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SO(5)-symmetric description of the low-energy sector of a ladder system
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We study a system of two Tomonaga-Luttinger models coupled by a small transverse h@ppingchain
laddep. We use Abelian and non-Abelian bosonization to show that the strong coupling regime at low energies
can be described by an SO¢8)ess-Zumino-Witten modebr equivalently five massless Majorana fermipns
deformed by symmetry-breaking terms that nonetheless leave the theory crificaDafThe S@5) currents of
the theory comprise the charge and spin currents and linear combinations of the so-called pi ofgKators
Zhang, Scienc@75, 1089 (1997, which are local in terms both of the original fermions and those of the
effective theory. Using bosonization we obtain the asymptotic behavior of all correlation functions. We find
that the five-component “superspin” vector has power-law correlatioris=ad; other fermion bilinears have
exponentially decaying correlations and the corresponding tendencies are suppressed. Conformal field theory
also allows us to obtain the energies, quantum numbers, and degeneracies of the low-lying states and fit them
into deformed S@) multiplets.[S0163-1828)00935-7

I. INTRODUCTION systems are very closely related to the highmaterials’
and some have even exhibited superconductiftfrom a

One of the most characteristic features of the Higheu-  theoretical point of view, powerful nonperturbative tech-
prates is the proximity of antiferromagneti&F) and super- niques such as bosonization and conformal field theory
conducting(SC) phases as a function of doping. As a result,(CFT) exist in one dimension. This offers hope of starting
much of the theoretical effort has focused on trying to con-with a microscopic Hamiltonian and ending up with a trac-
sistently treat the insulating—underdoped—optimally dopedable effective-field theory. In this paper it is not our purpose
region of the phase diagram, in which AF and SC tendencieto comment on the general validity of the &Didea but to
compete and may have strong fluctuations. explicitly study a simplified and more tractable model.

An interesting recent proposal is that of Zhdnige sug- There is a large body of literature on two-chain and ladder
gests that the simplest way of unifying AF and SC in thesystem&*’ (for a review see Ref.)6Using a combination of
cuprates is to introduce a new five-component vector ordeweak-coupling renormalization groufRG) and bosoniza-
parameter consisting of the three-component staggered matjen, the phase diagram has been intensively investigated.
netization, and two components associated with the real anthese analyses reveal that for small interchain hopping there
imaginary parts of thel-wave SC order parameter. Clearly are interesting strong-coupling phases. However, while Abe-
this new concept is only useful if there exists some kind oflian bosonization and weak-coupling RG are good for deter-
symmetry[higher than the known SO(&U(1)] which re-  mining the phase diagram, they do not explicitly respect the
lates the AF and SC sectors. His suggestion is that an agymmetries of the system, nor do they provide detailed in-
proximate S@) symmetry emerges in the low-energy sectorformation about the correlations. In this paper we explore in
[SQ(5) because the composite order parameter has five conmrore detail the strong-coupling region of a two-chain ladder
ponents and transforms like a vedtolf true, this would system, taking care to preserve the full non-Abelian symme-
allow the construction of an S6) quantum nonlineawr tries and obtain the correlations.

model to explain the low-energy dynamics of the high- It is well known that many two-chain ladder systems are
materials. This could explain the form of the phase diagramspin liquids; that is, they exhibit a spin gap for a wide range
and the so-calledr mode? of different fillings and couplings. This is because the Lut-

However, there have been several criticisms of thiginger liquid is a quantum critical system, and as such, highly
theory. Som@ have focused more on the details of micro- unstable to perturbations such as interchain coupling. In gen-
scopic calculations in the framework of tlhel or Hubbard eral there are a number of relevant couplings that can drive
models. Others have added several physical objectiGn®e  the system into a spin gap pha&en explicit example is
response to these criticisms has been to attempt to construdiscussed in Sec. Y.l However, in this paper we study a
concrete examples of extended microscopic Hamiltoniansimplified system in which there is no backscattering and as
that manifestly have an §6) symmetry® But knowing the ~ a result, no spin gap. This model is of interest because it
Hamiltonian does not necessarily tell us much about the lowdisplays remarkable similarities to some aspects of the
energy behavior. Zhang proposal in two dimensions.

In this paper we study a two-chain ladder Hamiltonian The model we consider is a system of two spinful
that is related to popular two-dimensional models of the cuTomonaga-Luttinge{TL) models in the repulsive regime,
prates. One of the reasons that ladder systems have attracteaupled by a small interchain hopping. This corresponds to
such attention is that many experimental realizations of thesthe case of no backscattering and was studied in Refs. 11, 14,
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and 17. We demonstrate that the hopping only generates cothe way fromU=0 to U=, as is thet-J model for small
plings in a certain sector of the theofwhich we call “fla-  enoughJrt.
vor”), freezing it out of the effective action at energy scales  One of the simplest two-chain models of this type that can
belowt, . In agreement with the above references, we findbe written down consists of two Tomonaga-Lutting®t.)
that this leaves a criticalat T=0) spin and charge sector models(labeled by a chain indeix=1,2) coupled by a small
with conformal charge 5/2. However, we go on to show thatransverse hoppingy <t:
this can be represented as a system of five massless Majorana
fermions, or equivalently, an SO(5Wess-Zumino-Witten H=Hp (1)+Hm(2)+H, (1)
(WZW) model, deformed away from the symmetric point bywhere the TL Hamiltonian is a sum of three piecés, (
marginal current-current interactions. These(Sreaking Hy+Hy):
terms are associated with spin charge separdgpm and
charge velocities not equals#v.) and the anomalous
charge exponentK#1), which distinguish the spin and Ho(i)=ive > fdX(RL,i&xRa,i_L:ry,iaxl-a,i)a
charge sectors. Thus the system is never exact{pS&ym- “
metric except in the trivial noninteracting case. Nonetheless,
this representation does have strong analogies with the Hz(i)=922 f deSi(X)jI,é (X),
Zhang proposal in two dimensions; the physics can be un- a,b ' '
derstood using an S8 symmetricc model with symmetry-
breaking terms. In this way we obtain the asymptotic behav- . _ . . .
ior of all correlation functions; the correlations of the five- H4('):94a2ﬁ f dx( £ 09015,00 +iai(¥)igi(x)- ()
component ‘“superspin” are enhanceggower law atT
=0); we obtain their scaling dimensions. Other fermion bi-The current(or density is simply defined as
linears die away exponentially fast. R . n N

