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Near-field images of a monolayer of periodically arrayed dielectric spheres
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A theoretical analysis is given for the near-field images of a monolayer of periodically arrayed dielectric
spheres, obtained by monochromatic external light. Depending on the frequency and the incident angle of
exciting light, the near-field intensity exhibits a large enhancement due to the resonant excitation of photonic
bands with two-dimensional band dispersion. The various near-field patterns, sometimes quite unlike the image
by natural light, are shown to occur and are analyzed using the plane-wave amplitudes of excited Bloch waves.
The resonant pattern is well understood by the group-theoretical characters of photonic bands. Also, an
analytical expression is given for the field in the long wavelength limit, which can reproduce all the numerical
characteristics quite successfully. Especially, it can explain why the near-field image besdntependent,
while the reflectivity varies a®?. [S0163-1828)05935-9

[. INTRODUCTION of photons in photonic crystals, which stems from their prop-
erty as a coherent hopping mode of localized states, i.e., just

Recently dielectric objects arrayed periodically, calledan electromagnetic version of heavy fermions.
photonic crystals, have attracted much attentidie inter- Most of the theoretical treatments have so far been based
est mainly originates from technological incentives of usingon the expansion of the Bloch electromagnetic fields in terms
the photonic states of such systems in optically controllingof plane waves. Although this method is handy and applies
the electron dynamics. Photonic band structure appears asnadely, it has a limitation of very slow convergent& The
result of periodic modulation of the dielectric constant, andformulation due to one of the autho(K.O.) is to use the
resembles in many ways the more familiar electronic banadompleteness relation of the set of vector spherical and cy-
structures of ordinary solid state systems. There is a long¢indrical waves in the system of arrayed spheres and
history of research of the properties of one-dimensighB) cylinders®° This is conceptually a natural extension of the
photonic crystals, periodic multilayer stacks in one direction.familiar approach for electrons to photons. Making use of the
Their peculiar frequency ranges of total reflection are nowmuch faster convergence and greater accuracy, he examined
well understood in the photonic-band picture. A typical ex-various optical properties of photonic bands and explained
ample of 2D or 3D photonic crystals is a periodic array ofsuccessfully how they change from band to band depending
polymer spheres formed in aqueous suspensions. Such a sys the individual band characteristits* These previous
tem of microspheres provides us with the field for photons ofwvorks were mainly concerned with the far-field properties of
visible range that plays the role of periodic array of atoms forphotonic bands, i.e., such properties as involved in the reflec-
electrons in ordinary solids. As an electron hops from atontivity or transimittivity observed by a detector far away from
to atom to form a tight-binding band, the same phenomenothe photonic crystals.
occurs in the photonic case. Though the formulation for the The present paper treats the near-field properties of pho-
photonic band theory and the optical response of such sygenic bands, for a single layer of 2D periodic array of
tems were completed in the late 1970s and early 1880s, spheres. Near-field optics attracts growing attention because
systematic research of 2D and 3D photonic crystals has naif its remarkably high spatial resolutidi® Though some
been carried out until recently, when people realized a varianalyses based upon Fourier decomposition are found for
ety of their technological applications such as single-moderating geometrie¥/~?°the near-field optics for the periodic
light-emitting diode3 and optical waveguides with high system has not yet been discussed in relation to the photonic
resolution® bands.

A variety of periodic structures of 2D and 3D photonic A monolayer system of 2D periodicity has two mutually
crystals, in size and shape of arrayed units, have been preontrasting characteristics: it is a closed system in the lateral
posed, fabricated, and investigated extensively both theoretplane and is an open system in the third direction. Therefore,
cally and experimentally”® However, the efforts to date a photon behaves therein as a heavy photon in the lateral
have been restricted to the search for a photonic crystamotion but presents simultaneously a dissipative behavior in
which has an absolute band gap prohibiting the electromaghe third direction. The dissipation is caused by leakage of
netic propagation in all directions. Of course this situation iselectromagnetic energy into the surrounding free space and
desirable from a technological point of view, but photonicaccordingly is the origin of the coupling between the eigen-
bands have in themselves many physical properties worthgnodes of the monolayer and the plane-wave states of the
of fundamental investigation. One of them is the massivenessxternal world. A photonic band couples to an external
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plane-wave probe through this mechanism. The near-fields a sum of the plane waves specified by variouket k,
response to an external probe thus provides us with fruitfube the 3D wave vector of the outgoifgwave. By energy
information on the photonic bands. The purpose of this papetonservation,
is to show in a quantitative way how the near-field image is
indeed explained by the properties of photonic bands. kp=(k+hTI'y) and I'y==+ V(kg)2— (k+h)?.
The near-field is examined by SNO{dcanning near-field (2.3
optical microscopy?! In this paper we restrict ourselves to
the field excited near the system by an external plane-wavkere the square root is chosen to be positive imaginary when
light, which we shall often call “the local field.” As ana- its argument is negative and the superscriptand — cor-
lyzed in Ref. 22, the time-reversal symmetry shows that théespond to the transmittedo be observed in the regian
intensity of the local field at a point near the specimen is>0) and reflected4<0) fields, respectively.
nothing but the field that is obtained at infinity, using the The scattering channel specified by is called open
probing light coming in the reverse direction from a point (closed when T}, is real (imaginary. Only the channel of
source placed where the local field is measured. By a poirtt=0 is always open. The others have their threshold fre-
source we mean here the SNOM tip. The analysis of theuencies for the channel opening. The open channels carry
present paper will show that the monolayer system can poaway the energy in the direction &f;, from the monolayer
tentially be used as a standard measure of the resolution @hd determine the far-field intensity of the scattered field.
SNOM, because this system allows a thorough study usinghey satisfy the unitarity condition, i.e., the flux conserva-
the concept of photonic bands, as done in this paper. Also théon in the z direction. The closed channels, on the other
near-field image in the long wavelength limit, i.e., that ob-hand, are specified by evanescent waves, their Poynting vec-
tained by the light of wavelength much larger than the peritor being directed in the lateral direction. They are not in-
odicity of the array, is shown to be given by a compactvolved in flux conservation in thedirection, and hence their
analytical expression. amplitudes can be arbitrarily large. The closed channels thus
In Sec. Il, we summarize the formulation of the light scat-play a dominant role in the enhancement of the field intensity
tering from a monolayer of spheres to obtain the near-fielchear the monolayer.
expression. Section Ill is devoted to the numerical presenta- To express compactly the fields outside the system of
tion of the reflectivity spectrum and near-field images. Wespheres, we introduce transmission and reflection amplitudes
restrict ourselves to the resonant features in this section. The, (hh’) andR;;j(hh’), respectively. The quantity;;(hh’)
interpretation in relation to the dissipative 2D photonic bandis the transmission amplitude of tfith Cartesian component
is also introduced. In Sec. IV, we attempt to reproduce theyf the incoming plane wave of wave vectbﬁ, into thei

resonant near-field images discussed in Sec. Il by using thg t of th tqoi | 5t R (hh') de-
group-theoretical knowledge of 2D photonic bands. Section omponent of the outgoing plane wavelgf . R;;(hh’) de

