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SO„5…-symmetric description of the low-energy sector of a ladder system
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~Received 23 October 1997; revised manuscript received 3 April 1998!

We study a system of two Tomonaga-Luttinger models coupled by a small transverse hopping~a two-chain
ladder!. We use Abelian and non-Abelian bosonization to show that the strong coupling regime at low energies
can be described by an SO(5)1 Wess-Zumino-Witten model~or equivalently five massless Majorana fermions!
deformed by symmetry-breaking terms that nonetheless leave the theory critical atT50. The SO~5! currents of
the theory comprise the charge and spin currents and linear combinations of the so-called pi operators@S.C.
Zhang, Science275, 1089 ~1997!#, which are local in terms both of the original fermions and those of the
effective theory. Using bosonization we obtain the asymptotic behavior of all correlation functions. We find
that the five-component ‘‘superspin’’ vector has power-law correlations atT50; other fermion bilinears have
exponentially decaying correlations and the corresponding tendencies are suppressed. Conformal field theory
also allows us to obtain the energies, quantum numbers, and degeneracies of the low-lying states and fit them
into deformed SO~5! multiplets.@S0163-1829~98!00935-7#
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I. INTRODUCTION

One of the most characteristic features of the high-Tc cu-
prates is the proximity of antiferromagnetic~AF! and super-
conducting~SC! phases as a function of doping. As a resu
much of the theoretical effort has focused on trying to co
sistently treat the insulating–underdoped–optimally dop
region of the phase diagram, in which AF and SC tenden
compete and may have strong fluctuations.

An interesting recent proposal is that of Zhang.1 He sug-
gests that the simplest way of unifying AF and SC in t
cuprates is to introduce a new five-component vector or
parameter consisting of the three-component staggered m
netization, and two components associated with the real
imaginary parts of thed-wave SC order parameter. Clear
this new concept is only useful if there exists some kind
symmetry@higher than the known SO(3)̂U(1)] which re-
lates the AF and SC sectors. His suggestion is that an
proximate SO~5! symmetry emerges in the low-energy sec
@SO~5! because the composite order parameter has five c
ponents and transforms like a vector#. If true, this would
allow the construction of an SO~5! quantum nonlinears
model to explain the low-energy dynamics of the high-Tc
materials. This could explain the form of the phase diagra
and the so-calledp mode.2

However, there have been several criticisms of t
theory. Some3 have focused more on the details of micr
scopic calculations in the framework of thet-J or Hubbard
models. Others have added several physical objections.4 One
response to these criticisms has been to attempt to cons
concrete examples of extended microscopic Hamiltoni
that manifestly have an SO~5! symmetry.5 But knowing the
Hamiltonian does not necessarily tell us much about the l
energy behavior.

In this paper we study a two-chain ladder Hamiltoni
that is related to popular two-dimensional models of the
prates. One of the reasons that ladder systems have attr
such attention is that many experimental realizations of th
PRB 580163-1829/98/58~11!/6818~13!/$15.00
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systems are very closely related to the high-Tc materials,6

and some have even exhibited superconductivity.7,8 From a
theoretical point of view, powerful nonperturbative tec
niques such as bosonization and conformal field the
~CFT! exist in one dimension. This offers hope of startin
with a microscopic Hamiltonian and ending up with a tra
table effective-field theory. In this paper it is not our purpo
to comment on the general validity of the SO~5! idea but to
explicitly study a simplified and more tractable model.

There is a large body of literature on two-chain and lad
systems9–17~for a review see Ref. 6!. Using a combination of
weak-coupling renormalization group~RG! and bosoniza-
tion, the phase diagram has been intensively investiga
These analyses reveal that for small interchain hopping th
are interesting strong-coupling phases. However, while A
lian bosonization and weak-coupling RG are good for de
mining the phase diagram, they do not explicitly respect
symmetries of the system, nor do they provide detailed
formation about the correlations. In this paper we explore
more detail the strong-coupling region of a two-chain ladd
system, taking care to preserve the full non-Abelian symm
tries and obtain the correlations.

It is well known that many two-chain ladder systems a
spin liquids; that is, they exhibit a spin gap for a wide ran
of different fillings and couplings. This is because the Lu
tinger liquid is a quantum critical system, and as such, hig
unstable to perturbations such as interchain coupling. In g
eral there are a number of relevant couplings that can d
the system into a spin gap phase~an explicit example is
discussed in Sec. VI!. However, in this paper we study
simplified system in which there is no backscattering and
a result, no spin gap. This model is of interest becaus
displays remarkable similarities to some aspects of
Zhang proposal in two dimensions.1

The model we consider is a system of two spin
Tomonaga-Luttinger~TL! models in the repulsive regime
coupled by a small interchain hopping. This corresponds
the case of no backscattering and was studied in Refs. 11
6818 © 1998 The American Physical Society
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and 17. We demonstrate that the hopping only generates
plings in a certain sector of the theory~which we call ‘‘fla-
vor’’ !, freezing it out of the effective action at energy sca
below t' . In agreement with the above references, we fi
that this leaves a critical~at T50) spin and charge secto
with conformal charge 5/2. However, we go on to show t
this can be represented as a system of five massless Majo
fermions, or equivalently, an SO(5)1 Wess-Zumino-Witten
~WZW! model, deformed away from the symmetric point
marginal current-current interactions. These SO~5! breaking
terms are associated with spin charge separation~spin and
charge velocities not equalvsÞvc) and the anomalous
charge exponent (KcÞ1), which distinguish the spin an
charge sectors. Thus the system is never exactly SO~5! sym-
metric except in the trivial noninteracting case. Nonethele
this representation does have strong analogies with
Zhang proposal in two dimensions; the physics can be
derstood using an SO~5! symmetrics model with symmetry-
breaking terms. In this way we obtain the asymptotic beh
ior of all correlation functions; the correlations of the fiv
component ‘‘superspin’’ are enhanced~power law at T
50); we obtain their scaling dimensions. Other fermion
linears die away exponentially fast.

Sections II–V are concerned with an analysis of t
model, including its detailed symmetric description, the r
evant currents, thep operators, its correlations, and low
lying multiplets in the excitation spectrum. One importa
way in which the system we are studying differs from th
considered by Zhang is that we are away from half-fillin
which is a very special point in one dimension. Exactly
half-filling it is necessary to consider the Umklapp ter
which causes a Mott gap in the charge sector.18 Then the
low-energy effective Hamiltonian is simply a pure sp
Heisenberg model~with exchangeJ;4t2/U in the case of
the repulsive Hubbard model at strongU). We comment
further on this difference in Sec. IV.

In Sec. VI we finally consider the case of two coupl
Luttinger liquids, which differs from the previous model
that it includes marginal backscattering terms. An exam
of this is provided by some regions of the phase diagram
a system of two Hubbard chains coupled by single-part
hopping. In this more physical case, we show in detail h
the additional marginal terms cause a spin gap to appea
agreement with Refs. 9–17, and numerical work such as
19. Then the spectrum and correlations are as in Ref.
there is a spin gap but the charge sector remains gaples

Finally, we conclude. There is also an appendix t
sketches out a bosonization prescription that enables u
calculate the correlation functions of fermion bilinears.

