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Bayesian deconvolution and analysis of photoelectron or any other spectra: Fermi-liquid versus
marginal Fermi-liquid behavior of the 3 d electrons in Ni
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We present a simple and effective iterative deconvolution of noisy experimental spectraD broadened by the
spectrometer function. We show that this ‘‘iterative Bayesian deconvolution’’ is closely related to the more
complex ‘‘Bayesian analysis,’’ also known as the quantified maximum-entropy method. A modelm of the true
spectral function is needed in both cases. The Bayesian analysis is the most powerful and precise method to
relate measured spectraD to the corresponding theoretical modelsm via the respective probabilities, but two
grave conceptual problems together with two severe technical difficulties prevented widespread application.
We remove these four obstacles by~i! demonstrating analytically and also by computer simulations that the
most probable deconvolutionâ obtained as a by-product from the Bayesian analysis gets closer to the true
spectral function as the quality ofm increases,~ii ! finding it equivalent but vastly more efficient to optimize the
parameters contained in a given modelm by the usual least-squares fit betweenD and the convolution ofm
prior to the Bayesian analysis instead of using the Bayesian analysis itself for that purpose,~iii ! approximating
the convolution by a summation over the energies of then data points only, with the normalization of the
spectrometer function chosen to minimize the errors at both edges of the spectrum, and~iv! avoiding the severe
convergence problems frequently encountered in the Bayesian analysis by a simple reformulation of the
corresponding system ofn nonlinear equations. We also apply our version of the Bayesian analysis to angle-
resolved photoelectron spectra taken at normal emission from Ni~111! close to the Fermi energy at about 12 K,
using two different physical models: Compared with the marginal Fermi liquid, the Fermi-liquid line shape
turns out to be about 104 times more probable to conform with the observed structure of the majority and
minority spin peaks in the low-photon and small-binding-energy region.@S0163-1829~98!04435-X#
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I. INTRODUCTION

The deconvolution of a noisy experimental spectru
broadened by the spectrometer function and taken in a
ited range only, is an ill-posed problem, i.e., there is a bro
range of spectral functions, the convolution of which all
the measured spectrum equally well. Most of these spec
functions, however, show strong unphysical oscillations a
can be weeded out by introducing smooth model spec
functions that take the evidence of the measured spec
approximately into account. Far from being arbitrary, th
analysis goes beyond the simple deconvolution since it
lows us to assess the validity of different theoretical mod
in terms of the measured spectrum quantitatively.

In the first part of this paper we discuss the merits of t
different deconvolution procedures by comparing their
sults with the corresponding values of thetrue spectral func-
tion ã j5ã(Ej ), i.e., we start out from the data of an ‘‘ex
perimental spectrum’’ Dk5D(Ek) obtained by adding
Poisson distributed noisePk with the average magnitud
(Dk)

1/2 to the convolutionG(ã) of ã, i.e.,
PRB 580163-1829/98/58~11!/6877~15!/$15.00
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Dk5Gk~ ã!1Pk, Gk5(
j 51

n

ajGjk , ~1!

whereGk is the convolution of anyaj and Gjk is the nor-
malized Gaussian spectrometer function characterized by
width parameters,

Gjk5Rjk /Nk , Rjk5exp@2~Ej2Ek!
2/2s2#,

Nk5 (
h51

n

Rhk . ~2!

The first method is our own iterative deconvolution, whi
dramatically improves upon the somewhat similar meth
proposed by van Cittert1 since it is closely related to the
second method, which is the complete Bayesian spect
analysis given by Skilling.2 Application of this powerful
Bayesian analysis to, e.g., photoelectron or inverse ph
electron spectra has been sparse3,4 since the role of the mode
has not been fully appreciated and since the method see
to preclude the optimization of more than one or two para
6877 © 1998 The American Physical Society
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6878 PRB 58GERHARDT, MARQUARDT, SCHROEDER, AND WEISS
eters contained in the model, a situation that we set ou
rectify. We also simplify the Bayesian analysis considera
by introducing two important technical improvements.

In the second part of the paper we apply the Bayes
analysis2 including our own amendments to the actual an
and energy resolved photoelectron spectra of Ni~111!, taken
at aboutT512 K near the Fermi energyEF . Our aim is to
distinguish between the Fermi-liquid and the margin
Fermi-liquid5,6 behavior of the interacting 3d electrons, re-
spectively.

II. ITERATIVE BAYESIAN DECONVOLUTION

The lower part of Fig. 1 shows the true spectral functionã
as triangles. It consists of a superposition of four Lorentzi
with different intensities and energy positions, truncated
the Fermi-Dirac function withT510 K, and a small constan
presenting the dark count. One of the Lorentzians has
center above the Fermi energyEF50. The width of the
Lorentzians increases quadratically with the binding ener
We use Eq.~1! to calculate the convolution, which is a
approximation since we replace the integral by a sum
also because we carry this sum overn data points only. We
do so because we select the experimental spectrum itse
the first starting model of the spectral function, as propo
originally by van Cittert.1 The normalization chosen in Eq
~2! minimizes the errors at the edges of the spectrum cau
by this restriction since at least forã5const the correct re
sult, which isG(ã)5ã in this case, is obtained also up to th
edges. In fact, as also expected from symmetry consi

FIG. 1. The circles of the upper curve give the ‘‘experimen
spectrum’’D for which different deconvolutions will be shown i
Figs. 2–8. It has been generated by convoluting the true spe
function ã ~the triangles in the lower part! with the spectrometer
function and adding Poisson distributed noise to this convolu
~solid line in the upper part!. The circles of this experimental spec
trum and the triangles of this true spectral function are also sh
in Figs. 2–8.
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ations, usingGjk of Eq. ~2! in Eq. ~1! results in a convolution
with only small deviations from the true convolution at th
edges if the expansion ofa around the edges contains eve
powers only. Ifa varies linearly at the edges these errors w
be larger, but they can be reduced by starting and stopp
the measurement in regions where the slope ofD is small.
The upper part of Fig. 1 showsG(ã) as the solid line, cal-
culated using Eqs.~1! and ~2!, with a 0.05 eV full width at
half maximum~FWHM! of the spectrometer functionRjk ,
andD as circles. The probability distribution7

F~x2!}exp~2x2/2!~x2!~n/221! ~3!

of the quantity

x25 (
k51

n

@~Dk2Gk!
2/Dk# ~4!

has its maximum atn22 for G5G(ã), wheren225108 in
the example. This is reasonably close to the actual valu
x2(ã)'103.5 for the particular noise spectrum of Fig.
Actually, x2(ã) must be close ton owing to Eq.~4! since
@Dk2G(ã)#2'sk

25Dk .
We now try to recoverã from D using an iterative decon

volution: The valuesai
(n) obtained in the stepn are used to

get ai
(n11) from

ai
~n11!5ai

~n!exp~D i /a!, ~5!

whereD i is some reasonable measure of the difference
tweenD andG(n)5G(a(n)), containing theaj

(n) according to
Eq. ~1!. This is the basic equation that also governs the
Bayesian analysis to be discussed later; it has the virtu
fulfill the obvious requirement thatai>0 for all i. The pa-
rametera can be used to regulate the speed of converge
in the iterative deconvolution; for simplicity, we seta51
here. However, in the Bayesian analysisa will play a crucial
role, which is the reason that we show it explicitly in Eq.~5!.

Computer simulation of the iterative deconvolution

What is the correct expression forD i? Should we follow
the early proposal by van Cittert1 and use D i5@Di

2Gi(a
(n)#/Di? Neglecting the noise, this choice would yie

D i→0 for n→` or a→ã using Eq.~5!, but in reality the
noise component ofDi is transferred toai at each step of the
iteration, giving rise to

ai5ãi1ai
osc with Gk

osc5(
i 51

n

ai
oscGik'0 ~6!

instead, i.e., we obtain the unphysicala mentioned in the
Introduction, consisting of the trueã and the oscillatory
componentaosc}D2G(ã), which is the amplified noise
spectrum ofD according to Eq.~1!, the amplitude of which
increases as the iteration progresses. We perform sever
erative van Cittert deconvolutions, using the linearized v
sion of Eq.~5! and the experimental spectrum as the start
model, mu5a(0)5D, as also originally proposed by va
Cittert.1 As expected, the deconvolution approaches the fo
given in Eq.~6! after only a few iterations.
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The van Cittert results sketched above are not encou
ing. However, one of us~U.G.! kept being fascinated with
the basic idea. While trying to improve the method, he n
ticed another defect: The convolution distributes the inf
mation contained inai at Ei among the variousDk in the
neighborhood ofEi . If one wants to improveai iteratively
using Eq.~5!, one should thus take notice of these neighb
ing Dk , not only ofDi as implied by the van CittertD i . The
most obvious weighting factor is of course the normaliz
spectrometer functionGki of Eq. ~1!. He therefore proposed
to replaceD i in Eq. ~4! by the weighted average of the rel
tive deviations betweenD andG(n),

D i5 (
k51

n Dk2Gk
~n!