V deals with the light scattering in the long wavelength limit. scrlb(is similarly the reflection of thg mcomnkﬁ, wave into
Short comments in Sec. VI conclude the paper. the k;, wave. In terms of them, théth component of the

electric fields outside the monolayer is expressed as

Il. MODEL AND FIELD EQUATIONS 0
> Tij(hojexp(iky -1EY for z>0,
We consider a single layer of periodically arrayed dielec- ) h
tric spheres in free space. Each sphere has a uniform dielec- Ei(r)=
tric constants and radiusa. The origin of the coordinates is z Rij(hO)exp(iky, - r)EJo for z<O0,
taken at the center of one of the spheres andkthglane is ) 2.4
chosen to be the plane of the monolayer, with thaxis :

normal to the plane. Let the plane-wave electromagnetic fiel§yhere the summation ovér covers all possible channels,
of wave vectork, be incident from below the layerz( open or closed. To express the flux continuity in #hdirec-
<0): tion, we introduce the total transmission and reflection coef-
ficients,7and R, defined by
E(r)=E%exp(iky-r), (2.2

0
where s 2 Tij(hO)Ej

7:;'(2

2 ~
)cos{kﬁ-i),

(2.5
ko=(k,I'{) and TE==(ko)?—(K)2 (2.2 RS (2 ‘Z R (hO)E?
i ; 1) ]

2 ~ ~
4 )cos{kh -2).

k=(ky,ky) and Fa' being the in-plane and components of _ o

ko, respectively. Throughout the present paper we considdrere, the primed summation is only oueof open channels

only the electric field. and the vectors with carets are unit vectors. Then, for the
The incident photon suffers from multiple scattering in incident field of unit amplitude, the continuity of ttzecom-

the layer and hops from sphere to sphere. It emerges finalljonent of the incoming and outgoing Poynting vectors is

out of the monolayer with an in-plane wave veckorh, h ~ €xpressed by

being a 2D reciprocal lattice vector acquired by umklapp N

scattering. The transmitted and reflected fields are expressed T+ R=cogKq-2). (2.6
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This identity serves as a check of the numerical procedure. Y
Note that the lack of the mixing between differdnin these
formulas is due to the integral in a lateral plane over the 2D L
unit cell.

In the frequency range in which only the channel O is # d \ =
open7 andR are given by )

2
=2 |2 Tij(OO)EJQ cogky- 2), | &
T

2
cos(lzo-i), (2.7

R=2

> R;j(00)E?
]

which describe direct transmission and specular reflection,
respectively.

The transmission and reflection amplitudgg(hh’) and
Rij(hh") involved in Eq.(2.5 or Eqg.(2.7) are obtained by
expanding the incident and scattered fields in terms of the
vector spherical fields of'E,,,(r) and NE,,(r), in the nota-
tion of Strattor?> Multiple scattering within a sphere is taken
into account by the intrasphetematrix. The multiple scat-
tering in the periodic array as a whole is then expressed as an
infinite series of the intrasphere scattering followed by the
photon propagation between spheres. Finally, converting the
spherical waves into the sum of the outgoing plane waves
yields T;;(hh’) andR;;(hh’). The details of the mathemati-
cal procedure are given in Ref. 4, and we simply quote the
final expressions: FIG. 1. Real(a) and reciprocalb) spaces of triangular lattice.

The shaded square of par@) is the region of(x,y) with —0.6d
Yo i ~y <x,y=<0.6d, where the local-field profile is displayed in this paper.
Tii»(hh") = &j; s S + rF Y (K, )Tii’Y*(khr)y In (b), the reciprocal lattice pointis in the NN and 2NN shells are
h 2.8 shown. Those in the NN shell are numbered for later purpose.

Ri(hh')= 25 V(R )7 Y (kp). = MMEM, N

N _
h B _ MM NN . (2.10
Here, the first term of;;,(hh") represents the incident plane _ _ ) .
wave whenh’=0, and yo=—i/S, S being the area of the Heret” is the intraspheré matrix andy”* is the structure

unit cell. Y(k;') is a vertical array of the spherical harmon- factor that specifi.es the light propagati.on between spheres.
ics: Y(IQ’)z{Y (Q,) v (sz) v (sz) v (12*) L When expanded into a power series with respedfior is

Lo h) 00\®h /> Y1-1%n /> T10L8n J5 Y12{En /oo -of - seen to involve an infinite sequence of Mie scattering. Its
Y(kp) is similarly defined. Note that thecomponent ok, ot giagonal blocks?N and 7™ describe the mixing be-
of closed channels is imaginary in the arguments of th§yeen theM andN spherical waves in the course of scatter-

spherical harmonics. The matrices are given by ing.
7= U* ( > PFTBB,L(PJ-B/)T) u, (2.9 Ill. RESONANT NEAR-FIELD IMAGES
BB’

where the sum runs ovgd=M andN (likewise for 8’) and ﬂln t_h'_s section, Wedpreser]:_t fge. numerl(\:/sl rﬁsults_ of th
the matrix elements of) and L are given by U)ymism reflectivity spectra and near-field images. We have in min

— A _ the experiment of SNOM on a single layer of polystyrene
=47i'6,/ 6y and Tt =60 Omm/[1(1+1)]. The . ) ; .

ma':Trix P”B grir\gs the ex(:;z)ilrr]nélionr: coe”fficrinen;]ts[ (gf thda)g:ompo- sphere_s of “’?‘d'“a and dl_electrlc constart, which are ar-
nent of the vector spherical waves into the spherical harmonr-_a{egzI 'an;;'gggou?rTlﬁtscrifgclﬁ\t,icﬁ]ggfséﬂﬂévi sﬂe}; of
ics. They are written in terms of the Clebsch-Gordan 7° M :

- . 5 polystyrene spheres in the visible range, and the second con-
coefficients. In the matrix elemen.tl?J )'m?,'/m/’ I runs over  yiion corresponds to the close-packed triangular lattice of
I=0 butl’ over!’=1. The matrices7”’ (there are four gpheres in contact with each other.

such matrices7"™, 7N, etc) are square matrices defined ~ Figure 1 shows the geometry of the lattice. The shaded
within the spacd,l’=1. They are the §3") block of the  square is the region where the intensity map of the local field

layert matrix 7, defined by will be calculated. By the Bloch theorem the field-intensity
M outside the square is obtained by periodic extention. Panel

T:<t ’ O)B (b) shows the reciprocal lattice with lattice constant

o, tN/™ 2W3(27/d), which is obtained by rotating the real-space
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FIG. 2. ReflectivityR versusw for the light in the normal inci-
dence. The refractive indem and the radiusa of spheres aren

=1.6 anda=0.5d, d being the lattice constant. The inset is a closer

look of R nearw=0.85, which shows the peak around=0.85 to
be actually composed of two peaks.

lattice by /6. We call a group of lattice points of equal
length |h| as belonging to a shell of the reciprocal lattice
points. The poinh=_0 defines by itself the first shell, which
we shall call the 0 shell. Six lattice points nearest to the
shell form the second shell, which we call the Nihearest-

neighboj shell. The third shell is called the 2NI$econd-

nearest-neighborshell. For later purpose, the lattice points
of the NN shell are numbered in Fig. 1.