II. A SIMPLE MODEL

Many systems of interacting one-dimensional fermio
away from half-filling fall into the Luttinger liquid univer-
sality class. That is, they exhibit spin-charge separation, g
less excitations, anomalous power law correlations and
absence of a quasiparticle pole~see Ref. 21 for a recen
review, and references therein!. For example, the one
dimensional repulsive Hubbard model away from half-fillin
is known from its exact solution to be a Luttinger liquid a
u-
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the way fromU50 to U5`, as is thet-J model for small
enoughJ/t.

One of the simplest two-chain models of this type that c
be written down consists of two Tomonaga-Luttinger~TL!
models~labeled by a chain indexi 51,2) coupled by a smal
transverse hoppingt'!t:

H5HTL~1!1HTL~2!1H' ~1!

where the TL Hamiltonian is a sum of three pieces (H0
1H21H4):

H0~ i !5 ivF(
a

E dx~Ra,i
† ]xRa,i2La,i

† ]xLa,i !,

H2~ i !5g2(
a,b8

E dx ja,i
R ~x! j b,i

L ~x!,

H4~ i !5g4(
a,b

E dx„j a,i
R ~x! j b,i

R ~x!1 j a,i
L ~x! j b,i

L ~x!…. ~2!

The current~or density! is simply defined as

j a,i
R 5Ra,i

† Ra,i j a,i
L 5La,i

† La,i ~3!

and the electrons fieldsRa,i andLa,i are slowly varying on
an atomic scale: the electron annihilation operator at sitex,
chain i , and spina may be expressed as

ca,i~x!5Ra,i~x!eikFx1La,i~x!e2 ikFx. ~4!

In terms of these fields, the simple interchain hopping te
becomes

H'5t'E dx(
a

„Ra,1
† ~x!Ra,2~x!1La,1

† ~x!La,2~x!1H.c.….

~5!

For simplicity, we have assumed that the Hamiltonian is
variant under spin rotation, and so the coupling constantsg2
and g4 are the same for parallel and antiparallel spin co
figurations. Normal ordering is assumed throughout in pr
ucts of local fields~definition of currents, Hamiltonians
etc.!.

It is worth making a quick observation about the diffe
ence between the terms TLliquid and TL model: The TL
model is an idealized and specific Hamiltonian, written do
in Eq. ~2!. It has a perfectly linear dispersion, an infinite
deep Fermi sea, has only density-density interactions, an
exactly solvable for all values of the coupling constants~the
model is unstable beyond a critical value ofg2).21 The TL
liquid ~which is the generic state corresponding to many
alistic Hamiltonians like the Hubbard model away from ha
filling ! differs in that the dispersion is no longer exactly li
ear, and the Fermi sea no longer infinitely deep. But from
point of view the most important difference in the low
energy sector is the presence of marginally irrelevant c
plings~backscattering!. In a single chain system these are n
very important when repulsive—they simply give logarit
mic corrections to the correlation functions. In Sec. VI w
will study the effect of these additional terms in the tw
chain system, in order to establish the behavior of the m
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6820 PRB 58DAVID G. SHELTON AND DAVID SÉNÉCHAL
realistic coupled TLliquids, but for the moment, we will
restrict our attention to the simpler case of coupled TLmod-
els.

The model~1!, even though it is made of TL models,
not exactly solvable because of the interchain hopping. H
ever, we will argue presently that the model segregates
three differentsectors, respectively associated with charg
spin, and flavor, and that the combined effect of interch
hopping and interactions is to make the flavor sector m
sive, leaving only the charge and spin sectors critical~i.e.,
gapless!. To each sector one may associate current opera
expressed as bilinears of the electron fields:

charge, JR~x!5(
a,i

Ra,i
† ~x!Ra,i~x!;

spin, JR~x!5
1

2 (
i ,a,b

Ra,i
† ~x!sabRb,i~x!;

flavor, IR~x!5
1

2 (
i , j ,a

Ra,i
† ~x!si j Ra, j~x!; ~6!

wheres is the vector of Pauli matrices~left-moving currents
are defined similarly!. These currents have the followin
commutation relations~they may be derived from Wick’s
theorem!:

@JR~x!,JR~y!#52
2i

p
d8~x2y!,

@JR
a~x!,JR

b~y!#52
i

2p
dabd8~x2y!1 i«abcJR

c ~y!d~x2y!,

@ I R
i ~x!,I R

j ~y!#52
i

2p
d i j d8~x2y!1 i« i jk I R

k ~y!d~x2y!,

~7!

and currents of different types~i.e., charge, spin, and flavor!
commute. Thus in the language of non-Abelian bosonizat
the charge current obeys a U~1! Kac-Moody algebra, and the
spin and flavor currents obey SU(2)2[SO(3)1 algebras.22,23

It is simple to show that the Hamiltonian~1! may be ex-
pressed asH5H01Vc1Vf , where only the above current
appear. This is just a matter of taking careful account
point-splitting and normal ordering:24

H05
pvF

2 E dx~JR
21JR

21IR
21@R→L# !,

Vc5
1

2E dx$g2JRJL1g4~JR
21JL

2!%,

Vf52E dx$g2I R
z I L

z1g4@~ I R
z !21~ I L

z !2#1t'~ I R
x 1I L

x !%.

~8!

Therefore the model~1! decouples into three independe
sectors~charge, spin, flavor!. The important point is that the
hopping term only involves the flavor sector, which is deco
pled from the other two. The effect of interactions (g2 and
g4) on the charge sector will be a velocity renormalizati
-
to

n
s-

rs,

n,

f

-

and anomalous scaling exponents (KcÞ1). The combined
effect of interactions and transverse hopping on the fla
sector is more dramatic. The RG analysis of Ref. 17 sho
unambiguously that in the repulsive regime (Kc,1), the
system scales to strong coupling at energies,t' ~in the
notation of Ref. 17 our model corresponds to initial con
tions of gi

(1)50, gi
(2)52gi

uu5g0 for i 50,p, f ,t,b). The
combination of the small hopping termt' and the interaction
terms leads to the generation of important couplings in
RG process, giving a gap in some channels. What our an
sis tells us is that all of this physics is only happening in t
flavor sector, and thus it is this sector that becomes gap
while the total spin and total charge sectors remain
touched and critical. So at low enough energies the fla
sector is frozen out of the effective theory, and our task
simply to understand the remaining charge and spin deg
of freedom.

III. SPINOR AND VECTOR DESCRIPTIONS

Each electron fieldRa,i or La,i carries charge, spin, an
flavor. The separation of the model into charge, spin a
flavor sectors is therefore difficult to describe in terms
these operators. However, one may introduce a different
of Fermi fields in terms of which this separation is mu
more natural. To this end, we must use some representa
theory of Lie groups.

