~a! and
0.76 in ~b!. We obtain the images symmetric with respect
the x axis, but not to they. This is a common feature of al
the near-field images for the wave vectork0 lying in the xz
plane. For the oblique incidence, we can check the follow
symmetry relations of the field componentsi 5x,y,z:

Ei~svxh!56Ei~h!, ~3.4!

wheresvxh is the lattice point obtained fromh by the mirror
reflection in thexzplane. This is the origin for the symmetr
of the intensity map with respect to thex axis.

C. Complex photonic bands of 2D system

The peaks of Fig. 8 occur due to the resonant excitation
photonic bands of the monolayer system. The photonic ba
of the present system have 2D dispersion relations due to
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translational symmetry in the lateral plane. Since their eig
frequencies are in general complex, as stated in Sec. I,
derivation of the dispersion relation is not trivial.

Let us return to the reflection and transmission amplitu
given by Eq.~2.8!. The central part of them is the layert

matrix tbb8. When the determinant of the matrixB diverges
somewhere in the complexv plane in Eq.~2.10!, so does
tbb8. The singularity is then transferred to the transmiss
and reflection coefficients throughTii 8(hh8) and Rii 8(hh8)
of Eq. ~2.8!. Therefore, if we sweepv along the real axis of
the complexv plane near some pole of detB, we obtain a
Lorentzian resonance peak. The more the pole is located
the real axis, the sharper will be the line shape. If the eff
of a pole of detB disappears inTii 8(hh8) or Rii 8(hh8), the
mode corresponding to the pole is optically inactive. T
happens when the pole of detB fails to survive the procedure
needed in Eqs.~2.9! and ~2.8!. Whether or not the pole ha
this property depends on the property of the eigenvecto
matrix B, the information of which is carried by the residu
of det B at that pole.

FIG. 8. ReflectivityR in ~a! and maximum intensity of the loca
field on the plane atz5a in ~b!. The incidence angle isu520°.
The solid and dotted lines show the results for thep and s lights,
respectively.
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In Fig. 10 we plotudetBu2 as a function ofv for oblique
incidence. The result is given foru520° in the range 0.5
<v<1.0. We found thatudetBu2 turns out to be very spiky.
Comparison of Fig. 10 with Fig. 8 shows that, whereve
peak occurs inudetBu2, there is a corresponding sharp pe
in both the reflectivity and the local field. This means that

FIG. 9. Near-field images atu520° on the sampling plane a
z5a; for the p light of v50.73 in ~a! and for thes light of v
50.76 in ~b!.

FIG. 10. Plot ofudetBu2 for u520° as a function ofv.
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we use boths- and p-polarized lights, we can catch all th
modes in the case of oblique incidence.

The dispersion relation of the photonic bands can be
tained by following the peak positions ofudetBu2. Figure 11
shows an example of the band structure of damped phot
bands, which is obtained fork5(kx,0). Some of the disper
sion curves disappear on the way. This implies that the c
responding peak gets blurred and leaves no trace as a
defined peak in the plot ofudetBu2.

Calculating the local field with a fixedu corresponds to
tracing the optical response along the straight linev
5kx /sinu in the (kx ,v) space, an example of which i
drawn for the case ofu520° in Fig. 11. Comparison of Fig
11 with Fig. 2 reveals that there are many photonic ban
which are inactive at theG point to the incident light of
normal incidence.

The procedure of varyingu with v fixed is more easily
carried out experimentally. The dotted horizontal line dra
at v50.65 in Fig. 11 refers to this case. It crosses t
bunches of bands. Figures 12~a! and 12~b! show, respec-
tively, the reflectivity R and the near-field maximum
intensity as a function ofu for the same frequency as Fig. 1
We see two groups of peaks appear in the optical respon
exact agreement with the positions of the band bunching.
comparing panel~b! with Fig. 11, we recognize that th
missing parts of a band dispersion can be followed further
plotting the maximum intensity of the near field, because
well-defined peaks manifest themselves still in thev depen-
dence of the local field. The near-field information is th
more powerful in deriving the band dispersion than the f
field one.