Dk
Gki , ~7!

which can also be interpreted as the convolution of the r
tive deviations betweenD andG(n). This substitution simul-
taneously reduces the severe first defect of the van Ci
method to a minor nuisance since Eq.~7! effectively aver-
ages out the noise contained in theDk over the region cen-
tered atEi and specified by the width ofGki .

Figure 2 shows the result of the iterative deconvolut
using Eq. ~7! in Eq. ~5! and mu5a(0)5D as the starting
model. The number of iterations is adjusted to obtainx2

'73 to allow an easy comparison with the correspond
results of the Bayesian analysis of Sec. III. An average
viation of Q59.4% betweena andã is obtained, whereQ is
defined as

Q5An(~ai2ãi !
2Y ( ãi . ~8!

In comparison to a corresponding iteration using the v
Cittert1 D i5(Di2Gi

(n))/Di for which Q523.6% is obtained
at the samex2'73, the improvement is astounding in th

FIG. 2. Iterative Bayesian deconvolutiona andG(a) for n11
5197. The experimental spectrumD itself is taken as the modelm.
See the text forx2, Q, anda.
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the structure ofã that is completely swamped by the larg
aosc component in the van Cittert deconvolution is now ea
ily recognized ina sinceaosc has been decreased drama
cally. The strong decrease inQ by 60% also demonstrate
the increased quality of the deconvolution. To our know
edge the method leading up to Fig. 2 is the easiest and fa
way to obtain a reliable deconvolution with a lowuaosc/ãu
ratio. The procedure is also ‘‘unbiased’’ since the cho
mu5a(0)5D does not refer to any theoretical model of th
spectral function but takes the evidence inD approximately
into account.

To be sure, differences betweena and ã remain: For ex-
ample, in Fig. 2 the Fermi edge ofa is not as steep as the tru
Fermi edge ofã. The steepness of the edge actually
creases with increasingn, decreasingaosc in this region, but
there is a simultaneous increase ofaoscat other energies: The
overall quality of the deconvolution as measured byQ of Eq.
~8! thus does not change drastically over a fairly large ran
of n. Improvement is possible if additional knowledge abo
ã is available. This is usually the case in photoelectron sp
troscopy where the position ofEF is routinely determined
with high precision from a separate spectrum of, e.g., a cl
polycrystalline Pt sample kept at the same temperature
and in electrical contact with, the crystal to be investigat
In the next example we therefore use as the model a cons
spectral function, multiplied with the Fermi-Dirac function
with EF50 eV and T510 K, plus a constant dark coun
Below EF this model has actually a strong negative b
sinceG(m) clearly contradicts the evidence inD. Neverthe-
less, the iterative Bayesian deconvolution shown in Fig.
which is again carried tox2'73, follows ã quite closely, as
documented byQ53.5% only, i.e., compared to Fig. 2 th
quality of the deconvolution has increased threefold. As
comparison shows, the sharp Fermi edge is the most im

FIG. 3. Iterative Bayesian deconvolutiona andG(a) where the
model is a constant multiplied by the Fermi-Dirac function plus
small dark count. The number of iterationsn115108 is adjusted to
obtainx2'73 as in Fig. 2.
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tant spectral feature that should be incorporated into
model. It is also beneficial that the model of Fig. 3 does
contain the noise inherent in themu5a(0)5D case of Fig. 2
sincea now interpolates smoothly between neighboringEj .
In Fig. 4 we replace the constant spectral function by o
Lorentzian, truncated again by the Fermi-Dirac function,
termining its intensity, energy position, and width and a
the dark count by the usual least-squares fit procedure
tweenD andG(m), i.e., gettingx2(m) of Eq. ~4! to a mini-
mum. We always perform the least-squares fit using the
ficient Marquardt-Levenberg algorithm.8 As seen in Fig. 4,
the convolution of this model reproduces at least the gr
features ofD and has thus only a small negative bias. T
quality of the iterative deconvolution, however, is bare
higher than that of Fig. 3, showing that the Bayesian iterat
is insensitive to the choice of the starting model as long a
is smooth, except for structures such as the Fermi e
which is much narrower than the spectrometer functi
Such structures should be incorporated if they are know

In Figs. 2–4 the number of iterations is adjusted to obt
x2'73 to facilitate the comparison with the Bayesian ana
sis to be presented below. The minimum inQ actually occurs
at slightly higherx2 values, but the difference to thea shown
in Figs. 2–4 is hard to discern. The numbers for the mode
Fig. 4 areQmin52.9% atx2575.0. This is still at the low
end of theF(x2) distribution ~3! which has its maximum a
x25n225108, i.e.,F(75)/Fmax50.04: For the best agree
ment betweena(n) and ã it is apparently advantageous
allow some of the accidental structure caused by the nois
the finala(n) andG(n); however,x2!n22 should of course
be avoided since this would produce a largeaosc component
of a(n). Since we know neitherã nor Q for a true experi-
mental spectrum, it is important to realize that there alw
is a continuum of possible deconvolutionsa with different

FIG. 4. Iterative Bayesian deconvolutiona andG(a) where the
model is a Lorentzian multiplied by the Fermi-Dirac function plus
small dark count. The number of iterationsn115114 is adjusted to
obtainx2'73 as in Figs. 2 and 3.
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probabilities: Thea obtained from the Bayesian iteration co
responding tox2 between the maximum and the low end
theF(x2) distribution all have relative high probabilities an
the most probablea5â is likely to fall into this range. The
reader might wonder why we do not just giveâ instead of
this rule of thumb, but since findingâ is equivalent to rein-
venting the Bayesian analysis, we move on to the next s
tion.

III. BAYESIAN ANALYSIS

As already mentioned, a spectral functiona with a large
aosc component is highly unlikely to conform with any rea
sonable physical modelm of a even if it fulfills the x2'n
test. We now investigate the crucial role of the modelm in
selecting physically acceptablea. We first sketch the impor-
tant results presented in detail by Skilling,2 starting by defin-
ing the conditional probability distributionp(Dua) for the
dataD, given the spectral functiona as the fixed condition,

dpD5p~Dua!dnD,

p~Dua!5)
k

~2pDk!
21/2exp~2x2/2!, ~9!

wheredpD is the probability thatG(a) falls into the range
dnD5PkdDk centered atD andx2 is defined in Eq.~4!. The
probability distributionp(Dua) is approximately normalized
for ADk@1, i.e.,*dpD'1. The least-squares fit used earli
corresponds top(Dua)→max. Similarly, the conditional
probability distributionp(aum,a) of the spectral functiona,
given the modelm and the regularization parametera as the
fixed conditions, is defined by

dpa5p~aum,a!dna,

p~aum,a!5)
i

~2pai /a!21/2exp~aS!, ~10!

with dpa the probability thatm falls into the rangedna
5P idai centered ata and*dpa'1 again forAaai@1. The
entropyS is given by

S5( @ai2mi2ai ln~ai /mi !#

'2( @~ai2mi !
2/ai #/252xa

2/2, ~11!

where the right-hand side is valid forai'mi only, in which
case Eq.~10! shows a strong similarity to Eq.~9!, except for
the regularization parametera, which transformsa and m
into fictitious counts bya→aa andm→am when Eqs.~10!
and ~11! are derived from the Poisson distribution.2 In fact,
axa

2 is obtained fromx2 of Eq. ~4! using D→aa and
G→am: The distribution~9! and the approximate form o
Eq. ~10! valid for ai'mi are completely equivalent in thes
‘‘counts.’’

The basic problem encountered in Sec. II is to weed
the unphysical deconvolutionsa containing a largeaosc com-
ponent. To solve this problem we first join Eqs.~9! and~10!
using the Bayes theorem2,7 for conditional probabilities:
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p~D,aum,a!5p~Dua,m,a!p~aum,a!

5p~auD,m,a!p~Dum,a!. ~12!