Let us first consider the model~1!, but without interac-
tions or interchain hopping~i.e., two free, decoupled chains!.
This model has SO~8! symmetry, and this may be shown ha
follows. Each complex fieldR,L may be written in terms of
its real and imaginary parts:Ra,i5R1,a,i1 iR2,a,i and then,
except for a total derivative, the HamiltonianH0 takes the
form

H05 ivF(
m

E dx~Rm]xRm2Lm]xLm!, ~9!

where the composite indexm, running from 1 to 8, stands fo
spin, chain, and real/imaginary part. The eight Fermi fie
Rm ~or Lm) can undergo an internal SO~8! rotation that
leavesH0 invariant. Hence the model has a chiral SO~8!
symmetry. It is well known that a collection ofN real free
fermions like this is equivalent to a special kind of conform
field theory: a level-1 SO(N) WZW model.25,26Chiral SO~8!
currents may be defined in terms of those real fermions
follows:

JR
A5

1

2 (
m,n51

8

RmSmn
A Rn , ~10!

where Smn
A is a matrix representation of the generators

SO~8! @A runs from 1 to 1
2 N(N21)528, the number of

generators#. Left-moving currents are defined similarly. Th
charge, spin and flavor currents~6! are special cases of th
above and correspond to specific values of the indexA if the
generatorsSi j

A are chosen judiciously.
The currents~10! are bilinears in the electrons field

Rm (a51, . . . ,8).However, the SO(8)1 WZW model con-
tains other fields, belonging to a different representation
SO~8!, in terms of which these currents are also bilinea
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Among all SO(N) groups, SO~8! is peculiar in that its vector
representation, of dimension 8, has properties identical to
spinor and conjugate spinor representations~also of dimen-
sion 8!. Indeed, which one is called ‘‘vector’’ is a matter o
convention, dictated by the way the SO~8! symmetry breaks
down to smaller SO(N) components. In order to decide t
which SO~8! representation the electron fields belong, o
must study in detail how each representation breaks d
when the symmetry is reduced. Let us consider a two-st
symmetry breaking, in which the flavor sector, with
SU~2!, is first segregated, and then the charge U~1! and spin
SU~2! ~note that U(1); SO(2) and SU(2); SO(3)]:

SO~8!→SO~5! ^ SO~3!fl.→SO~2!c
^ SO~3!sp.

^ SO~3!fl..
~11!

We stress that the goal of the present analysis is to fit
fields and states of the model into symmetry multiplets, wi
out demanding the symmetry to be exact. In the first stag
this breakdown, the vector and spinor representations
SO~8! are decomposed as follows@irreducible representa
tions will be commonly denoted by bold numbers givin
their dimensions, with an occasional superscript distingu
ing between vectors (v) and spinors (s)]:

8v→~5,1! % ~1,3!,

8s→~4,2! ~12!

@here, for instance, the notation (4,2) stands for a tenso
product of the four-dimensional representation of SO~5! with
a doublet of SU(2)fl.]. Since SO~5! representations are no
all that familiar, we provide a pictorial view of the lowes
nontrivial ones on Fig. 1. The multiplet4 is the spinor rep-
resentation of SO~5!, while 5 is the vector representation an
10 the adjoint representation, i.e., the representation of
SO~5! symmetry currents or generators. The decomposi
of these SO~5! representations in terms of spin multiplets a
charge quantum numbers is best appreciated on Fig. 1.
instance, the SO~5! spinor 4 breaks down into two spin-1

2

doublets, one with charge11 and the other with charge21.

FIG. 1. TheSz2Q diagrams associated with the lowest no
trivial SO~5! multiplets.
ts

e
n

ge

e
-
of
of

-

e
n

or

On the other hand, the vector representation breaks d
into a spin-1 triplet of charge zero and two singlets
charges62.

We may now ascertain that the electron fieldsRm belong
to thespinor representation of SO~8!. Indeed, the lowest ex
cited states ofH0 , obtained by acting on the vacuum wit
the lowest electron creation operators, form a multiplet
four states of charge11 and four states of charge21. This
is precisely the charge content of the spinor multiplet8s,
since the spinor4 of SO~5! contains two states of charge11
and two of charge21, and appears twice in the decompo
tion ~12!, because of the flavor doublet.

A different set of real fermions, denotedj i ( i
51, . . . ,8), belongs to thevector representation of SO~8!.
These new fermions are related in a complicated, nonlo
way to the original fermions. The transformation relatin
them may be explicitly obtained via Abelian bosonization,
one takes care to preserve the anticommutation factors,
this is not a particularly illuminating procedure. The impo
tant point is that they are just a different basis or represe
tion for the same system. These fermions obey the us
anticommutation relations$j i(x),j j (y)%5d i j d(x2y). The
SO~8! currents~10! may also be expressed as bilinears
these fermions, albeit with the help of a different set
SO~8! matrices:

JR
A5

1

2(i j j iTi j
Aj j . ~13!

A characteristic feature of the vector representation is
particularly simple decomposition into charge, spin, and
vor components: in the first stage of the breakdown~11!, the
vector representation decomposes as8v→(5,1) % (1,3). In
the second stage, the SO~5! vector decomposes as5→(3,1)
% (1,2) ~this time, doublets on the right-hand side corr
spond to spin and charge multiplets, respectively!. We may
thus distinguish three Majorana fermions (j i

s , i 51,2,3) for
spin, three others (j i

f , i 51,2,3) for flavor, and the remaining
two (j i

c , i 51,2) for charge. The spin, flavor, and char
current then have the following expressions:

JR
i 52

i

2
e i jkj j

sjk
s ,

I R
i 52

i

2
e i jkj j

fjk
f , ~14!

JR52 i e jkj j
cjk

c522i j1
cj2

c . ~15!

It is interesting to note that these currents@and eventual
SO~5! currents# are local in terms both of the electron field
and in terms of the above Majorana fermions, even thou
the fermion operators themselves are nonlocally related.
Majorana fermions are nonetheless legitimate operator
the theory. For instance, at half-filling, if all sectors becam
gapped, the three spin fermionsj i

s would describe the triplet
of spin excitations characteristic of a gapped spin-1 chai27
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IV. THE SO „5… CURRENTS AND ZHANG’S P OPERATORS

We have seen above that the spin and charge degre
freedom, which make up the critical sector of the theory~1!,
may be described by the five Majorana fermionsj1,2

c and
j1,2,3

s . Except for the interactionVc of Eq. ~8!, the low-
energy sector is equivalent to a level-1 SO~5! WZW model
with conformal chargec5 5

2 .14 Indeed, the above Majoran
fermions may be arranged in the following suggestive
quence:

j15j2
c j25j1

s j35j2
s j45j3

s j55j1
c ~16!

plus corresponding left-moving fields. That the nonintera
ing part of the spin-charge sector is equivalent to a leve
SO~5! WZW model means that this part of the Hamiltonia
may be simply expressed as28

H05 ivF(
j 51

5 E dx~j j]xj j2 j̄ j]xj̄ j ! ~17!

~herej̄ j denote the left-moving fields!.
It is then useful and instructive to introduce the full te

SO~5! currents. Four of those currents are provided by
charge and spin currents of Eq.~6!. The remaining six, cor-
responding to Zhang’sp operators,1 may be expressed in th
continuum limit either in terms of the Majorana fermionsj1,2

c

andj1,2,3
s , or directely in terms of the electron fields.

It is interesting at this point to go back to the lattice de
nition of thep operators:1

Pa
†5 (

k,a,b
g~k!ca

†~k1Q!~sas2!abcb
†~2k!

5 (
m,n,a,b

gm,ne
iQ•mca

†~m!~sas2!abcb
†~n!, ~18!

wherem andn are vectorial site indices~in-chain and chain
index!. On a square lattice at half-filling Zhang takesQ
he
n

fo
of

-

t-
1

e

5(p,p). On a two-chain system, away from half-filling
there are two possibilities:Q5(2kF ,p) for right movers and
Q5(22kF ,p) for left movers.

The structure factorg(k)5coskx2cosky has the local
form:

gm,n5H 12 if ~m,n! are NN on the same chain

22 if ~m,n! are NN on opposite chains

0 otherwise.

~19!