In a series of panels~a!–~d! of Fig. 13, we show the
change of the near-field images with varingu.

IV. GROUP-THEORETICAL CONSIDERATION

The results of Sec. III C suggest that all the features
lated to the resonant frequency dependence will be expla

FIG. 11. Dispersion relation fork5(kx,0). Thesolid line is the
v2kx line swept by the incident light with the incident angle fixe
at u520°. The horizontal dotted line is the one traced by the in
dent light of frequencyv50.65.
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by the properties of photonic bands excited optically. The
fore, we try in this section to interpret the calculated ne
field profiles by using the group theory of a 2D photon
band.25

The photonic bands of the present system are class
according to the irreducible representation ofG~k!, the group
of k, for a 2D wave vector in the lateral plane. The elect
field of each band has the following plane-wave represe
tion of Bloch type:

Ek~r !5(
h

Ek~h! f k,h~z!exp@ i ~k1h!•r#, ~4.1!

for r5(r,z). The field variation with respect toz is de-
scribed by the functionf k,h(z). The prefactors of the expo
nentials, includingf k,h(z), vary from band to band. Only
when Eq.~4.1! of a band involveseik•r, i.e., the term for the
0 shell, can that band be excited by a plane-wave light
wave vectork. Thus, the condition that the 0-shell amplitud
E0(h50) is finite is the first requirement for a band to b
excited optically.

-

FIG. 12. ReflectivityR ~a! and maximum intensity of the near
field images~b! as functions ofu. In ~b! the field is calculated on
the plane atz5a. The frequency is fixed atv50.65. The solid and
dotted lines show the cases of thep- ands-polarized lights, respec-
tively.
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FIG. 13. Near-field images with varingu. The sampling plane is atz5a and the frequency is fixed atv50.65 for thep polarization. The
intensities are calculated at the peak positions ofu of Figs. 11; atu512° in ~a!, 15° in ~b!, 39° in ~c!, and 41.5° in~d!.
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In the case of the normal incidence, we setk50. The
point group ofG(k50) is thenC6v , the symmetric group of
a triangular lattice. The symmetry-adapted amplitudesEk(h)
of a band may be constructed by the standard procedure
ing the irreducible representation of that band. Name
within each shell of equaluhu, theh dependence ofEk50(h)
is wholly determined by the irreducible representation. N
that we may assign a single functionf k50,uhu(z) commonly to
all h points within a shell.

The groupC6v has six irreducible representations,25 four
one-dimensional representations,A1 , A2 , B1 , B2 , and two
two-dimensional ones,E1 andE2 . As for the bands belong
ing to one-dimensional representations, the 0-shell amplit
E0(h50) can be a basis function only if it is directed in th
z direction. This is because it would otherwise rotate arou
the z axis by some operations ofC6v and cannot be a basi
function by itself. A band whoseE0(h50) is z-directed be-
longs to A1 , the identity representation, sinceE0(h50) is
left unmoved under any operation ofC6v . Thus, all the one-
dimensional irreducible representations exceptA1 have zero
E0(h50). Also, A1 bands are silent to the probe light ofk
50, since the polarizations are mutually perpendicular.
conclusion, solely the doubly degenerate bands belongin
s-
,

e

e

d

n
to

E1 and E2 can be the candidates for the optically acti
bands. This was first shown by Stefanouet al.26 and Robert-
sonet al.27

Since the standard polynomial basis functions ofE1 and
E2 representations are$x,y% and$xy,x22y2%, respectively,25

it is only the bands ofE1 symmetry that can be excite
optically. E2 bands fail to couple to any vector probe, b
cause their basis functions transform like those of a seco
rank tensor. This is another way of saying that anE2 band
cannot have a finitevector-amplitudeE0(h50). The conclu-
sion for the case ofk50 is thus that an incident light can
excite only the bands ofE1 representation. Thus, all the res
nance excitations of photonic bands should be identical as
as the group-theoretical properties are concerned. Since
electric fields ofE1 bands transform likex andy, one of the
twofold degenerate bands may be excited by thep-polarized
light and its partner by thes light. In spite of this simple
conclusion, however, the intensity profiles seen in Sec.
varied rather strongly depending on the resonance.

