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We present a simple and effective iterative deconvolution of noisy experimental spdatoadened by the
spectrometer function. We show that this “iterative Bayesian deconvolution” is closely related to the more
complex “Bayesian analysis,” also known as the quantified maximum-entropy method. A maxie¢he true
spectral function is needed in both cases. The Bayesian analysis is the most powerful and precise method to
relate measured specttato the corresponding theoretical modetsvia the respective probabilities, but two
grave conceptual problems together with two severe technical difficulties prevented widespread application.
We remove these four obstacles Gy demonstrating analytically and also by computer simulations that the
most probable deconvolutioa obtained as a by-product from the Bayesian analysis gets closer to the true
spectral function as the quality ofincreasesiii) finding it equivalent but vastly more efficient to optimize the
parameters contained in a given modeby the usual least-squares fit betwd2rand the convolution ofm
prior to the Bayesian analysis instead of using the Bayesian analysis itself for that pyipbapproximating
the convolution by a summation over the energies ofritdata points only, with the normalization of the
spectrometer function chosen to minimize the errors at both edges of the spectryi) andiding the severe
convergence problems frequently encountered in the Bayesian analysis by a simple reformulation of the
corresponding system af nonlinear equations. We also apply our version of the Bayesian analysis to angle-
resolved photoelectron spectra taken at normal emission fr@fri liclose to the Fermi energy at about 12 K,
using two different physical models: Compared with the marginal Fermi liquid, the Fermi-liquid line shape
turns out to be about ftimes more probable to conform with the observed structure of the majority and
minority spin peaks in the low-photon and small-binding-energy redi®0163-182@08)04435-X]

I. INTRODUCTION n
Dk:Gk(a)+Pk, GKZZ ajij, (1)

The deconvolution of a noisy experimental spectrum, =1
broadened by the spectrometer function and taken in a limyhere G, is the convolution of any; and Gy, is the nor-

ited range only, is an ill-posed problem, i.e., there is a broagnalized Gaussian spectrometer function characterized by the
range of spectral functions, the convolution of which all fit width parametew,

the measured spectrum equally well. Most of these spectral

functions, however, show strong unphysical oscillations and Gjk=Rjk /N, Rjk=exr[—(Ej—Ek)2/202],

can be weeded out by introducing smooth model spectral

functions that take the evidence of the measured spectrum

approximately into account. Far from being arbitrary, this Ny= Z Rhk- v

analysis goes beyond the simple deconvolution since it al- h=t

lows us to assess the validity of different theoretical modelsThe first method is our own iterative deconvolution, which

in terms of the measured spectrum quantitatively. dramatically improves upon the somewhat similar method
In the first part of this paper we discuss the merits of twoproposed by van Cittértsince it is closely related to the

different deconvolution procedures by comparing their resecond method, which is the complete Bayesian spectrum

sults with the corresponding values of tinee spectral func-  analysis given by Skilling. Application of this powerful

tion Ejz'é(Ej), i.e., we start out from the data of an “ex- Bayesian analysis to, e.g., photoelectron or inverse photo-

perimental spectrum” D,=D(E,) obtained by adding electron spectra has been spafsince the role of the model

Poisson distributed nois@, with the average magnitude has not been fully appreciated and since the method seemed

(DY *? to the convolutionG(a) of &, i.e., to preclude the optimization of more than one or two param-

n
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6 . | ations, usings;y of Eq.(2) in Eqg. (1) results in a convolution
fwhm = 0.05 eV n=110 with only small deviations from the true convolution at the
- 2 edges if the expansion @f around the edges contains even
T=10K x2=103.5 =i o .
. ’ 2 powers only. Ifa varies linearly at the edges these errors will
i ,;’ be larger, but they can be reduced by starting and stopping
= the measurement in regions where the slop&®aé small.
Convoluti The upper part of Fig. 1 showS(a) as the solid line, cal-
s L volution 16 culated using Eq91) and(2), with a 0.05 eV full width at
. half maximum(FWHM) of the spectrometer functioR;y,
@, andD as circles. The probability distributién
OF e "4 F(x?)exp(— x*/2) (x*) ™~ €)
@ of the quantity
g
g 1, .
< 2= D —Gy)?/D 4
= True Spectrum X k§=:1 L(Dk=GI%Did @
, ! el I has its maximum at—2 for G=G(a), wheren—2=108 in

the example. This is reasonably close to the actual value of

x?(2)=103.5 for the particular noise spectrum of Fig. 1.

Actually, x2(a) must be close tm owing to Eq.(4) since
FIG. 1. The circles of the upper curve give the “experimental [ D,— G(a) ]~ o= Dy.

spectrum” D for which different deconvolutions will be shown in We now try to recovea from D using an iterative decon-

Figs. 2-8. It has been generated by convoluting the true spectrg|ytion: The valuesai(v) obtained in the step are used to
function a (the triangles in the lower partith the spectrometer get a®* D from
1

function and adding Poisson distributed noise to this convolution
(solid line in the upper part The circles of this experimental spec-

trum and the triangles of this true spectral function are also shown
in Figs. 2-8.

-0.4 -0.2 0.0
binding energy (eV)

al”"V=a"expgAi/a), (5)

whereA; is some reasonable measure of the difference be-
o o tweenD andG = G(a(), containing thea" according to
eters contained in the model, a situation that we set out t@q (1), This is the basic equation that also governs the full
rectify. We also simplify the Bayesian analysis considerablygayesian analysis to be discussed later; it has the virtue to
by introducing two important technical improvements. gifi|| the obvious requirement tha; =0 for all i. The pa-

In the second part of the paper we apply the BayesiaR;meterq can be used to regulate the speed of convergence
analysi$ including our own amendments to the actual anglei, the iterative deconvolution; for simplicity, we set=1
and energy resolved photoelectron spectra ¢LNi), taken  pere However, in the Bayesian analysiwill play a crucial

at aboutT =12 K near the Fermi energdr. Our aim is 0 (e, which is the reason that we show it explicitly in E§).
distinguish between the Fermi-liquid and the marginal
Fermi-liquicP® behavior of the interacting @ electrons, re- . . o _
spectively. Computer simulation of the iterative deconvolution
What is the correct expression far? Should we follow
the early proposal by van Cittértand use A,=[D,

—G;(a”]/D,;? Neglecting the noise, this choice would yield

The lower part of Fig. 1 shows the true spectral funcion Ai—0 for v—c or a—a using Eq.(5), but in reality the
as triangles. It consists of a superposition of four Lorentzian§'0iS€ component dd; is transferred t@; at each step of the
with different intensities and energy positions, truncated bytération, giving rise to
the Fermi-Dirac function witif =10 K, and a small constant
presenting the dark count. One of the Lorentzians has its
center above the Fermi enerdy==0. The width of the
Lorentzians increases quadratically with the binding energy.
We use Eq.(1) to calculate the convolution, which is an instead, i.e., we obtain the unphysi@lmentioned in the
approximation since we replace the integral by a sum andhtroduction, consisting of the trua and the oscillatory
also because we carry this sum ovedata points only. We componenta®%%D—G(a), which is the amplified noise
do so because we select the experimental spectrum itself apectrum ofD according to Eq(1), the amplitude of which
the first starting model of the spectral function, as proposedcreases as the iteration progresses. We perform several it-
originally by van Cittert The normalization chosen in Eq. erative van Cittert deconvolutions, using the linearized ver-
(2) minimizes the errors at the edges of the spectrum causeglon of Eq.(5) and the experimental spectrum as the starting
by this restriction since at least far=const the correct re- model, m,=a(®’=D, as also originally proposed by van
sult, which isG(@) =2 in this case, is obtained also up to the Cittert! As expected, the deconvolution approaches the form
edges. In fact, as also expected from symmetry considegiven in Eq.(6) after only a few iterations.