Defining a ‘‘staggeredp density,’’

Pa
†58E dxe2ikFxpa

† , ~20!

we find, with the help of Eq.~4!, the following expressions

px
†52

i

2
@R↑,1

† R↑,2
† 2R↓,1

† R↓,2
† #,

py
†52

1

2
@R↑,1

† R↑,2
† 1R↓,1

† R↓,2
† #,

pz
†5

i

2
@R↑,1

† R↓,2
† 1R↓,1

† R↑,2
† #. ~21!

Interestingly, this continuum expression for thep operators
is quite robust and does not depend too closely on the
croscopic definition~18!. One might have alternatively cho
sen the Henley-Kohno formg(k)5sgn(coskx2cosky) and
this would not have changed the results, apart from der
tive terms that are irrelevant in the RG sense—essenti
because in a two-chain ladder system there are only twoky
values, 0 orp. Another seemingly different microscopic ex
pression for thep operators is used in Ref. 29, but again, w
have verified that the same expression~21! is obtained in the
continuum limit.

We define the matrixl ab(x), analogously to Zhang:
S 0

px
†1px 0

py
†1py 2JR

z 0

pz
†1pz JR

y 2JR
x 0

JR 2 i ~px
†2px! 2 i ~py

†2py! 2 i ~pz
†2pz! 0

D ~22!
~the matrix is antisymmetric and so we only wrote down t
lower diagonal!. Using Wick’s theorem for the electro
fields Ra,i and La,i , we find that thel ab obey an SO(5)1
Kac-Moody algebra, different from the standard SO~5! alge-
bra by a quantum anomaly coming from the necessity
normal ordering with respect to the vacuum:
r

@ l ab~x!,l cd~y!#5d~x2y!„dacl bd~x!2dadl bc~x!

2dbcl ad~x!1dbdl ac~x!…

1
i

2p
d8~x2y!~dacdbd2daddbc!.

~23!
-
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A similar procedure gives the corresponding relationship
left-moving currents.

How can the SO~5! symmetry currents be expressed in t
Majorana~vector! representationj? A vector representation
of the SO~5! generators may be easily written down:

t i j
~ab!5 i ~d i

ad j
b2d j

ad i
b!. ~24!

The currents~22! can then be represented as follows:

l ab~x!5
1

2 (
i , j 51..5

j i t i j
~ab!j j , ~25!

where the five fermionsj i are numbered as in Eq.~16!: Note
that thep operators correspond to bilinears involving o
fermion j from the spin sector and one from the char
sector, which again fits with the physics since we know t
they create objects with both spin and charge.

In the low-energy sector of the model~1!, the spin-charge
sector can be represented by an SO(5)1 WZW model, per-
turbed away from the perfectly symmetric point by curre
current interactions~the only interactions present in the sp
and charge sectors in our model!. So Zhang’s idea of using
an SO~5! s-model representation with symmetry breaki
interactions1 is explicitly seen to be valid for this model, an
the Hamiltonian for the spin and charge sectors can be w
ten in terms of the SO~5! currents in the Sugawara form
analogous to the form proposed in Ref. 1:

Hcs5H0s1H0c1Vc

5
pvF

4 E dx(
a,b

$~ l ab!21~ l̄ ab!2%

1E dx$g2l 15l̄ 151g4„~ l 15!21~ l̄ 15!2
…%. ~26!

One notable difference between this system and that c
sidered by Zhang is that here we are working away fr
half-filling; the p operators are defined slightly differently
to carry momentum (62kF ,p). The chemical potential term
in the Hamiltonian, which in two dimensions breaks SO~5!,
here ~due to perfect nesting! simply renormalizes the wav
vectorkF ; momentum is still conserved and the algebra~23!
still closes because operators carrying 2kF only give nonzero
expectation values when combined with operators carryi
22kF . If we were to work at half-filling, there would be a
additional Umklapp scattering which would lead to a Mo
charge gap.18

Since there arep operators in this system, one may al
ask whether there is a well-definedp resonance as claime
in two dimensions.2,1 If this is so, the commutator of the
Hamiltonian with theP operator will be proportional to the
P operator.1 It can easily be seen that this will not be th
case. Later on, in Sec. V, we obtain bosonised forms
these operators. Then one can see that in Fourier space
correlator ofp operators does not have a simple pole; th
effect is not to generate a single well-defined triplet exc
tion but a shower of unconfined spinons and holons.
r
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V. BOSONIZATION

The low-energy sector of the model~1!, i.e., the perturbed
SO~5! WZW model of Eq.~26! is exactly solvable, in the
sense that we may find the exact energy levels of low-ly
states and the long-distance correlations of various opera
We will first indicate the physical content of the SO~5!
WZW model without perturbations, and then see explici
how the interactionsg2 andg4 separate spin and charge se
tors, affect correlation exponents and deform low-ene
SO~5! multiplets.

In the language of conformal field theory,26 particularly
useful when dealing with critical theories, each WZW mod
contains a finite number of primary fields, having we
defined conformal dimensionsD andD̄. An operatorA with
such conformal dimensions has the following dynamical c
relations:

^A~x,t !A~0,0!&;
1

~x2vt !2D~x1vt !2D̄
. ~27!

The level-1 SO~5! WZW model has two primary fields: a
five-component vector fieldj of conformal dimensionD
5 1

2 and a four-component spinor fieldh of conformal di-
mension 5

16 . Under SO~5! rotations, these fields transform
respectively, in the vector and spinor representations
SO~5!. Of course, the fieldj is made of the five Majorana
fermions~16!, whereas the fieldh is what is left of the origi-
nal electron fieldsRm , originally in a spinor representatio
of SO~8!, after the flavor sector has been gapped out. Fre
ing out the flavor part has had the effect of decreasing
conformal dimension of the spinor field from12 @in SO~8!# to
5

16 @in SO~5!#, thus making it more relevant. In addition t
these primary fields, the ten SO~5! currents~22! also play a
crucial role in the theory and their correlations may also
exactly calculated.

A. Spin-charge separation

When the interactions of Eq.~26! are turned on, the SO~5!
symmetry is explicitly broken and the spin and charge s
tors of the theory separate. The spin sector, unaffected by
interactions, becomes a level-1 SO~3! WZW model, which is
the same as a level-2 SU~2! WZW model. The SU(2)2 WZW
theory contains two primary fields: a spin triplet~or vector!
j i

s ( i 51,2,3) with conformal dimension12 , and a spin-12 ~or
spinor! field ga (a5↑,↓), of conformal dimension 3

16 .
Products of the left- and right-moving parts ofg are com-
monly arranged in a 232 matrix:

G5S g↑ḡ↑ g↑ḡ↓

g↓ḡ↑ g↓ḡ↓
D . ~28!

The charge sector becomes a U~1! theory, which may be
described by a single boson fieldFc . The effect of the in-
teractions on the charge boson is simply to change the s
trum of anomalous dimensions (KcÞ1) and the theory re-
mains critical. Since Abelian bosonization is fair
standard,30–32,24we shall only state a few results. The char
bosonFc may be written as the sum of right and left par



iq

gs
de
up

s

t
on

ns

ina
-

is
th
s

e
ar
r

-
he
s

a
gy
to
co

t,
n
or
th
ha

d.
er-
mi-
nal
be

he

five

-
f SU

as

s

on
-
or-

d it

i-
ffi-

he

red

6824 PRB 58DAVID G. SHELTON AND DAVID SÉNÉCHAL
Fc5fc1f̄c . Defining the dual fielduc asuc5fc2f̄c , the
charge Hamiltonian may be written as

Hc5
vc

2 E dxFKc~]xuc!
21

1

Kc
~]xFc!