Sections 11—V are concerned with an analysis of this Jai=RaiRai  Jai=Laila, (€
model, including its detailed symmetric description, the rel-
evant currents, ther operators, its correlations, and low-
lying multiplets in the excitation spectrum. One important
way in which the system we are studying differs from that
considered by Zhang is that we are away from half-filling, Coi(X)=R, (x) K+ L (x)e ke (4)
which is a very special point in one dimension. Exactly at ol ol o '
half-filling it is necessary to consider the Umklapp term,In terms of these fields, the simple interchain hopping term
which causes a Mott gap in the charge setiofhen the becomes
low-energy effective Hamiltonian is 2simply a pure spin
Heisenberg modelwith exchangel~4t</U in the case of
the repulsive Hubbard model at strotg). We comment HL:tLJ dxg (RY 1(00R4,2(¥) +LL 10 Lo 2(X) +H.C).
further on this difference in Sec. IV. (5)

In Sec. VI we finally consider the case of two coupled o S
Luttinger liquids, which differs from the previous model in For simplicity, we have assumed that the Hamiltonian is in-
that it includes marginal backscattering terms. An example/ariant under spin rotation, and so the coupling constggpts
of this is provided by some regions of the phase diagram ofnd g4 are the same for parallel and antiparallel spin con-
a system of two Hubbard chains coupled by single-particidigurations. Normal ordering is assumed throughout in prod-
hopping. In this more physical case, we show in detail howHcts of local fields(definition of currents, Hamiltonians,
the additional marginal terms cause a spin gap to appear mtc)._ ) ) ) _
agreement with Refs. 9—17, and numerical work such as Ref. It is worth making a quick observation about the differ-
19. Then the spectrum and correlations are as in Ref. 2@@nce between the terms Tlquid and TL model The TL
there is a spin gap but the charge sector remains gapless. model is an idealized and specific Hamiltonian, written down

Finally, we conclude. There is also an appendix that" EQ. (2). It has a perfectly linear dispersion, an infinitely
sketches out a bosonization prescription that enables us ##ep Fermi sea, has only density-density interactions, and is

calculate the correlation functions of fermion bilinears. ~ exactly solvable for all values of the coupling constaite
model is unstable beyond a critical value@).“* The TL

liquid (which is the generic state corresponding to many re-
alistic Hamiltonians like the Hubbard model away from half-
filling) differs in that the dispersion is no longer exactly lin-
Many systems of interacting one-dimensional fermionsear, and the Fermi sea no longer infinitely deep. But from our
away from half-filling fall into the Luttinger liquid univer- point of view the most important difference in the low-
sality class. That is, they exhibit spin-charge separation, gapenergy sector is the presence of marginally irrelevant cou-
less excitations, anomalous power law correlations and thplings (backscattering In a single chain system these are not
absence of a quasiparticle poleee Ref. 21 for a recent very important when repulsive—they simply give logarith-
review, and references therginFor example, the one- mic corrections to the correlation functions. In Sec. VI we
dimensional repulsive Hubbard model away from half-filling will study the effect of these additional terms in the two
is known from its exact solution to be a Luttinger liquid all chain system, in order to establish the behavior of the more

and the electrons fieldR, ; andL ,; are slowly varying on
an atomic scale: the electron annihilation operator atxsite
chaini, and spina may be expressed as

II. A SIMPLE MODEL
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realistic coupled TLliquids, but for the moment, we will and anomalous scaling exponent§ ¢ 1). The combined
restrict our attention to the simpler case of coupledriiad-  effect of interactions and transverse hopping on the flavor
els sector is more dramatic. The RG analysis of Ref. 17 shows
The model(1), even though it is made of TL models, is unambiguously that in the repulsive regimk &1), the
not exactly solvable because of the interchain hopping. Howsystem scales to strong coupling at energiels (in the
ever, we will argue presently that the model segregates intaotation of Ref. 17 our model corresponds to initial condi-
three differentsectors respectively associated with charge, tions of g¥=0, g®=—gll=g, for i=0,7,f,t,b). The
spin, and flavor, and that the combined effect of interchaircombination of the small hopping term and the interaction
hopping and interactions is to make the flavor sector masterms leads to the generation of important couplings in the

sive, leaving only the charge and spin sectors critical,  RG process, giving a gap in some channels. What our analy-

gapless To each sector one may associate current operatorsis tells us is that all of this physics is only happening in the
expressed as bilinears of the electron fields: flavor sector, and thus it is this sector that becomes gapped,
while the total spin and total charge sectors remain un-

charge, JR(X)=2 Rli(X)Rai(X); toucheq and critical. So at low gnough energies the fIavpr

al ' sector is frozen out of the effective theory, and our task is

simply to understand the remaining charge and spin degrees
] 1 + of freedom.
spin, Jg(X)= > iEB RL i(X)0,5Rz,(X);
I1l. SPINOR AND VECTOR DESCRIPTIONS

1 i . .
flavor, Ir(X)== 2 R;i(x)ginaJ(x); (6) Each electron fiel®R,,; or L, ; carries charge, spin, and
2iTa flavor. The separation of the model into charge, spin and
flavor sectors is therefore difficult to describe in terms of

are defined similarly These currents have the following these operators. However, one may introduce a different set

commutation relationgthey may be derived from Wick’s of Fermi fields in terms of which this separation is much
theoren): more natural. To this end, we must use some representation

theory of Lie groups.
2i Let us first consider the modé¢l), but without interac-
[Ir(X),Ir(Y)]=—— 8" (x=Y), tions or interchain hopping.e., two free, decoupled chains
This model has S@) symmetry, and this may be shown has
follows. Each complex fieldR,L may be written in terms of

whereo is the vector of Pauli matricdgeft-moving currents

i . : . .
[3302),IR(Y)]=~ 2—5ab5'(X—Y)+isabCJE(yM(x—y), its real and imaginary part®, =Ry, +iRp, and then,
m except for a total derivative, the Hamiltonia#h, takes the
form

(1R TR 1= = 5= 618 (x—y) +ie Y Sx—y),
@) Ho=ive, f dx(R,d,R,—L,d,L,), 9)
y2

and currents of different typdse., charge, spin, and flavor o .
commute. Thus in the language of non-Abelian bosonization\,"’here the composite indgx, running from 1 to 8, stands for

the charge current obeys d1) Kac-Moody algebra, and the spin, chain, and real/imaginary part. The eight Fermi fields

spin and flavor currents obey SUg2)SO(3), algebrag??®  Ru (0r L,) can undergo an intemal $§) rotation that

It is simple to show that the Hamiltoniafl) may be ex- leavesH, mv_arlant. Hence the model h_as a chiral 8D

pressed asl=Hy+ V. +V;, where only the above currents symmetry. It |s.w.ell kngwn that a CO"QF“O".‘ & real free

appear. This is just a matter of taking careful account Oif_ermlons I|k.e this is equivalent to aspeC|2a5I’2Ié|nd _Of conformal

point-splitting and normal orderirfy: field theory: a level-1 SQY) WZW model~>“° Chiral SO8)

currents may be defined in terms of those real fermions as
TUE follows:
Ho=—%- fdx(Jé+J§+lé+[R—>L]),

1 8
A_ A
L o =5 WE=1 R,SHR,, (10
chzf dx{g2JrIL+9a(JrTID)}, A . .
where S, is a matrix representation of the generators of
SQO@8) [A runs from 1 to3N(N—1)=28, the number of
szzf dx{gal RIE+aa (1R)2+(1D)2]+t, (IR+1D)} generatork Left-moving currents are defined similarly. The
charge, spin and flavor current8) are special cases of the
(8) above and correspond to specific values of the indéxthe
Therefore the mode(1) decouples into three independent generator§,’? are chosen judiciously.
sectors(charge, spin, flavgr The important point is that the The currents(10) are bilinears in the electrons fields
hopping term only involves the flavor sector, which is decou-R, (a=1,...,8).However, the SO(8§ WZW model con-
pled from the other two. The effect of interactiorng,(and  tains other fields, belonging to a different representation of
g4) on the charge sector will be a velocity renormalizationSQO(8), in terms of which these currents are also bilinears.
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9] 0 On the other hand, the vector representation breaks down
into a spin-1 triplet of charge zero and two singlets of
o | o charges+ 2.