II. ITERATIVE BAYESIAN DECONVOLUTION

n

a; =5i + aiosc with GESC: iZl aiOS(Gik% 0 (6)
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FIG. 2. Iterative Bayesian deconvolutienand G(a) for v+1 FIG. 3. Iterative Bayesian deconvolutiarandG(a) where the
=197. The experimental spectrumitself is taken as the mode. model is a constant multiplied by the Fermi-Dirac function plus a
See the text fon?, Q, anda. small dark count. The number of iterations 1=108 is adjusted to

obtain y?~73 as in Fig. 2.
The van Cittert results sketched above are not encourag-

ing. However, one of usU.G.) kept being fascinated with e strycture of that is completely swamped by the large
the basic idea. While trying to improve the method, he no-yosc ;omponent in the van Cittert deconvolution is now eas-
ticed another defect: The convolution distributes the |m‘or—i|y recognized ina since a®* has been decreased dramati-

mation contained irg; at E; among the variou®, in the 5,y The strong decrease @ by 60% also demonstrates
neighborhood ofF; . If one wants to improve, iteratively  he‘increased quality of the deconvolution. To our knowl-
using Eq.(5), one should thus take notice of these neighborgqge the method leading up to Fig. 2 is the easiest and fastest
ing Dy, not only ofD; as implied by the van Citted;. The  yay to obtain a reliable deconvolution with a loa®93)

most obvious weighting factor is of course the normalized,tio The procedure is also “unbiased” since the choice
spectrometer functio,; of Eq. (1). He therefore proposed m,=a®=D does not refer to any theoretical model of the

to replaced; in Eq. (4) by the weighted average of the rela- gpeciral function but takes the evidenceDirapproximately
tive deviations betweeb andG"), into account.

) To be sure, differences betwearanda remain: For ex-
i (7) ample, in Fig. 2 the Fermi edge afis not as steep as the true
D v Fermi edge ofa. The steepness of the edge actually in-

o ) oSG )
which can also be interpreted as the convolution of the rela! €ases with increasing decreasing™*in this region, but

tive deviations betweeb andG”. This substitution simul- ¢ IIIS a sil_mult;'ir;]eogs increzlase_aSTCat other energiefs: The
taneously reduces the severe first defect of the van Citter verall quality of the deconvolution as measur_ed;bg Eq.
method to a minor nuisance since E@) effectively aver- (8) thus does not c_hange (.jrasycally_(_)ver a fairly large range
a0es out the noise contained in e over the region cen- of v. Improvement is possible if additional knowledge about
tegred atE; and specified by the widfh o 9 a is available. This is usually the case in photoelectron spec-
i Ki - " ; i i

Figure 2 shows the result of the iterative deconvolutiontrgsco.py Whefe. the position di is routinely determined
using Eq.(7) in Eq. (5) and m=a©@=D as the starting with high precision from a separate spectrum of, e.g., a clean
model. The number of iterati(L)lns is adjusted to obtgh polycrystalline Pt sample kept at the same temperature as,

. . . and in electrical contact with, the crystal to be investigated.
~73 to allow an easy comparison with the correspondin

) : Yn the next example we therefore use as the model a constant
results of the Bayesian analysis of Sec. Ill. An average de- P

T N i , . spectral function, multiplied with the Fermi-Dirac function,
\é:cti'r?gdogg_gA% betweer anda is obtained, wher@is Er=0eV andT=10K, plus a constant dark count.

Below Eg this model has actually a strong negative bias
sinceG(m) clearly contradicts the evidence [l Neverthe-
Q=\/n2(ai—~ai)2/ 2 Q. (8) less, the iterative Bayesian deconvolution shown in Fig. 3,
which is again carried tg>~ 73, followsa quite closely, as
In comparison to a corresponding iteration using the vamjocumented byQ=3.5% only, i.e., compared to Fig. 2 the
Cittert! Ai=(Di—Gi(”))/Di for which Q=23.6% is obtained quality of the deconvolution has increased threefold. As the
at the samey?~73, the improvement is astounding in that comparison shows, the sharp Fermi edge is the most impor-
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6 . u probabilities: Thea obtained from the Bayesian iteration cor-

=10 responding toy? between the maximum and the low end of
o+l = 114 the F(x?) distribution gll have relative high probabilities and
the most probabla=a is likely to fall into this range. The
reader might wonder why we do not just gigeinstead of
this rule of thumb, but since finding is equivalent to rein-
venting the Bayesian analysis, we move on to the next sec-
6 tion.

103 counts

G(a) |
G(m)
1 Ill. BAYESIAN ANALYSIS
o+ N 4 As already mentioned, a spectral functiawith a large
a®* component is highly unlikely to conform with any rea-
@ sonable physical modeh of a even if it fulfills the y?~n
El 3 test. We now investigate the crucial role of the montein
3 . Z 72 selecting physically acceptabde We first sketch the impor-
S Bayeglan - tant results presented in detail by Skillihgtarting by defin-
- Iteration ing the conditional probability distributiop(D|a) for the
. e dataD, given the spectral functioa as the fixed condition,
0.4 0.2 0.0 B n
binding energy (eV) dpo=p(D[a)d"D,
FIG. 4. lterative Bayesian deconvolutiarandG(a) where the _ -1 _ 2
model is a Lorentzian multiplied by the Fermi-Dirac function plus a p(Dla) l_k[ (27Dy) zexp( X1, ©

small dark count. The number of iterations 1=114 is adjusted to ) B )
obtain y2~73 as in Figs. 2 and 3. wheredpyp is the probability thatG(a) falls into the range

d"D=1I1,dD, centered ab andx? is defined in Eq(4). The
robability distributionp(D|a) is approximately normalized
or y\D,>1, i.e., fdpp~1. The least-squares fit used earlier

corresponds top(D|a)—max. Similarly, the conditional

tant spectral feature that should be incorporated into th
model. It is also beneficial that the model of Fig. 3 does no
contain the noise inherent in tme,=a®=D case of Fig. 2 TS O :
sincea now interpolates smoothly between neighbortig p_robab|I|ty distributionp(a|m, ) OT th‘? spectral functioa,
In Fig. 4 we replace the constant spectral function by On%ven the r_n.odem. and t_he regularization parametems the
Lorentzian, truncated again by the Fermi-Dirac function, de- ixed conditions, is defined by

termining its intensity, energy position, and width and also
the dark count by the usual least-squares fit procedure be-
tweenD andG(m), i.e., gettingy?(m) of Eq. (4) to a mini-
mum. We always perform the least-squares fit using the ef- p(a|m,a)=H (27a; /o) Y2exp aS), (10)
ficient Marquardt-Levenberg algorithfnAs seen in Fig. 4, i

the convolution of this model reproduces at least the gross . dp, the probability thatm falls into the ranged™a

features ofD and has thus only a small negative bias. The N . —
quality of the iterative deconvolution, however, is barely_Hidai centered ah andfdp,~1 again foryaa;>1. The
ntropySis given by

higher than that of Fig. 3, showing that the Bayesian iteratiort
is insensitive to the choice of the starting model as long as it
is smooth, except for structures such as the Fermi edge, S=>, [a—m;—an(a;/m;)]
which is much narrower than the spectrometer function:
Such structures should be incorporated if they are known.

In Figs. 2—4 the number of iterations is adjusted to obtain ~=2 [(a—m)&a]2=—x22, (11)
x?>~73 to facilitate the comparison with the Bayesian analy-
sis to be presented below. The minimunQractually occurs  where the right-hand side is valid far~m; only, in which
at slightly highery? values, but the difference to tkeshown  case Eq(10) shows a strong similarity to E¢9), except for
in Figs. 2—4 is hard to discern. The numbers for the model ofthe regularization parameter, which transformsa and m
Fig. 4 areQu,i,=2.9% aty?=75.0. This is still at the low into fictitious counts bya— aa andm— am when Eqs(10)
end of theF(x?) distribution (3) which has its maximum at and(11) are derived from the Poisson distributibm fact,
x?=n—2=108, i.e.,F(75)/F ,,=0.04: For the best agree- ay?2 is obtained fromy? of Eq. (4) using D—aa and
ment betweera(” and@ it is apparently advantageous to G— am: The distribution(9) and the approximate form of
allow some of the accidental structure caused by the noise iRq. (10) valid for a;~m; are completely equivalent in these
the finala® andG(”); however,y?<n—2 should of course “counts.”
be avoided since this would produce a lagf&° component The basic problem encountered in Sec. Il is to weed out
of al”. Since we know neithea nor Q for a true experi- the unphysical deconvolutiorgscontaining a larga®s®com-
mental spectrum, it is important to realize that there alwaygonent. To solve this problem we first join E¢8) and(10)
is a continuum of possible deconvolutioaswith different  using the Bayes theorérhfor conditional probabilities:

dp,=p(alm,a)d"a,
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p(D,ajm,@)=p(D|a,m,e)p(alm,a)