2G , ~29!

where

Kc5ApvF1g42g2

pvF1g41g2
,

vc5AS vF1
g4

p D 2

2S g2

p D 2

. ~30!

For more general lattice Hamiltonians that are Luttinger l
uids in the low-energy sector, the parametersvc andKc de-
pend in a more complicated way upon the original couplin
so in the following analysis, one can just treat them as in
pendent parameters the precise values of which depend
the original model.

If g250, there are no anomalous exponents (Kc51) and
the scaling fieldse6 iA4pfc represent right-moving fermion

of conformal dimensions (12 ,0). Wheng2 is turned on, the
original charge current (l 155JR) is no longer conserved bu
becomes a linear combination of currents that are still c
served~see, e.g., Ref. 21!:

JR5 j Rcoshq2 j Lsinh q ~Kc5e22q!, ~31!

where j R and j L have, respectively, conformal dimensio
(1,0) and (0,1). The chiral componentsfc and f̄c mix
through the same Bogoliubov transformation and the orig
fermion operatorse6 iA4pfc acquire a left conformal dimen
sion:

D5 1
8 ~Kc11/Kc!1 1

4 , D̄5 1
8 ~Kc11/Kc!2 1

4 . ~32!

Although the above results are very well known, it
worth pausing over them for a moment. They show that
interaction strengthsg2 andg4 are not relevant energy scale
in the low-energy theory. They only appear as ratiosg2,4/vF
in the renormalization of the velocityvc and the anomalous
exponentKc . This is a very nonperturbative result. If w
recall the exact solution of the one-dimensional Hubb
model away from half-filling, we know that it is a Luttinge
liquid for all U.0 from 0 to `.33 In this range,Kc varies
from its noninteracting value of 1, to 1/2 atU5`. Even
when the on-site repulsion is infinite, its effect in the low
energy sector is just a fairly small renormalization of t
anomalous exponent! The theory is still critical with gaple
spin and charge excitations.

Some critics of the Zhang SO~5! proposal have claimed
that because of the strong on-site repulsion in the Hubb
model, the p operators cannot create low-ener
excitations.3 The argument is essentially that one is forced
put two electrons on the same site, which has an energy
of order U. The reason that the criticism3 may be too sim-
plistic is first of all that it is a single-particle argumen
whereas the low-energy excitations of this system are ma
body collective phenomena, and secondly that it is a sh
length scale argument that may have some validity in
UV; but we are interested in the low-energy IR behavior t
-

,
-
on

-

l

e

d

s

rd

st

y-
t-
e
t

is quite different in a non-Fermi-liquid such as the TL liqui
Even if much of the spectral weight is shifted to high en
gies there is still some at low energies and this is what do
nates the low-energy theory. Given that the two-dimensio
cuprates are examples of non-Fermi-liquids, it cannot
ruled out a priori using these arguments that even in t
presence of strong on-site repulsion, thep-operators may
generate low-energy excitations~at least when one is slightly
away from half-filling!.

Let us then see what happens to the SO~5! currents and
primary fields after spin-charge separation. Three of the
components ofj become a spin triplet (js) and the remain-
ing two are simply cos(A4pfc) and sin(A4pfc). Out of the
10 SO~5! currents, six—thep operators—are no longer con
served currents and may then be expressed as products o
(2)2

sp. fields with charge fields. Schematically,

p,p†;e6 iA4pfc~z!
^ js~z!. ~33!

When KcÞ1, the conformal dimensions of thep operators
are no longer (1,0), but rather, from Eq.~32! and since the

field js(z) has conformal dimensions (1
2 ,0),

D5 1
8 ~Kc11/Kc!1 3

4 D̄5 1
8 ~Kc11/Kc!2 1

4 . ~34!

Thus, thep operators are no longer conserved currents,
expected.

As mentioned above, the spinor representation4 of SO~5!
factorizes into a pair of SU~2! doublets of charges61 when
SO~5! is broken. The spinor fieldh may thus be factorized a

h~x!;~g↑ ,g↓! ^ S cos~Apfc!

sin~Apfc!
D , ~35!

whereg is the SU~2! spinor mentioned above and the bos
factors have conformal dimension1

4 . The decomposition de
scribed here can be rigorously proven by checking the c
responding commutators with the currents. We obtaine
differently, by the method of affine characters~see Ref. 26!,
which we will not explain in detail here, since the coinc
dence of conformal dimensions and components is su
ciently convincing for our purpose.

B. The SO„5… order parameter

One of the interesting operators of the SO~5! WZW
model ~and of its perturbed version! is a continuum version
of Zhang’s five-component order parameterna (a
51, . . . ,5).1 This operator can be defined in terms of t
original electron fields. The componentsn2,3,4 correspond to
the staggered magnetization and the componentsn1,5 to the
d-wave superconducting order parameter. The stagge
magnetization is defined as

nQ5 (
k,a,b

ca
†~k1Q!sabcb~k!. ~36!

Picking Q5(2kF ,p) and using Eq.~4!, we find

nQ5 (
k,a,b

~Ra,1
† sabLb,12Ra,2

† sabLb,2!. ~37!



st

r
e
ve

en

ol

th

r

ts

a

d

rd

al
r

der
i-

o
in-
me

on-

PRB 58 6825SO~5!-SYMMETRIC DESCRIPTION OF THE LOW- . . .
The Q5(22kF ,p) component of the magnetization is ju
the Hermitian conjugate of the above. Thed-wave order pa-
rameterD is defined as

E dxD †5(
m,n

gm,nc↑
†~m!c↓

†~n!, ~38!

wheregm,n has been introduced in Eq.~19!. Taking the con-
tinuum limit, we find

D †5 (
i 51,2

~R↑,i
† L↓,i

† 1L↑,i
† R↓,i

† !2R↑,1
† L↓,2

† 2L↑,1
† R↓,2

† 2R↑,2
† L↓,1

†

2L↑,2
† R↓,1

† . ~39!

The combinationsD1D † and i (D2D †) then correspond to
n1 andn5 , respectively.

An expression of the order parameterna in terms of the
scaling fieldsh or j would be more useful, since the flavo
part is not explicitly absent from the above. Such an expr
sion is difficult to obtain in a systematic way from the abo
expressions; but one can infer what it has to be~this result
can be confirmed by Abelian bosonization; see the App
dix!. Clearly, na should be a bilinear inh or j, with equal
left and right conformal dimensions. Let us consider the f
lowing SO~5! tensor products:

4^ 451% 5% 10,

5^ 551% 10% 14. ~40!

This means that a bilinear inj ~five components! cannot
transform as a vector of SO~5!, whereas a bilinear inh ~four
components! can. We thus seek an order parameter of
form

na5G i j
a hi h̄ j , ~41!

where the five 434 matricesGa must transform as a vecto
of SO~5! when h and h̄ are acted upon by a 434 unitary
representation of SO~5!. If we denote byl ab a 434 repre-
sentation of the SO~5! generators, this requirement amoun
to

@ l ab,Gc#5 i ~dacGb2dbcGa!. ~42!

Experience with the Lorentz group and Dirac matrices m
guide us here. If a set of five matricesGa obey the Clifford
algebra$Ga,Gb%52dab, then it is a simple matter to show
that the above commutation relations are satisfied if we
fine

l ab52
i

4
@Ga,Gb#. ~43!