S We may now ascertain that the electron fieRjs belong

o | e z ~ to thespinorrepresentation of S@). Indeed, the lowest ex-

4 * 5 cited states oH,, obtained by acting on the vacuum with
- - the lowest electron creation operators, form a multiplet of
four states of charge-1 and four states of chargel. This

Q 0 is precisely the charge content of the spinor multif@&t
since the spino# of SO(5) contains two states of chargel

R * * and two of charge- 1, and appears twice in the decomposi-
o tion (12), because of the flavor doublet.
£ A different set of real fermions, denoted; (i
* 1 ° * =1,...,8), belongs to thevector representation of S@).
10 14 These new fermions are related in a complicated, nonlocal

way to the original fermions. The transformation relating
FIG. 1. TheS,—Q diagrams associated with the lowest non- them may be explicitly obtained via Abelian bosonization, if
trivial SO(5) multiplets. one takes care to preserve the anticommutation factors, but
this is not a particularly illuminating procedure. The impor-
Among all SON) groups, S@®8) is peculiar in that its vector tant point is that they are just a different basis or representa-
representation, of dimension 8, has properties identical to itdon for the same system. These fermions obey the usual
spinor and conjugate spinor representatitalso of dimen- —anticommutation relationgé;(x),¢;(y)} = 6;;6(x—y). The
sion 8. Indeed, which one is called “vector” is a matter of SQ(8) currents(10) may also be expressed as bilinears of
convention, dictated by the way the @Dsymmetry breaks these fermions, albeit with the help of a different set of
down to smaller SQY) components. In order to decide to SQ(8) matrices:
which SQ8) representation the electron fields belong, one
must study in detail how each representation breaks down 1
when the symmetry is reduced. Let us consider a two-stage JA==> EiTﬁfj- (13
symmetry breaking, in which the flavor sector, with its 21
SU(2), is first segregated, and then the chardé)land spin
SU(2) (note that U(1) SO(2) and SU(2) SO(3)]: A characteristic feature of the vector representation is its
particularly simple decomposition into charge, spin, and fla-
ng)ﬁsq5)®sq3)fl_)8q2)c®sq3)sp®sq3)ﬂ VOor components: in the first stage of the breadem, the
(11)  Vvector representation decomposes8is-(5,1)®(1,3). In
the second stage, the ) vector decomposes &s-(3,1)
We stress that the goal of the present analysis is to fit thé(1,2) (this time, doublets on the right-hand side corre-
fields and states of the model into symmetry multiplets, with-spond to spin and charge multiplets, respectivelye may
out demanding the symmetry to be exact. In the first stage dhus distinguish three Majorana fermiong ( i=1,2,3) for
this breakdown, the vector and spinor representations adpin, three others§{, i=1,2,3) for flavor, and the remaining
SQ(8) are decomposed as followsreducible representa- two (&7, i=1,2) for charge. The spin, flavor, and charge
tions will be commonly denoted by bold numbers giving current then have the following expressions:
their dimensions, with an occasional superscript distinguish-
ing between vectorsy( and spinors §)]: i
Jr=— Eeijkfjsgi!
8—(51)®(1,3),

s . i

F-(42 (12 lrR=— Efijkﬁfﬁa (14)
[here, for instance, the notatior},@) stands for a tensor

product of the four-dimensional representation of(®Qvith ik gc o eec

a doublet of SU(2%]. Since S@5) representations are not Jr=—1€787§=— 218165 (19

all that familiar, we provide a pictorial view of the lowest

nontrivial ones on Fig. 1. The multiplétis the spinor rep- It is interesting to note that these curretitnd eventual
resentation of S@), while 5 is the vector representation and SOQ(5) currentg are local in terms both of the electron fields
10 the adjoint representation, i.e., the representation of thendin terms of the above Majorana fermions, even though
SQO(5) symmetry currents or generators. The decompositiorihe fermion operators themselves are nonlocally related. The
of these S@®) representations in terms of spin multiplets andMajorana fermions are nonetheless legitimate operators of
charge quantum numbers is best appreciated on Fig. 1. F&he theory. For instance, at half-filling, if all sectors became
instance, the S@®) spinor 4 breaks down into two spia- gapped, the three spin fermiogSwould describe the triplet
doublets, one with charge1 and the other with chargel.  of spin excitations characteristic of a gapped spin-1 chain.



6822 DAVID G. SHELTON AND DAVID SENECHAL PRB 58

IV. THE SO (5) CURRENTS AND ZHANG'S I OPERATORS  =(7 7). On a two-chain system, away from half-filling,

there are two possibilitie® = (2kg, ) for right movers and
Q=(—2kg,) for left movers.
The structure factog(k) =cosk,—cosk, has the local

We have seen above that the spin and charge degrees
freedom, which make up the critical sector of the thedny
may be described by the five Majorana fermicgfs, and

&1 ,3. Except for the interaction/, of Eq. (8), the low- form:

energy sector is equivalent to a level-1 GODWZW model +2 if (m,n) are NN on the same chain
with conformal charge=3.'* Indeed, the above Majorana s _ _
fermions may be arranged in the following suggestive se- ¢ — —2 if (m,n) are NN on opposite chains
quence: ’ 0 otherwise.

