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Spectral density of samarium sulfide
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The spectral density of samarium sulfide is calculated using a multiband periodic Anderson model. Thes, p,
andd states are treated as band states within the local-density approximation. Realistic, local many-electron
states of the 4f shell are taken into account. Using projection techniques a 4f occupation of 5.94 is found in
the semiconducting phase. The calculated spectral density is in fair agreement with the measured photoemis-
sion and inverse photoemission spectra. To simulate the mixed-valent phase, the global hybridization strength
between 4f and band states is empirically enhanced. The limits of a valence change controlled by the hybrid-
ization strength are discussed.@S0163-1829~98!01132-1#
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I. INTRODUCTION

Samarium sulfide~SmS! has attracted much attention du
ing the last 25 years~for an early theoretical review see Re
1!. At 6.5 kbar and room temperature it shows an isostr
tural first-order phase transition from a black, semicondu
ing phase to a golden-yellow metallic phase2 accompanied
by a volume collapse of'13%. Photoemission spectra o
semiconducting SmS~Ref. 3! show localized, atomiclike 4f 5

final states at binding energies of 0.5–4.0 eV, which impl
dominating 4f 6 ground state. Photoemission spectra
doped SmS simulating the collapsed phase3 show again lo-
calized 4f 5 final states and, energetically separated, 4f 4 final
states at higher binding energies that both clearly stem f
the two 4f configurations 4f 5 and 4f 6 contributing to the
ground state. Because of the strong localization of thef
wave function, photoemission spectra of SmS look in fi
approximation like spectra for the isolated, free Sm21 ion in
the semiconducting case and like a static mixture of Sm21

with Sm31 ions in the mixed-valent case. Nevertheless, i
clear from the experimental equivalence of the Sm sites
the mixed-valent state in SmS is homogeneous, and this
only be provided by the hybridization of 4f states with de-
localized band states ofs, p, or d character.

A standard band-structure calculation in local-dens
approximation4–7 ~LDA ! yields seven one-particlef bands
with a total width of 0.7 eV at the Fermi energy. These sta
are twofold spin degenerate in the nonrelativistic case
twofold Kramers degenerate in the relativistic case. Attem
at a description beyond LDA have been published, where
common idea is to distinguish occupied and unoccup
4 f -states. One possibility is to approximate the self-ene
by introducing the Coulomb repulsionU as an additional
parameter to the one-particle~LDA ! equations for a quasi
particle band structure, as performed by Lo´pez-Aguilar and
Costa-Quintana.8 This leads, after choosing the occupie
4 f -states, to a splitting between 4f -states withT2u5G25 and
A2u5G28 symmetry~cubic point-groupOh) in the unoccu-
pied part and those withT1u5G15 symmetry~six states! in
PRB 580163-1829/98/58~11!/6807~11!/$15.00
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the occupied part of the spectrum. In a different approa
Schumannet al.9 took into account the self-interaction co
rection for the six relativistic states with total angular m
mentumj 55/2.

By construction, one-particle band-structure calculatio
for SmS~Refs. 4–9! do not address one-electron excitatio
that remain localized in the 4f shell and form local many-
electron states. Such local states are seen
photospectroscopy,10 which probes the one-particle excita
tion spectrum, i.e., the spectral density, within the sudd
approximation11 valid at high photon energies. To calcula
the spectral density we adopted a generalized perio
Anderson model as the basis of the present work. It allows
to evaluate one-particle excitation spectra that reflect, in
cordance with experiment, both the itinerant states and
local many-electron states. These latter states do weakly
bridize with thes-, p-, andd-like band states.

Several attempts have been made to calculate the ex
tion spectrum using simpler versions of the periodic And
son model within a restricted space of localizedf 0/ f 1/ f 2

states and only one band orbital.12–18Although much can be
learned about the approximations used, a comparison
spectroscopy or an analysis of the valence of SmS is
possible in such a simplified frame. The emphasis in t
work is on the high-energy side of the spectral density w
particle and hole excitations of 0.3–10 eV. Special attent
is given to atomiclike excitations inside the 4f shell and the
changes that occur when they hybridize with delocaliz
band states.

After introducing our model Hamiltonian and the proje
tion technique in Sec. II, we present the results in Sec.
and give finally our summary with conclusions in Sec. IV

II. THEORY

A. Multiband model for SmS

A multiband Hubbard Hamiltonian naturally includes th
interplay between localized and delocalized states thro
the on-site Coulomb repulsion and Hamiltonian matrix e
6807 © 1998 The American Physical Society
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6808 PRB 58CHRISTOPH LEHNER, MANUEL RICHTER, AND HELMUT ESCHRIG
ments connecting different lattice sites. In the following,f
states will be treated differently froms, p, and d states,
where the latter are denoted asc states. Starting from local
ized f orbitals, we neglectf -f Hamiltonian andf -f overlap
matrix elements for different lattice sites, as well asf -c over-
lap matrix elements,19 but take into accountf -c Hamiltonian,
c-c overlap, andc-c Hamiltonian matrix elements. Althoug
spin-orbit splitting is important it is neglected in the follow
ing because it only leads to a fine structure in the spec
density with splittings of order 0.1–0.5 eV for atomic 4f
energy levels,20 and splittings of about 0.7 eV for one
particle 4f bands,6 a point not addressed in this paper. No
the Hamiltonian consists of three parts:

H5Hband1(
i

Hi , local
f 1Hmix . ~1!