Moreover, the matrices thus defined do obey the SO~5! alge-
bra,

@ l ab,l cd#5 i ~dacl bd1dbdl ac2dadl bc2dbcl ad!.
~44!

Let us adopt the following representation for the Cliffo
algebra:

G151^ s3 , ~45a!
s-

-

-

e

y

e-

G25s1^ s2 , ~45b!

G35s2^ s2 , ~45c!

G45s3^ s2 , ~45d!

G5521^ s1 . ~45e!

Then the charge andSz matrices take the form

l 515
1

2S s2 0

0 s2
D , l 235

1

2S 1 0

0 21D . ~46!

With the above generatorsQ andSz , the factorization of the
chiral field h in terms of the SU(2)2

sp. field g and of the
charge bosonfc must be

h5„g↑cos~Apfc!,g↑sin~Apfc!,g↓cos~Apfc!,g↓

3sin~Apfc!…, ~47!

h̄5„ḡ↑cos~Apf̄c!,ḡ↑sin~Apf̄c!,ḡ↓cos~Apf̄c!,

2ḡ↓sin~Apf̄c!…. ~48!

The explicit expression for the order parameterna

5Tr(Gahh̄) in terms of the spin matrix field~28! and of the
charge boson is then

n15Tr ~G!cos~Apu!, ~49a!

n25 iTr ~Gs1!sin~ApF!, ~49b!

n35 iTr ~Gs2!sin~ApF!, ~49c!

n45 iTr ~Gs3!sin~ApF!, ~49d!

n552Tr ~G!sin~Apu!. ~49e!

We first notice thatn1,5 form a spin singlet and are the re
and imaginary parts of the complexd-wave order paramete
Tr (G)exp(2iApu), whereasn2,3,4 form a spin triplet. We
also see how the scaling dimensions ofn1,5 diverge from
those ofn2,3,4 when Kc is different from unity: the fields
cos(Apu) and sin(Apu) have conformal dimensionsD5D̄
51/(8Kc) while cos(ApF) and sin(ApF) have conformal
dimensionsD5D̄5Kc/8. Thus

D~n1!5D~n5!53/1611/8Kc ,

D~n2!5D~n3!5D~n4!53/161Kc/8. ~50!

We may also consider the SO~5! singlet hi h̄i , which be-
comes simply Tr(G)cos(ApF) in this representation. This
field is conjectured to be the charge-density-wave or
parameter.34 Within this model it has the same scaling d
mension as the staggered magnetization~or spin density
wave!, but in a more general model with a spin gap the tw
fields could have different correlation lengths since spin s
glet and triplet states would not necessarily have the sa
excitation energy.

To summarize, the components of the SO~5! order param-
eter have power-law correlations governed by the above c



,

-
ke
ng
th
ga

tra

n
d
e
th

th

d
r

nc

th
th

en
th

r

k

d,
n
a

in

e
io
ac

y
to
-
ed

a

e

sily
ge-

be

f

d-

r
l

rge

te
eral

ten-
ns,
rge

e

nc-

6826 PRB 58DAVID G. SHELTON AND DAVID SÉNÉCHAL
formal dimensions. When full SO~5! symmetry is present
D(nW )55/16; andnW is the vector primary field of the SO(5)1
WZW model. WhenKcÞ1, the SO~5! symmetry is broken
and the staggered magnetization is less (Kc.1) or more
(Kc,1) relevant than thed-wave order parameter. The be
havior of the other possible fermion bilinears can be chec
by a combination of Abelian bosonization and an Isi
model representation of bosonic exponents—we find
their correlations decay exponentially as a result of the
in the flavor sector~for details see the Appendix!. Of course,
since we are in one dimension, there are no real phase
sitions, just enhanced fluctuations. Thus the fluctuations
the superspin channel are enhanced whereas other tende
are suppressed. If a weak interladder coupling were adde
form a two- or three-dimensional system, then a mean-fi
treatment would lead to a phase transition in the channel
has the highest susceptibility~i.e., the most fluctuations!, i.e.,
an ordered phase for the most relevant operator. Thus,
approach predictsd-wave superconductivity for weakly
coupled ladders with attractive effective interactions (Kc
.1). Finally, since the charge and spin sectors of this mo
are described by conformal field theories, one can also
cover the finite-temperature behavior of the correlation fu
tions in the standard way.26

C. Lowest-energy states

In the absence of interactions and interchain coupling,
low-energy sector of the model is especially simple:
theory is a SO(8)1 WZW model. The states fall into two
representations of the Kac-Moody algebra: that of the id
tity, which contains states with even charge, and that of
spinor ~electron! field Rm , which contain states of odd
charge. Remember, this is just a complicated way of rep
senting noninteracting fermion excited states. As SO~8! is
broken into SO(5)1^ SU(2)2

fl. , these representations brea
into a finite number of representations of SO(5)1^ SU(2)2

fl. ,
as indicated in Eq.~12!. When the flavor sector is gappe
the low-lying states must all be flavor singlets and so ma
of those representations become irrelevant, in particular
the representations of odd charge coming from the sp
Ra .

The only surviving Kac-Moody representation in th
SO(5)1 theory is that of the identity. Such a representat
contains an infinite number of energy levels, and at e
level the states fall into SO~5! multiplets. In the pure WZW
model~before spin-charge separation! the excited states ma
be obtained from the vacuum by applying ladder opera
associated with the SO~5! currents. Let us explain: in a sys
tem of finite lengthL, the currents may be Fourier expand
as follows:

l ab~x!5(
n

e2p inx/Ll n
ab , ~51!

where the sum runs over all integers~positive and negative!.
From the commutation relations of the currents, one m
infer commutation relations for the modesl n

ab and show that,
for n,0, l n

ab is a raising operator for the energy in th
WZW model. Of course, thel 0

ab are nothing but the SO~5!
generators and allow us to navigate within a multiplet.
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The multiplet content at each energy level may be ea
obtained from the representation theory of Kac-Moody al
bras, in particular by the method of affine characters.26 Sche-
matically, in the case at hand, the multiplet content may
expressed in terms of a spectrum-generating functionX(q):

X~q!511q101q2~141101511!

1q3~3511413•101511!1•••, ~52!

where the coefficient ofqD indicates the multiplet content o
states with conformal dimensionD. For instance, a term like
2q3

•10 in X(q) means that the multiplet10 of SO~5! occurs
twice with conformal dimensionD53 in the right-moving
sector. The full low-energy Hilbert space is a left-right pro
uct, encapsulated in the generating functionX(q)X(q̄). For
instance, the termNqD10^ q̄D̄5̄ stands for a left-right tenso
product of multiplets, occurringN times at the energy leve
(2pvF /L)(D1D̄), with momentum (2p/L)(D2D̄) (vF is
the common spin and charge velocity before spin-cha
separation!.

The eigenvalues ofSz andQ and the energy of each sta
in the right-moving sector may be encoded in a more gen
spectrum-generating functionX(q,x,y):

X~q,x,y!5 (
states

qDx2SzyQ. ~53!

The advantage of spectrum-generating functions is that
sor products translate into ordinary products of functio
and direct sums into ordinary sums. Anticipating spin-cha
separation, it is possible to write the functionX(q.x.y) as a
combination of spin-charge products:

X~q,x,y!5Xsp
~0!~q,x!Xc

~0!~q,y!1Xsp
~2!~q,x!Xc

~2!~q,y!,
~54!

whereXsp
( j )(q,x) is the spectrum-generating function for th

spin-j Kac-Moody representation of SU(2)2 andXc
(0,2) is the

analog for the charge sector. The lowest terms of these fu
tions are

Xsp
~0!~q,x!511q~11x21x22!