We consider the incident electric field of unit amplitude
and wave vectok, at normal and oblique incidence. In the
oblique incidence we keep the wave vedtgrwithin the xz
plane and tilt it from thez axis by the incidence angk The
incident light of s polarization is polarized in thg direction
while that ofp is within thexzplane. We employ this naming
of s or p even for normal incidence by calling the(x)
polarized ass (p). We measure the wave numbem units
of 2W3(2w/d) and the frequencw in units of c times this
guantity, ¢ being the light velocity. In terms of the wave-
length\ of light in free spacek and w are thus given by

v3d

= o (3.1

=W
For normal incidence the six channels foin the NN shell
open simultaneously ab=1, and the channels of the 2NN
shell open atv=v3. In the numerical results given below, a
good convergence is achieved fex<1.7 by considering
=8.

A. Normal incidence
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FIG. 3. Frequency dependence of the maximum intensity of
near field. The solid line shows the maximum value on the sampling
plane atz=a and the dotted line on the plane zt1.2a. The
incident light of normal incidence ig-polarized(polarized parallel

to thex axis). The inset show® aroundw = 0.85 with the enlarged

horizontal scale.

doublet consisting of a broad peakat0.854 and a sharp
one atw=0.870. The peak ab=1.00 occurs at the thresh-
old for the opening of the NN-shell channels. As analyzed in

%ef. 24, the occurrence of such a peak is a textbook phenom-

enon observed at the frequency for channel opening.

The two broad peaks near the origin are similar in shape
to the interference fringes of a uniform dielectric slab. We
can in fact see that four, eight,... peaks appear with shorter
periodicity in frequency, as 2,4,... layers are stacked to in-
crease the thicknegsee Ref. 11 It is remarkable that the
Mie resonance due to spherical confinement, which is the
origin of the series of sharp peaks of Fig. 2, is orders of
magnitude sharper than these two peaks of the thin-film in-
terference effects.

To check the coincidence between the peaks of the reflec-
tivity and near-field intensity, we plot in Fig. 3 the frequency
dependence of the maximum intensity of the local field
|E(r)|? on two sampling planes above the layer zta
(solid line) andz= 1.2a (dotted ling. By positivez we mean
that the observation point lies on the exit side. The fre-
guency step is the same as that of Fig. 2.

Comparison of Fig. 3 with Fig. 2 shows that the peaks of
the reflectivity and local-field intensity are positioned in ex-
act agreement, including those of the doubletvat0.85. It
is remarkable that the local-field intensity is sometimes as
large as 18. This type of large enhancement is the same
phenomenon as calculated for the 3D lattice of sphErés.
marked decrease of the local-field intensity at the plane
=1.2a, as compared to that a=a, is the third notable
feature of Fig. 3. The rapid decrease obviously shows that

Let us start with the normal incidence case. Figure 2the resonant enhancement is due predominantly to the eva-

shows the reflectivityR, defined by Eq(2.5), as a function
of w. By symmetry the result is identical farandp polar-
izations. Sharp peaks ariseat=0.71, 0.85, 1.00, 1.34, and
1.55. The asymmetry of the peak at=0.85 is due to the

nescent waves from the closed channels. All these character-
istics of the resonant peaks are similarly observed when the
local field is calculated on the entrance side at, e.g.,
z= —a. The similarity in the responses between the exit and

resolution-limited degeneracy, as shown in the inset obtainedntrance sides shows that the interference between the open

with a finer frequency step. We see that the peak is really

and closed channels has a minor effect in the resonant en-
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FIG. 4. Contour maps of the near-field intensity for the square region of Fig. 1. The intensity profiles are calculated on the sampling plane
of z=a at several resonances. The resonant frequencies-afe71 for(a) and(d), o= 0.87 for(b) and(e), andw=1.52 for(c) and(f). The
incident wave is taken to bg-polarized from(a) to (c) and to bes-polarized from(d) to (f).

hancement, because a peak7ofon the entrance side must polarized incident field at=(x,y,a), i.e., on the sampling
accompany the corresponding dipdron the exit side. plane atz=a. The panels(a)—(c) show the results at the
We next examine the spatial dependence of the intensityesonances of Figs. 2 or 3, observedvat0.71, 0.870, and
obtained at the frequency of just resonance. Figure 4 showsHh52, respectively. The results for th@écidence are given in
map of the total electric-field intensityE(r)|?> for p- (d)—(f). In the figuresx andy axes are scaled in units df so
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that the tops of the spheres are locate®d), (1,0, (1/2y3/ 0.6
2),... (see Fig. 1. The maximum and minimum values of the
intensity are given in the panels. 04

It is interesting to note that none of the figures gives the
brightest spot at the top of spheres, and that the contour maps
are different for different resonances. Note that the field im-
ages of thes polarization in panel¢d) and (f) are obtained
basically from those of the polarization by an/2 rotation
about the origin. Let us take a closer look at them.

In panel(a) for the p case ofw=0.71, the contour looks -0.2
like a lemniscate, while that af=1.52 in(c) shows double-
egg contour. A double-egg shaped contour is also observed -0.4
in the resonance patterns @=0.857 and 1.3%not shown .
here. In contrast tda) and(c), image(b) of w=0.870 shows -0.6 0.01 5 |Ez(lr)| 5‘30'83|
a ladder with two maxima lying parallel to theaxis. Four -0.6 0.4 -0.2 0 0.2 04 0.6
secondary maxima are found at four of the six contact points @) x/d
of spheres. Two other contact points on thexis remain
dark. In the case o$ polarization shown ine), these two
points are the maximum-intensity points. Secondary maxima
of the s case are obtained by &2 rotation from the maxi-
mum points of thep case. From these observations it is
found that the strict:/2 rotational symmetry betwegmand
s does not exist. We can also guess that the bright spots of
the near-field images fab=0.870 consist of two patterns,
one attaining its maximum within each sphere and the other
at the projected contact points. Whether a contact point turns
out to be a bright spot or not depends on its local environ-
ment and the polarization of the incident field.