Hband is the one-particle part forc states:

Hband5 (
k,s,a,b

ck,s
a† @~O k

cc!21H k
cc~O k

cc!21#abck,s
b . ~2!

Here,ck,s
a(†) are annihilation~creation! operators for electrons

with lattice momentumk and spins in the c orbital with
indexa. The Hamiltonian and overlap matricesHk

cc andOk
cc

are formed in the space of thec-basis states. The following
anticommutation relation holds:

@ck,s
a ,ck,s8

b†
#15ds,s8~O k

cc!ab . ~3!

Hi , local
f is diagonal in the local 4f -shell eigenstates at sit

i :

Hi , local
f 5(

n,A
En,Au i ,n,A&^ i ,n,Au. ~4!

Here,u i ,n,A& denotes a local eigenstate of the 4f shell at site
i , characterized by the occupation numbern, certain addi-
tional quantum numbersA, and energyEn,A . The quantum
numbersA include total spinS and total angular momentum
L of the 4f shell together with their projectionsML andMS .
Note that within our basis of 4f -shell eigenstates the Cou
lomb repulsion at sitei inside the 4f shell is included in
En,A . At a given site, the following orthonormality and com
pleteness relations hold:

^ i ,n,Au i ,m,B&5dmndAB ,
~5!

1i5(
n,A

u i ,n,A&^ i ,n,Au.

Hmix describes thef -c hybridization due tof -c Hamil-
tonian matrix elements:
al

,

Hmix5 (
k,s,a,m

ck,s
a† @~Ok

cc!21Hk
c f#am f k,s

m 1H.c.

5 (
k,s,a,m,G

ck,s
a† @~Ok

cc!21Hk
c f#amMG

s,mXk
G1H.c.

5 (
k,s,a,G

ck,s
a† Vk,s

a,GXk
G1H.c. ~6!

In the first line of Eq.~6!, f k,s
m annihilates an electron in th

Bloch state of 4f orbitalsm with spin s. In the second line
of Eq. ~6!, a basis transformation from Fermi operatorsf k,s

m

to Hubbard operators21

Xk
G5

def1
N(

i
e2 ik•RiXi

G5
1
N(

i
e2 ik•Riu i ,n21,B&^ i ,n,Au

~7!

has been performed:

f i ,s
m 51i f i ,s

m 1i

5 (
n,A,B

^ i ,n21,Bu f i ,s
m u i ,n,A&u i ,n21,B&^ i ,n,Au

5
def

(
G

MG
s,mXi

G . ~8!

The Hubbard operatorsXi
G make transitions

G5~n,A;n21,B! ~9!

from local eigenstateu i ,n,A& to local eigenstateu i ,n21,B&.
The matrix elementsMG

s,m are site independent and can b
reduced using the point-group symmetries of the rare-e
site. The symmetry-reduced matrix elements in spher
symmetry were first calculated by Racah22 and can be chosen
as real numbers~see Appendix A!. The MG

s,m fulfill the fol-
lowing sum rules:

(
s,m,B

Mn,A;n21,B
s,m Mn,A8;n21,B

s,m
5dAA8n,

~10!

(
s,m,A

Mn,A;n21,B
s,m Mn,A;n21,B8

s,m
5@142~n21!#dBB8 ,

which is a consequence ofu i ,n,A& being an eigenstate of th
number operator(s,m f i ,s

† f i ,s . In the third line of Eq.~6! we
have used the additional abbreviation:

Vk,s
a,G5(

m
@~Ok

cc!21Hk
c f~Ok

f f !21#amMG
s,m

5(
m

@~Ok
cc!21Hk

c f#amMG
s,m . ~11!

The advantage of expressing allf operators in terms of Hub
bard operators is that the physically important limit of no
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PRB 58 6809SPECTRAL DENSITY OF SAMARIUM SULFIDE
hybridizing f and c states can be treated accurately~with
neglectingOc f) and the hybridization as a weak perturb

tion.

B. Projection technique

In this paper our main interest is the spectral dens
rk

f /c(v) for c and f states:

rk
f /c~v!5

i

2p
lim
d↘0

@Gk
f /c~v1 id!2Gk

f /c~v2 id!#, ~12!

which can be obtained from the corresponding one-part
Green functionGk

f /c(v),

Gk
f ~v!5(

s,m
^^ f k,s

m ; f k,s
m† &&v ,

~13!

Gk
c~v!5 (

s,a,b,g
^^@~Ok

cc!21/2#abck,s
b ;ck,s

g† @~Ok
cc!21/2#ga&&v .