1q2~312x212x221x41x24!1•••,

Xsp
~2!~q,x!5q1/2~11x21x22!1q3/2~21x21x22!

1q5/2~413x213x221x41x24!1•••,

Xc
~0!~q,y!511q1q2~21y41y24!

1q3~31y41y24!1•••,

Xc
~2!~q,y!5q1/2~y21y22!1q3/2~y21y22!

1q5/2~2y212y22!1•••. ~55!

Again, the exponent ofx is twice the value ofSz and that of
y is the chargeQ. A term like 4x2y22q3 in Eq. ~54! would
stand for four states withD53, Sz51, and Q522. The
charge states represented inXc

(0) have chargeQ50 ~modulo
4! and those inXc

(2) have chargeQ52 ~modulo 4!. From the
above expressions and relation~54!, the full spectrum of en-



r

f
th
p
nd

ift
oc
,

t
e
s

c

cr

d
o
te

he

f t

Ac

ea

e

qs.

sh-

l
al

st-

or-
nt

ut-
.
he

q.

er
ity-

e
d
ic

PRB 58 6827SO~5!-SYMMETRIC DESCRIPTION OF THE LOW- . . .
ergies and quantum numbers may be recovered. Of cou
we must consider the left-right productX(q,x,y)X(q̄,x,y).
That the expression~54! is a sum of products, instead o
being a simple product of spin and charge factors, means
one cannot consider the charge and spin spectra inde
dently: there are ‘‘glueing conditions’’ between charge a
spin states, conditions encoded in Eq.~54!.

When spin and charge separate, the energy levels sh
two ways. First, because of different spin and charge vel
ties, Xsp

( j )(q,x) and Xc
(n)(q,y) become, respectively

Xsp
( j )(qs ,x) and Xc

(n)(qc ,y), where qs5qvs /vF and qc

5qvc /vF. Second, anomalous charge exponents change
conformal dimensions in the charged sector, the structur
which deserves a more detailed explanation: excited state
the charge sector may be obtained either~i! by applying the
creation operators associated with the charge bosonfc ~this
does not change the chargeQ) or ~ii ! by applying exponen-
tials exp(iQApfc) on the vacuum, whereQ is the charge
thus created. The generating functions in the charge se
may be expressed as

Xc
~ l !~q,y!5Xbos.~q! (

Q54r 1l
qQ2/8yQ, ~56!

wherer runs over all integers,l 50 or 2, andXbos.(q) is the
spectrum generating function associated with the boson
ation operators only:

Xbos.~q!5)
r 51

`
1

12qr511q12q213q315q417q51•••.

~57!

When Kc changes from its initial value of unity, left an
right boson creation operators mix through some Bogoliub
transformation and the conformal dimensions associa
with the exponentials offc and f̄c become

D~Q,Q̄!5
1

32F 1

AKc

~Q1Q̄!1AKc~Q2Q̄!G 2

,

D̄~Q,Q̄!5
1

32F 1

AKc

~Q1Q̄!2AKc~Q2Q̄!G 2

. ~58!

Left-right products of spectrum-generating functions in t
charge sector then become

Xc
~ l !~qc ,y!Xc

~ l 8!~ q̄c ,y!5Xbos.~qc!Xbos.~ q̄c!

3 (
Q54r 1l

Q̄54r 81l 8

aqD~Q,Q̄!q̄D̄~Q,Q̄!yQ2Q̄.

~59!

The above expression, combined with Eqs.~54,55,58! allows
us to extract the energy, momentum, charge, and spin o
whole low-energy sector for arbitrary values ofvs , vc, and
Kc .

Let us consider, for instance, the first excited states.
cording to Eq.~52!, they fall into the multiplet10 of SO~5!.
The spin and charge content of such a multiplet is easily r
from the correspondingSz2Q diagram of Fig. 1. The mul-
tiplet 10 consists of three spin triplets~of charge22, 0, and
se,
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2, respectively!, plus a neutral spin singlet. After spin-charg
separation and ifKcÞ1, the contribution of this multiplet to
the spectrum-generating function is, according to E
~54,55!,

qc1qs~11x21x22!

1qs
1/2qc

D~2,0!q̄c
D̄~2,0!~11x21x22!~y21y22!. ~60!

Thus, the energies of these states split in the following fa
ion:

E~Q50,j 50!5
2pvc

L
,

E~Q50,j 51!5
2pvs

L
,

E~Q562,j 51!5
pvs

L
1

pvc

2L S Kc1
1

Kc
D . ~61!

The last of these states are in fact created by applyingp
operators@see Eq.~34!#. The energy levels are proportiona
to the scaling dimensions of the operators in the conform
field theory.26

To conclude, the eigenstates, in particular the lowe
energy states, fall into deformed SO~5! multiplets. The
amount of deformation is exactly determined by the ren
malized charge velocityvc and anomalous charge expone
Kc .

VI. LUTTINGER LIQUID CASE

As we mentioned earlier, the case of two coupled L
tinger liquids is different from that of two Luttinger models
Let us consider, as an example of a Luttinger liquid, t
one-chain Hubbard model at weak couplingU!t:

HHub52t(
r ,a

~cr ,a
† cr 11,a1cr 11,a

† cr ,a!1U(
r

nr ,↑nr ,↓ .

~62!

If we linearize about the right and left Fermi points as in E
~4!, and use the charge currents~3! and the corresponding
spin currents

jR5
1

2(a,b
Ra

†sabRb , jL5
1

2(ab
La

†sabLb , ~63!

we find the Hamiltonian density (vF;ta0):

HHub'2 ivF(
a

~Ra
†]xRa2La

†]xLa!1
U

4
~ j R

21 j L
2!1

U

2
j Rj L

2
U

3
~ jR

21 jL
2!22U jR• jL . ~64!

This Hamiltonian is not equivalent to a Tomonaga Lutting
model because the last two terms are not pure dens
density interactions. The (jR

21 jL
2) term will only renormalize

the spin velocityvs and is not very important. However, th
marginally irrelevantjR• jL term cannot simply be absorbe
in this way. It is this term that gives rise to logarithm
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corrections to the correlation functions in Luttinger liquids
although otherwise it does not drastically change their pr
erties, hence the utility of the Luttinger liquid concept.

As this weak-coupling bosonization suggests, the c
pling constant of this term is of the same order as the o
couplings in the theory, so it cannot necessarily be jettiso
when we consider more complicated models such as the
chain ladder. Let us therefore consider as a model for
generic Luttinger liquid two-chain ladder, the Hamiltonia
~1! perturbed by marginally irrelevant spin current intera
tions in each chain:

Hliq5H1Hmarg,

Hmarg52l~ jR1• jL11 jR2• jL2!, ~65!

wherel.0, and jRi ,jLi are the right and left moving spin
currents in chainsi 51,2. It is instructive to write the pertur
bation in terms of the Majorana~vector! fermions j i . We
find

Hmarg52
l

2S JR•JL2 (
i 51,2,3

~j i
sj̄ i

s!j3
f j̄3

f D . ~66!