We next decompose the total field into its Cartesian com-
ponents. Figures(8)—5(c) show, respectively, the y, andz
components of the resonance patterrwat0.71 andz=a
for p incidence. We see tha&,(r) and E,(r) dominate in
|E(r)|? with negligible E,(r) contribution. E, presents al-
most concentric circular contours in the central region, while
E, has a double peak along tkexis within a sphere. There-
fore, we conclude that the two maxima of Figiagis z
polarized and the region between thenxipolarized. This

is, however, not always the case. In the case sf0.870, for 0.4
example, we find that three components are all appreciable
[see Fig. €b) below]. 0.2
The characteristic feature of the near-field images can be

more directly analyzed by decomposing the total field into (;
contributions from each channel. We introdugé¢h) for the
transmitted field of channdd at heighta: 0.2

Ei(h)=2 Tij(hO)expiky -ro)E?, 3.2 -0.4

i
o6 0.00 < |E,(r)]? < 33.58

v_vith r0=(0,0_,a)._Then, theith component of the outgoing '06 -04 -02 0 02 04 o6
field for z>a is given by ©) x/d

Ei(r)= E Ei(h)yexdi kf{ (r=ro)]. (3.3 FIG. 5. Contour maps of the field components on the sampling

! ro plane atz=a. The panels(a), (b), and (c) show, respectively,

_ _ _ o |Ex(r)]?, |E,(r)|2, and|E(r)|* with r=(x,y,a) for the p-polarized
Figure 6 displays complex amplitudés(h), with i=x,y,z light of w=0.71.
for severalh for p incidence. The three panela), (b), and
(c) correspond taw=0.71, 0.870, and 1.52, respectively. The component of incidence(the x andy components o$ inci-
arrows drawn from point show the nonzero components of dence are obtained by thg2 rotation of thep resul}.
[Ex(h),Ey(h),E,(h)], whose realimaginary part is given For w<1.0, Figs. 6@ and 8b) show that appreciable
by the horizontalvertical) component of the respective ar- amplitudes are seen only in the open charimeld and the
rows. Some points have an additional arrow that showg the closed NN-shell channels. The field in the chanmelO has
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the same polarization as the incident light and determines the
far-field intensity, i.e.R and7 of Eq. (2.7). Panel(a) shows
that atw=0.71 the NN-shell channels contribute mainly to
the x and z components of the near field with negligibje
component. In contrast, at the resonanceef0.870 shown

in (b), they component is large. Thus, whether or not the
component is appreciable is the main origin for the differ-
ence in the two images. Ad=1.52, panelc) shows that the
NN-shell channels, which are already open, have small am-
plitudes, their contribution to the near-field being accord-
ingly minor. They in turn contribute to the far-field image,
by giving rise to six diffracted waves. Then, the near-field
images are mainly governed by the 2NN-shell channels,
which are still closed.

The features of the NN-shell plane waves, seen com-
monly in the three panels of Fig. 6, are summarized as fol-
lows.

(i) Except for the twdh on thek, axis, pointsh, andhs of
w = 0.87 Fig. 1, E,(h)’s are all directed in the same direction, show-
ing that they are all in phase. The phasesgth,) and
E.(hs) are identical but they are different from those of the
remaining fourh.

(i) Ey(h)’s always vanish at the points, andhs. Within
any pair ofh related by the mirror reflection in thez or yz
e plane,E,(h)’s are mutually out of phase by.

(i) E,(h)'s also vanish ah, and hs. For otherh the
arrows are mutually paralléantiparalle] in a pair connected
by the mirror reflection in thez plane(yz plane.

The statemen(i) explains the almost concentric circular
contour of thelE,(r)|? of Fig. 5(a), for it leads to the lateral
dependence of the form cagx coshy, (hy,hy) being the
lattice point in the first quadrarpointh,). Theh, andhs on
3 they axis introduce a modification of the profile &(r),

due to the cosyy dependencehy being they component of
h,. This modification is indeed seen in Figiah From the
statement(ii), which shows that they component is ex-
pressed by sihxsinhy, we can understand why tlig,(r)
vanishes on botlt andy axes, as shown in Fig.(B). Like-
wise, thexy dependence of the form shgx coshyy, deduced
from the fact(iii ), explains the presence of the double peak
of Fig. 5(c).

The analysis for thes case is similarly possible. In the
lateral components of electric fielgh and s cases give an
identical picture if we interchange the suffixesandy. No
such relation exists in thecomponent. The symmetry rela-
tions summarized above hold only for normal incidence and
will be partly lost in the case of oblique incidence.

Finally, Fig. 7 shows the change of the near-field images
with varying height of the sampling plane. Two caseszof
=1.2a and 2.@ for the resonances a=0.71 and 1.52 of
the p incidence are plotted. Pan&) of w=0.71, as com-

(c) Real (E;(h)) pared with Fig. 8), shows that a slight increase nfrom a
to 1.2a reduces the field intensity drastically without signifi-

FIG. 6. Complex amplitudeK(h) for h=0 and several small.  cantly modifying the field pattern. Since the maximum value
The frequencies are=0.71 in(a), 0.870 in(b), and 1.52 in(c).  of the intensity is roughly 4, the evanescent waves from the
The solid, dotted, and dashed lines, respectively, show.teand  NN-shell channels are still the main origin of the intensity
z components oE(h) for the p-polarized light of normal incidence, map. Atz=2a shown in pane(b), the evanescent waves are
while the dash-dotted line shows theomponent of the-polarized largely suppressed. Since chanhel 0 cannot by itself pro-
light. The components not shown are zero or negligibly small. Onlyy,, e the contrast, the contrast must be due to the interference

in (c) are the amplitudes of 2NN and 3NN shells appreciable. Th
amplitudes 0 and NN shells are doubled(@ as a guide to the ebetween the plane Waye of Cham_h\edro_and the Supp_ressed
evanescent waves. Since the field in channel0 is x-

eyes.

Imag (E;(h))

Imag (F;(h))

-2.5 T T 7 T T T T
-25-2-1.5-1-05 0 05 1 1.5 2 25
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FIG. 7. Dependence of the near-field images on the distance of the sampling plane from the layer. The contour maps arewgiven for
=0.71. The panel$a) and (b) show the results on the sampling planeszatl.2a and z=2.0a, respectively. The contour maps for the
frequencyw=1.52 are given ir(c) and (d).

polarized, it will be thex component of the evanescent wavespositions agree exactly. However, the peak positions of the
that interferes appreciably. The stateméhiabove thus ex- responses tp andslights are not identical, implying that the
plains why the circular contrast of par(®) is obtained. Note degeneracy seen in the case of normal incidence is lifted in
that the limiting value of the field intensity with increasing the oblique incidence.

tends precisely to that of the transmittivify which is equal We give in Figs. @) and 9b) the near-field images of
to (1-R) when w=<1.0, R being shown in Fig. 2. The 6=20° for p ands polarizations, respectively. The frequen-
marked decrease of the peak intensity with highé also cies are chosen at the peak positionswef 0.73 in (a) and
observed in the case af=1.52, as shown in Fig.(@). How-  0.76 in(b). We obtain the images symmetric with respect to
ever, the maximum intensity remains rather large so that onthe x axis, but not to they. This is a common feature of all
can still observe a clear contrast even wherRa, as shown the near-field images for the wave vectgy lying in the xz

in Fig. 7(d). These behaviors are natural consequences of thglane. For the oblique incidence, we can check the following
presence of the open NN-shell channels abewel.O. symmetry relations of the field componentsx,y,z:

E; h)==*=E;(h), 3.4
B. Oblique incidence i(oyxh) i(h) (3.4

é/vhereavxh is the lattice point obtained frotm by the mirror
reflection in thexz plane. This is the origin for the symmetry
of the intensity map with respect to tixeaxis.