Here, the energy representation^^D;B&&v for annihilation
operatorsD andB refers to a retarded Green function:

^^D;B†&&v5
def

2 i E
2`

`

dtu~ t !eivt^@D~ t !,B~0!†#1&, ~14!

where the averagê•••& in general refers to the thermody
namic average at temperatureT. Throughout this work it is
used for the ground-state expectation value,T50. The one-
particle f Green function can be obtained using Eq.~8! from
the Hubbard Green functions:

Gk
f ~v!5(

G
S ^^Xk

G ;Xk
G†&&(

s,m
~MG

s,m!2

1 (
DÞG

Rê ^Xk
G ;Xk

D†&&(
s,m

MG
s,mMD

s,mD . ~15!

Evaluating the one-particle Green function, one makes us
the equation of motion for Heisenberg operators:

v^^D;B†&&v5^@D,B†#1&1^^@D,H#2 ;B†&&v . ~16!

The projection or partitioning technique23,24 restricts the dy-
namics to a certain subsetDi ( i 51, . . . ,n; D1[D) of op-
erators, which are considered as relevant, neglecting th
relevant part:25

@Di ,H#2'(
l 51

n

DlKli . ~17!

Here,Kli are in general complex numbers to be determin
With the definition of the frequency matrixF and the sus-
ceptibility matrix x:

~x! i j 5
def

^@Di
† ,D j #1&, ~18!

~F ! i j 5
def

^@Di
† ,@H,D j #2#1&, ~19!

the Green function matrix (G) i j 5^^D j ;Di
†&& can be written

as
y

le

of

ir-

.

G~v!5x~v x1F !21x, ~20!

and the numbersKi j 5(K) i j become

K52x21F. ~21!

Equation ~20! can be solved through diagonalization. Th
matrix elementsF andx contain expectation values^Di

†D j&
to be determined from corresponding Green functio
through the spectral theorem until self-consistency
reached:

^Di
†D j&5

i

2p
lim
d↘0

E
2`

EF
dv@Gi j ~v1 id!2Gi j ~v2 id!#.

~22!

Here,EF is the Fermi energy.
A minimal choice of the relevant set of operators in E

~17! should contain at least the unhybridized limit of mod
~1! exactly and this means the choice of two classes of
erators:

Dk
G5(

i
e2 ik•Riu i ,n21,B&^ i ,n,Au, ~23!

Dk,s
a 5ck,s

a . ~24!

The resulting matricesF andx in these variables are listed i
Appendix B.

The next dynamical variablesDk8,a,s
k,n,A,A8 to be taken into

account involve the annihilation of a band electron acco
panied by a simultaneous fluctuation in the 4f shell with
fixed occupation number:

Dk8,a,s
k,n,A,A85(

j
ei ~k2k8!Rj u j ,n,A8&^ j ,n,Auc

k8s

a
. ~25!

We neglect the influence of these higher-order processe
the dynamics of one particle in Eq.~17!.

Examples demonstrating the use and merits of the pro
tion technique can be found in the textbook by Fulde.26 Fur-
ther, applications of this technique to multiband Hubba
models for high-Tc superconductors and 3d metals were pre-
sented in the papers by Unger and co-workers.27–29

Generally speaking, the projection technique allows fo
mapping of the spectral density to dynamical variables.
this way, a physical transparent interpretation of any giv
excitation becomes possible by considering the algebraic
pressions of the dynamical variables. The relation of the p
jection technique to a moment expansion of the spec
density30 reproduces expecially well the high-energy regi
of the spectra. On the other hand, an accurate picture of
low-energy region of the spectral density involving an in
nite number of degrees of freedom is not easily obtain
through the choice of a finite set of relevant dynamical va
ables. However, the effect of dynamical variables not
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6810 PRB 58CHRISTOPH LEHNER, MANUEL RICHTER, AND HELMUT ESCHRIG
cluded in the relevant set, Eq.~17! on the dynamics of one
electron could be captured by the memory matrix and ca
lated approximately.26

C. Quasidegeneracies

Without spin-orbit coupling the eigenstates of an isola
ion for given occupation number areLS terms that are in
general highly degenerate with respect to quantum num
MS and ML for a given quantization axis. The spectralf
density of the model~1! in the case of nonhybridizingf -c
states is diagonal in the space of Hubbard operators. It
consists of dispersionless, degenerate lines whose we
are determined by the squared matrix elements (MG

s,m)2 ac-
cording to Eq.~15! and the ground-state composition of 4f -
shell states. A uniform ground state for isolated 4f shells on
a lattice, for example, consists of only one 4f state.

In the case of nonhybridizing 4f states, it is possible to
sum the dynamical variables of Eq.~23! over degeneracies o
local states from the beginning, which reduces the dimens
of the matrices considerably. In the case of a weak hyb
ization, the degenerate excitations in the spectralf density
are expected to split weakly and becomek dependent. It is
desirable to describe this narrow collection of lines by o
effective dynamical variable

Geff5
def

(
degeneracies

G, ~26!

which is a further simplification on top of the approxima
treatment of the hybridization in the selection of dynami
variables. The sum over degeneracies in Eq.~26! is over all
ML ,MS quantum numbers that are involved in the transit
G. Note that this simplification keeps the size of the matric
involved in Eq.~20! tractable.