=p(a|D,m,a)p(D|m,a). (12

The two distributiong9) and (10) are statistically indepen-
dent, i.e., the joint distributiorf12) is just the product of
these two distributions, go(D|a,m,«)=p(D|a) and thus

p(D,a|m,a)xexp(B), B=-—x*2+aS, (13

wherep(D,a|m,a)d"Dd"a is the probability thaG(a) falls
into d"D at D and simultaneouslyn into d"a at a, givenm
anda. This joint distribution gets large if botG(a) is close
to D andmiis close toa, with the relative importance of the
respective closeness governeddyAny reasonable physical
modelm must not contain the spurious oscillatica¥°since
they, by their definition(6), do not noticeably influence the
closeness betwedd andG(m) or G(a). Thusp(D,a|m,«)
can be large only if the®* component ofa is also small
since there would be large deviations betwessmd m oth-
erwise. We thus obtain the most probable spectral funétion
with the smallest possibla®® by requiring

p(D,a|m,a)xexp 8)—max or dB/da;=0, (14

leading to the system af nonlinear equations for the un-
knownsa, ,

éi:miequi/a). (15)

HereA, is given by Eq.(7) of Sec. II, withG{") replaced by
Gy(a), and there is also a close connection between &js.
and (15): The only difference is that usingy=a{" we al-
lowed for an iterative improvement of the model in Sec. |
while the model is constant in Eq15), requiring al**¥
—a; here. Applying the general theorem of Bay&8) to the
deconvolution problem is thus equivalent to equatigin
Eq. (15 with the weighted averagg) of the relative devia-
tions betweerD andG(a). This is a useful way to look at
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at the step of the iteration quickly converge to the solutions
A; of Eq. (15). The coefficients of Eq(16) are

m.
Mij:Hij j EXFIAJ("fl)/a)-I— 5” ,

e 4
- 2Ok
H'J_k=1 D,
Ci=2, [Gi(1+B(/Dy],
(18)

n
Bkzhzl My(AY Y a—1)exp(AY Y a)Gry.

The iteration is best started Withj(o)= 0 for allj correspond-
ing to a{®=m; according to Eq(15). After convergence is
obtained, they; are calculated by inserting thg in Eq. (15).
We also verified that the old method of solving E#j5) for
éj and the method presented here lead exactly to the same
numerical values oﬁj. This comparison is of course pos-
sible only as long as convergence is achieved with the old
method.

We now return to the basics of the Bayesian analysis.
While we can solve Eq15) for any givenm and «, we still
do not know the optimad,. This problem is attacked by the
regularization procedure: Instead of focusing on the most
probable spectral functioa, Skilling? proposed to take the
continuum of all possible into account, i.e., to determine
the maximum of the joint probability distributiofi3), inte-
grated over alk:

a—aq if p(D|m,a)=J'd”a p(D,a|m,a)— max.
(19
In Eq. (19) the Bayes theoremi12) and fd"a p(a|D,m,a)

the problem, which even helps us to dodge a severe technicall have been used. The integration can be carried out by

difficulty encountered in solving Eq15). We discuss this
obstacle and our method to remove it in the following two

paragraphs, completing the fundamentals of the Bayesian

analysis afterward.

Usually then nonlinear equationél5) are solved for the
éj by iteratively solving the corresponding set oflinear
equation$ obtained in this case by a linear expansion of th
In(a/m) term. However, considerable convergence problem
are encountered fow<<1 typical for a low-quality model
deviating markedly froma and/or for a high signal-to-noise
ratio. The reason for these difficulties is that, e.g., at step
the iteration,a’<0 may occur for some final solutioré
that are close to zero, in spite of the fact tlﬁqu>0 is re-
quired by Eq.(15) for all j.

We simply bypass these convergence problems by solvin
the nonlinear equationgl) iteratively for theA; instead:
Since A;<0 is required by Eq. (15) for a;<m; andA;>0
for a;>m;, respectively, the solutions of the corresponding
system ofn linearized equations

n

e
S

expandingB(a) of Eq. (13) around the most probabl,
where Eq.(14) ensures that no linear terms show up, i.e.,

Ll @A .
B@~p@)t5 2 o ge (a-a)@—&). (20
and transforming Eq(20) to its purely quadratic form. The
result after the regularizatiofi9) is

I (27Dy) ~Y2exd B(a)]

p(D|m, ag) = Jdet(l + o Y[a]H)

(21)

wherel is the identity matrix[a] is the diagonal matrix, and

H is defined in Eq.(17). Equation(21) is identical to the

corresponding expression given by Skillfni Rik=Rj
hich is the case for our choice & shown in Eq.(2).

The regularization culminating in Eq221) completes
what we call the Bayesian analysis. We now show that this
analysis goes beyond the least-squares fit on three counts.
The numerator of Eq21) is proportional to the maximum of
the joint distribution(13) for the most probabl@=a(«y).
Thus, in addition to the quadratic deviatiog$(a) between
the dataD and the convolution of, the Bayesian analysis
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also accounts for the corresponding deviatiog$S between expression of Eq21) showing this dependence amexplic-
a and the modein. Furthermore, the denominator of E§1)  itly, valid for mj=3a; corresponding toxy>1: Using the
takes care of the fact that there is a continuum of possibleight-hand side of Eq(11), the distribution(10) is a product
spectral functions around: As shown below, the width of of normalized Gaussians centered rat, with the small
this continuum increases from zewg, decreases from infin- width parameterr,;= (a;/ ) 2. We approximate this prod-
ity, and aoS decreases from zero asstarts to deviate from uct by a product of functions and introduce it into Eq19),
the true spectral functiom, causing a corresponding in- taking Eq.(13) into account. The integratiafi9) then results
crease in the denominator and thus a further decrease of Eij.
(21) itself, in addition to the decrease caused by thS
exponent in the enumerator. In comparison, the least-squares 1) -12 2
fit determines the minimum of?(m) # x2(a) only. P(D[m,ag>1) 1;[ (2mDw)exd —xA(m)/2].

The most important application of the Bayesian analysis (25

is the quantitative comparison of different theoretical models- high-quality models, the Bayesian analysis including the

min terms of the measured ddbaby calculating the ratio of ot "
) o ; regularization condition(19) reduces to the usual least-
the corresponding probabiliti€21). The existence of such a squares fit betweeG(m) andD.

guantitative comparison provides of course the ultimate mo- In the limit of m=2 for which ag—°, the basic system
tivation of taking the spectra in the first place. Any other dataof nonlinear equation¢15) yieldsoé=rr; and thusa—3
analysis, including the least-squares fit, allows a qualitativ%ince in generah=a+ a®c according to Eq(6), it foIIowé
comparison only sincé) the difference betweeg’(m) and thata®“=0 in this case. Asn starts to deviate’ frora, we

2pan o L ~ .
X (Sa)’ (g) tlhe g_i_ewaﬂmns betweemfaﬂd a degtc):lrlbed by | obtain the decrease @f(D|m, ;) discussed above and the
fcaonc’tiggs aarc?l?rglyﬁ) atree n%?n;g]c%uurgtg q ;or? possible spectral yo rease ofy described by Eq23). Furthermore, since the
: coefficientsm; and «g of the nonlinear system of equations
(15) are changed with respect to thre=a casea+a or a®°
#0: A decrease in the quality ah causes a concurrent
In the Bayesian analysis the role played by the modii  increase in the amplitude @*% Thus a model with a small
determining the quality of the most probable spectral funcvalue of p(D|m, ) is unlikely to conform withD since it
tion a is not readily apparent. We therefore consider thegenerates the large oscillatory deviatiaft° betweena and
limiting casea;~m;, i.e., |A;/ag|<1 using Eq.(15), and . This statement is of course valid in spite of the fact tat
assume that the regularization has been carried out, i.e., thistnot known in general. The most important consequence of
ag anda are known for the given modeh and the measured this behavior is the possibility to evaluate different theoreti-
spectrunD. The nonlinear equationd5) can then be linear- cal modelsmin terms of the measured spectridvaccording
ized asa,—m;~m;A;/a,. Rewriting, summing, and taking to their respective probability distributiqn(D|m, ) quan-
Eq. (11) into account, we obtain titatively.
We obtain some further insight fronp(a|D,m,ay),
2__ A 2 = N2 =2 2 which is the normalized probability distribution af given
Y= 2 (B-m)Hm=2 &-m)m~ap 2 mA?, D, m, and a,. Since the joint distributiorp(D,a|m, ag)
(22 reaches its maximum a=a and the integrated joint distri-