We turn to the case of oblique incidence. Figure 8 show:
R and the maximum field intensity a=20° for the fre-
quency rangeo<1.0. The reflectivity is normalized by
coskg- 2) in accordance with E¢(2.6), so that the unitarity )
condition of Eq.(2.6) turns out to be7+R=1. Below C. Complex photonic bands of 2D system
=0.5 the reflectivity has a single broad hump as in Fig. 2. The peaks of Fig. 8 occur due to the resonant excitation of
Above w=0.5, the spectra are very complicated. Betweerphotonic bands of the monolayer system. The photonic bands
the reflectivity and the maximum field intensity, the peakof the present system have 2D dispersion relations due to the
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40 ot 0.02 < |E(r)|? < 48.93
20 | 0.6 -0.4 0.2 0 02 04 06
ot . (b) x/d
0 0.2 . . .
(b) w FIG. 9. Near-field images a#=20° on the sampling plane at

z=a; for the p light of ®=0.73 in (a) and for thes light of w
FIG. 8. ReflectivityR in (a) and maximum intensity of the local —q 76 in (b).

field on the plane az=a in (b). The incidence angle ig=20°.
The solid and dotted lines show the results for ghands lights,

) In Fig. 10 we plot|detB|? as a function ofw for oblique
respectively.

incidence. The result is given fa#=20° in the range 0.5

<w=1.0. We found thatdetB|? turns out to be very spiky.

translational symmetry in the lateral plane. Since their eigen€omparison of Fig. 10 with Fig. 8 shows that, wherever a

frequencies are in general complex, as stated in Sec. |, theeak occurs indetB|?, there is a corresponding sharp peak

derivation of the dispersion relation is not trivial. in both the reflectivity and the local field. This means that, if
Let us return to the reflection and transmission amplitudes

given by Eq.(2.8). The central part of them is the layér S e R

matrix 72", When the determinant of the matidiverges 10° |
somewhere in the complex plane in Eq.(2.10, so does ;

7P The singularity is then transferred to the transmission

1000

and reflection coefficients through;,(hh’) and R;;.(hh") ~

of Eq. (2.8). Therefore, if we sweem along the real axis of ) ;

the complexw plane near some pole of dB{ we obtain a £ 10
=)

Lorentzian resonance peak. The more the pole is located near
the real axis, the sharper will be the line shape. If the effect
of a pole of detB disappears iT;;:(hh’) or R;,(hh’), the 0.1
mode corresponding to the pole is optically inactive. This
happens when the pole of d&ffails to survive the procedure ;
needed in Eqs2.9 and(2.8). Whether or not the pole has L
this property depends on the property of the eigenvector of 0.5 06 0.7
matrix B, the information of which is carried by the residue

of detB at that pole. FIG. 10. Plot of|detB|? for §=20° as a function ofv.
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FIG. 11. Dispersion relation fdt=(k,,0). Thesolid line is the 50 - i E
w—k, line swept by the incident light with the incident angle fixed i
at #=20°. The horizontal dotted line is the one traced by the inci- 40 -

dent light of frequencyw=0.65.

max

we use boths- and p-polarized lights, we can catch all the 301
modes in the case of oblique incidence. i

The dispersion relation of the photonic bands can be ob- 20 |
tained by following the peak positions {detB|?. Figure 11 a

shows an example of the band structure of damped photonic

o~
L

bands, which is obtained fd= (k,,0). Some of the disper- 10 i

sion curves disappear on the way. This implies that the cor- [

responding peak gets blurred and leaves no trace as a well- 0= o

defined peak in the plot diletB|2. 0 10 20 30 40 50 60
Calculating the local field with a fixed corresponds to (b) 0 (degree)

tracing the optical response along the straight line
=k,/sin @ in the (k,,w) space, an example of which is FIG. 12. ReflectivityR (a) and maximum intensity of the near-
drawn for the case of=20° in Fig. 11. Comparison of Fig. field images(b) as functions off. In (b) the field is calculated on
11 with Fig. 2 reveals that there are many photonic bandshe plane az=a. The frequency is fixed ab=0.65. The solid and
which are inactive at thd™ point to the incident light of dotted lines show the cases of theands-polarized lights, respec-
normal incidence. tively.

The procedure of varyin@ with « fixed is more easily . . . )
carried out experimentally. The dotted horizontal line drawnPY the properties of photonic bands excited optically. There-
at w=0.65 in Fig. 11 refers to this case. It crosses twofore, we try in this section to interpret the calculated near-
bunches of bands. Figures (82 and 12b) show, respec- field gofiles by using the group theory of a 2D photonic
tively, the reflectivity R and the near-field maximum- band: _ .
intensity as a function of for the same frequency as Fig. 11.  The photonic bands of the present system are classified
We see two groups of peaks appear in the optical response f#fcording to the irreducible representatiorii), the group
exact agreement with the positions of the band bunching. B _f k, for a 2D wave vector in the_lateral plane. The electric
comparing panelb) with Fig. 11, we recognize that the !eld of each band has the following plane-wave representa-
missing parts of a band dispersion can be followed further byion of Bloch type:
plotting the maximum intensity of the near field, because the
well-defined peaks manifest themse_lves _stiII in tJn_eIep_en- Ek(r)zz E () n(z)exdi(k+h)-p], 4.2
dence of the local field. The near-field information is thus h
more powerful in deriving the band dispersion than the far+,, r=(p,z). The field variation with respect ta is de-

field one. ; ;
) ) scribed by the functiorfy ,(z). The prefactors of the expo-
hln a s?”ﬁs of p?ﬂ?é®>—(d) of Fr']g 1.3’ we show the nentials, includingfy ,(z), vary from band to band. Only
change of the near-field images with variig when Eq.(4.1) of a band involve€'* ?, i.e., the term for the

0 shell, can that band be excited by a plane-wave light of
wave vectok. Thus, the condition that the 0-shell amplitude

The results of Sec. Il C suggest that all the features reEq(h=0) is finite is the first requirement for a band to be
lated to the resonant frequency dependence will be explaineekcited optically.

IV. GROUP-THEORETICAL CONSIDERATION
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FIG. 13. Near-field images with varing) The sampling plane is at=a and the frequency is fixed at=0.65 for thep polarization. The
intensities are calculated at the peak position® of Figs. 11; at¥=12° in (a), 15° in (b), 39° in (c), and 41.5° in(d).