Summing the matrix elements (MG
s,m)2 over single ion

degeneracies results in an effective matrix elementMGeff
:

-

d

rs

en
hts

n
-

e

l

s

MGeff

2 5
def 1

Ndeg
(

degeneracies
~MG

s,m!2. ~27!

Ndeg is a normalization constant and counts the number
terms in the sum. It turns out thatMGeff

2 is s,m independent

and essentially a symmetry-reduced matrix element.~In Ap-
pendix A all symmetry-reduced matrix elements used in t
work are listed.! However, the couplingH k

c f of one-particlef
orbitals to c states is of coursenot independent of thef
orbital indexm. Therefore, a simple summation overm in
Eq. ~11! might violate the crystal symmetry. We avoid th
by restricting ourselves to anf orbital, which is a one-
dimensional representation of the real-space point group
the Bravais lattice under consideration. In the cubic po
group of Sm in SmS, thef xyz orbital plays this role and
replaces all sevenf orbitals in our treatment. Equation~11!
is replaced by

~Vk
a,G!eff57@~O k

cc!21H k
c f#a,m5xyzMGeff

. ~28!

The introduction of effective dynamical variables in E
~26! together with effective matrix elements in Eq.~27! en-
forces two further approximations. The effective matrix e
ments in Eq.~27! cannot reproduce off-diagonal sum rule
@AÞA8 or BÞB8 in Eq. ~10!#. Therefore, only diagona
Hubbard Green functions in Eq.~15! are taken into account

^^ f k,s
m ; f k,s

m† &&'(
G

^^Xk
G ;Xk

G†&&~MG
s,m!2. ~29!

Consequently, it is impossible to calculate off-diagonal m
trix elements between 4f -shell transitions in the susceptibi
ity matrix ~18!, and they are neglected:

^@~Xk
D!†,Xk

G#1&'dGD^@~Xk
G!†,Xk

G#1&. ~30!
.

o
m

FIG. 1. Band structure~left
part! and spectral density~right
part! of delocalized band states
Six 4f electrons are frozen in the
core. The reference point of zer
energy is chosen as the botto
of the conduction band ofc
states.
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PRB 58 6811SPECTRAL DENSITY OF SAMARIUM SULFIDE
III. RESULTS

A. Realistic parameters

The Hamiltonian and overlap matrices for band statec
are calculated in LDA to density-functional theory using
optimized linear combination of atomic orbitals~LCAO!
band-structure code.31 Sm 6s, 6p, and 5d states as well as S
3s and 3p states are treated as valence states. Six 4f elec-
trons were put in the core. In this way thef -c hybridization
was completely switched off while calculating band stat
The remaining interaction betweenf and band states in thi
type of calculation is indirect via electrostatic~Hartree! and
exchange and correlation potential and determines the ra
dependence of the 4f wave function. The lattice constant o
5.97 Å for the black phase was taken to be representa
also for the golden phase as far as the band states are
cerned. The one-particle LDA-Hamiltonian matrix elemen
betweenf andc states in the self-consistent charge distrib
tion of c states are determined and later used in expres
~28!. The resulting band structure ofc states is shown in
Fig. 1.

We now turn to the choice of relevant local states.
ground state with two coexisting configurationsf n and f n21

implies final states in the spectral density, which range fr
f n22 to f n11, if one electron is removed or added. Therefo
we take into account all 22 excited states off 4-f 7, which can
be reached by removing or adding an electron from/to
atomic ground states off 5 or f 6. This gives 24LS terms as
local eigenstates@see Eq.~5! and Table I for a complete
listing#. The sum over their ground state contributions is
sumed to be one. Together with the transition between
two ground states off 5 and f 6, one obtains 23 local transi
tions ~see Table II!, which enter as dynamical variables
Eq. ~23!.

The relative energies for the local many-electron state
the 4f shell with fixed occupation number, theLS terms, are
taken from experimental optical spectra of the free, trival
rare earth ions Pm31, Sm31, Eu31, and Gd31 in the
solution.20 These energies in the experimental spectra
contracted or expanded by 10% in order to account for e
nuclear charge less or larger, respectively, than that
samarium.10 The experimentalLSJ energies correspondin
to the sameLS term are averaged according to theirJ mul-
tiplicity in order to get an averageLS energy. All averageLS
energies used in this work are listed in Table I. The relat
energy differences between ground states of different oc
pation cannot be taken from single ion values, since scre
ing by conduction electrons is present in the solid. They h
to be adjusted to photoemission3 and inverse
photoemission,33 with respect to a given band reference e
ergy. The optimal parameter choice is shown in Table III