The two distributions~9! and ~10! are statistically indepen
dent, i.e., the joint distribution~12! is just the product of
these two distributions, orp(Dua,m,a)5p(Dua) and thus

p~D,aum,a!}exp~b!, b52x2/21aS, ~13!

wherep(D,aum,a)dnDdna is the probability thatG(a) falls
into dnD at D and simultaneouslym into dna at a, given m
anda. This joint distribution gets large if bothG(a) is close
to D andm is close toa, with the relative importance of the
respective closeness governed bya. Any reasonable physica
modelm must not contain the spurious oscillationsaosc since
they, by their definition~6!, do not noticeably influence th
closeness betweenD andG(m) or G(a). Thusp(D,aum,a)
can be large only if theaosc component ofa is also small
since there would be large deviations betweena andm oth-
erwise. We thus obtain the most probable spectral functioâ
with the smallest possibleaosc by requiring

p~D,aum,a!}exp~b!→max or ]b/]ai50, ~14!

leading to the system ofn nonlinear equations for then un-
knownsâi ,

âi5miexp~D i /a!. ~15!

HereD i is given by Eq.~7! of Sec. II, withGk
(n) replaced by

Gk(â), and there is also a close connection between Eqs~5!
and ~15!: The only difference is that usingmi5ai

(n) we al-
lowed for an iterative improvement of the model in Sec.
while the model is constant in Eq.~15!, requiring ai

(n11)

→âi here. Applying the general theorem of Bayes~12! to the
deconvolution problem is thus equivalent to equatingD i in
Eq. ~15! with the weighted average~7! of the relative devia-
tions betweenD andG(â). This is a useful way to look a
the problem, which even helps us to dodge a severe tech
difficulty encountered in solving Eq.~15!. We discuss this
obstacle and our method to remove it in the following tw
paragraphs, completing the fundamentals of the Baye
analysis afterward.

Usually then nonlinear equations~15! are solved for the
â j by iteratively solving the corresponding set ofn linear
equations9 obtained in this case by a linear expansion of
ln(âi /mi) term. However, considerable convergence proble
are encountered fora!1 typical for a low-quality model
deviating markedly fromâ and/or for a high signal-to-nois
ratio. The reason for these difficulties is that, e.g., at stepn of
the iteration,aj

(n),0 may occur for some final solutionsâ j

that are close to zero, in spite of the fact thatâ j.0 is re-
quired by Eq.~15! for all j.

We simply bypass these convergence problems by sol
the nonlinear equations~15! iteratively for theD j instead:
SinceD i,0 is required by Eq. ~15! for âi,mi and D i.0
for âi.mi , respectively, the solutions of the correspondi
system ofn linearized equations

(
j 51

n

M i j D j
~n!5Ci ~16!
I

cal

an

e
s

g

at the stepn of the iteration quickly converge to the solution
D j of Eq. ~15!. The coefficients of Eq.~16! are

Mi j 5Hi j

mj

a
exp~D j

~n21!/a!1d i j ,

~17!

Hi j 5 (
k51

n
GikGjk

Dk
5H ji ;

Ci5 (
k51

n

@Gik~11Bk /Dk!#,

~18!

Bk5 (
h51

n

mh~Dh
~n21!/a21!exp~Dh

~n21!/a!Ghk .

The iteration is best started withD j
(0)50 for all j correspond-

ing to aj
(0)5mj according to Eq.~15!. After convergence is

obtained, theâi are calculated by inserting theD i in Eq. ~15!.
We also verified that the old method of solving Eq.~15! for
â j and the method presented here lead exactly to the s
numerical values ofâ j . This comparison is of course pos
sible only as long as convergence is achieved with the
method.

We now return to the basics of the Bayesian analy
While we can solve Eq.~15! for any givenm anda, we still
do not know the optimala0 . This problem is attacked by th
regularization procedure: Instead of focusing on the m
probable spectral functionâ, Skilling2 proposed to take the
continuum of all possiblea into account, i.e., to determin
the maximum of the joint probability distribution~13!, inte-
grated over alla:

a→a0 if p~Dum,a!5E dna p~D,aum,a!→max.

~19!

In Eq. ~19! the Bayes theorem~12! and *dna p(auD,m,a)
51 have been used. The integration can be carried ou
expandingb(a) of Eq. ~13! around the most probableâ,
where Eq.~14! ensures that no linear terms show up, i.e.,

b~a!'b~ â!1
1

2 (
i , j

]2b~ â!

]ai]aj
~ai2âi !~aj2â j !, ~20!

and transforming Eq.~20! to its purely quadratic form. The
result after the regularization~19! is

p~Dum,a0!5
Pk~2pDk!

21/2exp@b~ â!#

Adet~ I 1a0
21@ â#H !

, ~21!

whereI is the identity matrix,@ â# is the diagonal matrix, and
H is defined in Eq.~17!. Equation~21! is identical to the
corresponding expression given by Skilling2 if Rjk5Rk j ,
which is the case for our choice ofRjk shown in Eq.~2!.

The regularization culminating in Eq.~21! completes
what we call the Bayesian analysis. We now show that t
analysis goes beyond the least-squares fit on three co
The numerator of Eq.~21! is proportional to the maximum o
the joint distribution~13! for the most probableâ5â(a0).
Thus, in addition to the quadratic deviationsx2(â) between
the dataD and the convolution ofâ, the Bayesian analysis
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also accounts for the corresponding deviationsa0S between
â and the modelm. Furthermore, the denominator of Eq.~21!
takes care of the fact that there is a continuum of poss
spectral functions aroundâ: As shown below, the width of
this continuum increases from zero,a0 decreases from infin
ity, anda0S decreases from zero asm starts to deviate from
the true spectral functionã, causing a corresponding in
crease in the denominator and thus a further decrease o
~21! itself, in addition to the decrease caused by thea0S
exponent in the enumerator. In comparison, the least-squ
fit determines the minimum ofx2(m)Þx2(â) only.

The most important application of the Bayesian analy
is the quantitative comparison of different theoretical mod
m in terms of the measured dataD by calculating the ratio of
the corresponding probabilities~21!. The existence of such
quantitative comparison provides of course the ultimate m
tivation of taking the spectra in the first place. Any other d
analysis, including the least-squares fit, allows a qualita
comparison only since~i! the difference betweenx2(m) and
x2(â), ~ii ! the deviations betweenm and â described by
a0S, and also~iii ! the continuum of the possible spectr
functions aroundâ are not accounted for.

A. Role of the model

In the Bayesian analysis the role played by the modelm in
determining the quality of the most probable spectral fu
tion â is not readily apparent. We therefore consider
limiting case âi'mi , i.e., uD i /a0u!1 using Eq.~15!, and
assume that the regularization has been carried out, i.e.,
a0 andâ are known for the given modelm and the measured
spectrumD. The nonlinear equations~15! can then be linear-
ized asâi2mi'miD i /a0 . Rewriting, summing, and taking
Eq. ~11! into account, we obtain

xa
2'( ~ âi2mi !

2/mi'( ~ ãi2mi !
2/mi'a0

22( miD i
2,

~22!

where we replace the most probableâi by the trueãi , which
should be a very good approximation sincexa

2 does not mea-
sure the individual but only the average squared deviati
betweenâi andmi . Thus Eq.~22! leads to

a0'A( miD i
2YA( ~ ãi2mi !

2/mi ~23!

and also, using Eqs.~11! and ~23!, to

a0S~ ã!'2 1
2A( miD i

2A( ~ ãi2mi !
2/mi , ~24!

which, formi→ãi , show thata0→` while a0S(ã)→0. We
notice that the noise contained inD requires(miD i

2.0 even
in this limit. The a0S(ã)→0 limit is apparently the reaso
that the Bayesian analysis is often referred to as
maximum-entropy method, which is actually a misnom
since the joint probability distribution of Eq.~13! reaches a
maximum for the maximum value of the exponentb5
2x2/21a0S, not just of the entropyS alone.

Introducinga0 of Eq. ~23!, a0S(ã) of Eq. ~24!, andb of
Eq. ~13! into Eq. ~21!, p(Dum,a0) is seen to decrease asm
moves away fromã. We can even derive an approxima
le
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expression of Eq.~21! showing this dependence onm explic-
itly, valid for mi'ãi corresponding toa0@1: Using the
right-hand side of Eq.~11!, the distribution~10! is a product
of normalized Gaussians centered atmi , with the small
width parametersai5(ai /a0)1/2. We approximate this prod
uct by a product ofd functions and introduce it into Eq.~19!,
taking Eq.~13! into account. The integration~19! then results
in

p~Dum,a0@1!')
k

~2pDk!
21/2exp@2x2~m!/2#.