In the NN shell, we have 18 vector plane waves of t
form exp(ih•r ): each of the six points in the NN shell ha
three vectors, polarized in thex, y, andz directions. These 18
vectors form a~reducible! representation ofC6v of dimen-
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sion 18318. We find that its irreducible decomposition
2A11A21B112B213E113E2 .

Figure 14 lists their basis functions, including those of t
optical inactiveE2 and one-dimensional representations.
the column NN, the basis functions constructed by superp
ing the 18 plane waves are shown. The column 2NN
volves those arising from 2NN shell. Two basis functions
E1 representation are denoted byE11 and E12, E11 trans-
forming like x ~active to thep light!, andE12 like y ~active to
the s!. The basis functions in the columnz are the ones
constructed by superposing thez-directed vector plane wave
and hence polarized in thez direction. The columnss andp
show the basis functions polarized in the lateral plane, ths
basis being directed in the radial direction andp in the di-
rection perpendicular to it.

Correspondingly, any band ofE1 representation is an ad
mixture of the three types of the basis vectors,z, s, andp.
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The diversity of the near-field images should arise depend
on how these three types are mixed.

DecomposingE0(h) into z, s, andp basis functions is not
possible by the symmetry consideration. It is only fixed
the eigenvector of the matrixB of Eq. ~2.10!. We avoid the
time-consuming numerical task of searching complex eig
values of the matrixB and calculating their eigenvectors
Instead, by assuming how the three types are mixed, we s
attempt an analytical construction of the near-field image

Let us consider the images shown in Figs. 4~a! and 4~b!.
Since they are the images ofp light, we need to conside
only the basis functionsE11. We restrict ourselves to the
contribution of the NN shell. Let us denote the three types
the symmetry-adapted basis functions asE11

z (r), E11
s (r),

and E11
p (r). Introducing three mixing parameters,Cz, Cs,

andCp, we find from Table I that the electric field yielde
by them has the form
Ek50~r !5CsE11
s ~r!1CpE11

p ~r!1CzE11
z ~r!5H ~2)Cs12Cp!coshxx coshyy14Cp coshy8y for Ex

~22Cs12)Cp!sin hxx sin hyy for Ey

4iCz sin hxx coshyy for Ez ,

~4.2!
on.
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hx5
2p

d
, hy5

1

)

2p

d
, hy85

2

)

2p

d
. ~4.3!

The quantitieshx and hy define the six points of the NN
shell. Here f k50,uhu(z) of Eq. ~4.1! is dropped for brevity.
The exact form ofEk50(r ) must include the contributions o
all shells, open or closed. By Eq.~4.3!, we are examining to
what extent the NN-shell contribution explains Figs. 4~a! and
4~b!.

Of the three Cartesian components ofEk50(r ), thez com-
ponent comes only from the basisE11

z (r ). We can easily see
that the symmetry properties summarized in the statem
~iii ! of Sec. III A is actually realized in thez component of
Eq. ~4.2!. The same holds true for thex andy components.
Especially, the statement~i! made for theEx(h2) andEx(h5)
for the lattice points on theky axis holds because of th
second term of thex component of Eq.~4.2!, which comes
from the p basis. Also, whether or not they component is
appreciable—the main reason for the difference of Figs. 4~a!
and 4~b!—depends on the relative signs of the mixing co
ficients Cs and Cp. If they are of the same sign, the nea
field image similar to panel~a! of Fig. 4 will result, while the
profile like panel~b! will be obtained, if they are of opposit
sign.