(19
§=8 &=& &=& =& &=& (19 o .
Defining a “staggeredr density,”
plus corresponding left-moving fields. That the noninteract-
ing part of the spin-charge sector is equivalent to a level-1 H*r:8f dxe?ikeX ! (20)
SO(5) WZW model means that this part of the Hamiltonian a ar

may be simply expressed‘ds we find, with the help of Eq(4), the following expressions:

5
i _F a0z i
Ho—'Uszl de(gj(?xfj 312%3), 7 Wi:_E[R}“]lR} —R] RI,l,

(here; denote the left-moving fields
It is then useful and instructive to introduce the full ten
SQ(5) currents. Four of those currents are provided by the
charge and spin currents of E@). The remaining six, cor-
responding to Zhang's operators, may be expressed in the A -
continuum limit either in terms of the Majorana fermiogfs, =5 [R1AR 2+ RR 2] (21
and{j , 5, or directely in terms of the electron fields.
It is interesting at this point to go back to the lattice defi- Interestingly, this continuum expression for theoperators
nition of the 7 operators: is quite robust and does not depend too closely on the mi-
croscopic definition(18). One might have alternatively cho-
sen the Henley-Kohno forng(k) = sgn(cosk,—cosk,) and
ng > g(k)CZ(kﬂLQ)(ffan)aﬁcg(—k) t_hlS would not have_changed t_he results, apart from der_lva-
k,a,B tive terms that are irrelevant in the RG sense—essentially
because in a two-chain ladder system there are onlykiwo
= 2 gm,neiQ'mCL(m)(Uaaz)QBCL(n)y (18 values, 0 orr. Another seemingly different microscopic ex-
m,n,a,pB pression for ther operators is used in Ref. 29, but again, we
have verified that the same expressig) is obtained in the
wherem andn are vectorial site indice@n-chain and chain continuum limit.

1
= E[R{JR{ZJF RT4RT 1,

indeX. On a square lattice at half-filling Zhang tak€s We define the matrix2®(x), analogously to Zhang:
|
0
+
Tyt Ty 0
+
wy+ - JZR 0 22)
i+, J% -J% 0
Jr —i(WI—Wx) —i(w;—wy) —i(’JTI—’JTZ) 0

(the matrix is antisymmetric and so we only wrote down the  []230(x),1%(y)]= 8(x—y)(52%Pd(x) — 629 P%(x)

lower diagonagl. Using Wick's theorem for the electron — 859ad(x) + gPd1ac(x))

fields R,; andL,;, we find that thel®” obey an SO(5) |

Kac-Moody algebra, different from the standard(Salge- + 2—5'(x—y)(5a°5bd— 5245°).
r

bra by a quantum anomaly coming from the necessity for

normal ordering with respect to the vacuum: (23)
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A similar procedure gives the corresponding relationship for V. BOSONIZATION
left-moving currents.

How can the S@) symmetry currents be expressed in the
Majorana(vecton representatiog? A vector representation
of the Sd5) generators may be easily written down:

The low-energy sector of the modd)), i.e., the perturbed
SO(5) WZW model of Eq.(26) is exactly solvable, in the
sense that we may find the exact energy levels of low-lying
states and the long-distance correlations of various operators.
We will first indicate the physical content of the )

t=i(88o)— 5787). (24 wzw model without perturbations, and then see explicitly
how the interactiong, andg, separate spin and charge sec-
The current422) can then be represented as follows: tors, affect correlation exponents and deform low-energy

SQ(5) multiplets.
In the language of conformal field theo¥ particularly
> §iti(jab)§j , (25)  useful when dealing with critical theories, each WZW model
ij=1.5 contains a finite number of primary fields, having well-

defined conformal dimensions andA. An operatorA with

where the five fermiong; are numbered as in E4L6): Note  such conformal dimensions has the following dynamical cor-
that the = operators correspond to bilinears involving onerelations:

fermion ¢ from the spin sector and one from the charge

120(x) =

N| =

sector, which again fits with the physics since we know that 1
they create objects with both spin and charge. (A(X,1)A(0,0))~ n < (27)
In the low-energy sector of the moddl), the spin-charge (x—vt)*2(x+vt)?

sector can be represented by an SQ(BJZW model, per- ) ]

turbed away from the perfectly symmetric point by current- 1n€ level-1 S@) WZW model has two primary fields: a
current interactiongthe only interactions present in the spin f|v?-component vector field of conformal dimensionA

and charge sectors in our moflébo Zhang's idea of using =z and a four-component spinor field of conformal di-

an S@5) o-model representation with symmetry breaking Mensionss. U'nder SQ@5) rotations, these fields trans'form,
interaction$ is explicitly seen to be valid for this model, and "eSpectively, in the vector and spinor representations of
the Hamiltonian for the spin and charge sectors can be writSO(5). Of course, the field is made of the five Majorana
ten in terms of the S®) currents in the Sugawara form, fermions(16), whereas the fielth is what is left of the origi-

analogous to the form proposed in Ref. 1: nal electron fieldR,, originally in a spinor representation
of SQ(8), after the flavor sector has been gapped out. Freez-

ing out the flavor part has had the effect of decreasing the
conformal dimension of the spinor field frobn[in SO(8)] to
o = [in SQ(5)], thus making it more relevant. In addition to
TUE b b . .
=— dxz {(139)2+ (13D these primary fields, the ten $8&) currents(22) also play a
4 a<b ; : ; :

crucial role in the theory and their correlations may also be

exactly calculated.

Hes=HostHoc+ Ve

+ [ g 5 g9+ (199 (26
A. Spin-charge separation

One notable difference between this system and that con- When the interactions of E¢26) are turned on, the S6)
sidered by Zhang is that here we are working away fromsymmetry is explicitly broken and the spin and charge sec-
half-filling; the 7 operators are defined slightly differently, tors of the theory separate. The spin sector, unaffected by the
to carry momentum+ 2kg , 7). The chemical potential term interactions, becomes a level-1 @DWZW model, which is
in the Hamiltonian, which in two dimensions breaks(Sp)  the same as a level-2 $2) WZW model. The SU(2) WZW
here (due to perfect nestingsimply renormalizes the wave theory contains two primary fields: a spin tripl@r vecto)
vectorkg ; momentum is still conserved and the alget?d & (i=1,2,3) with conformal dimensiof, and a spins (or
still closes because operators carryirig dnly give nonzero  spinop field g, (e=1,]), of conformal dimensions.
expectation values when combined with operators carryingProducts of the left- and right-moving parts gfare com-
—2kg . If we were to work at half-filling, there would be an monly arranged in a 2 matrix:
additional Umklapp scattering which would lead to a Mott
charge gap® o (QTET QTEL)

Since there arer operators in this system, one may also G=| _— — .
ask whether there is a well-defined resonance as claimed 9,9: 9,9
in two dimensiong:! If this is so, the commutator of the
Hamiltonian with thell operator will be proportional to the The charge sector becomes &@l)Jtheory, which may be
I1 operatort It can easily be seen that this will not be the described by a single boson field,. The effect of the in-
case. Later on, in Sec. V, we obtain bosonised forms foteractions on the charge boson is simply to change the spec-
these operators. Then one can see that in Fourier space, ttiam of anomalous dimensionK{# 1) and the theory re-
correlator of7 operators does not have a simple pole; theirmains critical. Since Abelian bosonization is fairly
effect is not to generate a single well-defined triplet excita-standard®—3>?we shall only state a few results. The charge
tion but a shower of unconfined spinons and holons. boson®. may be written as the sum of right and left parts:

(28)
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&= ¢+ ¢ . Defining the dual field), asd.= ¢.— ¢, the IS quite different in a non-Fermi-liquid such as the TL liquid.
charge Hamiltonian may be written as Even if much of the spectral weight is shifted to high ener-
gies there is still some at low energies and this is what domi-
V¢ , 1 ) nates the low-energy theory. Given that the two-dimensional
Hc:?f dx Ke(dxbc) +K_c(‘9xq)c) ' (29 cuprates are examples of non-Fermi-liquids, it cannot be
ruled outa priori using these arguments that even in the
where presence of strong on-site repulsion, theoperators may
o generate low-energy excitatiofet least when one is slightly
Ke= /771),:—9492’ away from half-filling.
mUE+ 04102 Let us then see what happens to the(®Qurrents and
primary fields after spin-charge separation. Three of the five

2

_ \/ " 941" (92 : (30) components o become a spin triplet§) and the remain-
Ve VR ) ing two are simply cos(4m¢.) and sing4m¢.). Out of the

10 SQA5) currents, six—ther operators—are no longer con-

Fpr maore general lattice Hamiltonians that are Luttinger IIq'served currents and may then be expressed as products of SU
uids in the low-energy sector, the parametegysaandK . de- (2) fields with charge fields. Schematicall
pend in a more complicated way upon the original couplings, “’2 9 ' Y,

so in the following analysis, one can just treat them as inde-
pendent parameters the precise values of which depend upon

the original model. WhenK.# 1, the conformal dimensions of the operators

If g,=0, there are no anomalous exponers1) and  are no longer (1,0), but rather, from E@2) and since the
the scaling f|eIQ$ \_ c 1represent rlght_—movmg fermions field £(2) has conformal dimensions (0),
of conformal dimensions3(,0). Wheng, is turned on, the
original charge currentl °=Jg) is no longer conserved but A=L(K +1K)+3 A=K 41K, -1 (34)
becomes a linear combination of currents that are still con- ge oo gre o
served(see, e.g., Ref. 31 Thus, thew operators are no longer conserved currents, as

. o o expected.
Jr=jrcosh@—j sinhd (K.=e ), 31 As mentioned above, the spinor representatiaf SO(5)

where jr and j_ have, respectively, conformal dimensions factorizes into a pair of S(2) doublets of charges 1 when
(1,0) and (0,1). The chiral components, and gc mix SQ(5) is broken. The spinor field may thus be factorized as

through the same Bogoliubov transformation and the original J
fermion operatore*"*7¢c acquire a left conformal dimen- h(x)~(g;.,9))® cog 7T¢°)>
Sin(\m )

sion:
A=L(K +1K)+1  A=1(K.+1K, -1 (32  Wheregisthe SU2) spinor mentioned above and the boson
factors have conformal dimensidn The decomposition de-

Although the above results are very well known, it is scribed here can be rigorously proven by checking the cor-
worth pausing over them for a moment. They show that the@esponding commutators with the currents. We obtained it
interaction strengthg, andg, are not relevant energy scales differently, by the method of affine charactésee Ref. 2§
in the low-energy theory. They only appear as ratigg/ve ~ which we will not explain in detail here, since the coinci-
in the renormalization of the velocity, and the anomalous dence of conformal dimensions and components is suffi-
exponentK.. This is a very nonperturbative result. If we ciently convincing for our purpose.
recall the exact solution of the one-dimensional Hubbard
model away from half-filling, we know that it is a Luttinger B. The SQ(5) order parameter
liquid for all U>0 from 0 to%.®® In this range K. varies
from its noninteracting value of 1, to 1/2 &t=o. Even
when the on-site repulsion is infinite, its effect in the low- \ ;
energy sector is just a fairly small renormalization of the®f Zhang’s _five-component order ~parameten, (a

— 1 A . .
anomalous exponent! The theory is still critical with gapless™ 1" - - - ,5) This operator can be defined in terms of the
spin and charge excitations. original electron fields. The componenmts 4 correspond to

Some critics of the Zhang S6) proposal have claimed the staggered magnetization and the componenisto the

that because of the strong on-site repulsion in the Hubbarf-Wave superconducting order parameter. The staggered

model, the = operators cannot create low-energy Magnetization is defined as

excitations® The argument is essentially that one is forced to

put two electrons on the same site, which has an energy cost A= cl(k+Q) o, zc4(K). (36)
of orderU. The reason that the criticishmay be too sim- Q k%ﬁ alk+ Q050

plistic is first of all that it is a single-particle argument, = | , i

whereas the low-energy excitations of this system are many=icking Q=(2kg ,7) and using Eq(4), we find

body collective phenomena, and secondly that it is a short-

length scale argument that may have some validity in the N = RN o La—R oo AL 3
UV; but we are interested in the low-energy IR behavior that Q kza‘,'g (Ro1@apl p1~Ra2apl p2). @7

ma ~et AT D g ¢ (7). (33

(39

One of the interesting operators of the (SDWZW
model (and of its perturbed versigris a continuum version
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The Q=(—2kg,7) component of the magnetization is just
the Hermitian conjugate of the above. Tthavave order pa-
rameterD is defined as

f dxDT=2> gmac(mici(n), (39)
m,n

whereg, , has been introduced in E(L9). Taking the con-

tinuum limit, we find

D= _22 (RILT +LT R —RI LT~ LT R ,—RI LT,

=1,
~-LIR] ;. (39

The combination®+ D' andi(D— D) then correspond to
n,; andng, respectively.

An expression of the order parametey in terms of the
scaling fieldsh or ¢ would be more useful, since the flavor

part is not explicitly absent from the above. Such an expres-
sion is difficult to obtain in a systematic way from the above

expressions; but one can infer what it has to(tds result

can be confirmed by Abelian bosonization; see the Appen-

dix). Clearly, n, should be a bilinear im or &, with equal

left and right conformal dimensions. Let us consider the fol-

lowing SQ5) tensor products:

424=1059 10,

5@5=19104 14. (40

This means that a bilinear ig (five components cannot
transform as a vector of 6), whereas a bilinear ih (four

components can. We thus seek an order parameter of the

form

naIFﬁhiHj y (41)
where the five & 4 matricesI'® must transform as a vector

of SO5) whenh andh are acted upon by a4 unitary
representation of S@). If we denote by 2 a 4x 4 repre-
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F2:0'1®0'2, (45b)
F3:(7'2®0'2, (450)
F4:0'3®0'2, (45d)
I=-100;. (450
Then the charge an8, matrices take the form
1{o, O 1/1 O

/,/‘512 - /,,/23: - . 4

4 2(0 oy’ 4 2(0 -1 (46)

With the above generatof3 andS,, the factorization of the
chiral field h in terms of the SU(Z field g and of the
charge bosorp, must be

h=(g;cos V7 d.),g;siN\mb),g,c08 V7 de),0,

X sin(\7e)), (47)
h=(g;cog 7 ¢e),g;siN(V7h.),g,co8 VT o),
—g,sin(\m o). (48)