~25!

For high-quality models, the Bayesian analysis including
regularization condition~19! reduces to the usual leas
squares fit betweenG(m) andD.

In the limit of m5ã for which a0→`, the basic system
of nonlinear equations~15! yields â5m and thus â5ã.
Since in generalâ5ã1aosc according to Eq.~6!, it follows
that aosc50 in this case. Asm starts to deviate fromã, we
obtain the decrease ofp(Dum,a0) discussed above and th
decrease ofa0 described by Eq.~23!. Furthermore, since the
coefficientsmi anda0 of the nonlinear system of equation
~15! are changed with respect to them5ã case,âÞã or aosc

Þ0: A decrease in the quality ofm causes a concurren
increase in the amplitude ofaosc. Thus a model with a smal
value of p(Dum,a0) is unlikely to conform withD since it
generates the large oscillatory deviationaosc betweenâ and
ã. This statement is of course valid in spite of the fact thaã
is not known in general. The most important consequenc
this behavior is the possibility to evaluate different theore
cal modelsm in terms of the measured spectrumD according
to their respective probability distributionp(Dum,a0) quan-
titatively.

We obtain some further insight fromp(auD,m,a0),
which is the normalized probability distribution ofa, given
D, m, and a0 . Since the joint distributionp(D,aum,a0)
reaches its maximum ata5â and the integrated joint distri
bution p(Dum,a0) no longer containsa, the Bayes theorem
~12! requires a maximum value ofp(auD,m,a0) also ata
5â, given by

p~ âuD,m,a0!5A)
i

~2pâi !
21a0

ndet~ I 1a0
21@ â#H !,

~26!

which clearly goes to infinity asa0→` or m5ã, i.e.,
p(auD,m,a0) is a product ofd functions in this limit. Asm
starts to deviate fromã, the width of p(auD,m,a0) in-
creases, accommodating a broader range of acceptaba
around â, while p(âuD,m,a0) and p(Dum,a0) both de-
crease simultaneously. The most important quantity, ho
ever, is the integrated joint probability distribution~21!,
which we normalize to its most probable maximum value

P5
p~Dum,a0!

p~Dum5ã,a0→`!
5

exp@b~ â!1~n22!/2#

Adet~ I 1a0
21@ â#H !

,

~27!

obtained by usingx2(ã)5n22 in Eq. ~25!, where n22
corresponds to the maximum of theF(x2) distribution~3!. It
is important to note thatP is determined bym andD includ-
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ing its noise component: For fixedm, an increase in the
signal-to-noise ratio causes a concurrent increase inx2(m)
and adecreasein P; since more details have been uncover
in D, the oldP value can only be restored by a more detai
m.

We intentionally avoid to attach the usual names~prior,
likelihood, posterior, evidence! to the distribution functions
in Eq. ~12! since we want to show that one does not rea
need them, at least in the present case. They might actu
be misleading since there is no temporal order in the pr
lem: The measured spectraD are there, waiting to be ana
lyzed, and since the modelm is the given condition, i.e.
standing to the right of the vertical bar in Eq.~27!, we are
free to use any model, as long as we are not withhold
knowledge, which would be very un-Bayesian indeed. W
we know for sure is thatD, by the convolution, is a broad
ened version of the true spectral functionã to which noise
has been added, and although we do not knowã, we do
know that the model should come reasonably close to it,
we should incorporate at least the gross features ofD into
G(m). For example, ifD shows a pronounced structure, it
certainly not a good idea to usem5const and the penalty
will be low values forP anda0 and a largeaosc component
in â5ã1aoscÞm, not an approximate reproduction of th
bad model as usually assumed without proof, and this is
for any bad model, not only form5const: The Bayesian
analysis is incorruptable and yieldsâ'm'ã together with
uaosc/ãu'0 for the largest values ofP'1 anda0@1 only.

In the ideal case the functional form of the theoretic
model m is known andD is distorted by the spectromete
function Rjk and the noise only. We then obtainP'1 and
â'm'ã by just optimizing the parameters of the mod
Usually, however,D is corrupted in addition by a plethora o
effects outside of the hopefully dominating theoretical mo
to be investigated. In spite of these odds, the Bayesian an

FIG. 5. The most probable spectral functionâ and G(â), ob-
tained by the Bayesian analysis. As in Fig. 2, the experime
spectrumD itself is taken as the modelm.
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sis yields reliable results for two competing theoretical mo
els m1 andm2 , provided Ockham’s razor10 is applied rigor-
ously, which simply requires one to use as few parameter
possible under the circumstances: Although we obtainPm1
!1 andPm2!1 since the small set of parameters does
adequately describe these outside effects, their influence
essentially cancel in thePm1 /Pm2 ratio. A fair contest re-
quires of course to use the same number of parameter
both models. As a consequence of the smallPm values we
obtain a noticeableaosc component inâ, but since we admit
only models withPm>Pmu , wheremu5D is the only unbi-
ased model independent of any theoretical assumpti
uaosc/ãu!1 is still ensured.

B. Computer simulation of the analysis

Performing computer experiments as before,ã is known
and the conclusions given above can be checked. In the
lowing figures we now include the values fora0 and P.
Figure 5 gives the result of the Bayesian analysis
mu5D. The result is nearly identical to that of Fig. 2, whe
we had carried the iterative Bayesian deconvolution
roughly the samex2. In comparison, the advantage of th
Bayesian analysis is that it is independent of the scien
performing it, requiring no judgment about the number
iterations as in the case of the iterative Bayesian deconv
tion.

Since them5const/@exp(E/kT)11#1C0 model~whereC0
denotes dark count! contains the additional information
about the Fermi edge, we obtain the excellent agreem
betweena andã in the case of the iterative Bayesian deco
volution shown in Fig. 3. In contrast, the correspondi
Bayesian analysis leads to the disaster evident in Fig. 6
cause this model has a strong negative bias forE,0 and, as
opposed to Fig. 3, the Bayesian analysis does not allow
the iterative correction ofm. Compared to the unbiase

al
FIG. 6. The most probable spectral functionâ and G(â), ob-

tained by the Bayesian analysis. The model is the same as in Fi
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mu5D case of Fig. 5, the value forP is 12 orders of mag-
nitude smaller, corresponding to the largeaosc component
evident in â, and Q shows a pronounced increase. This
just what we anticipated from analyzing Eqs.~23!–~25!.
Characteristically,G(â) is even closer toD than before since
we obtain a lowerx2, in spite of the disastrous failure of thi
model. Thus, in contrast to the iterative Bayesian decon
lution, a modelm with a strong negative bias, i.e., larg
deviations betweenG(m) and D, should never be used t
perform the Bayesian analysis; any conclusions drawn fr
the â thus obtained are not trustworthy, in spite ofG(â)
'D. As a rule of thumb, any acceptable model must p
duce aP at least as high as that of the unbiased modelmu
5D.

A nice supporting example has been given by von
Linden.4 He performed a Bayesian analysis of a spectrumD
produced by Ar1 ions scattered at a clean Ru~001! surface,
using at first a small constant as the model, which we wo
classify as strongly negatively biased sinceD shows a pro-
nounced single peak at the expected energy. Theâ contains a
large aosc component, which he calls ‘‘ringing.’’ He then
tried a model composed of a constant and a Gaussian
takes the evidence inD into account. This model drasticall
reduces the ringing and, as we know from Eqs.~23!–~25!,
brings â much closer toã simultaneously.

Returning to the computer experiment presented in Fig
we recall that them5L/@exp(E/kT)11#1C0 model~whereL
denotes Lorentzian! contains four parameters that we op
mize by a least-squares fit prior to the iterative Bayes
deconvolution. These four parameters could in principle a
be determined by the Bayesian analysis, but this would b
extremely tedious job indeed, resulting in a modelm as close
as possible to the true spectral functionã and simultaneously
G(m) as close as possible toD, i.e., x2(m)→min: The two
procedures are equivalent, but the least-squares fit is fa
and easier by a huge margin. As an example, Fig. 7 sh

FIG. 7. The most probable spectral functionâ and G(â), ob-
tained by the Bayesian analysis. The model is the same as in F
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the result of the Bayesian analysis with the above mo
optimized already. We obtainx2(â)573.3, which is also the
x2 value reached in Fig. 4 aftern115114 iterations. As
opposed to the huge differences found between Figs. 3 an
a in Fig. 4 andâ in Fig. 7 are nearly identical sincem has
now only a small negative bias forE,0. Compared to the
mu5D case of Fig. 5,P has doubled, with a correspondin
decrease inQ: For the present model the positive bias of t
known Fermi edge carries more weight than the sligh
more negative bias in theE,0 region.