Indeed, Fig. 15 shows the intensity map ofuE(r )u2, for
one choiceCs50.7, Cp50.1, andCz50.9 in panel~a! and
for another choiceCs50.5, Cp521.5, and Cz50.5 in
panel~b!, together with their bird’s-eye views. We took th
mixing coefficients as real and fixed their magnitudes a
trarily except for the relative signs ofCp andCs. By inspec-
tion, we readily recognize that the numerical results are
nt

-

i-

-

produced quite satisfactorily by the analytical expressi
Since we have plotted only the absolute square of the
contribution, the agreement implies that the interference
tween the open 0-channel and the closed NN-channels is
important very near the system. Also, the fact that the co
ficients Cs, etc. are actually complex, is not ver
important.28

The fact that the NN shell is dominant is reasonable, si
it contributes most of all to the evanescent field, and henc
the near field. For a sampling plane positioned farther aw
from the array of spheres, the NN contribution decrea
exponentially with the result that the 0-shell contribution a
the interference between the 0- and NN-NN shells beco
important, relative to the absolute square of the NN con
bution considered above. Also, whenv is larger than 1.0, the
contribution from the 2NN shell must be taken into accou
These statements are all in accord with what has been m
tioned for Fig. 6.

The case of thes incidence is similarly analyzed by usin
the basis functions ofE12. Without repeating the analysis
we point out only one thing in relation to thep case. When
we return to Table I and compareE12 with E11, we see that
their s andp basis functions are related by thep/2 rotation
around thez axis ~this may be more easily seen in Fig. 14!.
For example, the changex→y andy→2x alters thes ~p!
basis ofE11 to the p ~s! of E12. These properties betwee
E11 andE12 are observed similarly in the 2NN channels,
Table II shows. This is the reason for thep/2 rotational
symmetry between the lateral components of thep and s
results. Thez component has no such symmetry, as Tabl
shows. These explain just what we have observed in Fig

For the oblique incidence ofk lying in the xz plane, the
point group ofG~k! is C1h , composed of the identity opera
tion and the mirror reflection in thexzplane. The point group
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C1h has two one-dimensional irreducible representationsA8
andA9, which are, respectively, even and odd with respec
the mirror reflection in thexz plane. Thus, the 2D bands o
symmetryA8 are active to thep light, which is polarized in
thexzplane, and the bands ofA9 to thes light. Namely, any
band is active optically in the oblique case. Combination o
lattice point h5(hx,hy) with its mirror-reflected partne
(hx ,2hy) yields the electric field of the formeihxx sinhyy or
eihxxcoshyy, depending on which ofA8 and A9 the band
belongs to. This is the origin of the mirror symmetry of th
field with respect to thex axis, summarized by Eq.~3.4!.
There is no other symmetry in the oblique case.

V. NEAR-FIELD IMAGE FOR SMALL v

When the incident wavelength is orders of magnitud
larger than the size of the spheres, one might expect

FIG. 14. Display of the basis functions of the irreducible rep
sentations ofC6v . Panels~a! and~b! show the basis functions ofE1

andE2 , respectively. An arrow given the number 2 is twice as lo
as the other arrows. In the columnz, the circles show the polariza
tions directed in the1z direction, while the crosses show them
the2z direction. In the diagram of~NN,p! of ~a!, the basis function
of h50 is given. The panel~c! shows the basis functions of one
dimensional representations.
o

a

s
he

near-field image to be uniform without any observable co
trast. However, this is not the case. Figure 16 shows
near-field images atv50.02, the wavelengthl being 50)
times larger than the sphere radiusa @see Eq.~3.1!#. Panel~a!
is given for the case of thep-polarized light ofu50, ~b! for
~p, u580°!, and ~c! for ~s, u50!. The sampling plane is
chosen atz5a. These panels show definitely that a contra
does exist within a sphere.

Let us summarize the main features of Fig. 16. From~a!,
we see that the near-field image of the normally incidenp
light is a negative image of the real lattice of spheres, tak
the minimum intensity at the center and the maximum at
contact pointsr5(6a,0) on thex axis. Whenu increases,
the maximum position moves towards the center, as sho
in ~b!. In contrast, the profile ofs light given in ~c! has the
bright lines parallel to thex axis in the neighborhood of the
line y56()/4)d. Also, thes profile is almost independen
of u @so that we have not given the result for the case of~s,
u580°!#. These characteristics for both polarizations pers
irrespective ofv.

In the long wavelength limit, each of the spheres is
garded as a point electric dipole of dipole momentp. For the
exciting light of frequencyv with amplitude E0 of unit
strength, the induced moment is given by

p5a3
«21

«12
E0[aE0 ~5.1!

with « the dielectric constant of the spheres anda the polar-
izability. Our task is to calculate the scattered electric fie
from a 2D periodic array of point dipoles.