The explicit expression for the order parametey

=Tr(1“ahF) in terms of the spin matrix fiel8) and of the
charge boson is then

n;=Tr (G)cog Vw0), (499
N,=iTr (Goy)sin(\7d), (49b)
Ns=iTr (Go,)sin(\7d), (490
na=iTr (Gos)sin(\md), (490

ns=—Tr (G)sin(\76). (499

We first notice than, 5 form a spin singlet and are the real
and imaginary parts of the compleixwave order parameter

sentation of the S®) generators, this requirement amountsTr (G)exp(—i\/76), whereasn, 5, form a spin triplet. We

to

[/ablrc]:i(gacrb— 5°°T?). (42)

also see how the scaling dimensions mfs diverge from
those ofn, 3, when K, is different from unity: the fields

cos(/76) and sing/w6) have conformal dimensions=A

Experience with the Lorentz group and Dirac matrices may=1/(8K_) while cos¢/#®) and sin¢/#®) have conformal

guide us here. If a set of five matricE$ obey the Clifford
algebra{I'3,I'®}=24%", then it is a simple matter to show

that the above commutation relations are satisfied if we de-

fine

/0=~ j—l[ra,rb]. (43)

Moreover, the matrices thus defined do obey thé53@lge-
bra,

[/,/ab’/cd]:i(éa(:/bd_,_ 5bd/ac_ 5ad/bc_ 5b0/ad).
(44)

dimensionsA = A =K_./8. Thus
A(n;)=A(ng)=3/16+1/8K,,

A(n,)=A(ng)=A(n,)=3/16+K_/8. (50)

We may also consider the $8) singlet h;h;, which be-
comes simply TrG)cos{/7®) in this representation. This
field is conjectured to be the charge-density-wave order
parametef? Within this model it has the same scaling di-
mension as the staggered magnetization spin density
wave), but in a more general model with a spin gap the two
fields could have different correlation lengths since spin sin-

Let us adopt the following representation for the Clifford 9let and triplet states would not necessarily have the same

algebra:

IN=1®a0;, (459

excitation energy.
To summarize, the components of the(SCOorder param-
eter have power-law correlations governed by the above con-
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formal dimensions. When full SG) symmetry is present, The multiplet content at each energy level may be easily
A(n)=5/16; andn is the vector primary field of the SO(5) Obtained from the representation theory of Kac-Moody alge-
WZW model. WhenK.# 1, the S@5) symmetry is broken bras, in particular by the method of affine charactéiSche-
and the staggered magnetization is leks*1) or more Mmatically, in the case at hand, the multiplet content may be
(K.<1) relevant than thel-wave order parameter. The be- €xpressed in terms of a spectrum-generating funcim):
havior of the other possible fermion bilinears can be checked _ 2

by a combination of Abelian bosonization and an Ising X(q)=1+q10+q*(14+10+5+1)
model representation of bosonic exponents—we find that +0°%(35+14+3-10+5+ 1)+ - - -, (52
their correlations decay exponentially as a result of the gap . A )
in the flavor sectotfor details see the AppendixOf course, where the coefficient odj |nd|<_:ates thg multiplet contenf[ of
since we are in one dimension, there are no real phase trafta(es with conformal dimensiah. For instance, a term like
sitions, just enhanced fluctuations. Thus the fluctuations ifd”-10in X(q) means that the multiplet0 of SO(5) occurs

the superspin channel are enhanced whereas other tendendi¢ice with conformal dimensiom =3 in the right-moving

are suppressed. If a weak interladder coupling were added &gctor. The full low-energy Hilbert space is a left-right prod-
form a two- or three-dimensional system, then a mean-fieldict, encapsulated in the generating functéu)X(q). For
treatment would lead to _a_phase transition in the_cha_nnel thahstance, the termig*10® g5 stands for a left-right tensor
has the highest susceptibilifiye., the most fluctuationsi.e.,  product of multiplets, occurrind\ times at the energy level
an ordered pha_se for the most relevant operator. Thus, th@mF/L)(AJFA), with momentum (2/L)(A—A) (ve is
approach predictsd-wave superconductivity for weakly he common spin and charge velocity before spin-charge
coupled ladders with attractive effective interactions; ( separation

>1). Finally, since the charge and spin sectors of this model 11,4 eigenvalues &, andQ and the energy of each state

are described by conformal field theories, one can also r§q, e right-moving sector may be encoded in a more general
cover the finite-temperature behavior of the correlation func'spectrum-generating functiod(q,x, )

tions in the standard wa.
_ ,25,,Q
C. Lowest-energy states X(q.x.y) Séesq XY (53
In the absence of interactions and interchain cqupling, th&he advantage of spectrum-generating functions is that ten-
low-energy sector of the model is especially simple: thegor products translate into ordinary products of functions,
theory is a SO(8) WZW model. The states fall into two 5nq direct sums into ordinary sums. Anticipating spin-charge

representations of the Kac-Moody algebra: that of the ide”'separation, it is possible to write the functidifg.x.y) as a
tity, which contains states with even charge, and that of the.; mpination of spin-charge products:

spinor (electron field R,, which contain states of odd

charge. Remember, this is just a complicated way of repre- X(q,x,y)=X(Sg)(q,x)x(co)(q,y)+X(Sf))(q,x)x(cz)(q,y),
senting noninteracting fermion excited states. As(§0s (54)
broken into SO(5)® SU(2 fz' these representations break

into a finite number of representations of SO(®)SU(2 fz' o sp . (0.2) -
as indicated in Eq(12). When the flavor sector is gapped, SPIN{ Kac-Moody representation of SUZandXc™" is the

the low-lying states must all be flavor singlets and so man}g:_malog for the charge sector. The lowest terms of these func-
of those representations become irrelevant, in particular affons are

the representations of odd charge coming from the spinor
R

wherexgl)(q,x) is the spectrum-generating function for the

XQ(0,x)=1+q(1+x%+x"?)