For the description of the mixed-valent phase, the LD
hybridization strength is scaled with a global, empirical p
rametera to account for the increase of thef -c hybridization
matrix elements during lattice contraction from the black
the golden phase. These matrix elements would increas
approximately a factora51.2 due to the volume collapse
This factor is too small for a reasonable valence change
visible changes of the spectral density. To demonstrate
qualitative effect of a volume change in our model mo
clearly, we chose arbitrarily a factora52 in the following
.
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for the metallic, mixed-valent phase of SmS. As a justific
tion for this choice one should keep in mind thea priori
approximative character of the model Hamiltonian and
additional approximations used for the determination of
Green function which might be not enough sensitive
small changes of matrix elements caused by the lattice c
traction. Note that all other parameters of the model Ham
tonian remain fixed and the same for both phases. We do
attempt to explain the thermodynamics of the first ord
phase transition in SmS.

B. Spectral density

The spectral density for isolated 4f shells shows disper
sionless lines with weights different from unity in contrast
simple one-particle states. In the case of an empty 4f shell
for example, the weight corresponding to the transitionf 0

→ f 1 in the unoccupied part of the spectrum is 14 and 0
the occupied part of the spectrum. In the unhybridized lim
our model shows a puref 6(7F) ground state. This is due to
the fact that the lowest-lying occupiedf excitation is 0.7 eV
below the bottom of the conduction band forc states, as seen

TABLE I. LS-term energies in eV, with respect to the groun
state of thef n configuration. The term energies forf 4, f 5, f 6, andf 7

originate from Pm31, Sm31, Eu31, and Gd31 ultraviolet f -f absorp-
tion data~Ref. 20!. g is the contraction or expansion factor to b
applied as mentioned in the text. Some of theLS terms have been
classified by an additional number according to the notation use
Ref. 32. Note that the statef 6(5H1) cannot be reached from th
ground state due to a zero matrix element withf 5(6H) and is left
out here. Further, terms with the same energy are not distinguis
in our approach and appear on the same line.

Term Energy~eV! g

f 4(5I ) 0.00 1.11
f 4(5F) 1.31 1.11
f 4(5G) 2.10 1.11
f 4(5D) 3.36 1.11
f 5(6H) 0.00 1.00
f 5(6F) 0.58 1.00
f 5(6P) 2.67 1.00
f 6(7F) 0.00 0.90
f 6(5D3) 2.34 0.90
f 6(5G3) 2.62 0.90
f 6(5L) 2.72 0.90
f 6(5H2) 3.14 0.90
f 6(5F1), f 6(5F2) 3.40 0.90
f 6(5I1), f 6(5I2) 3.53 0.90
f 6(5K) 3.94 0.90
f 6(5D1), f 6(5D2) 4.14 0.90
f 6(5G1), f 6(5G2) 4.13 0.90
f 7(8S) 0.00 0.81
f 7(6P) 4.05 0.81
f 7(6I ) 4.52 0.81
f 7(6D) 5.02 0.81
f 7(6G) 6.22 0.81
f 7(6F) 6.76 0.81
f 7(6H) 7.27 0.81
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TABLE II. Reduced matrix elements of thef operator between many-electron states of the 4f shell. They
have been calculated first by Racah~Ref. 22!. Degenerate transitions~on the same line! enter as the same
dynamical variable in our approach.

Transition Matrix element Value

f 7→ f 6 @ f 6(7F)i f i f 7(8S)# A56
@ f 6(7F)i f i f 7(6I )# 2A91
@ f 6(7F)i f i f 7(6H)# 2A77
@ f 6(7F)i f i f 7(6G)# 2A63
@ f 6(7F)i f i f 7(6F)# 2A49
@ f 6(7F)i f i f 7(6D)# 2A35
@ f 6(7F)i f i f 7(6P)# 2A21

f 6→ f 5 @ f 5(6H)i f i f 6(7F)# A154
@ f 5(6F)i f i f 6(7F)# 7A2
@ f 5(6P)i f i f 6(7F)# A42
@ f 5(6H)i f i f 6(5L)# A102
@ f 5(6H)i f i f 6(5K)# A90

@ f 5(6H)i f i f 6(5I1)#, @ f 5(6H)i f i f 6(5I2)# A 182
3 , A 52

3

( f 5(6H)i f i f 6(5H1)# 0
@ f 5(6H)i f i f 6(5H2)# A66

@ f 5(6H)i f i f 6(5G1)#, @ f 5(6H)i f i f 6(5G2)# 2A 195
7 ,2A390

3

@ f 5(6H)i f i f 6(5G3)# A 891
7

@ f 5(6H)i f i f 6(5F1)#, @ f 5(6H)i f i f 6(5F2)# A11, 3
@ f 5(6H)i f i f 6(5D1)#, @ f 5(6H)i f i f 6(5D2)# 2A 220

21 , 2A 440
147

@ f 5(6H)i f i f 6(5D3)# 9
7A10

f 5→ f 4 @ f 4(5I )i f i f 5(6H)# A182
@ f 4(5G)i f i f 5(6H)# 2A 585

7

@ f 4(5F)i f i f 5(6H)# 2A33
@ f 4(5D)i f i f 5(6H)# 2A 220

7
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in Table III. The three transitions withf 6(7F) as initial state,
7F→6H, 7F→6F, and 7F→6P lie in the occupied part of
the spectrum, and have the noninteger weights of squ
reduced matrix elements~see Table II!, which sum up to
exactly six. The unoccupied part of the spectrum consist
seven transitionsf 6(7F)→ f 7 according to Table II with an
integrated weight of eight.