It is noteworthy that theaosc components in the three
Bayesian iterations of Figs. 2–4 and also in the Bayes
analysis presented in Figs. 5 and 7 are nearly identical. E
in Fig. 6, the maxima and minima ofaosc occur at about the
same energies, although with a much larger amplitude.
tually, a close inspection shows thataosc just follows the
smoothed noise spectrum with an average period of ab
0.05 eV, which is the FWHM of the spectrometer functio
This is to be expected from Eq.~7!, where the noise is aver
aged roughly over this width: Using Eq.~6! we obtain
Gk'Gk(ã) in Eq. ~7! both in the final steps of the Bayesia
iteration and in the Bayesian analysis, which shows thatD i is
then roughly the convolution of the relative noise spectru
Repeating the Bayesian analysis of Fig. 7 with the same
spectral functionã but using different Poisson distribute
noise spectra in Eq.~1!, we find correspondingly differen
aosc components, along with variations inx2, Q, andP, as
expected.

The result of the Bayesian deconvolution or analysis
pends of course strongly on the signal-to-noise ratio. Fig
8 gives an example: The analysis has been carried out a
Fig. 7, except for reducing the number of counts to1

10, cor-
responding to aA10-fold increase in the relative amplitud
of the noise. The higher value ofa0 shows that emphasis ha
been shifted fromx2 towards the entropyS. The increase in

4.
FIG. 8. The most probable spectral functionâ, obtained by the

Bayesian analysis as in Fig. 7, except for a 0.1 reduction of
counts in the experimental spectrumD.
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P indicates thatG(m) is more likely to fit D, given the
increase in the relative bandwidth of the noise. Since i
difficult now to distinguish betweenaosc and the genuine
structure inâ ~we pretend not to knowã!, improvement of
the model is mandatory. Fortunately, the improvemen
also possible since both the raw dataD andG(â) show that
at least two peaks are involved. Reanalyzing with the
proved model containing two Lorentzians will increaseP
and simultaneously reduce the amplitude ofaosc, identifying
it as spurious and the remaining common structure as g
ine, quite analogously to going from the bad model of Fig
to the improved model of Fig. 7. Thus a decrease in
signal-to-noise ratio requires an increase in the quality of
model, which is getting more difficult to achieve at the sa
time: For a sufficiently low signal-to-noise ratio we obta
a0→` for both m5L/@exp(E/kT)11#1C0 and for m5ã,
i.e., the quality of the spectrumD is so low that it is no
longer possible to distinguish between a model contain
one Lorentzian and the true spectral function with fo
Lorentzians.

IV. DO THE 3 d ELECTRONS IN Ni FORM A FERMI
LIQUID?

The experimental energy bands of Ni~Ref. 11! are repro-
duced in Fig. 9. They have been obtained by adjusting
parameters of the combined interpolation scheme for b
agreement with the experimental angle resolved photoe
tron spectra and the measured magneton number. Three
cal transitions from the majority band that are observed
the photoelectron spectra for normal emission from~111! are
indicated. The corresponding spectra obtained by us are
sented in Fig. 10. They show both the majority and the
nority spin peak of Ni, observed ins polarization for ten
different photon energies, again under normal emission fr
the~111! surface. The polarization vector is parallel to@11̄0#,
the angle of incidence is 22.5°, and the sample is kep

FIG. 9. Experimental band structure of Ni. Three typical dire
transitions from the majority 3d band just below the Fermi energ
EF50 eV that are observed in the photoelectron spectra for nor
emission from~111! are indicated.
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about 12 K. The measurements are performed at the
Seya beam line of the Berliner Elektronenspeicherring¨r
Synchrotronstrahlung. The electron analyzer, which allo
simultaneous detection of eight coplanar directions, cons
of four concentric spherical grids, forming a preretardi
stage and a high pass filter, and of two grids that are par
two confocal ellipsoids of revolution, forming an electro
mirror, i.e., a low pass filter. One focus of these ellipsoids

t

al

FIG. 10. Ten photoelectron spectra, obtained atT512 K from
Ni~111! in normal emission, for photon energies betweenhn56.5
and 11 eV ands polarization~open circles!. These spectra are a
displayed with the same difference between the maximum co
and the constant count aboveEF and this normalization sets th
scale for the convolution of the optimized FL and MFL mode
shown as heavy and light solid lines here and also for the deco
lutions shown in Figs. 11 and 12.
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revolution coincides with the center of the spherical gri
We determine the combined energy resolution of this e
tron analyzer and the 2-m Seya-Namioka monochrom
from the 12-K Fermi edge of a polycrystalline Pt samp
The FWHM of the spectrometer functionRjk in Eq. ~1! is 50
meV athn56.5 eV and 60 meV athn511 eV, respectively,
and the angle resolution is 2° FWHM.

The electropolished surface of the sample is cleanedin
situ by repeated cycles of 500-eV Ar ion bombardment
600 K and annealing at 850 K. After this cleaning proced
we observe sharp low-energy electron diffraction spots.
mediately after cleaning, the sample is brought in therm
contact with the cryostat and cooled to about 12 K. The h
annealing temperature gives rise to the relatively high b
pressure of 1310210 mbar even after cooling down, which
together with the high reactivity of the Ni surface, caus
adsorption of residual gases: The cleaning procedure is
peated after 2 h since a noticeable increase in the backgrou
of secondary electrons can be detected by then.

A. Two basic models

As the peaks in Fig. 10 disperse away fromEF , their
width increases markedly. This is the behavior that we
pect qualitatively if the 3d electrons in Ni form a Ferm
liquid ~FL!. Actually, Claessenet al.12 have shown that the
quasiparticle spectral function

a~E,k!5p21Im S/@~E2EB!21~ ImS!2#, ~28!

with the FL form of the imaginary part of the self-energyS,

Im S25b2E2, E'EF50, ~29!

valid for T→0 and forE close toEF , can be used to de
scribe the measured angle resolved photoelectron spect
the two-dimensional metal 1-T-TiTe2, albeit only extremely
close toEF . This is actually a favorable example since t
two-dimensional character of 1-T-TiTe2 prevents the finite
escape depth of the photoelectron to contribute to the
served line shape. In the case of the three-dimensionalE(k)
of Ni, the additional broadening caused by the finite esc
depth has to be incorporated. If we had complex initial a
final bandsEi and Ef with Lorentzian widthG i and G f ,
respectively, the total widthG would be13

G5
G i1ur uG f

12r
, r 5

]Ei

]k'
Y ]Ef

]k'

, ~30!

wherer is the ratio of the slopes in the respective bands.
actually select Ni~111! for this investigation since, as is ev
dent from Fig. 9, the slope of the initial bandEi close to the
top of the 3d bands is small compared to the slope of t
nearly free electron final bandEf , resulting in r !1: The
influence of the finite escape depth, represented byG f , is
strongly reduced and 12r in the denominator of Eq.~30!
can be replaced by 1. Taking Eqs.~28! and ~30! as a guide,
we assume that the model

m~E!5 f ~E!(
s5↑

↓

CsGs /@~E2Es!
21Gs

2#,

~31!
Gs~E!5Im S~E!1ur uG f s
.
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is a good approximation of the true spectral function. In E
~31! the ratior is defined as in Eq.~30! and the sum over the
two spin components is multiplied by the Fermi-Dirac fun
tion f (E).

If we would perform the Bayesian analysis, using the d
of Fig. 10 and the model~31! with the FL form~29! of Im S,
little would be gained, however, since the absolute valueP
of Eq. ~27! does not allow us to calculate something lik
‘‘the probability for the validity of the Fermi liquid model’’
on an absolute scale since such a quantity simply does
exist. Even a well tested theory can claim a higher proba
ity only since, by comparison, it describes the experime
better than other competing theories. We thus need a c
peting model, but we also have to take Ockham’s razor10 into
account: As shown above, we can increaseP by improving
the model, adding more parameters to it. We only can cla
advantage for a model with a highP value if it contains the
same~or a smaller! number of parameters as~than! the rival
model with a lowerP.