The only surviving Kac-Moody representation in the +02(3+2x%+2x 2+ Xt xTH+ - -,
SO(5), theory is that of the identity. Such a representation
contains an infinite number of energy levels, and at each X(S%)(q,x)=q1’2(1+x2+x‘2)+q3’2(2+x2+x‘2)
level the states fall into SG) multiplets. In the pure WZW

model(before spin-charge separatjche excited states may +0%(4+3x2+3X 2+ XX H+ -
be obtained from the vacuum by applying ladder operators

associated with the S6) currents. Let us explain: in a sys- XO(q,y)=1+q+q32+y*+y~*)

tem of finite lengthL, the currents may be Fourier expanded 3 -

as follows: T EHY Y

X2(q,y)=q"Ay?+y 2 +g¥ Ay +y?)

|ab X) = e27-rinx/L|ab, (52
00=2, " +¥A2y?+2y7 A+ (55)

where the sum runs over all integépositive and negatiye ~ Again, the exponent of is twice the value of5, and that of
From the commutation relations of the currents, one may is the chargeQ. A term like 4x?%y~2q® in Eq. (54) would
infer commutation relations for the mod€§ and show that, stand for four states with=3, S,=1, andQ=—2. The
for n<0, 12° is a raising operator for the energy in the charge states representeddf?’ have charg®=0 (modulo
WZW model. Of course, théi® are nothing but the S@)  4) and those iX{®) have charg&=2 (modulo 4. From the

generators and allow us to navigate within a multiplet. above expressions and relati(g¥), the full spectrum of en-



PRB 58 SQO(5)-SYMMETRIC DESCRIPTION OF THE LOW- ... 6827

ergies and quantum numbers may be recovered. Of coursg, respectively, plus a neutral spin singlet. After spin-charge
we must consider the left-right produKI(q,x,y)X(ax,y). separation and iK.# 1, the contribution of this multiplet to
That the expressiofi54) is a sum of products, instead of the spectrum-generating function is, according to Egs.
being a simple product of spin and charge factors, means th&#4,59,

one cannot consider the charge and spin spectra indepen-

2 -2
dently: there are “glueing conditions” between charge andqc+q5(1+x +x7)

spin states, conditions encoded in E54). 2 A2.0~2(2. B B
When spin and charge separate, the energy levels shift in +0s de - 0“2 (1+x*+x"2)(y*+y~?), (60)

two ways. First, because of different spin and charge velocithys, the energies of these states split in the following fash-

ties, XJ(q,x) and X{(qy) become, respectively, jon:

x(a,.x) and X{"(qc.y), where gs=q’s"*F and q.

=q’c/’F. Second, anomalous charge exponents change the E(Q=0j=0)= 27y

conformal dimensions in the charged sector, the structure of —=Y= L’

which deserves a more detailed explanation: excited states in

the charge sector may be obtained eittigby applying the i 27mug

creation operators associated with the charge bgsofthis E(Q=0j=1)= L’

does not change the char@ or (i) by applying exponen-

tials exp(Q\m) on the vacuum, wher€ is the charge MU TU¢

thus created. The generating functions in the charge sector BE(Q=%2j=1)=—1—+ 5| K+ K. (62)

may be expressed as
The last of these states are in fact created by applying

X (qy)=X Q% Q 56 operatorgsee Eq.34)]. The energy levels are proportional
¢ (@y) bos'(q)Q:%-#/ 9"y (56) to the scaling dimensions of the operators in the conformal

; 6
wherer runs over all integers; =0 or 2, andX..(q) is the field theory?

spectrum generating function associated with the boson cre- To conclude, the eigenstates, in particular the lowest-
P 9 g energy states, fall into deformed &) multiplets. The
ation operators only:

amount of deformation is exactly determined by the renor-
® malized charge velocity, and anomalous charge exponent
xbos_(q)=]_[1 1_—qr=1+q+ 202+ 393+5q*+79°+ - - -. Ke.
P
(57 VI. LUTTINGER LIQUID CASE
When K. changes from its initial value of unity, left and i ,
right boson creation operators mix through some Bogoliuboy, AS We mentioned earlier, the case of two coupled Lut-

transformation and the conformal dimensions associatel"9€r liquids is different from that of two Luttinger models.
with the exponentials of andg become Let us consider, as an example of a Luttinger liquid, the
P ¢ ¢ one-chain Hubbard model at weak couplidg<t:

2
— 171 — —
A(Q:Q):s_z[\/?c(Q'f‘Q)'f' \/K_C(Q_Q)‘| ) HHUb:_trZa (C:,acr+l,a+cj+l,acr,a)+UZ Ne4Ne
2 (62
—  — 1] 1 — _
A(Q,Q)= 3—2[—(Q+Q)— \/K_C(Q—Q)] . (58 If we linearize about the right and left Fermi points as in Eq.
\/K—c (4), and use the charge currer(® and the corresponding

Left-right products of spectrum-generating functions in theSPin currents
charge sector then become

y, o — — jR=EE R'o. R jL=EE Lo AL (63)
XY(Ae, Y)XY (e, Y) = Xbos(Ge) Xbos( dc) Py 263 T

= = we find the Hamiltonian densitywg~tag):
X D> agt@QghQQye-Q

Q=4r+/ u u
Qe o™~ 102 (RLAR,—Lidl o)+ 7 (GRFID+ S iriL
(59 “
The above expression, combined with E@gl,55,58 allows u ., , o
us to extract the energy, momentum, charge, and spin of the — 3 UrtiD—2Ujr L (64)
whole low-energy sector for arbitrary valueswf, v, and
K. This Hamiltonian is not equivalent to a Tomonaga Luttinger

Let us consider, for instance, the first excited states. Acmodel because the last two terms are not pure density-
cording to Eq.(52), they fall into the multipletLlO of SO(5). density interactions. Thejiﬂf) term will only renormalize
The spin and charge content of such a multiplet is easily reathe spin velocityvs and is not very important. However, the
from the correspondin®,— Q diagram of Fig. 1. The mul- marginally irrelevanig-j_ term cannot simply be absorbed
tiplet 10 consists of three spin tripletsf charge—2, 0, and in this way. It is this term that gives rise to logarithmic
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corrections to the correlation functions in Luttinger liquids— pressed. Conformal field theory allows us to obtain the exact

although otherwise it does not drastically change their propenergy levels in a finite size system and observe how the

erties, hence the utility of the Luttinger liquid concept. degeneracy of the S6) multiplets is broken by spin-charge
As this weak-coupling bosonization suggests, the couseparation®.#vg) and the presence of an anomalous expo-

pling constant of this term is of the same order as the othenent (K.# 1) in the charge sector. Except in the trivial non-

couplings in the theory, so it cannot necessarily be jettisonethteracting case, there is no exact (S0symmetry. In Sec.

when we consider more complicated models such as the twd/l we showed briefly how the inclusion of backscattering

chain ladder. Let us therefore consider as a model for theesults in the appearance of a spin gap.

generic Luttinger liquid two-chain ladder, the Hamiltonian  In light of these results, Zhang has recently shfthat a

(1) perturbed by marginally irrelevant spin current interac-whole class of ladder systems with more general interactions

tions in each chain: have Hamiltonians with microscopic $& symmetry.
Knowing the Hamiltonian does not tell us about the strong-
Hiiq=H+ Hmarg: coupling behavior at low energies. But a continuous symme-
o o try like SO(5) cannot be spontaneously broken in one dimen-
Hmarg= ~Mire-JL1tire-iLa), (65  sion and must therefore be present in the low-energy theory

whereX>0, andjr;,j; are the right and left moving spin as well. The latter must be described by a(S0WZW

currents in chains= 1,2. It is instructive to write the pertur- model, perturbed by various primary fields, perhaps with a

bation in terms of the Majoranévectop fermions&;. We critical point or line in t_he space of coupling qonsta(‘ds
find conformal field theory with Lie-group symmetry is necessar-

ily a WZW mode). This is the simplest class of low-energy
A o theories with S@b) symmetry in 1 dimensions.