It follows from the definition~13! of the f spectral density
that its normalization is 14 also in the general case w
hybridization. Our choice of dynamical variables shows d
crete poles at eachk point. In general, theirf weights differ
from their unhybridized values due to a change of
ground-state composition. Moreover, the excitations w
dominantf character now show a dispersion due to hybr
ization. Figure 2 shows the partial spectral densities for
semiconducting and mixed-valent phase. The 4f occupation
is determined by integration giving 5.94 in the semicondu
ing and 5.78 in the mixed-valent phase~see the next subsec
tion!. The main change in the spectral density when go
from the semiconducting to the mixed-valent phase is
occurrence off 4 final states at higher binding energies b
tween28.0 and212.5 eV and more pronouncedf 6 final-
state multiplets in the unoccupied part at energies betwe
and 4 eV.
ed
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Finally, a direct comparison of experiment
photoemission3 and inverse photoemission spectra33 with the
calculated partialf density is made in Fig. 3. For the sem
conducting phase of SmS the theoretical Fermi energy o
pure sample should lie very close to the lower conducti
band edge due to the strongly different effective masse
conduction states with Sm 5d character and valence state
with Sm 4f character. Without any major error, we put th
Fermi energy in the theoretical calculations exactly at
lower conduction-band edge. Note that the experiment
determined chemical potential of a semiconductor can
easily shifted by defects or additional charges on the sam
and is moreover influenced by the surface sensitivity of p
toemission in general. In addition, the X-ray photoemiss

TABLE III. Adjustment of energy differences for different 4f
occupations. The bottom of the conduction band is taken to be
Fermi level.

Ground-state energy difference ~eV!

E0( f 7)2E0( f 6) 3.0
E0( f 6)2E0( f 5) 20.7
E0( f 5)2E0( f 4) 27.7
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FIG. 2. k-resolved spectral densities for the semiconducting~a! and the mixed-valent phase~b!, in the left part of the figures. The width
of the crosses is proportional to the total pole strength. Note that poles with weight,0.065 in left part of~a! at energies between210 and
212 eV can graphically not be correctly resolved and are overemphasized.k-integrated spectral densities are given in the right part of
figures. The reference point of zero energy is as in Fig. 1 and temperature isT50 K.
c
e

ua
c
nt
or

nd-

er-

ex-
spectroscopy~XPS! and bremsstrahlung isochromat spe
troscopy ~BIS! experiments were not done with the sam
sample and hence the coincidence of the two individ
chemical potentials is not guaranteed. Despite these un
tainties, we assume sufficient accuracy of both experime
chemical potentials. It should be mentioned that our the
-

l
er-
al
y

has not enough predictive power for absolute values of bi
ing energies because the position of the lowest-lyingf exci-
tation in the semiconducting phase7F→6H is approximately
given by a fit parameter, namely, the related energy diff
enceE0( f 6)2E0( f 5) ~see Table III!. This fit parameter de-
termines essentially the band gap for the photoemission
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periment, which is different from the optical gap due to fa
time scale (10216 s) of the photoemission experiment com
pared to the slow time scale (10210 s) of an optical experi-
ment.

We compare the partialf density with experimental dat
for high photon energies ('1500 eV), where the cros
section of 4f states is a factor of 10 larger than the cro
section of other states. The calculated spectra are in
agreement for the occupied region, and in reasonable ag
ment in the unoccupied region. One should note that
collapsed phase of SmS was prepared with thorium dop
rather than by applying pressure in the photoemiss
experiment.3 In the case of inverse photoemission,33 the
comparison remains only qualitative for the collapsed pha
because in the experiment aninhomogenousmixed valent

FIG. 3. Spectralf density compared to experimental XPS spe
tra ~Ref. 3! and BIS spectra~Ref. 33!. The experimental spectr
have been normalized to the calculated ones, for occupied and
occupied states separately. The calculated spectra have been b
ened by a Lorentzian of 0.2 eV full width at half maximum for th
occupied states and 0.5 eV for the unoccupied states. Temper
is T50 K. ~a! Semiconducting SmS,~b! collapsed~mixed-valent!
SmS. Experimentally, the mixed-valent phase was prepared e
by doping with thorium~XPS spectrum, Ref. 3! or as inhomog-
enous mixed-valent phase by partial oxidation~BIS spectrum, Ref.
33!.
t

s
ir
e-
e
g
n

e,

phase consisting of SmS and Sm2O3 was prepared by partia
oxidation. In particular, the amount of divalent and trivale
Sm sites contributing to the spectrum was unknown. On
theoretical side, the itinerant character off states resulting
from nonzerof -f hopping matrix elements that are neglect
in this calculation should play a more important role for t
unoccupied part of the spectrum with the more extendedN
11 final-state wave functions.