In the case of the normal incidence, we &t0. The E; and E, can be the candidates for the optically active
point group ofG(k=0) is thenCg, , the symmetric group of bands. This was first shown by Stefanetual ® and Robert-
a triangular lattice. The symmetry-adapted amplituigh)  sonet al?’
of a band may be constructed by the standard procedure us- Since the standard polynomial basis function€Egfand
ing the irreducible representation of that band. NamelyE, representations afe,yt and{xy,x?>—y?}, respectively?’
within each shell of equdh|, the h dependence oy _(h) it is only the bands ofE; symmetry that can be excited
is wholly determined by the irreducible representation. Noteoptically. E, bands fail to couple to any vector probe, be-
that we may assign a single functibp. |, (z) commonly to  cause their basis functions transform like those of a second-
all h points within a shell. rank tensor. This is another way of saying thatEnband

The groupCg, has six irreducible representaticfifour  cannot have a finiteectoramplitudeEq(h=0). The conclu-
one-dimensional representatiors,, A,, By, B,, and two  sion for the case ok=0 is thus that an incident light can
two-dimensional one€; andE,. As for the bands belong- excite only the bands @&, representation. Thus, all the reso-
ing to one-dimensional representations, the 0-shell amplitudeance excitations of photonic bands should be identical as far
Eo(h=0) can be a basis function only if it is directed in the as the group-theoretical properties are concerned. Since the
z direction. This is because it would otherwise rotate arounctlectric fields ofE; bands transform like andy, one of the
the z axis by some operations @, and cannot be a basis twofold degenerate bands may be excited byppolarized
function by itself. A band whos&y(h=0) is zdirected be- light and its partner by the light. In spite of this simple
longs toA;, the identity representation, sinég(h=0) is  conclusion, however, the intensity profiles seen in Sec. IlI
left unmoved under any operation 6%, . Thus, all the one- varied rather strongly depending on the resonance.
dimensional irreducible representations excéptave zero In the NN shell, we have 18 vector plane waves of the
Eq(h=0). Also, A; bands are silent to the probe lightlbf form expfh-r): each of the six points in the NN shell has
=0, since the polarizations are mutually perpendicular. Inthree vectors, polarized in they, andz directions. These 18
conclusion, solely the doubly degenerate bands belonging teectors form a(reduciblg representation o€, of dimen-
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sion 18<18. We find that its irreducible decomposition is The diversity of the near-field images should arise depending
2A,+A,+B;+2B,+3E;+3E,. on how these three types are mixed.

Figure 14 lists their basis functions, including those of the Decomposindsy(h) into z, o, and# basis functions is not
optical inactiveE, and one-dimensional representations. Inpossible by the symmetry consideration. It is only fixed by
the column NN, the basis functions constructed by superpoghe eigenvector of the matri& of Eq. (2.10. We avoid the
ing the 18 plane waves are shown. The column 2NN intime-consuming numerical task of searching complex eigen-
volves those arising from 2NN shell. Two basis functions ofvalues of the matrix8 and calculating their eigenvectors.
E, representation are denoted By, and E;,, E;; trans-  Instead, by assuming how the three types are mixed, we shall
forming like x (active to thep light), andE, like y (active to  attempt an analytical construction of the near-field images.
the s). The basis functions in the colunmare the ones Let us consider the images shown in Fig&)4nd 4b).
constructed by superposing thelirected vector plane waves Since they are the images pflight, we need to consider
and hence polarized in thedirection. The columns-and  only the basis function&;;. We restrict ourselves to the
show the basis functions polarized in the lateral planegthe contribution of the NN shell. Let us denote the three types of
basis being directed in the radial direction amdn the di- the symmetry-adapted basis functions Es(p), E7:(p),
rection perpendicular to it. and ET;(p). Introducing three mixing parametei@?, C°,

Correspondingly, any band &; representation is an ad- andC”, we find from Table | that the electric field yielded
mixture of the three types of the basis vectasy, and . by them has the form

(2v3C7+2C")cosh,x coshyy+4C™ coshyy for E,
Ex—o(r)=C?E{,(p) + C"E],(p) + C*E54(p)={ (—2C7+2v3C™)sin h,x sin hyy for E, (4.2
4iC? sin hyx coshyy for E,,

with produced quite satisfactorily by the analytical expression.
Since we have plotted only the absolute square of the NN
o 1 24 2 om contribution, the agreement implies that the interference be-
=—, hy=——, hj=——. 4.3 tween the open 0-channel and the closed NN-channels is not
d v3 d v3 d important very near the system. Also, the fact that the coef-
ficients C?, etc. are actually complex, is not very
The quantitiesh, and h, define the six points of the NN important?®
shell. Heref,_qy(2) of Eq. (4.1) is dropped for brevity. The fact that the NN shell is dominant is reasonable, since
The exact form o, _o(r) must include the contributions of it contributes most of all to the evanescent field, and hence to
all shells, open or closed. By E(4.3), we are examining to the near field. For a sampling plane positioned farther away
what extent the NN-shell contribution explains Fig&)4and  from the array of spheres, the NN contribution decreases
4(b). exponentially with the result that the 0-shell contribution and
Of the three Cartesian componentssf o(r), thezcom-  the interference between the 0- and NN-NN shells become
ponent comes only from the ba$i§,(r). We can easily see important, relative to the absolute square of the NN contri-
that the symmetry properties summarized in the statemeriution considered above. Also, wheris larger than 1.0, the
(iii) of Sec. Il A is actually realized in the component of  contribution from the 2NN shell must be taken into account.
Eqg. (4.2). The same holds true for theandy components. These statements are all in accord with what has been men-
Especially, the stateme(i) made for thek,(h,) andE,(hs) tioned for Fig. 6.
for the lattice points on thé, axis holds because of the  The case of theincidence is similarly analyzed by using
second term of th& component of Eq(4.2), which comes the basis functions oE,. Without repeating the analysis,
from the 7 basis. Also, whether or not thecomponent is we point out only one thing in relation to theecase. When
appreciable—the main reason for the difference of Fig®. 4 we return to Table | and compakg, with E;;, we see that
and 4b)—depends on the relative signs of the mixing coef-their o and 7 basis functions are related by thé2 rotation
ficients C” and C™. If they are of the same sign, the near- around thez axis (this may be more easily seen in Fig.)14
field image similar to pandb) of Fig. 4 will result, while the  For example, the change—y andy— —x alters theo ()
profile like panel(b) will be obtained, if they are of opposite basis ofE;; to the = (¢) of E;,. These properties between
sign. E.; andE, are observed similarly in the 2NN channels, as
Indeed, Fig. 15 shows the intensity map|&{r)|?, for  Table Il shows. This is the reason for thg2 rotational
one choiceC’=0.7,C"=0.1, andC?*=0.9 in panel@ and symmetry between the lateral components of thand s
for another choiceC?=0.5, C"=—-1.5, and C*=0.5 in  results. Thez component has no such symmetry, as Table |
panel(b), together with their bird’s-eye views. We took the shows. These explain just what we have observed in Fig. 4.
mixing coefficients as real and fixed their magnitudes arbi- For the oblique incidence d€ lying in the xz plane, the
trarily except for the relative signs @™ andC?. By inspec-  point group ofG(k) is C,;,, composed of the identity opera-
tion, we readily recognize that the numerical results are retion and the mirror reflection in thez plane. The point group

hy
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near-field image to be uniform without any observable con-

trast. However, this is not the case. Figure 16 shows the
z g Ll z 4 n near-field images ab=0.02, the wavelength being 56’3

Z times larger than the sphere radajfsee Eq(3.1)]. Panel(a)

EH @ % @ ”‘% %"" % is given for the case of the-polarized light of6=0, (b) for

(p, 6=80°), and (c) for (s, #=0). The sampling plane is

NN 2NN

chosen az=a. These panels show definitely that a contrast

Ei, Z @ % Z% does exist within a sphere.
Let us summarize the main features of Fig. 16. Fi@mn

we see that the near-field image of the normally incident
(a) light is a negative image of the real lattice of spheres, taking
the minimum intensity at the center and the maximum at the
NN 2NN contact pointsp=(=*a,0) on thex axis. When# increases,
> - - Z > - the maximum position moves towards the center, as shown
; in (b). In contrast, the profile o$ light given in(c) has the
@ % @ % % %1 bright lines parallel to the axis in the neighborhood of the
E2 ; line y=*(v3/4)d. Also, thes profile is almost independent

of #[so that we have not given the result for the caséspf

: : #=80°)]. These characteristics for both polarizations persist
E @ : % ! irrespective ofw.
22 2 9