The Hertz vector atr5(r,z) of the induced dipole mo-
ment located atrd5(rd ,0) on thexy plane is given by

P~r !5p exp~ ik•rd!
exp~ ivur2rdu!

ur2rdu
, ~5.2!

where the phase of the incident wave atr d is taken into
account in terms ofk, the lateral component of the inciden
wave vector. Fourier transform of the outgoing wave fromr d
is

exp~ ivur2rdu!
ur2rdu

52p i E dq

~2p!2

exp$ iq•~r2rd!1 ig~q!6z%

g~q!1 ,

~5.3!

with g(q)656(v22q2)1/2 and the superscript1 ~2! given
for positive~negative! z. Therefore, the total Hertz vector o
the 2D periodic array is given by

P~r !5p(
rd

exp~ ik•rd!2p i

3E dq

~2p!2

exp$ iq•~r2rd!1 ig~q!6z%

g~q!1 .

~5.4!

The integral overq is carried out by using

-
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TABLE I. Dependence onr5(x,y) of the electric field expressed by the basis functionsE11 andE12 for
h in the NN shell. Three types of the basis functions are shown in Fig. 16. The components not sho
zero. In this table,hx52p/d, hy52p/()d), andhy854p/()d).

NN

z s p

Ex52 coshxx coshyy
Ex52) coshxx coshyy

E11 Ez54i sinhxx coshyy 14 coshy8y
Ey522 sinhxx sinhyy

Ey52) sinhxx sinhyy
Ex522) sinhxx sinhyy

Ez524i coshxx sinhyy Ex52 sinhxx sinhyy
E12 Ey52 coshxx coshyy

14i sinhy8y Ey52) coshxx coshyy
14 coshy8y
to
c

(
rd

exp@2 i rd•~q2k!#5
~2p!2

S (
h

d~q2k2h!,

~5.5!

S being the area of the unit cell. Once the total Hertz vec
is obtained, operating (v21¹¹) yields the scattered electri
field Es(r ). The result is29
r

Es~r !5
2p i

S (
h

v2p2kh
6~kh

6
•p!

Gh
1 exp~ ikh

6
•r !, ~5.6!

where kh5(k1h,Gh
6) with Gh

15g(k1h)1 introduced in
Eq. ~2.3!. The local field at the positionr is given by Eq.
~5.6! plus the incident plane waveE0exp(ik•r1 iG0

1z).
FIG. 15. Analytical intensity map for Figs. 4~a! and 4~b!. The intensity of the field given by Eq.~4.2! is shown with their bird’s-eye
views. The values of the mixing parametersCs, etc., for the two panels are given in the text. Two panels~a! and ~b! correspond,
respectively, to Figs. 4~a! and 4~b!.
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Let us analyze Eq.~5.6! in the limit v→0, where only the
channelh50 is open. We begin by the far field.

A. Intensity of the far field

In the expression of the far field, all the terms exceph
50 decay out. In the normal incidence (k50 andE0 in the

FIG. 16. Near-field images in the long wavelength limit. T
intensity profile on the sampling plane atz5a is shown for the
p-polarized light ofv50.02; foru50 in ~a! and foru580° in ~b!.
Panel~c! shows it for thes light of u50.
xy plane!, we have accordinglykh50
6 5(0,0,Gh50

6 )5(0,0,
6v). SincepiE0 from Eq. ~5.1!, the inner productkh

6
•p

vanishes in Eq.~5.6!, leading to

Es~r !5
2p i

S
av exp~6 ivz!E0. ~5.7!

This givesv2 dependence of the reflectivityR. This is a
remarkable feature of the light scattering from a 2D perio
icity, to be compared with the familiarv4 law of the Ray-
leigh scattering. Figure 17 reproduces the long wavelen
part ofR of Fig. 2 as a function ofv2. The result supports
clearly the present analysis.

Equation~5.6! is similarly analyzed in the case of obliqu
incidence. We find that the intensity ofEs(r ) remains unal-
tered apart from theu dependence of thep case, described by
the factor cos22u/cos2u.