where we replace the most probaBleby the trued; , which  Pution p(D|m, ao) no longer containsg, the Bayes theorem
should be a very good approximation singedoes not mea- (12) requires a maximum value af(alD,m, ao) also ata
sure the individual but only the average squared deviations & 9iven by

betweena; andm;. Thus Eq.(22) leads to

A. Role of the model

p(a|D,m,ag)= \/H (273;) " taddel(] + ag Y[ATH),
g™~ \/E miAiz/ \/2 @&-m)%m; (23 (26)

and also, using Eq¢11) and (23), to which cIearIy_ goes to infinity asyg—® or m_:"_é, ie.,
p(alD,m, ) is a product ofs functions in this limit. Asm
~ . \/ 2\/ _ ) starts to deviate froma, the width of p(a|D,m,ag) in-
apS(a)~—3 Z m;A; 2 (a—m)m;, (24 creases, accommodating a broader range of accepgable
_ _ _ B around a, while p(a|D,m,a;) and p(D|m,a,) both de-
which, form;—a;, show thatay—o while 2oS(a) —0. We  crease simultaneously. The most important quantity, how-
notice that the noise ijntainedmfeqUireSEmiAi2>0 even ever, is the integrated joint probability distributici21),
in this limit. The axS(@)—0 limit is apparently the reason which we normalize to its most probable maximum value by
that the Bayesian analysis is often referred to as the
maximum-entropy method, which is actually a misnomer p(D|m,ag) exd B(a)+(n—2)/2]
since the joint probability distribution of Eq13) reaches a = - = ;
maximum for the maximum value of the exponeft= P(D[m=38,ag—2) Vdet( +aq Ta]H)
—x%I2+ a,S, not just of the entropys alone. 27
Introducingag of Eq. (23), a;S(a) of Eq.(24), andB of  obtained by usingy?(a)=n—2 in Eq. (25), wheren—2
Eq. (13 into Eq. (21), p(D|m,ay) is seen to decrease &s  corresponds to the maximum of the x?) distribution(3). It
moves away froma. We can even derive an approximate is important to note tha® is determined byn andD includ-
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FIG. 5. The most probable spectral functianand G(a), ob- FIG. 6. The most probable spectral functiarand G(a), ob-

tained by the Bayesian analysis. As in Fig. 2, the experimentatained by the Bayesian analysis. The model is the same as in Fig. 3.
spectrumD itself is taken as the modeh.

sis yields reliable results for two competing theoretical mod-

ing its noise component: For fixeth, an increase in the elsm; andm,, provided Ockham’s raz&tis applied rigor-
signal-to-noise ratio causes a concurrent increasg?(m) ously, which simply requires one to use as few parameters as
and adecreasén P; since more details have been uncoveredpossible under the circumstances: Although we obBip
in D, the oldP value can only be restored by a more detailed<1 andP,,<1 since the small set of parameters does not
m. adequately describe these outside effects, their influence will

We intentionally avoid to attach the usual nangpgor,  essentially cancel in th@,;/P,,, ratio. A fair contest re-
likelihood, posterior, evidengdo the distribution functions quires of course to use the same number of parameters in
in EqQ. (12) since we want to show that one does not reallyboth models. As a consequence of the sl values we
need them, at least in the present case. They might actuallybtain a noticeabla®® component ira, but since we admit
be misleading since there is no temporal order in the probenly models withP,,=P,,,, wherem,=D is the only unbi-
lem: The measured spectiaare there, waiting to be ana- ased model independent of any theoretical assumptions,
lyzed, and since the modeh is the given condition, i.e., |a®%a|<1 is still ensured.
standing to the right of the vertical bar in E®7), we are
free to use any model, as long as we are not withholding
knowledge, which would be very un-Bayesian indeed. What
we know for sure is thab, by the convolution, is a broad- Performing computer experiments as befa@ds known
ened version of the true spectral functiarto which noise and the conclusions given above can be checked. In the fol-
has been added, and although we do not krigwwe do  lowing figures we now include the values far, and P.
know that the model should come reasonably close to it, i.eFigure 5 gives the result of the Bayesian analysis for
we should incorporate at least the gross featureB @fito  m,=D. The result is nearly identical to that of Fig. 2, where
G(m). For example, iD shows a pronounced structure, itis we had carried the iterative Bayesian deconvolution to
certainly not a good idea to use=const and the penalty roughly the samee?. In comparison, the advantage of the
will be low values forP and g and a largea®“component Bayesian analysis is that it is independent of the scientist
in a=a+a°%m, not an approximate reproduction of the performing it, requiring no judgment about the number of
bad model as usually assumed without proof, and this is truéerations as in the case of the iterative Bayesian deconvolu-
for any bad model, not only fom=const: The Bayesian tion.
analysis is incorruptable and yields=m~a together with Since them= const{expE/kT)+1]+Cy, model (whereC,
|a®s¢/a|~0 for the largest values d?~1 anday>1 only. denotes dark countcontains the additional information

In the ideal case the functional form of the theoreticalabout the Fermi edge, we obtain the excellent agreement
model m is known andD is distorted by the spectrometer betweena anda in the case of the iterative Bayesian decon-
function R;, and the noise only. We then obtar=1 and  volution shown in Fig. 3. In contrast, the corresponding
a~m~a by just optimizing the parameters of the model. Bayesian analysis leads to the disaster evident in Fig. 6 be-
Usually, howeverD is corrupted in addition by a plethora of cause this model has a strong negative biasfai0 and, as
effects outside of the hopefully dominating theoretical modelopposed to Fig. 3, the Bayesian analysis does not allow for
to be investigated. In spite of these odds, the Bayesian analyhe iterative correction oim. Compared to the unbiased

B. Computer simulation of the analysis
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FIG. 7. The most probable spectral functianand G(a), ob- FIG. 8. The most probable spectral functianobtained by the

tained by the Bayesian analysis. The model is the same as in Fig. Bayesian analysis as in Fig. 7, except for a 0.1 reduction of the
counts in the experimental spectrubn
m,=D case of Fig. 5, the value fd? is 12 orders of mag-
nitude smaller, corresponding to the larg®° component the result of the Bayesian analysis with the above model
evident ina, and Q shows a pronounced increase. This isoptimized already. We obtajp?(a) = 73.3, which is also the
just what we anticipated from analyzing Eq®3)—(25). x? value reached in Fig. 4 after+1=114 iterations. As
Characteristically3(a) is even closer t® than before since opposed to the huge differences found between Figs. 3 and 6,
we obtain a lowel?, in spite of the disastrous failure of this a in Fig. 4 anda in Fig. 7 are nearly identical sinaa has
model. Thus, in contrast to the iterative Bayesian deconvonow only a small negative bias f&<0. Compared to the
lution, a modelm with a strong negative bias, i.e., large m,=D case of Fig. 5P has doubled, with a corresponding
deviations betweeiG(m) and D, should never be used to decrease iQ: For the present model the positive bias of the
perform the Bayesian analysis; any conclusions drawn fronknown Fermi edge carries more weight than the slightly
the a thus obtained are not trustworthy, in spite @{a)  more negative bias in thE<0 region.
~D. As a rule of thumb, any acceptable model must pro- It is noteworthy that thea®*® components in the three
duce aP at least as high as that of the unbiased madgl Bayesian iterations of Figs. 2—4 and also in the Bayesian
=D. analysis presented in Figs. 5 and 7 are nearly identical. Even
A nice supporting example has been given by von dein Fig. 6, the maxima and minima @ occur at about the
Linden? He performed a Bayesian analysis of a spectium same energies, although with a much larger amplitude. Ac-
produced by Af ions scattered at a clean ®01) surface, tually, a close inspection shows that*® just follows the
using at first a small constant as the model, which we woulémoothed noise spectrum with an average period of about
classify as strongly negatively biased sir@eshows a pro- 0.05 eV, which is the FWHM of the spectrometer function.
nounced single peak at the expected energy.aTbentains a  This is to be expected from E7), where the noise is aver-
large a°*® component, which he calls “ringing.” He then aged roughly over this width: Using Ed6) we obtain
tried a model composed of a constant and a Gaussian th&x~G(a) in Eq. (7) both in the final steps of the Bayesian
takes the evidence iD into account. This model drastically iteration and in the Bayesian analysis, which shows fas
reduces the ringing and, as we know from E(3)—(25), then roughly the convolution of the relative noise spectrum.
bringsa much closer ta@ simultaneously. Repeating the Bayesian analysis of Fig. 7 with the same true
Returning to the computer experiment presented in Fig. 4spectral functiona but using different Poisson distributed
we recall that then=L/[ expE/kT)+1]+C, model(whereL ~ noise spectra in Eq.1), we find correspondingly different
denotes Lorentzigncontains four parameters that we opti- a°° components, along with variations 7, Q, andP, as
mize by a least-squares fit prior to the iterative Bayesiarexpected.
deconvolution. These four parameters could in principle also The result of the Bayesian deconvolution or analysis de-
be determined by the Bayesian analysis, but this would be apends of course strongly on the signal-to-noise ratio. Figure
extremely tedious job indeed, resulting in a moaes close 8 gives an example: The analysis has been carried out as in
as possible to the true spectral functmand simultaneously Fig. 7, except for reducing the number of countsgocor-
G(m) as close as possible @, i.e., y2(m)—min: The two  responding to a/10-fold increase in the relative amplitude
procedures are equivalent, but the least-squares fit is fastef the noise. The higher value af, shows that emphasis has
and easier by a huge margin. As an example, Fig. 7 showseen shifted fromy? towards the entrop$. The increase in
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FIG. 9. Experimental band structure of Ni. Three typical direct
transitions from the majority @ band just below the Fermi energy
E-=0 eV that are observed in the photoelectron spectra for normal
emission from(111) are indicated.