In the long wavelength limit, each of the spheres is re-
garded as a point electric dipole of dipole momgnFor the
exciting light of frequencyw with amplitude E® of unit

(b)

NN NN strength, the induced moment is given by
Z a 7T 4 g T e— 1
— a3 0— 0
fedr e )+ SR
with ¢ the dielectric constant of the spheres anthe polar-
A, + + @ + + %‘ izability. Our task is to calculate the scattered electric field
% from a 2D periodic array of point dipoles.
B, JT + @ % + The Hertz vector at=(p,z) of the induced dipole mo-
ment located aty=(pq,0) on thexy plane is given by
, [ KX 4| @ .
_ explio|r—rgy|)
(c) I(r)=p expik:-py) —————, (5.2

Ir—rgl
FIG. 14. Display of the basis functions of the irreducible repre- o ) )

sentations o€, . Panelda) and(b) show the basis functions &,  Where the phase of the incident wavergtis taken into

andE,, respectively. An arrow given the number 2 is twice as long@ccount in terms ok, the lateral component of the incident

as the other arrows. In the coluranthe circles show the polariza- Wave vector. Fourier transform of the outgoing wave frgm

tions directed in thetz direction, while the crosses show them in is

the —z direction. In the diagram diNN, ) of (a), the basis function

of h=0 is given. The pane{c) shows the basis functions of one- exp(i w|r— rd|)

dimensional representations. W

C4j, has two one-dimensional irreducible representatidhs . dg explig-(p—pg) +iy(q)“z}
andA”, which are, respectively, even and odd with respect to =2i (2m)2 )™ ,
the mirror reflection in thexz plane. Thus, the 2D bands of

symmetryA’ are active to the light, which is polarized in (5.3

thexzplane, and the bands #éf’ to theslight. Namely, any i) y(g)* = * (w?—g?) 2 and the superscript (—) given

bar)d Is agtive optically in the o_bliqug case. Combination of For positive (negative z. Therefore, the total Hertz vector of
lattice point h=(h,,hy) with its mirror-reflected partner the 2D periodic array is given by

(hy,—hy) yields the electric field of the forra™™ sinhy or
e'“xxcoshyy, depending on which oA’ and A” the band
belongs to. This is the origin of the mirror symmetry of the M(r)=p>, expik-py)2mi

field with respect to thex axis, summarized by Eq3.4). bd

There is no other symmetry in the oblique case. dg explig- (p—pa) +iv(Q)*z}

*) @ NN

V. NEAR-FIELD IMAGE FOR SMALL ®

5.4
When the incident wavelength is orders of magnitudes 4

larger than the size of the spheres, one might expect th&he integral oven is carried out by using
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TABLE I. Dependence op=(X,y) of the electric field expressed by the basis functiBagsandE, for
h in the NN shell. Three types of the basis functions are shown in Fig. 16. The components not shown are
zero. In this tableh,=2#/d, hy=2m/(v3d), andh{=4m/(v3d).

NN

z [oa m

E«=2 coshxx coshyy
Ex=2v3 coshxx coshy
Eip E,=4i sinhxxcoshy +4 coshyy
Ey=—2sinhxsinhy
E,=2v3 sinhxsinhy
Ex=—2v3 sinhxsinhy

E,=—4i coshxsinhy E,=2 sinhxsinhy
E» E,=2 coshx coshyy
+4i sinhjy E,=2v3 coshx coshyy
+4 coshyy
27)2 ; 20 LA (LE.
S exi—ipg (a-K)]=" S) > 8(q—k—h), En=2s M explik-r), (5.6
Pd h S % r,

(5.9

Shbeing the area of the unit cell. Once the total Hertz vectowhere k,=(k+h,I'y) with 't =y(k+h)" introduced in
is obtained, operating«*+ VV) yields the scattered electric Eq. (2.3. The local field at the position is given by Eq.
field E(r). The result i’ (5.6) plus the incident plane wavg’exp(k- p+il'gz).
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FIG. 15. Analytical intensity map for Figs.(@ and 4b). The intensity of the field given by Ed@4.2) is shown with their bird’s-eye
views. The values of the mixing parametet$, etc., for the two panels are given in the text. Two par@sand (b) correspond,
respectively, to Figs. (4) and 4b).
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FIG. 16. Near-field images in the long wavelength limit. The
intensity profile on the sampling plane ata is shown for the
p-polarized light ofw=0.02; for#=0 in (a) and for §=80° in (b).
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Panel(c) shows it for thes light of =0.

Let us analyze Eq5.6) in the limit —0, where only the

channelh=0 is open. We begin by the far field.

In the expression of the far field, all the terms exchpt
=0 decay out. In the normal incidenck=£0 andE° in the

A. Intensity of the far field
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FIG. 17. ReflectivityR in the long wavelength limit(solid
curve. The horizontal axis is?. The data of Fig. 2 are used.

xy plang, we have accordinglyk;_,=(0,0,I';_o)=(0,0,
+w). SincepllE® from Eq. (5.1), the inner produck;, -p
vanishes in Eq(5.6), leading to

2i ]

E«(r)= 5 aw exp(*iwz)E°. (5.7
This givesw? dependence of the reflectivitR. This is a
remarkable feature of the light scattering from a 2D period-
icity, to be compared with the familian* law of the Ray-
leigh scattering. Figure 17 reproduces the long wavelength
part of R of Fig. 2 as a function ofo?. The result supports
clearly the present analysis.

Equation(5.6) is similarly analyzed in the case of oblique
incidence. We find that the intensity &(r) remains unal-
tered apart from th& dependence of thecase, described by
the factor co®26/co<4.

B. Intensity profile of near field

In the near-field expression, the term involvikg - p is
dominant in Eq.(5.6). Since the exponential decay in the
direction is determined by |T'},|, it suffices to consider only
the NN shell in the sum ovdr. In addition, one may neglect
k in ki andw in T'y, so thatl'y =i|h| andk; =(h,i|h|)
with |h|=4/v3d, the radius of the NN shell.