The marginal Fermi-liquid~MFL! model6 has been intro-
duced to explain the unusual properties of the hig
temperature superconductors, attributed to the strong co
lations between the conduction electrons. Since thed
electrons in Ni are also strongly correlated, we decide
investigate this model in competition with the FL mode
Instead of Eq.~29!, the MFL model requires

Im S15b1uEu, E'EF50. ~32!

Since the two models have the same number of paramete
fair contest is ensured.

B. Refining the models

The energy dependence of the electron escape dept
mean free pathLsm for the elements, measured in monola
ers ~ML !, is roughly given by the universal curve14

Lsm5A/~Es1hn!21BAa0~Es1hn!,

r5m/a0
3, ~33!

Ls5a0Lsm,

whereA5538 ML ~eV!2, B50.41 ML ~nm eV!21/2, r is the
density,m is the atomic mass, anda0 is the monolayer thick-
ness. As in Eq.~31!, the indexs refers to the spin-up and
spin-down components, respectively,Es is the corresponding
binding energy, andhn is the photon energy. Since we defin
EF50 as the zero of the energy scale,Es1hn is the energy
aboveEF . If j is the imaginary part of the wave vector an
c the wave function of the photoelectron in the crystal, t
intensity I will decay according toI 5ucu2}exp(22jz)
5exp(2z/Ls) and thus

G f s5~]Ef /]k'!j5~]Ef /]k'!/2Ls , ~34!

i.e., the last term on the right-hand side of Eq.~31! can be
written as

ur uG f s5u]Ei /]k'u/2Ls . ~35!

The slope of the initial band that is needed in Eq.~35! could
be taken from the band structure11 shown in Fig. 9, but since
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our measurements are taken at 12 K and are better reso
than the ones used in Ref. 11, we perform a prelimin
least-squares fit to our spectra, of which Fig. 10 presen
selection only, using a sum of two Lorentzians as the mo
truncated again by the Fermi-Dirac function. We then use
binding energies of these Lorentzians to correct the par
eters of the combined interpolation scheme and to recalcu
the spin-up and spin-down components of theL3 initial band
at the top of the 3d bands, together with the slopes requir
in Eq. ~35!.

The experimental spectra also contain background e
trons of different origin that have to be incorporated into t
model. The constant count aboveEF displayed by all experi-
mental spectra in Fig. 10 is caused by stray light a
amounts to about 15% of the maximum count. We determ
this contribution for eachhn as the arithmetic mean of th
last 15 data points at the right-hand side of the spectra
simply add it to the model~31!, assuming that this stray ligh
contribution remains constant also belowEF . The remaining
background consists of quasielastically scattered electr
of secondary electrons, and of electrons scattered in the
lyzer after having surmounted the high pass filter. We d
cuss these three contributions in turn below.

The photoelectrons may be scattered quasielastically
surface irregularities resulting from incomplete recrystalliz
tion after the argon ion bombardment or from adsorbed
oms or molecules. The spectral distribution of this quasie
tic background observed in the@111# direction is
approximately proportional to the angle integrated spectr
of the elastically emitted photoelectrons, which is again cl
to the emission into the three$11̄0% mirror planes containing
the @111# axis:15,16 The two exchange split peaks are shift
by up to about60.25 eV with respect to their energy pos
tion at normal emission.15 This causes a sizable signal ev
at energies where the contributions of both the elastic and
inelastically scattered electrons are low. An example of t
situation is the Fermi edge of thehn56.5 eV spectrum,
which is dominated by the quasielastically scattered e
trons.

In the Shirley approximation,17 the intensity of the sec
ondary electrons at the energyE is proportional to the inte-
gral over the angle integrated spectrum aboveE, containing
both the elastic and the inelastically scattered electrons.
electrons scattered in the electron analyzer can be desc
by a similar expression, except that the integration is n
carried over all electrons aboveE emitted along@111# only.

A detailed description of these three background con
butions would require at least three additional parameter
model. While this procedure will lead to a nearly perfe
least-squares fit withx2'n, it will also effectively mask any
deficiencies the FL or the MFL model might have, in cle
violation of Ockham’s razor. On the other hand, some cru
model of the background is needed since we would ob
x2@n otherwise. We decide to lump the three contributio
together, describing them by the single constantCu , which
is added to the model~31! after multiplying it by the Fermi-
Dirac function. This approximation might not be that cru
after all since the contribution of the quasielastically sc
tered electrons is large close toEF , where the intensity of
the secondary electrons and the electrons scattered in
analyzer is small, while the situation is reversed at hig
ed
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binding energies. Assuming that the escape depth is give
the universal curve~33!, we end up with the six adjustabl
parametersC↑,↓ , E↑,↓ , b, andCu .

C. Possible sources of error

The angle resolution will also contribute to the observ
line shape. In the case of Ni close to the@111# axis, the
surface of constant energy for the uppermost exchange
d band is approximately a plane perpendicular to@111# and
the final band approximately nearly free electronlike. In th
caseEkin(Q)2Ekin(0)'ur uEkin(Q)sin2(Q), whereEkin is the
kinetic energy of the photoelectron in vacuum andur u!1 is
the ratio of the slopes in the initial and final bands defined
Eq. ~30!. The spreadDQ in the polar angleQ causes the
energy spreadDE'ur uEkin(Q)sin(2Q)DQ. Since DE is
minimal for Q→0 we investigate normal emission withQ
50 from Ni~111! only. We determineDE caused byDQ as
a function ofhn numerically, using the actual energy bands11

and the polar widthDQ52° FWHM of our analyzer. For the
majority band, we obtain, e.g.,DE50.6 and 5.2 meV for
hn56.5 and 11 eV, respectively. These values are o
about 0.1 times the mean free path contributions~35! at the
corresponding photon energies. We calculate this small
ditional broadening separately for each photon energy, inc
porating it into the model approximately by adding the co
responding value to the mean-free-path contribution~35!.

We investigate the form of the resolution function of o
photoelectron spectrometer using the experimental Pt ph
electron spectrum aroundEF . Since the polycrystalline P
sample is atT512 K, the Fermi edge can be regarded a
step function and the negative derivative of the experime
Pt spectrum is the spectrometer function: It turns out to
Gaussian to a good approximation, verifying our assumpt
for Rjk in Eq. ~2!. As an aside we remark that any oth
symmetrical spectrometer function can be used with
scheme by simply introducing it in Eq.~2!. In contrast, an
asymmetrical spectrometer function requires a more ela
rate overhaul of various equations. We also take the ene
dependence of the width parameters of Rjk approximately
into account by determinings through a least-squares fit o
the Fermi-Dirac function to the measured Pt Fermi edge
each of the ten different photon energies individually. W
further improve the accuracy of the convolution~1! and ~2!
in the neighborhood ofEF by replacing the steep Ferm
Dirac functionf at Ei by its spectral weight

f̄ i51/DE
Ei2D/2

Ei1D/2

dE f~E!, ~36!

where D510 meV is the step width between neighborin
data points.

We also comment on the possible influence of the Ni~111!
surface state,18 which we clearly identify in the spectra take
with p polarization by its surface sensitivity, comparing th
results obtained from a clean surface with that exposed
0.25 L of O2: At hn57.5 eV, the pronounced peak a
E'E'20.3 eV observed for the clean surface is strong
reduced in intensity after the O2 adsorption and the position
of the peak shifts toE'20.26 eV, which is the position o
the majority spin peak fors polarization athn57.5 eV in
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Fig. 10. The20.3-eV peak of the clean surface is thus like
to be a superposition of the surface state and of the majo
peak. In accordance with the high degree of polarization
the synchrotron radiation and the selection rules,19 we do not
find any indication of this surface state withL1 symmetry in
the spectra of Fig. 10, taken withs polarization. As a further
test, we look for theL1 3d bulk state, which produces
pronounced peak atE'21.7 eV for hn515 eV andp po-
larization, while no trace above a smooth background can
detected fors polarization. Thus any residual contribution
the surface state to the spectra of Fig. 10 must be very s
and can safely be neglected.

We finally mention that, although available, we do n
include spectra withhn.11 eV in the Bayesian analysi
since the mean-free-path contribution~35! is getting too
large compared to the ImS term of Eqs.~29! or ~32!. For the
same reason we fail in our attempt to perform a sim
Bayesian analysis of Pt~111! spectra since the slope of th
initial band is too large in this case.