counts

P indicates thatG(m) is more likely to fit D, given the
increase in the relative bandwidth of the noise. Since it is
difficult now to distinguish betweem®* and the genuine
structure ina (we pretend not to knova), improvement of

the model is mandatory. Fortunately, the improvement is
also possible since both the raw d&taand G(a) show that

at least two peaks are involved. Reanalyzing with the im-
proved model containing two Lorentzians will increaBe
and simultaneously reduce the amplitudeat, identifying

it as spurious and the remaining common structure as genu-
ine, quite analogously to going from the bad model of Fig. 6
to the improved model of Fig. 7. Thus a decrease in the
signal-to-noise ratio requires an increase in the quality of the
model, which is getting more difficult to achieve at the same
time: For a sufficiently low signal-to-noise ratio we obtain — G(m
ag— for both m=L/[expE/KT)+1]+C, and for m=12, - G(m
i.e., the quality of the spectrurD is so low that it is no
longer possible to distinguish between a model containing
one Lorentzian and the true spectral function with four

FL)

mrL ) e 00
! | | | It

08 -06 -04 -02 00 0.2

Lorentzians. binding energy (eV)
) FIG. 10. Ten photoelectron spectra, obtained at12 K from
IV. DO THE 3 d ELECTRONS IN Ni FORM A FERMI Ni(111) in normal emission, for photon energies betwéen=6.5
LIQUID? and 11 eV and polarization(open circles These spectra are all

displayed with the same difference between the maximum count

o . o and the constant count abo® and this normalization sets the
duced in Fig. 9. They have been obtained by adjusting thgcale for the convolution of the optimized FL and MFL models

parameters O_f the combln_ed interpolation scheme for be own as heavy and light solid lines here and also for the deconvo-
agreement with the experimental angle resolved photoel€§gtions shown in Figs. 11 and 12.

tron spectra and the measured magneton number. Three typi-

cal transitions from the majority band that are observed irabout 12 K. The measurements are performed at the 2-m
the photoelectron spectra for normal emission fidrhl) are  Seya beam line of the Berliner Elektronenspeicherring fu
indicated. The corresponding spectra obtained by us are pr&ynchrotronstrahlung. The electron analyzer, which allows
sented in Fig. 10. They show both the majority and the mi-simultaneous detection of eight coplanar directions, consists
nority spin peak of Ni, observed in polarization for ten of four concentric spherical grids, forming a preretarding
different photon energies, again under normal emission fronstage and a high pass filter, and of two grids that are part of
the(111) surface. The polarization vector is paralle[1d0],  two confocal ellipsoids of revolution, forming an electron
the angle of incidence is 22.5°, and the sample is kept amirror, i.e., a low pass filter. One focus of these ellipsoids of

The experimental energy bands of (Ref. 11 are repro-
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revolution coincides with the center of the spherical grids.is a good approximation of the true spectral function. In Eq.
We determine the combined energy resolution of this elect31) the ratior is defined as in Eq30) and the sum over the
tron analyzer and the 2-m Seya-Namioka monochromatotwo spin components is multiplied by the Fermi-Dirac func-
from the 12-K Fermi edge of a polycrystalline Pt sample.tion f(E).

The FWHM of the spectrometer functid?), in Eqg. (1) is 50 If we would perform the Bayesian analysis, using the data
meV athv=6.5 eV and 60 meV dtv=11 eV, respectively, of Fig. 10 and the mode&B1) with the FL form(29) of Im X,
and the angle resolution is 2° FWHM. little would be gained, however, since the absolute vélue

The electropolished surface of the sample is cleaned of Eq. (27) does not allow us to calculate something like
situ by repeated cycles of 500-eV Ar ion bombardment at‘the probability for the validity of the Fermi liquid model”
600 K and annealing at 850 K. After this cleaning procedureon an absolute scale since such a quantity simply does not
we observe sharp low-energy electron diffraction spots. Imexist. Even a well tested theory can claim a higher probabil-
mediately after cleaning, the sample is brought in thermalty only since, by comparison, it describes the experiments
contact with the cryostat and cooled to about 12 K. The higtbetter than other competing theories. We thus need a com-
annealing temperature gives rise to the relatively high baspeting model, but we also have to take Ockham’s r&ato
pressure of X 10 1% mbar even after cooling down, which, account: As shown above, we can incre&sby improving
together with the high reactivity of the Ni surface, causesthe model, adding more parameters to it. We only can claim
adsorption of residual gases: The cleaning procedure is rexdvantage for a model with a highvalue if it contains the
peated afte2 h since a noticeable increase in the backgroungame(or a smalley number of parameters d@han the rival

of secondary electrons can be detected by then. model with a lowerP.
The marginal Fermi-liquidMFL) modef has been intro-
A. Two basic models duced to explain the unusual properties of the high-

N . . temperature superconductors, attributed to the strong corre-
As the peaks in Fig. 10 disperse away frdia, their b P 9

idth i kedlv. This is the behavior that lations between the conduction electrons. Since thke 3
Wi Increases markedly. 1his 1S the behavior that We eXqactrons in Ni are also strongly correlated, we decide to

pect qualitatively if the @ electrons in Ni form a Fermi investigate this model in competition with the FL model
liquid (FL). Actually, Claesseret al!? have shown that the Insteag of Eq(29), the MFL mo%lel requires '

guasiparticle spectral function

a(E,k) =7 Um S/[(E-Eg)?+(ImS)2],  (29) Im %= B1[El, E~Er=0. (32
with the FL form of the imaginary part of the self-energiy Since the two models have the same number of parameters, a

fair contest is ensured.
Im 3,=8,E2, E~Eg=0, (29

valid for T—0 and forE close toEg, can be used to de-
scribe the measured angle resolved photoelectron spectra of The energy dependence of the electron escape depth or
the two-dimensional metal T-TiTe,, albeit only extremely ~Mean free patth sy, for the elements, measured in monolay-
close toEg. This is actually a favorable example since the€rs(ML), is roughly given by the universal curVe
two-dimensional character of T-TiTe, prevents the finite
escape depth of the photoelectron to contribute to the ob- Asm=Al(Es+hv)?+Byag(Es+hv),
served line shape. In the case of the three-dimensi(idl
of Ni, the additional broadening caused by the finite escape
depth has to be incorporated. If we had complex initial and
final bandsk; and E; with Lorentzian widthI'; and I';,
respectively, the total widtl’ would be?® whereA=538 ML (eV)?, B=0.41 ML (nm eV) %2, p is the
T+ r|r JE JE density,mis the atomic mass, aray, is the monolayer thick-
r=-— f o= ) o=t (30) ness. As in Eq(31), the indexs refers to the spin-up and
1-r ' k. /[ ak,’ spin-down components, respectiveB is the corresponding
wherer is the ratio of the slopes in the respective bands. wdinding energy, antiv is the photon energy. Smce we define
actually select NiL11) for this investigation since, as is evi- £F— 0 as the zero of the energy scalig+ hv is the energy
aboveEg . If ¢is the imaginary part of the wave vector and

dent from Fig. 9, the slope of the initial bag close to the . .
top of the 31 bands is small compared to the slope of the_‘ﬂ the wave function of the photoelectron in the crystal, the