We begin by the simpler case sfincidence, where the
dipole momentp is induced in they direction, leading to
kﬁ-p=a(h)y. In the near-field intensity, the cross term
Eq(r)* - E4(r) between the incident and scattered fields is the
main origin of the contrast, becauldg(r)|? is much smaller
in comparison[for the magnitudes oE,(r), see the com-
ment given in Ref. 3D In the s incidence E, is directed in
they direction, they component oE4(r) enters in the cross
term, which is written az=a as

2ma exp(—|h|a)
(Es)y:_ S |h|

> (h)%exp(ih”- p)

h//

= —fy4hZ(coshyx coshyy+2 cosh)y), (5.8)

with f,=27@e M3/(g)h[) and the values ofi,, etc. being
given by Eq.(4.3). Here the second line is the result of the
sum over sixh” points in the NN shell. From this expression
we find that €;), is real and that it takes the negative mini-
mum value at the top of spheféx,y)=(0,0)] and the posi-
tive maximum on the liney= =+ (v3/4)d, wherehyy= /2
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TABLE II. Dependence omp=(Xx,y) of the electric field of the basis functiofis;; andE,, for h in the
2NN shell. The components not shown are zero. In this tables2x/d, hy=2v3w/(d), and h,

=47/(d).
2NN
z g o
Ex=2 cosh,x coshyy
E,=4i sinhxxcoshy E«=2v3 coshx coshy
Eip + 4 cosh;x

+4i sinhyx E,=2sinhxsinhy
Ey=—2v3 sinhxsinhy
Ex=2v3 sinhxsinhy
Ex=—2sinhxsinhy
Eq E,=—4i coshxsinhy E,=cosh,x coshyy
E,=2v3 coshx coshy
+4 cosh,x

andhjy=m. These two lines connect the contact points of Also, if we assumer to be w-independent, so are bok
the spheres parallel to thxeaxis. In addition, the contribution and Eq(r)* - Eg(r). This leads to the important conclusion
is independent of). These are just the features of Fig. 16, that the near-field image is, in magnitudes as well as in shape
summarized above for theincidence. of the contour, independent @b in the long wavelength
As for the intensity, 0.62 |E(r)|?<1.27 is theexact nu-  limit. We have checked this fact by repeating the calculation
merical result of the case of=1.6", as marked in Fig. for =0.002 and confirmed that the result is in fact the same
16(c), while the intensity due to Eq5.9) plus the incident as Fig. 16.
field is 0.67<|E(r)y|2<1_25_ Thesimilarity of the upper The key to the fine resolution in spite of the very long
and lower bounds confirms the correctness of the presemavelength of light is the phase involved in ¢+ h)-p]
analysis. The slight discrepancy will be attributed partly toof Eq. (5.6). Due to the allowance of the component, the
the presence of the components other thand partly to the in-plane wave vectok+ h is free from the constraint of the
o dependence neglected in H§.8). energy conservation and can take a large value, independent
In striking contrast to the case sfpolarization, a marked of w. Even for a very small chang&p of the observation
0 dependence is obtained in tpecase. In the perpendicular point, Ap-h can then be large and introduces an appreciable
(Eg:l_o) and grazing incidenceEgz—l.O) of thep light, phase change in the exponential and hence an observable
the dipole momenp is induced in thex and z directions,  intensity contrast.
respectively. It is then easy to see tlatis x-directed when

0=0 andz-directed wherg=7/2: VI. CONCLUDING REMARKS
It would be worthwhile to compare the local field excited
2ma exp —|h|a) near the periodic array of spheres with that near a single
(Eg)y=— E (h!)2exp(ih”- p) sphere in free space. The maximum intensity of the local
S L h field of an isolated sphere is oscillatory as a functiowoA

peak occurs at the frequency of the Mie resonance due to the
excitation of a photonic virtual bound state. For the sphere of
e=1.6%, the Mie resonance in the lower frequency region is
found to be atw=0.50, 0.70, 0.92, 1.11, and so on. With
discrepancies of only a few percent, these are just the fre-
quencies at which the scattering phase shiftdlopherical
waves present an abrupt and substantial jump of the order of
. Itis interesting to note that, in the lower frequency region
of w<1.5 considered in this paper, the Mie resonance of the
with f,=f, andfz=§fy, f, being defined below Eq5.8). N waves fails to manifest itself in the maximum-intensity
In the normal incidence, thereforekd), gives the positive plot, for the damping constant & virtual-bound states is
maximum at the contact point of the spheres onxtexis  roughly twice as large as that of thé Also the half-widths
and the negative minimum aiE=y=0. For=/2, (Es),has  of the peaks oM resonance are generally of the order of
the negative maximum at the top of the spheres. Thus, the=0.1, i.e., more than 10 times as large as those of the 2D
inner producEq(r)* - E¢(r) reproduces the near-field images photonic bands, estimated from the peak width of Fig. 10.
of the p-polarized case shown in Figs. (B and 16b). Because of this, the lowest two peaks of the maximum in-
Note that for bothp and s cases, the above features of tensity are hardly recognizable as distinct peaks. The magni-
(x,y) dependence are independentsoind a, for they enter tudes of the resonant local field are suppressed accordingly.
only through the polarizabilityr defined by Eq(5.1). For example, for the resonances mentioned above, we find

= —f,4hfcosh,x coshyy for §=0,
(5.9

27a -
(E9),=——g— Ihlexp—|hla)> exp(ih”-p)
h//

1 T
_ 2 ' =
=—f,4h{| cosh x coshyy+ 5 C0s hyy| for 6= 5
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|E|2,23.0, 7.0, 10.5, and 17.5, respectively, on the top of Finally, a comment is in order for the comparison with
the sphere on the forward-scattering side. These values af&periments using SNOM. Quantitatively reliable compari-
much less than those shown in Fig. 3. Thus, the profile angon would require some of the sophistication of the present
magnitudes of the enhanced near-field images of the preseiteory by taking into account the actual shape of the SNOM
paper may not simply be explained by the single-sphere scaftiP and its perturbation on the probing electric field. Al-
tering. We have indeed demonstrated that the closed chaf2ough the refinement along this line was not tried, the time
nels of the NN shell, which carry the information of the reversal symmetry looks to hold in this case too and the
array, explain successfully the main features of the enhanc&alculation of the local field may still be a useful way of
ment of the low-frequency resonances. Thus, the origin ofPProaching the actual near-field profiles. We hope to report
the near-field image treated in this paper is none other thanf€ comparison of the present theory with experiments in a
sort of morphology-dependent resonance of a periodic arraﬁ}dture work.
of spheres in contact.

In this paper we have examined the local field in the ex-
terior region of the arrayed spheres. Symmetry consideration
upon the photonic band has been shown to be very fruitful. The authors would like to thank Professor K. Koda, Pro-
The symmetry-adapted basis functions, as combined witfessor T. Itoh, Professor U. Kondo, Dr. Y. Segawa, and Dr.
some of the numerical data, could reproduce all the essentidl. Ueta for many useful comments and discussions. We ac-
features of the resonant near-field images. Based upon theowledge the detailed information on the monolayer
fundamental understanding of this paper, it would be intriguspheres and SNOM images given by T. Fujimura and A.
ing to study the local field in the interior region. This may be Imada. This work was supported by the Grant-in-Aid for
an important topic when the confinement effects of photonicScientific Research on Priority Area “Quantum Manipula-
crystals are to be made use of in the nonlinear optics. Onton of Radiation Field and Matter” from the Ministry of
might also wonder if a substrate holding latex particles in-Education, Science, Sports and Culture. One of the authors
fluences the resonant behavior. These problems are currentlik.O.) acknowledges the financial support of the Casio Sci-
under study and will be reported in the near future. ence Promotion Foundation.
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