The first term is a marginally irrelevant interaction in th
total spin sector@JR5 jR11 jR2 as defined in Eq.~6!#. But it is
the second term that is most significant. It couples the fer
ons of the spin sector (j i

s5right moving, j̄ i
s5 left moving,

i 51,2,3) to one of the fermions in the flavor sector. So
spin and flavor sectors are no longer genuinely decouple

Suppose that the flavor sector becomes gapped. The

^j3
f j̄3

f &Þ0. ~67!

To first approximation, we can then replacej3
f j̄3

f in Eq. ~66!
by its expectation value, and we see that the effect of a ga
the flavor sector is to generate a mass term for the ferm
of the spin sector—a spin gap. This is a crude argument
it is borne out by the RG analysis of Refs. 17,13 as well
numerical work20 ~in the notation of Ref. 17 a finite back
scattering corresponds togi

(1)Þ0) that shows the existenc
of strong-coupling regimes with a spin gap in a model of t
Hubbard chains coupled by a small hopping. In general i
hard to estimate the size of this gap. If it is large, the-l
energy physics will be as described in Refs. 17,20. It co
be, however, that in some models~with small l, for ex-
ample! the spin gap is very small, in which case for interm
diate energy scales the behavior will still be described
proximately by the model~1!.

VII. CONCLUSIONS

In this paper we have studied a system of two TL mod
coupled by a small interchain hopping. We have shown t
this critical ~at T50) theory can be represented much mo
symmetrically than in the standard Abelian bosonization r
resentation as an SO(5)1 WZW model, or equivalently as a
system of five Majorana fermions, perturbed by symmet
breaking interactions. We have obtained the correlations
fermion bilinears in this theory and demonstrated that
components of the ‘‘superspin’’1 have power-law correla
tions, and are enhanced, while other tendencies are
-
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pressed. Conformal field theory allows us to obtain the ex
energy levels in a finite size system and observe how
degeneracy of the SO~5! multiplets is broken by spin-charg
separation (vcÞvs) and the presence of an anomalous exp
nent (KcÞ1) in the charge sector. Except in the trivial no
interacting case, there is no exact SO~5! symmetry. In Sec.
VI we showed briefly how the inclusion of backscatterin
results in the appearance of a spin gap.

In light of these results, Zhang has recently shown34 that a
whole class of ladder systems with more general interacti
have Hamiltonians with microscopic SO~5! symmetry.
Knowing the Hamiltonian does not tell us about the stron
coupling behavior at low energies. But a continuous symm
try like SO~5! cannot be spontaneously broken in one dime
sion and must therefore be present in the low-energy the
as well. The latter must be described by a SO~5! WZW
model, perturbed by various primary fields, perhaps with
critical point or line in the space of coupling constants~a
conformal field theory with Lie-group symmetry is necess
ily a WZW model!. This is the simplest class of low-energ
theories with SO~5! symmetry in 111 dimensions.

The SO~5! symmetric description of ladder models, whic
are clearly related to popular models of the cuprates, and
similarity of the form of the theory in ladders to that pro
posed by S.C. Zhang1 for the two-dimensional Cuprates, i
certainly encouraging and suggestive. Nonetheless, in v
of the many special features of one-dimensional theories
are cautious about drawing more general conclusions.
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APPENDIX: ABELIAN BOSONIZATION OF FERMION
BILINEARS

We want to know the long-distance~low-energy! behav-
ior of the correlations of various bilinears. In Sec. V w
demonstrated that the correlations of the ‘‘superspin’’ ord
parameter could be deduced within the framework of n
Abelian bosonization from a careful analysis of the operat
of the conformal field theory. We can further justify th
analysis and find the behavior of the other fermion biline
explicitly by using Abelian bosonization.

We introduce an Abelian bosonFa
i for each species o

fermion i 51,2, a5↑,↓. Then we introduce linear charg
and spin, bonding and antibonding combinations of th
fields:

Fa
65

1

A2
~Fa

16Fa
2 !,

Fc,s
i 5

1

A2
~F↑

i 6F↓
i !. ~A1!

If one carefully applies Abelian bosonization to the origin
Hamiltonian~1!, taking full account of the anticommutatio
factors,32 one can identify each of these Bose fields with tw
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of the Majorana fermions introduced in Sec. IV. TheFc
1

field is simply associated with the two charge fermions, t
Fc

2 field represents two of the flavor fermions.Fs
1 repre-

sents two of the spin fermions, andFs
2 comprises one flavor

fermion and one spin fermion.
After bosonization, the various fermion bilinears have t

form

Ô;e2 iApX, ~A2!

where the differentX’s are given in Table I. We will briefly
describe how we arrive at the long-distance behavior of th
correlations. We find straightforwardly

D~e6 iApFs
1

!5D~e6 iApus
1

!5
1

8
,

D~e6 iApFc
1

!5
Kc

8
,

D~e6 iApuc
1

!5
1

8Kc
. ~A3!

~The scaling dimension isD5D1D̄ and hereD5D̄ so D
52D.) But the charge and spin (2) fields are a little more
subtle. In our model, the flavor sector acquires a gap. Si
we start withKc,1 this strong coupling regime correspond

TABLE I. Fermion bilinears.

Operator X D5D̄

~a! R1↑
† L1↓

† Fs
12uc

12Fs
22uc

2

~b! R1↑
† L2↓

† Fs
12uc

12us
21Fc

2
3

16
1

1

8Kc

~c! R1↑
† L1↓ Fc

12us
11Fc

22us
2

3

16
1

Kc

8
~d! R1↑

† L1↑ Fc
11Fs

11Fc
21Fs

2
3

16
1

Kc

8
~e! R1↑

† L2↓ Fc
12us

12uc
21Fs

2

~f! R1↑
† L2↑ Fc

11Fs
12us

22uc
2

e

e

ir

ce

to the limit Kc→0 in the c2 sector, whence to leading ap
proximation we can replace the complex exponents by th
expectation values:

^eiApFc
2

&Þ0,

^eiApuc
2

&50. ~A4!

Higher-order corrections will die away exponentially. Thu
the bilinears~a!, ~e!, and ~f! in Table I die away exponen-
tially and the corresponding tendencies are suppressed.

The exponents ofFs
2 are a little more subtle since we

know that only one of the Majorana fermions to whichFs
2

corresponds is gapped, while the other remains gaple
Here, however, we can make use of their representation
terms of the corresponding Ising order and disord
operators.35–37Introducing Ising order and disorder operator
s f ,m f corresponding to the Majorana flavor fermionj3

f and
ss ,ms corresponding to the spin fermionjs

3 , we can identify
the following approximate operator correspondences:

cosApFs
2;s fss ,

sinApFs
2;m fms ,

cosApus
2;s fms ,

sinApus
2;m fss . ~A5!

When the flavor fermion becomes gapped, either^s f&50,
^m f&Þ0 or ^s f&Þ0, ^m f&50, depending upon the defini-
tions. Thus to first approximation these can again be repla
by their expectation values. The Ising model correspondi
to the spin fermionjs

3 remains critical and has scaling di

mensionsD5D̄(ss ,ms)51/16. In this way we obtain the
long-distance asymptotics shown in Table I. The only bilin
ears that still have power-law correlations are the intercha
pairing ~39!, represented by~b! in Table I, and the staggered
magnetization~37!, represented by~c! and ~d!. Thus, it is
precisely the components of the unified order parameterna
that have power-law correlations, while all the other tende
cies around62kF are suppressed. Note that the scaling d
mensions that we find agree with those found in Sec. V fro
non-Abelian bosonization@cf. Eq. ~50!#.
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