. . . _ 2
nearly free electron final banHy, resulting inr<1: The TtenSItyZ/IA will ddehcay according tol =|y|%xexp(—2¢2)
influence of the finite escape depth, represented pyis ~ ~ ©XP(-ZAJ and thus

B. Refining the models

p=m/ad, (33

As=apAsm,

strongly reduced and-ir in the denominator of Eq(30) _ _
can be replaced by 1. Taking Eq&8) and(30) as a guide, F'rs= (0B /1) €= (/0K )I2As, (34
we assume that the model i.e., the last term on the right-hand side of E81) can be
| written as
m(E) = f(E)SgT Col'o/[(E-Eg)?+T2], IF|Ts=|9E; 10k, |I2As. (35)

(3D  The slope of the initial band that is needed in E2p) could
I'(E)=Im Z(E)+|r|Ts be taken from the band structdteshown in Fig. 9, but since
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our measurements are taken at 12 K and are better resolvéihding energies. Assuming that the escape depth is given by
than the ones used in Ref. 11, we perform a preliminarythe universal curvé33), we end up with the six adjustable
least-squares fit to our spectra, of which Fig. 10 presents parameter<, |, E; |, 5, andC,.

selection only, using a sum of two Lorentzians as the model,

truncated again by the Fermi-Dirac function. We then use the C. Possible sources of error

binding energies .Of thgse Lorentzlans to correct the param- The angle resolution will also contribute to the observed
eters of the combined interpolation scheme and to recalculaﬁe

X . L e shape. In the case of Ni close to thEl1] axis, the
the spin-up and spin-down components of tginitial band .
at the top of the @ bands, together with the slopes requiredsurface of constant energy for the uppermost exchange split

in Eq. (35 d band is approximately a plane perpendiculaf1®l] and

The experimental spectra also contain background elec}he final band approximately nearly free electronlike. In this

trons of different origin that have to be incorporated into theC2S€E k(@) ~ Eiin(0)~ 7| Eyan(©)sir(®), whereEy, is the

: . "kinetic energy of the photoelectron in vacuum dnid<1 is
model. The constant count at?OEe displayed by all EXPET 1he ratio of the slopes in the initial and final bands defined in
mental spectra in Fig. 10 is caused by stray light an

. . EQ. (30). The spreadA® in the polar angle® causes the
amounts to about 15% of the maximum count. We determing . . .
this contribution for eacthr as the arithmetic mean of the energy spreadAE~|r|Ey(®)sin(20)A0. Since AE is

last 15 data points at the right-hand side of the spectra anré"mmaI for ®—0 we investigate normal emission with

. i . . : =0 from Ni(111) only. We determiné\E caused byA® as
S|mpl_y ac_id Itto thg mode(B1), assuming that this stray !'ght a function ofh» numerically, using the actual energy batds
contribution remains constant also bel&y. The remaining

background consists of quasielastically scattered electrongnd. the polar widtih © =2 FWHM_Of our analyzer. For the
of secondary electrons, and of electrons scattered in the an%‘-ajorlty band, we obtain, e.gAE—O.G and 5.2 meV for
lyzer after having surmounted the high pass filter. We dis- v=6.5 aqd 11 eV, respectively. Thesg vglues are only
cuss these three contributions in turn below. about 0.1 times the mean fre_e path contrlbutl(ﬁﬁ)_ at the
The photoelectrons may be scattered quasielastically b p_rrespondmg photon energies. We calculate this Smf.i” ad-
surface irregularities resulting from incomplete recrystalliza- itional broadening separately for each photon energy, incor-

tion after the argon ion bombardment or from adsorbed atporating.it into the model approximately by adding the cor-
oms or molecules. The spectral distribution of this quasielasr-eSpon.d'ng yalue to the mean-free-path _contnbu(Qth).
We investigate the form of the resolution function of our

tic background observed in thg111] direction is : .

approximately proportional to the angle integrated spectrunﬁ’homelec”on spectrometer using the experimental .Pt photo-
of the elastically emitted photoelectrons, which is again Closglectron_ spectrum aroundlr . S_mce the polycrystalline Pt

to the emission into the thre@10} mirror planes containing sample |s_af|'=12 K, the F?”‘"" eo!ge can be regarde_d asa
the [111] axisi5!® The two exchange split peaks are shifted step function land the negative derlvatlye of the experimental
by up to about+0.25 eV with respect to their energy posi- Pt spe_ctrum is the spectrometgr funct|_on.: It turns out to _be
tion at normal emissioft This causes a sizable signal even GaUSS'?” to a good approxmatlon, verifying our assumption
at energies where the contributions of both the elastic and thi@" Rix in Eq. (2). As an aside we remark that any_other
inelastically scattered electrons are low. An example of this’symmetncal spectrometer _funcpgn etk
situation is the Fermi edge of ther=6.5eV spectrum, scheme by simply introducing it In Eq2). .In contrast, an
which is dominated by the quasielastically scattered elec@symmetrlcal spectrpmeter functlon requires a more elabo-
trons. rate overhaul of various equations. We also take the energy

In the Shirley approximatiol’, the intensity of the sec- dependence of the width parametenf Ry approximately
ondary electrons at the energyis proportional to the inte- into account by determining through a least-squares fit of

gral over the angle integrated spectrum abB&ye&ontaining the r': erfrntlr;Dlzac f(ljj_r;fctlonttohthf measurgd F.)t dFe.gm' ﬁdg\?vat
both the elastic and the inelastically scattered electrons. Th a(t:h ot the enthl erent pho (;nthenerglesl '?_ Vi uz é €
electrons scattered in the electron analyzer can be describ yther improve the accuracy of the convolu it and (2)

by a similar expression, except that the integration is now" the ne|g_hborhood OEF by replacmg the steep Fermi-
carried over all electrons aboemitted alongd111] only. ~ Dirac functionf atE; by its spectral weight

A detailed description of these three background contri-
butions would require at least three additional parameters in T 1/AfEi+A/2dE fE) (36

: : : i ,

model. While this procedure will lead to a nearly perfect Ei—A/2
least-squares fit witly>~n, it will also effectively mask any
deficiencies the FL or the MFL model might have, in clearwhere A=10 meV is the step width between neighboring
violation of Ockham'’s razor. On the other hand, some crudelata points.
model of the background is needed since we would obtain We also comment on the possible influence of thel 1)
¥?>n otherwise. We decide to lump the three contributionssurface staté? which we clearly identify in the spectra taken
together, describing them by the single cons@pt which  with p polarization by its surface sensitivity, comparing the
is added to the modéB1) after multiplying it by the Fermi- results obtained from a clean surface with that exposed to
Dirac function. This approximation might not be that crude0.25 L of O, At hy=7.5eV, the pronounced peak at
after all since the contribution of the quasielastically scat-E~E~—0.3 eV observed for the clean surface is strongly
tered electrons is large close E-, where the intensity of reduced in intensity after the Gdsorption and the position
the secondary electrons and the electrons scattered in tloé the peak shifts t&e~—0.26 eV, which is the position of
analyzer is small, while the situation is reversed at highethe majority spin peak fos polarization athv=7.5eV in
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Fig. 10. The—0.3-eV peak of the clean surface is thus likely T T T

to be a superposition of the surface state and of the majority Ni(111),
peak. In accordance with the high degree of polarization of
the synchrotron radiation and the selection rdfase do not hv (eV)
find any indication of this surface state wifh, symmetry in 11.0
the spectra of Fig. 10, taken withpolarization. As a further -
test, we look for theA; 3d bulk state, which produces a
pronounced peak &~ —1.7 eV forhvy=15 eV andp po-
larization, while no trace above a smooth background can be
detected fors polarization. Thus any residual contribution of
the surface state to the spectra of Fig. 10 must be very small
and can safely be neglected.