D. Least-squares fit

We perform preliminary least-squares fits at allhn to ob-
tain the best adjustment for the six parameters spec
above. Forhn>8.5 eV, the exchange splitting and the inte
sity ratio of the two lines turn out to beDx5E↑2E↓
'0.3 eV andI ↑ /I ↓'1, respectively, whereI ↑ /I ↓ is deter-
mined by integrating the optimized lines from210 to 10 eV
prior to the truncation by the Fermi-Dirac function. We e
pect this Dx value from the raw data and from earlie
results15 and theI ↑ /I ↓ value from the fact that the corre
sponding transitions occur at closely neighboring points
the Brillouin zone and that the states involved differ only
their spin orientation otherwise. On the other hand, we fin
strong increase ofI ↑ /I ↓ for both models in thehn,8.5 eV
range. The highest valueI ↑ /I ↓'35 is obtained for the MFL
model athn57.0 eV. This unphysical increase ofI ↑ /I ↓ ob-
viously serves to mask the deficiencies of the FL and M
models since the number of parameters is too high at th
low hn where the minority peak is centered aboveEF . We
therefore eliminateC↓ as an adjustable parameter in this r
gion by calculating it fromC↑ and the average intensity rati
of the spectra withhn>8.5 eV, which isI ↑ /I ↓51.26 and
0.98 for the FL and MFL cases, respectively. This is n
sufficient forhn,7.5 eV, where only a small fraction of th
minority peak contributes to the measured spectra since
physically largeDx would be obtained. We therefore fixDx
in addition for hn,7.5 eV at the average value of theDx
obtained athn>7.5 eV, which are 0.324 and 0.300 eV fo
the FL and MFL cases, respectively. We also useb2
51.192 eV21 andb150.245 as a global values valid for a
hn, determined iteratively from the conditionSx2(m)
→min, where the sum runs over the ten photon energies.
constant describing the background electrons contributes
tween about 10% and 30% of the difference between
maximum count and the count aboveEF , with the lowest
values obtained for the FL model and highhn.

The resulting optimized modelsm are presented in Fig
11. Their convolutionsG(m) are compared with the mea
sured spectra in Fig. 10 and the correspondingx2(m) to-
ity
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gether with their sums are listed in columns 3 and 6 of Ta
I. The most striking difference between the measured spe
and theG(m) occurs forhn between 7.0 and 9.0 eV, wher
the FL model reproduces the sharpness of the truncated
nority peak close toEF much better than the MFL mode
also reflected byx2(mFL),x2(mMFL): Since the values of
b2 andb1 are mainly determined by the untruncated maj
ity peak in this region, the MFL minority peak close toEF is

FIG. 11. Optimized FL and MFL models, shown as heavy a
light solid lines, respectively. The scale conforms with the norm
ization of the data chosen in Fig. 10. The tick marks give the bi
ing energiesEs for the FL peaks. Notice that the tick marks do n
coincide with the peak maxima, which is one characteristic feat
of the FL~and MFL! many-body spectral function. The minority F
peak is seen to crossEF betweenhn58.0 and 8.5 eV.
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TABLE I. Numerical results of the least-squares fit and of the Bayesian analysis.

hn
~eV! n

Fermi liquid Marginal Fermi liquid

log10(rp)x2(m) x2(â) a0 x2(m) x2(â) a0

6.5 64 155.2 60.3 0.0973 104.9 64.1 0.231 22.04
7.0 111 304.6 105.1 0.0439 1874.2 89.4 0.0104 6.1
7.5 111 489.9 119.5 0.0340 1318.3 109.6 0.0115 5.6
8.0 111 582.3 178.2 0.0279 1950.6 152.9 0.00615 5.0
8.5 111 239.9 145.1 0.112 610.6 131.7 0.0249 5.5
9.0 111 185.9 132.8 0.191 249.0 116.1 0.0841 0.5
9.5 111 371.9 96.1 0.0303 264.9 105.3 0.0706 23.05

10.0 111 235.9 107.5 0.0845 174.8 114.5 0.239 23.51
10.5 111 224.7 101.5 0.0726 162.0 108.2 0.248 23.84
11.0 111 198.3 95.2 0.153 611.5 87.8 0.0299 7.3

Sx2 1063 2988.6 1141.3 7320.8 1079.6
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necessarily broader than the corresponding FL peak. T
the least-squares fit already indicates that the FL mode
more likely in this energy region.

In hindsight, one might argue that theb parameters
should be determined at low photon energies where the
ference between the FL and MFL models is most appar
We actually perform such a least-squares fit, obtainingb2
51.150 eV21 andb150.208 eV21 as the average of the op
timized fit parameters forhn57.0, 7.5, and 8.0 eV, proceed
ing as explained above otherwise. The results are qua
tively similar, but quantitatively even more in favor of th
FL model. For example,x2(mFL).x2(mMFL) now occurs
only at two instead of four photon energies and the co
sponding values, which are 158.1 and 154.9 at 6.5 eV
225.7 and 193.9 at 10.5 eV, are much closer together
the x2(m) values of Table I. We do not use this second
procedure in the Bayesian analysis below, however, sinc
could be construed as unfairly favoring the FL model.

E. Bayesian analysis for Ni

The most important quantity that we obtain from t
Bayesian analysis is of course the ratior p5PFL /PMFL of the
probabilities ~27!. We list log10(rp) in Table I for the ten
spectra of Fig. 10, together with the correspondingx2(â)
anda0 , and show the most probable spectral functionsâ in
Fig. 12 for both models. As anticipated from the lea
squares fit, the integrated joint probabilityPFL is larger than
PMFL for hn between 7.0 and 9.0 eV, with very highr p
values except athn59.0 eV: The FL model is clearly much
more probable for the low photon energies, in spite ofr p
'0.01 forhn56.5 eV. The spectral range is only about h
as large in this case and the contribution of the minority p
negligible, which means that the energy dependence of
background that we neglected has a decisive influence.

The higher probability of the MFL model athn59.5,
10.0, and 10.5 eV is followed by the extremely highr p value
in favor of the FL model athn511.0 eV. This erratic behav
ior might just signify that it is more difficult to distinguish
between the two models in this region since the fully dev
oped minority peak no longer produces a sharp struc
close toEF and since the decrease of the escape depth o
us
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if-
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photoelectron causes a much higher additional broadenin
the lines: As for thehn56.5 eV case the neglected energ
dependence of the background may again contribute mor
the r p values than the difference between the two model

We evaluate the difference in the behavior at low a
high photon energies by calculating the arithmetic mean
log10(rp) and its standard deviation corresponding to the g
metric mean ofr p separately for the two regions. The resu
is r̄ p512 00031061.5 for hn between 6.5 and 8.5 eV an
r̄ p50.3231062.1 for hn between 9.0 and 11.0 eV: The F
model is about four orders of magnitude more probable t
the MFL model in the low-photon-energy region, while th
error margin is too large to allow a distinction between t
two models for the high-photon-energy region.

The FL and MFL models obtained from the least-squa
fit prior to the Bayesian analysis, which are shown as he
and light solid lines in Fig. 11, differ from each other, whi
the corresponding most probable spectral functionsâ pre-
sented in Fig. 12 nearly coincide. The ripples correspond
to theaosc component discussed above are obviously cau
by the noise, as revealed by a close comparison with the
of Fig. 10. As expected, the amplitude of these ripples
smaller for the FL case for all photon energies for whi
r p@1. This is qualitatively equivalent to the results given
Fig. 7 ~good model, smallaosc! and 6~bad model, hugeaosc!,
whereP7 /P6 is about 1012, i.e., about 108 times larger than
the correspondingr̄ p of Ni in the low hn region. The ratio of
the regularization parametersa0 listed in Table I turns out to
be a0

(FL)/a0
(MFL).1 wheneverr p.1, again in line with the

results of Figs. 7 and 6, where the corresponding ratio
18.0. As expected, Table I showsx2(âFL)'x2(âMFL)'n,
which means that the convolutionsG(âFL) andG(âMFL) fit
the data within the noise; they are so close together that
impossible to distinguish them in a figure, which is the re
son that we present onlyG(mFL) and G(mMFL) in Fig. 10.
Characteristically,x2(âFL).x2(âMFL) wheneverr p@1, in
line with thex2(â) values of Figs. 6 and 7 where the corr
sponding difference is 12%: Since thea0 is lower for the bad
model, the Bayesian analysis works harder at fittingG(â) to
D, transferring a larger portion of the noise spectrum toâ on
the way, which is the comparatively largeraosc component
observed in Fig. 6 and for MFL cases in Fig. 12 forhn
between 7.0 and 8.5 eV.
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V. SUMMARY

The continuuma of spectral functions, which, after con
voluting with the spectrometer function, all fit the noisy me
sured spectrumD equally well, consists of the true spectr
function ã containing the physics to be investigated and
continuum of unphysical oscillationsaosc, the convolution of
which is close to zero. The iterative Bayesian deconvolut
introduced in this paper is the easiest way to select from
continuum a range of spectral functions with a lowuaosc/ãu

FIG. 12. The most probable spectral functions, obtained fr
the data of Fig. 10 and from the optimized FL and MFL models
Fig. 11, shown as heavy and light solid lines, respectively. T
scale conforms with the normalization of the data.
-

a

n
is

ratio close to the most probableâ: Little effort is required to
establish the computer code and the iteration runs fast on
personal computer. A starting modelm of ã is required, with
m being improved as the iteration proceeds. The unbia
model mu5D may be used, but the method also tolera
simple but smooth starting modelsm with a strong negative
bias, e.g.,m5const, which makes it particularly useful i
case no theoretical model is known. Although closely rela
to the Bayesian analysis, this iteration does not allow us
determine the most probableâ.