C. Ground state and final states

The self-consistent ground state can be analyzed in te
of occupation numbers andLS-term contributions. The
ground-state weightpn,A of the stateun,A& ~i.e., the LS
terms! for a ground state~GS! that does not break translatio
symmetry of the lattice,

pn,A5
def

^GSu i ,n,A&^ i ,n,AuGS&, ~31!

can be easily related to the 4f occupation:

^nf&5
def

(
k,s,m

^ f k,s
m† f k,s

m &

5^GSunf1i uGS&5(
n,A

^GSunf u i ,n,A&^ i ,n,AuGS&

5(
n,A

npn,A . ~32!

The 4f occupation is therefore simply determined by taki
the probability of finding an~initial! state un,A& in the
ground state, multiplied by the number of possibilities
remove an electron out of this configuration~that is, the
numbern of electrons present!, and finally summing over all
possible initial states. Note, that expression~32! holds for the
fully hybridized ground state. Similarly, for the integrate
unoccupied partI unocc5142nf of the spectral density, one
finds

I unocc5(
n,A

~142n!pn,A . ~33!

Table IV shows the ground-state composition in terms
statesun,A& and occupation numbers.

The contributions of spectral weight to the integrat
quantitynf can be analyzed further in terms of local tran
tions. We define, in analogy to Eq.~15!, a partial f Green
function GG

f associated with the local transitionG:

GG
f ~v!5

1

N(
k

S ^^Xk
G ;Xk

G†&&(
s,m

~MG
s,m!2

1 (
DÞG

Rê ^Xk
G ;Xk

D†&&(
s,m

MG
s,mMD

s,mD . ~34!

-

n-
ad-

ure

er
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TABLE IV. Analysis of the semiconducting and the mixed-valent phase.

Semiconducting Mixed valent

4 f -shell Smf 4 ,0.001 ,0.001
weight pn,A Smf 5(6H) 0.051 0.192

Smf 5(6F) 0.008 0.025
Smf 5(6P) ,0.001 0.003
Smf 6(7F) 0.939 0.771

Smf 6 ~other! ,0.001 0.007
Smf 4 ~sum! ,0.001 ,0.001
Smf 5 ~sum! 0.059 0.220
Smf 6 ~sum! 0.940 0.778
Smf 7 ~sum! ,0.001 0.003
Sm ~sum! 1.000 1.000

Occupation Sm 4f 5.940 5.783
per Sm 5d 0.339 0.451
unit cell Sm 6s 0.056 0.056

Sm 6p 0.079 0.114
S 3s 1.994 1.994
S 3p 5.603 5.607

total charge 14.000 14.000
p

t

-

s

ue
na

es
of

is
al
nsity
the

lti-
gh-
eV.
4

dard

e-
-

ita-

h-
o

that
of
a-
ext
e
w-

with
n lo-
For the following consideration we do not make use of a
proximation~29!. Integrating the spectral densityrG

f associ-
ated withGG

f up to the Fermi energy, thef occupation num-
ber can be alternatively expressed as

nf5(
G

S (
k

^Xk
G†Xk

G&(
s,m

~MG
s,m!2

1 (
DÞG

Re(
k

^Xk
D†Xk

G&(
s,m

MG
s,mMD

s,mD
5(

n,A S ^GSu i ,n,A&^ i ,n,AuGS& (
B,s,m

~Mn,A;n21,B
s,m !2

1 (
A8ÞA

^GSu i ,n,A8&^ i ,n,AuGS&

3 (
B,s,m

Mn,A;n21,B
s,m Mn,A8;n21,B

s,m D
5(

n,A
pn,An, ~35!

in agreement with Eq.~32!. In the third line of Eq.~35!, use
of the local orthonormality relations~5! was made. Note tha
the off-diagonal terms in Eq.~34! give no contribution tonf
due to the sum rules, Eq.~10!, and independent of the ap
proximation~29!. The individual termsnpn,A in the last sum
of Eq. ~35! arise from all local transitionsG5(n,A;n
21,B) with arbitrary B. The weight of all occupied state
un21,B& in the one-particlef -excitation spectrum arising
from local transitions from stateun,A& is exactly npn,A .
Sincepn,A is the ground-state contribution of stateun,A& and
therefore a ground-state property, the ground state uniq
and exactly reflects the integrated weight of occupied fi
-

ly
l

states. The crucial step in the derivation of Eq.~35! is the
implicit integration over energies of all occupied final stat
un21,B&, which excludes information about the position
these states in energy. By integration, final-state mixing
a priori not addressed, which is a mixing of various fin
states at energies in the occupied part of the spectral de
that are dominated by one final state. We note that within
approximations in this work mixing effects are small.