We finally mention that, although available, we do not
include spectra witthy>11 eV in the Bayesian analysis
since the mean-free-path contributidB85) is getting too
large compared to the I term of Eqs(29) or (32). For the
same reason we fail in our attempt to perform a similar
Bayesian analysis of Pitl1) spectra since the slope of the
initial band is too large in this case.

counts

D. Least-squares fit

We perform preliminary least-squares fits attail to ob-
tain the best adjustment for the six parameters specified
above. Fohv=8.5 eV, the exchange splitting and the inten-
sity ratio of the two lines turn out to b&\,=E;—E,
~0.3 eV andl,/l ~1, respectively, where, /I is deter-
mined by integrating the optimized lines froml0 to 10 eV
prior to the truncation by the Fermi-Dirac function. We ex-
pect this A, value from the raw data and from earlier
results® and thel, /I, value from the fact that the corre-
sponding transitions occur at closely neighboring points of
the Brillouin zone and that the states involved differ only in
their spin orientation otherwise. On the other hand, we find a
strong increase off, /1, for both models in thdrv<8.5 eV
range. The highest value /1 |~ 35 is obtained for the MFL
model athv=7.0 eV. This unphysical increase bf/1, ob- 6.5

viously serves to mask the deficiencies of the FL and MFL m |
models since the number of parameters is too high at these FL

low hv where the minority peak is centered abdwe. We — Myrr

therefore eliminatéC, as an adjustable parameter in this re- ' ' . . . L
gion by calculating it fronC; and the average intensity ratio -08 -06 -04 -02 00 02
of the spectra withv=8.5 eV, which isl,/I | =1.26 and binding energy (eV)

0.98 for the FL and MFL cases, respectively. This is not
sufficient forhy<7.5 eV, where only a small fraction of the  FIG. 11. Optimized FL and MFL models, shown as heavy and
minority peak contributes to the measured spectra since u,{,igh_t solid lines, respectivel_y. T_he scale copforms with_the normal-
physically largeA, would be obtained. We therefore fix, !zatlon of _the data chosen in Fig. 10: The tick ma_rks give the bind-
in addition forhy<7.5 eV at the average value of tig, ing eperglgfs for the FL pe.aks. Noltlce.that the tick mark; do not
obtained ath»=7.5 eV, which are 0.324 and 0.300 eV for coincide with the peak maxima, which is one character_lstlc_ feature
the FL and MFL cases, respectively. We also yse of the_FL(and MFL many-body spei:tral function. The minority FL
=1.192 eV ! and 8,=0.245 as a global values valid for all peak is seen to crogs: betweerhy=8.0 and 8.5 eV.
hv, determined iteratively from the conditio® y?(m)
—min, where the sum runs over the ten photon energies. Thgether with their sums are listed in columns 3 and 6 of Table
constant describing the background electrons contributes bé-The most striking difference between the measured spectra
tween about 10% and 30% of the difference between thand theG(m) occurs forhv between 7.0 and 9.0 eV, where
maximum count and the count abofzg, with the lowest the FL model reproduces the sharpness of the truncated mi-
values obtained for the FL model and high. nority peak close t&e much better than the MFL model,
The resulting optimized modeis are presented in Fig. also reflected byy?(mg)<x?(mue): Since the values of
11. Their convolutiong5(m) are compared with the mea- B, andB; are mainly determined by the untruncated major-
sured spectra in Fig. 10 and the correspondif¢gm) to- ity peak in this region, the MFL minority peak closeEg is
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TABLE I. Numerical results of the least-squares fit and of the Bayesian analysis.

h Fermi liquid Marginal Fermi liquid
14
(eV) n x(m) X(a) ag x*(m) X*() ag 10g10(rp)
6.5 64 155.2 60.3 0.0973 104.9 64.1 0.231 -2.04
7.0 111 304.6 105.1 0.0439 1874.2 89.4 0.0104 6.16
7.5 111 489.9 119.5 0.0340 1318.3 109.6 0.0115 5.66
8.0 111 582.3 178.2 0.0279 1950.6 152.9 0.00615 5.08
8.5 111 239.9 145.1 0.112 610.6 131.7 0.0249 5.59
9.0 111 185.9 132.8 0.191 249.0 116.1 0.0841 0.55
9.5 111 371.9 96.1 0.0303 264.9 105.3 0.0706 —3.05
10.0 111 235.9 107.5 0.0845 174.8 1145 0.239 —-3.51
10.5 111 224.7 1015 0.0726 162.0 108.2 0.248 -3.84
11.0 111 198.3 95.2 0.153 611.5 87.8 0.0299 7.38
22 1063 2988.6 1141.3 7320.8 1079.6

necessarily broader than the corresponding FL peak. Thyshotoelectron causes a much higher additional broadening of
the least-squares fit already indicates that the FL model ithe lines: As for thehv=6.5 eV case the neglected energy
more likely in this energy region. dependence of the background may again contribute more to
In hindsight, one might argue that th parameters ther, values than the difference between the two models.
should be determined at low photon energies where the dif- We evaluate the difference in the behavior at low and
ference between the FL and MFL models is most apparentligh photon energies by calculating the arithmetic mean of
We actually perform such a least-squares fit, obtainiiag  10910("p) @and its standard deviation corresponding to the geo-
=1.150 eV'! and 8,=0.208 eV'! as the average of the op- Metric mean ofp§legarately for the two regions. The result
timized fit parameters fdny=7.0, 7.5, and 8.0 eV, proceed- IS Fp=12 000<10""* for h» between 6.5 and 8.5 eV and
ing as explained above otherwise. The results are qualitdp=0-32<10""" for h» between 9.0 and 11.0 eV: The FL
tively similar, but guantitatively even more in favor of the mode is about fpur orders of magnitude more probat_)le than
FL model. For exampley?(me,)> x2(Mye) NOW OCCUrS the MFL mpdgl in the Iow—photon—engrg_y region, while the
only at two instead of four photon energies and the corre€TOr margin is too Ia}rge to allow a d|st|nct'|on between the
sponding values, which are 158.1 and 154.9 at 6.5 eV anfjvo models for the hlgh-photon-e_nergy region.
225.7 and 193.9 at 10.5 eV, are much closer together thay The FL and MFL models obtained from the least-squares
the x2(m) values of Table I. We do not use this second fit I prior to th_e E}ayegan _anaIyS|s_, which are shown as he_avy
procedure in the Bayesian analysis below, however, since nd light solid lines in Fig. 11, differ from each other, while

could be construed as unfairly favoring the FL model. the corresp_onding most pFOb?‘b'e spec_tral functiangre- .
sented in Fig. 12 nearly coincide. The ripples corresponding

to thea®°component discussed above are obviously caused
by the noise, as revealed by a close comparison with the data
of Fig. 10. As expected, the amplitude of these ripples is

The most important quantity that we obtain from the smaller for the FL case for all photon energies for which
Bayesian analysis is of course the ratjp= Pg /Pyg_ of the  Tp> 1. This is qualitatively equivalent to the results given in
probabilities (27). We list log(r,) in Table | for the ten  Fig. 7(good model, smak°>) and 6(bad model, huga®,
spectra of Fig. 10, together with the correspondjfga)  WhereP;/Pg is about 18, i.e., about 1®times larger than
and ag, and show the most probable spectral functiaria  the corresponding, of Ni in the low hv region. The ratio of
Fig. 12 for both models. As anticipated from the least-the regularization parametess listed in Table | turns out to
squares fit, the integrated joint probabil®, is larger than  be af"/a{"™>1 whenever ,>1, again in line with the
Pumec for hv between 7.0 and 9.0 eV, with very high,  results of Figs. 7 and 6, where the corresponding ratio is
values except atir=9.0 eV: The FL model is clearly much 18.0. As expected, Table | show&(ag )~ x*(ayr)=~n,
more probable for the low photon energies, in spiterof ~ which means that the convolutio®(ag ) andG(ayg ) fit
~0.01 forhv=6.5 eV. The spectral range is only about half the data within the noise; they are so close together that it is
as large in this case and the contribution of the minority peakmpossible to distinguish them in a figure, which is the rea-
negligible, which means that the energy dependence of thgon that we present onlg(mg ) and G(myg ) in Fig. 10.
background that we neglected has a decisive influence.  Characteristically,x?(ar ) > x*(ameL) wheneverr,>1, in

The higher probability of the MFL model @r=9.5, line with the x?(a) values of Figs. 6 and 7 where the corre-
10.0, and 10.5 eV is followed by the extremely higjvalue  sponding difference is 12%: Since thg is lower for thg bad
in favor of the FL model ahv=11.0 eV. This erratic behav- model, the Bayesian analysis works harder at fittB{@) to
ior might just signify that it is more difficult to distinguish D, transferring a larger portion of the noise spectrura tn
between the two models in this region since the fully develthe way, which is the comparatively largag.. component
oped minority peak no longer produces a sharp structurebserved in Fig. 6 and for MFL cases in Fig. 12 for
close toE and since the decrease of the escape depth of theetween 7.0 and 8.5 eV.