B. Intensity profile of near field

In the near-field expression, the term involvingkh
6
•p is

dominant in Eq.~5.6!. Since the exponential decay in thez
direction is determined by6uGhu, it suffices to consider only
the NN shell in the sum overh. In addition, one may neglec
k in kh

1 and v in Gh
1 , so thatGh

1> i uhu and kh
1>(h,i uhu)

with uhu54p/)d, the radius of the NN shell.
We begin by the simpler case ofs incidence, where the

dipole momentp is induced in they direction, leading to
kh

1
•p5a(h)y . In the near-field intensity, the cross ter

E0(r )* •Es(r ) between the incident and scattered fields is
main origin of the contrast, becauseuEs(r )u2 is much smaller
in comparison@for the magnitudes ofEs(r ), see the com-
ment given in Ref. 30#. In thes incidence (E0 is directed in
they direction!, they component ofEs(r ) enters in the cross
term, which is written atz5a as

~Es!y52
2pa

S

exp~2uhua!

uhu (
h9

~hy9!2exp~ ih9•r!

52 f y4hy
2~coshxx coshyy12 coshy8y!, ~5.8!

with f y52pae2uhua/(Suhu) and the values ofhx , etc. being
given by Eq.~4.3!. Here the second line is the result of th
sum over sixh9 points in the NN shell. From this expressio
we find that (Es)y is real and that it takes the negative min
mum value at the top of sphere@(x,y)5(0,0)# and the posi-
tive maximum on the linesy56()/4)d, wherehyy5p/2

FIG. 17. ReflectivityR in the long wavelength limit~solid
curve!. The horizontal axis isv2. The data of Fig. 2 are used.
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TABLE II. Dependence onr5(x,y) of the electric field of the basis functionsE11 andE12 for h in the
2NN shell. The components not shown are zero. In this table,hx52p/d, hy52)p/(d), and hx8
54p/(d).

2NN

z s p

Ex52 coshxx coshyy
Ez54i sinhxx coshyy Ex52) coshxx coshyy

E11 14 coshx8x
14i sinhx8x Ey52 sinhxx sinhyy

Ey522) sinhxx sinhyy
Ex52) sinhxx sinhyy

Ex522 sinhxx sinhyy
E12 Ez524i coshxx sinhyy Ey5coshxx coshyy

Ey52) coshxx coshyy
14 coshx8x
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and hy8y5p. These two lines connect the contact points
the spheres parallel to thex axis. In addition, the contribution
is independent ofu. These are just the features of Fig. 1
summarized above for thes incidence.

As for the intensity, 0.62,uE(r )u2,1.27 is theexact nu-
merical result of the case of«51.62, as marked in Fig.
16~c!, while the intensity due to Eq.~5.8! plus the incident
field is 0.67,uE(r )yu2,1.25. Thesimilarity of the upper
and lower bounds confirms the correctness of the pre
analysis. The slight discrepancy will be attributed partly
the presence of the components other thany and partly to the
v dependence neglected in Eq.~5.8!.

In striking contrast to the case ofs polarization, a marked
u dependence is obtained in thep case. In the perpendicula
(Ex

051.0) and grazing incidences (Ez
0521.0) of thep light,

the dipole momentp is induced in thex and z directions,
respectively. It is then easy to see thatEs is x-directed when
u.0 andz-directed whenu.p/2:

~Es!x52
2pa

S

exp~2uhua!

uhu (
h9

~hx9!2exp~ ih9•r!

52 f x4hx
2coshxx coshyy for u>0,

~5.9!

~Es!z52
2pa

S
uhuexp~2uhua!(

h9
exp~ ih9•r!

52 f z4hx
2S coshx x coshyy1

1

2
coshy8yD for u.

p

2

with f x5 f y and f z5
4
3 f y , f y being defined below Eq.~5.8!.

In the normal incidence, therefore, (Es)x gives the positive
maximum at the contact point of the spheres on thex axis
and the negative minimum atx5y50. Foru>p/2, (Es)zhas
the negative maximum at the top of the spheres. Thus,
inner productE0(r )* •Es(r ) reproduces the near-field image
of the p-polarized case shown in Figs. 16~a! and 16~b!.