The Bayesian analysis is the only way to evaluate diff
ent theoretical modelsm in terms of the measured spectru
D quantitatively through the probabilityp(Dum,a0) for D,
given the modelm, with the regularization parametera0 de-
termined byp(Dum,a)→max. The scientist can influenc
the analysis only by specifying the conditionm since all
results are uniquely determined byD and m. This analysis
takes the continuum of all possiblea into account and yields
â, G(â) of Eq. ~1!, andx2(â) of Eq. ~4! as by-products. We
elucidate the role of the model by demonstrating analytica
and by computer simulations that bothp(Dum,a0) and a0
decrease anduaosc/ãu increases asm deviates fromã, dis-
qualifying the notion that one should usem5const to obtain
an ‘‘unbiased’’ â. This model, like any other model with
strong negative bias, producesâ5ã1aosc with a large
uaosc/ãu ratio, with no resemblance to the originalm and low
values fora0 andp(Dum,a0): The Bayesian analysis is in
corruptable and yieldsâ'm'ã with uaosc/ãu'0 for the
highestp(Dum,a0@1) only. Any model withp(Dum,a0)
,p(Dumu5D,a0) has a negative bias and should be
jected since theâ obtained from it are not trustworthy. O
the other side, Ockham’s razor10 should be applied in con
structing the models, using as few parameters as possib
describe the physics to be investigated and to incorporate
additional knowledge: Given two competing theoretic
models containing the same small number of parameters
Bayesian analysis yields a reliable ratio of the correspond
p(Dum,a0), in spite of the imperfections of the models an
the distortions and limitations of the experimental spectru

The parameters of the models can be optimized in p
ciple by using the Bayesian analysis itself, but in practice
expenditure of work becomes prohibitive for more than o
or two parameters. We find it equivalent but vastly mo
efficient to use the usual least-squares fit betweenD and the
convolution ofm for that purpose, performing the Bayesia
analysis with the optimized models afterward. We also
move the severe convergence problems frequently enc
tered while solving the system~15! of n nonlinear equations
for then unknownsâi by solving this system for the equiva
lent unknownsD i defined in Eq.~7! instead. In addition, we
simplify both the Bayesian iteration and the analysis cons
erably since we approximate the convolution by summ
over then data points only, using a normalization that min
mizes the errors at the edges of the spectrum.

Applying the Bayesian analysis to the low-temperatu
and low-energy Ni photoemission normal to the~111! sur-
face, the probability that these spectra are reproduced by
Fermi-liquid model turns out to be about four orders of ma
nitude higher than that corresponding to the marginal Fer
liquid case for low photon energies (6.5 eV<hn<8.5 eV)
where the minority peak is strongly truncated by the Ferm
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Dirac function. This remarkable numerical result is just
consequence of the FL and MFL models treated as co
tions in the Bayesian analysis, in the same sense as the
merical values of the optimized parameters contained in
models are a consequence of the least-squares fit. It i
course possible and even necessary to question the va
of these conditions, e.g., our requirement that the mod
cover the range fromEF to at least aboutDx'0.3 eV below
EF . In the original derivation of Eq.~29!, valid to arbitrary
order in perturbation theory, Luttinger20 states that this be
havior is valid forE ‘‘very near’’ EF . Is the range of our FL
model too large?

We investigate this question for a simple model cor
sponding to the lowest order in perturbation theory, i.e.,
calculate the numberN of Auger processes filling the hol
generated by exciting the photoelectron originally atE(k i)
5Ei below EF to energies above the vacuum level. F
E(k)5\2k2/2m* we obtain N}325(12«)12(12«)5/2,
where«5(EF2Ei)/EF . Assuming«!1 and expanding (1
2«)5/2, we recoverN}«2 neglecting higher powers, i.e., Eq
~29! as expected. EvaluatingEF as the difference betwee
the Fermi edge and theG1 level, we estimateEF'8 eV for
Ni from Fig. 9, i.e.,«'Dx /EF'0.04!1 as required. Thus
in the spirit of the Fermi-liquid theory itself, our FL mode
assumes that the«!1 criterion necessary to obtain theN
}«2 dependence for the simple model above also applie
the asymptotic behavior of the corresponding general re
obtained by Luttinger.20

The ImS2 contribution~29! is still clearly identified even
aroundEF since the minority peak forhn58.5 eV that is
closest toEF (E↓527.3 meV for FL! has the highest am
plitude and the smallest effective width in both Figs. 11 a
12, in spite of the dominating escape depth contribution~35!
in this region. The differences between the FL and M
nd
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minority peaks close toEF evident in both Figs. 11 and 10
thus also reflect the different functional form of ImS since
the dominating contribution~35! is the same for both mod
els. We also note that we expect only minor improveme
by repeating the measurements with the same high signa
noise ratio but with a superior energy resolution since
escape depth contribution~35! is comparable to the half
width of the spectrometer function aroundhn58.5 eV al-
ready: Essentially, the same most probable deconvolutionâ
as in Fig. 12 and similar probability ratios will be obtaine
since theseâ are close to the true spectral functionsã, given
the optimized models and the high signal-to-noise ratio
the data.

The huge probability ratio in favor of the FL model ob
tained for the low photon energies where the minority pe
crossesEF is in stark contrast to the suggestion that the M
theory might apply to the 3d metals5 and it casts doubt on its
validity for the high-temperature superconductors as well.
higher photon and binding energies, deviations from
simple quadratic dependence of ImS on E are expected, bu
the uncertainty in the spectral dependence of the backgro
combined with the drastic decrease of the escape depth o
photoelectrons prevents a quantitative investigation
Im S(E) in this region.

ACKNOWLEDGMENTS

V. Dose helped us start our investigation of the Bayes
analysis by sending a copy of the Skilling paper~Ref. 2! and
R. Jelitto helped us get through it: We thank them both.
the final stage of preparing the manuscript, E. Mohler and
Schwarz suggested several important improvements, w
we gratefully acknowledge. This work was supported by
BMBF under the Contract No. 05 605RFA 0.
an-
.

to,
1P. H. van Cittert, Z. Phys.69, 298 ~1931!.
2J. Skilling, in Maximum Entropy and Bayesian Methods, edited

by P. F. Fouge`re ~Kluwer Academic, Dordrecht, 1990!, pp.
341–350.

3W. von der Linden, M. Donath, and V. Dose, Phys. Rev. Lett.71,
899 ~1993!.

4W. von der Linden, Appl. Phys. A: Mater. Sci. Process.60, 155
~1995!.

5A. Santoni and F. J. Himpsel, Phys. Rev. B43, 1305~1991!.
6P. M. Varma, P. B. Littlewod, S. Schmitt-Rink, E. Abrahams, a

A. E. Ruckenstein, Phys. Rev. Lett.63, 1996~1989!.
7See, e.g., J. Mathews and R. L. Walker,Mathematical Methods o

Physics~Benjamin, New York, 1964!.
8D. Marquardt, J. Soc. Ind. Appl. Math.11, 431 ~1963!.
9See, e.g.,Numerical Recipes in C, 2nd ed.~Cambridge University

Press, Cambridge, 1992!.
10A. J. M. Garrett, inMaximum Entropy and Bayesian Method,
edited by W. Grandy and L. Schick~Kluwer Academic, Nor-
well, 1991!.
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