E. Bayesian analysis for Ni
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ratio close to the most probabde Little effort is required to
establish the computer code and the iteration runs fast on any
personal computer. A starting modualof a is required, with
m being improved as the iteration proceeds. The unbiased
model m,=D may be used, but the method also tolerates
simple but smooth starting modeis with a strong negative
bias, e.g.,m=const, which makes it particularly useful in
case no theoretical model is known. Although closely related
to the Bayesian analysis, this iteration does not allow us to
determine the most probabe

The Bayesian analysis is the only way to evaluate differ-
ent theoretical modelm in terms of the measured spectrum
D quantitatively through the probabilitg(D|m, a;) for D,
given the modem, with the regularization parametet, de-
9.5 termined byp(D|m,a)—max. The scientist can influence
the analysis only by specifying the condition since all
results are uniquely determined By and m. This analysis
takes the continuum of all possibéeinto account and yields
9.0 a, G(a) of Eq. (1), andyx?(a) of Eq.(4) as by-products. We
elucidate the role of the model by demonstrating analytically
and by computer simulations that bopiD|m, @) and aq
decrease anta®*9a| increases asn deviates froma, dis-
qualifying the notion that one should use=const to obtain
an “unbiased”a. This model, like any other model with a
strong negative bias, produces=a+a°* with a large
8.5 |a®*a| ratio, with no resemblance to the origimaland low
values foray andp(D|m,ap): The Bayesian analysis is in-
corruptable and yielde~m~a with |a®9a|~0 for the
highestp(D|m,ap>1) only. Any model withp(D|m, ag)
<p(D|m,=D,a,) has a negative bias and should be re-
jected since the obtained from it are not trustworthy. On
the other side, Ockham’s raZ8rshould be applied in con-
structing the models, using as few parameters as possible to

counts

describe the physics to be investigated and to incorporate any
additional knowledge: Given two competing theoretical
models containing the same small number of parameters, the
Bayesian analysis yields a reliable ratio of the corresponding
p(D|m,ayg), in spite of the imperfections of the models and
. : the distortions and limitations of the experimental spectrum.
dp The parameters of the models can be optimized in prin-
. ciple by using the Bayesian analysis itself, but in practice the
I L I L | I expenditure of work becomes prohibitive for more than one
08 -06 -04 -02 00 0.2 or two parameters. We find it equivalent but vastly more

efficient to use the usual least-squares fit betw@eand the
convolution ofm for that purpose, performing the Bayesian

FIG. 12. The most probable spectral functions, obtained fron@nalysis with the optimized models afterward. We also re-
the data of Fig. 10 and from the optimized FL and MFL models of move the severe convergence problems frequently encoun-
Fig. 11, shown as heavy and light solid lines, respectively. Thelered while solving the systefd5) of n nonlinear equations
scale conforms with the normalization of the data. for the n unknownsa; by solving this system for the equiva-
lent unknownsA; defined in Eq(7) instead. In addition, we
simplify both the Bayesian iteration and the analysis consid-
erably since we approximate the convolution by summing
over then data points only, using a normalization that mini-

The continuuma of spectral functions, which, after con- mizes the errors at the edges of the spectrum.
voluting with the spectrometer function, all fit the noisy mea-  Applying the Bayesian analysis to the low-temperature
sured spectrund equally well, consists of the true spectral and low-energy Ni photoemission normal to ttill) sur-
functiona containing the physics to be investigated and aface, the probability that these spectra are reproduced by the
continuum of unphysical oscillatior&™¢, the convolution of  Fermi-liquid model turns out to be about four orders of mag-
which is close to zero. The iterative Bayesian deconvolutiomitude higher than that corresponding to the marginal Fermi-
introduced in this paper is the easiest way to select from thiiquid case for low photon energies (6.5€Viv<8.5eV)
continuum a range of spectral functions with a 16a¥573a| where the minority peak is strongly truncated by the Fermi-

binding energy (eV)

V. SUMMARY
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Dirac function. This remarkable numerical result is just aminority peaks close t&g evident in both Figs. 11 and 10
consequence of the FL and MFL models treated as condthus also reflect the different functional form of Ensince
tions in the Bayesian analysis, in the same sense as the ntve dominating contributioig35) is the same for both mod-
merical values of the optimized parameters contained in thels. We also note that we expect only minor improvements
models are a consequence of the least-squares fit. It is &fy repeating the measurements with the same high signal-to-
course possible and even necessary to question the validifyise ratio but with a superior energy resolution since the
of these conditions, e.g., our requirement that the modelescape depth contributiof85) is comparable to the half-
cover the range fronkr to at least abouA,~0.3 eV below  width of the spectrometer function aroumid=8.5¢eV al-
Er. In the original derivation of Eq(29), valid to arbitrary  ready: Essentially, the same most probable deconvoluéions
order in perturbation theory, Lutting@rstates that this be- as in Fig. 12 and similar probability ratios will be obtained
havior is valid forE “very near” E¢ . Is the range of our FL  since thes@ are close to the true spectral functicamsgiven
model too large? the optimized models and the high signal-to-noise ratio of
We investigate this question for a simple model corre-the data.
sponding to the lowest order in perturbation theory, i.e., we The huge probability ratio in favor of the FL model ob-
calculate the numbeX of Auger processes filling the hole tained for the low photon energies where the minority peak
generated by exciting the photoelectron originallyEfk;) crosse< is in stark contrast to the suggestion that the MFL
=E; below E¢ to energies above the vacuum level. Fortheory might apply to the @ metalsS and it casts doubt on its
E(k)=%%k?/2m* we obtain Nc3—5(1—¢)+2(1—¢)%? validity for the high-temperature superconductors as well. At
wheree =(Er—E;)/Er. Assuminge<<1 and expanding (1 higher photon and binding energies, deviations from the
—¢£)%2, we recoveiNx&? neglecting higher powers, i.e., Eq. simple quadratic dependence of Bron E are expected, but
(29 as expected. Evaluatingg as the difference between the uncertainty in the spectral dependence of the background
the Fermi edge and the; level, we estimat&E~8 eV for  combined with the drastic decrease of the escape depth of the
Ni from Fig. 9, i.e.,e~A,/Eg~0.04<1 as required. Thus, photoelectrons prevents a quantitative investigation of
in the spirit of the Fermi-liquid theory itself, our FL model Im X%(E) in this region.
assumes that the<1 criterion necessary to obtain tié
= &2 dependence for the simple model above also applies to
the asymptotic behavior of the corresponding general result
obtained by Luttingef® V. Dose helped us start our investigation of the Bayesian
The ImZ,, contribution(29) is still clearly identified even analysis by sending a copy of the Skilling pageef. 2 and
aroundEg since the minority peak fohv=8.5¢eV that is R. Jelitto helped us get through it: We thank them both. In
closest toEg (E;=—7.3 meV for FL) has the highest am- the final stage of preparing the manuscript, E. Mohler and W.
plitude and the smallest effective width in both Figs. 11 andSchwarz suggested several important improvements, which
12, in spite of the dominating escape depth contribu(@s)  we gratefully acknowledge. This work was supported by the
in this region. The differences between the FL and MFLBMBF under the Contract No. 05 605RFA 0.
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