Note that for bothp and s cases, the above features
~x,y! dependence are independent of« anda, for they enter
only through the polarizabilitya defined by Eq.~5.1!.
f

,

nt

e

Also, if we assumea to bev-independent, so are bothEs
and E0(r )* •Es(r ). This leads to the important conclusio
that the near-field image is, in magnitudes as well as in sh
of the contour, independent ofv in the long wavelength
limit. We have checked this fact by repeating the calculat
for v50.002 and confirmed that the result is in fact the sa
as Fig. 16.

The key to the fine resolution in spite of the very lon
wavelength of light is the phase involved in exp@i~k1h!•r#
of Eq. ~5.6!. Due to the allowance of thez component, the
in-plane wave vectork1h is free from the constraint of the
energy conservation and can take a large value, indepen
of v. Even for a very small changeDr of the observation
point, Dr•h can then be large and introduces an apprecia
phase change in the exponential and hence an observ
intensity contrast.

VI. CONCLUDING REMARKS

It would be worthwhile to compare the local field excite
near the periodic array of spheres with that near a sin
sphere in free space. The maximum intensity of the lo
field of an isolated sphere is oscillatory as a function ofv. A
peak occurs at the frequency of the Mie resonance due to
excitation of a photonic virtual bound state. For the sphere
«51.62, the Mie resonance in the lower frequency region
found to be atv50.50, 0.70, 0.92, 1.11, and so on. Wi
discrepancies of only a few percent, these are just the
quencies at which the scattering phase shifts ofM spherical
waves present an abrupt and substantial jump of the orde
p. It is interesting to note that, in the lower frequency regi
of v,1.5 considered in this paper, the Mie resonance of
N waves fails to manifest itself in the maximum-intensi
plot, for the damping constant ofN virtual-bound states is
roughly twice as large as that of theM. Also the half-widths
of the peaks ofM resonance are generally of the order
v.0.1, i.e., more than 10 times as large as those of the
photonic bands, estimated from the peak width of Fig.
Because of this, the lowest two peaks of the maximum
tensity are hardly recognizable as distinct peaks. The ma
tudes of the resonant local field are suppressed accordin
For example, for the resonances mentioned above, we
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uEumax
2 >3.0, 7.0, 10.5, and 17.5, respectively, on the top

the sphere on the forward-scattering side. These values
much less than those shown in Fig. 3. Thus, the profile
magnitudes of the enhanced near-field images of the pre
paper may not simply be explained by the single-sphere s
tering. We have indeed demonstrated that the closed c
nels of the NN shell, which carry the information of th
array, explain successfully the main features of the enha
ment of the low-frequency resonances. Thus, the origin
the near-field image treated in this paper is none other th
sort of morphology-dependent resonance of a periodic a
of spheres in contact.

In this paper we have examined the local field in the
terior region of the arrayed spheres. Symmetry considera
upon the photonic band has been shown to be very fruit
The symmetry-adapted basis functions, as combined w
some of the numerical data, could reproduce all the esse
features of the resonant near-field images. Based upon
fundamental understanding of this paper, it would be intrig
ing to study the local field in the interior region. This may
an important topic when the confinement effects of photo
crystals are to be made use of in the nonlinear optics. O
might also wonder if a substrate holding latex particles
fluences the resonant behavior. These problems are curr
under study and will be reported in the near future.
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Finally, a comment is in order for the comparison wi
experiments using SNOM. Quantitatively reliable compa
son would require some of the sophistication of the pres
theory by taking into account the actual shape of the SNO
tip and its perturbation on the probing electric field. A
though the refinement along this line was not tried, the tim
reversal symmetry looks to hold in this case too and
calculation of the local field may still be a useful way o
approaching the actual near-field profiles. We hope to rep
the comparison of the present theory with experiments i
future work.
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light of unit amplitude. It is the mainly cross termE0(r )*
•Es(r ) that produces the contrast inuE0(r )1Es(r )u2, i.e.,
uEs(r )u2 is negligible.