Hmarg™ — > Jr-di— (E8) §;_f3 ) (66) The Sd5) symmetric description of ladder models, which
1=1,23 are clearly related to popular models of the cuprates, and the

The first term is a marginally irrelevant interaction in the Similarity of the form of the theory in ladders to that pro-

total spin sectofJy=]r;+jr as defined in Eq6)]. Butitis  Posed by S.C. Zhardor the two-dimensional Cuprates, is
the second term that is most significant. It couples the fermicertainly encouraging and suggestive. Nonetheless, in view
ons of the spin sectoréf=right moving, £°=left moving, of the many special featgres of one-dimensional theorles we
i=1,2,3) to one of the fermions in the fla{vor sector. So the™ © cautious about drawing more general conclusions.
spin and flavor sectors are no longer genuinely decoupled.

Suppose that the flavor sector becomes gapped. Then ACKNOWLEDGMENTS

— D.G.S. is grateful to I. Affleck for originally drawing his
(€3€3)#0. (67) attention to the S(®) theory, and to S.C. Zhang, E. Demler,
and A.M. Tsvelik for useful conversations. This work was

To first approximation, we can then replagg?’, in Eq. (66) ted by NSER dxand by FCAR(Oud
by its expectation value, and we see that the effect of a gap iﬁuppor eaby CCanadaand by (Quebeo.

the flavor sector is to generate a mass term for the fermions )
of the spin sector—a spin gap. This is a crude argument put APPENDIX: ABELIAN BOSONIZATION OF FERMION

it is borne out by the RG analysis of Refs. 17,13 as well as BILINEARS

numerical work® (in the notation of Ref. 17 a finite back-  We want to know the long-distandéow-energy behav-
scattering corresponds g§1)¢0) that shows the existence jor of the correlations of various bilinears. In Sec. V we
of strong-coupling regimes with a spin gap in a model of twodemonstrated that the correlations of the “superspin” order
Hubbard chains coupled by a small hopping. In general it iparameter could be deduced within the framework of non-
hard to estimate the size of this gap. If it is large, the-lowAbelian bosonization from a careful analysis of the operators
energy physics will be as described in Refs. 17,20. It couldf the conformal field theory. We can further justify this
be, however, that in some modelwith small A, for ex-  analysis and find the behavior of the other fermion bilinears
ample the spin gap is very small, in which case for interme-explicitly by using Abelian bosonization.

diate energy scales the behavior will still be described ap- We introduce an Abelian boso@‘a for each species of

proximately by the mode(l). fermioni=1,2, «=1,|. Then we introduce linear charge
and spin, bonding and antibonding combinations of these
VIl. CONCLUSIONS fields:

In this paper we have studied a system of two TL models 1
coupled by a small interchain hopping. We have shown that d)cf:—(CDii cpi),
this critical (at T=0) theory can be represented much more V2
symmetrically than in the standard Abelian bosonization rep-
resentation as an SO(5WZW model, or equivalently as a 1 g
system of five Majorana fermions, perturbed by symmetry- E(‘DT—@Q- (A1)
breaking interactions. We have obtained the correlations of
fermion bilinears in this theory and demonstrated that thdf one carefully applies Abelian bosonization to the original
components of the “superspin’have power-law correla- Hamiltonian(1), taking full account of the anticommutation
tions, and are enhanced, while other tendencies are sufactors®? one can identify each of these Bose fields with two

O o=
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TABLE I. Fermion bilinears. to the limit K.—0 in the ¢- sector, whence to leading ap-
— proximation we can replace the complex exponents by their
Operator X A=A expectation values:
@ RILL, D -0, — Py — 6 (eiﬁ(bcﬁ)#O,
(b) RiiL3, DS =0 — 05+ D¢ 3 1 o
16" 8K, (%) =0. (AD)
(c) RLLll O -0 +D; -0 3 K. Higher-order corrections will die away exponentially. Thus
) the bilinears(a), (e), and(f) in Table | die away exponen-
o tially and the corresponding tendencies are suppressed.
d RI.L PI+DI+D+D _ : )
@ 1A coos e s 3 Ke The exponents ofb_ are a little more subtle since we
: T 16 8 know that only one of the Majorana fermions to whid
© R%TLZL q)i_ ‘95: GCchg corresponds is gapped, while the other remains gapless.
(f) RiiLy; OI+dI -0, — 0,

Here, however, we can make use of their representation in
terms of the corresponding Ising order and disorder
operators>~*"Introducing Ising order and disorder operators

of the Majorana fermions introduced in Sec. IV. THe o corresponding to the Majorana flavor fermighand
field is simply associated with the two charge fermions, the Rl bonding a . . .
corresponding to the spin ferml@i, we can identify

@ field represents two of the flavor fermion®, repre- Ts1Ms BOU . .
) . . the following approximate operator correspondences:
sents two of the spin fermions, adeg, comprises one flavor

fermion and one spin fermion. cos|nm®_ ~ o0,

After bosonization, the various fermion bilinears have the
form sinymd; ~ s,
O~e 17X, (A2) cosVm o ~ s s,

where the differenX’s are given in Table I. We will briefly : -
describe how we arrive at the long-distance behavior of their sm\/;as H1Ts- (AS)
correlations. We find straightforwardly When the flavor fermion becomes gapped, eithey)=0,
(ps)#0 or {o)#0, (us)=0, depending upon the defini-
tions. Thus to first approximation these can again be replaced
' by their expectation values. The Ising model corresponding
to the spin fermiongg’ remains critical and has scaling di-
A(eii";‘l’é)= ﬁ mensi(_)nsA=A(as,MS)f1/16. In t_his way we obtain th_e_z
8"’ long-distance asymptotics shown in Table I. The only bilin-
ears that still have power-law correlations are the interchain
1 pairing (39), represented bgb) in Table |, and the staggered
8K’ (A3) magnetization(37), represented byc) and (d). Thus, it is
o o precisely the components of the unified order paramejer
(The scaling dimension i®=A+A and hereA=A soD that have power-law correlations, while all the other tenden-
=2A.) But the charge and spin() fields are a little more cies around* 2k. are suppressed. Note that the scaling di-
subtle. In our model, the flavor sector acquires a gap. Sincmensions that we find agree with those found in Sec. V from
we start withK <1 this strong coupling regime corresponds non-Abelian bosonizatiofcf. Eq. (50)].

©| =

A(eiiv‘?cbg—)zA(eii\foﬁg):

A(eti\c‘?ﬂg):
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