IV. SUMMARY AND CONCLUSIONS

The spectral density for SmS is determined using a mu
band Anderson Hamiltonian. Emphasis is put on the hi
energy one-particle and one-hole excitations up to 10
The states are divided into localized, strictly nonitinerantf
states, and delocalized band statesc of s, p, andd character.
The parameters for the band part are taken from a stan
LDA calculation within the LCAO scheme31 where six 4f
states corresponding to divalent Sm21 are put in the core.
The 4f states form local many-electron states. 25LS terms
from 4f 4 to 4f 7 are taken into account together with corr
sponding transitions betweenLS terms that change the occu
pation number of the 4f shell by one. Spin-orbit splitting is
neglected since it only leads to a fine structure in the exc
tion spectrum.

Next, the Hamiltonian is treated within a projection tec
nique that is well suited to deal with local excitations. Tw
classes of dynamical variables are taken into account
contain the unhybridized limit exactly, and the effects
hybridization approximately. They form elementary excit
tions of the solid with a transparent interpretation. The n
dynamical variables of type~25! that are neglected her
should change the elementary excitations only in the lo
energy region~0–0.3! eV near the chemical potential.

The semiconducting phase of SmS can be described
three parameters according to energy differences betwee
cal eigenstates of the 4f shell. The7F ground-state configu-
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ration of f 6 representative for unhybridized 4f shells loses
weight in favor of the ground-state configuration off 5 and
band states, dominated by Sm 5d states. Fair agreement
found between our calculated spectral density and exp
mental XPS data, while the BIS data are matched qua
tively. The 4f occupation of 5.94 in the semiconductin
phase as found in this work is somewhat lower than the va
.5.97 that was deduced from the experimental proportion
f 4/ f 5 final-state weights in photoemission.3 In light of our
analysis, the contribution off 4 final-state weight below 9.5
eV binding energy was underestimated in the experime
analysis.

An attempt has been made to simulate the mixed-va
phase by scaling the hybridization matrix elements. The s
ing factor 2 used here for the golden phase is to be un
stood as an upper bound for the enlargement of the hyb
ization matrix elements due to the lattice contraction. O
hope was to model the experimental tendency for the cha
of the ground-state composition and the correspond
changes of final-state weights for the spectral density.
obtained a 4f occupation of 5.78 for the golden~contracted!
phase. This value fits well to the value 5.7760.06 obtained
from Vegard’s law analysis of lattice consta
measurements35 and to that obtained from photoemissio
data (5.75, Ref. 3!. It is higher, however, than the values
about 5.6 deduced from other spectroscopic methods
x-ray absorption at theL III edge (5.5760.04, Ref. 34! and
Mössbauer isomer shift (5.6260.08, Ref. 36!. An unreason-
able high scaling factor of about 5 would be needed to
produce the latter values. We therefore conclude that
model is capable of describing the correct tendency; h
ever, for a quantitative description either the approximatio
for the determination of the Green function are not accur
enough or the model itself is insufficient. In particular, h
bridization enlargement is possibly not the only mechan
responsible for the valence transition in SmS. On the ot
hand, we would like to point to the obviously different 4f
occupations found by different experimental techniques.

Calculated and experimental spectral densities for
mixed-valent phase agree reasonably well. However,
comparison is not free of ambiguity since the experime
were not carried out under pressure but using chemical m
fications to prepare the mixed-valent phase. Because o
rather gross treatment of the excitation spectrum, our mo
is not suited to reproduce the insulator-to-metal transit
connected with the mixed-valence transition of SmS.

From the experimental side, measurements of occup
and unoccupied states spectra on one and the same sa
are still lacking. Such data could provide a safer basis
further theoretical investigations.
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APPENDIX A: SYMMETRY-REDUCED
MATRIX ELEMENTS

In the following, the matrix elementsMG
s,m occurring in

Eq. ~8! will be reduced. We assume an underlying spheri
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symmetry although this would nota priori be necessary
However, a realistic point group does not make any diff
ence because we sum in Eq.~27! over all single-ion, i.e.,
spherical degeneracies.

The transitionsG take the form

G5~n,L,S,ML ,MS ;n21,L8,S8,ML8 ,MS8!. ~A1!

The matrix elementsMG
s,m in spherical symmetry can b

reduced according to the Wigner-Eckart theorem:37,38

MG
s,m5

def

^n21,L8,S8,ML8 ,MS8u f s5 1/2 ,s
l 53,m un,L,S,MS ,ML&

5~21!L2MLS L l L8

2ML m ML8
D

3~21!S2MSS S s S8

2MS s MS8
D

3 S n21,L8,S8I f
s5

1
2

l 53 In,L,SD . ~A2!

Here, the terms in large parentheses denote the Wignej
symbol,38 and (•••i•••i•••) is a reduced matrix elemen
All reduced matrix elements that are used in this work
listed in Table II.

Summation over single-ion degeneracies gives

(
ML8 ,MS8 ,ML ,MS

~MG
s,m!25~n21,L8,S8i f s

l in,L,S!2
1

@ l #@s#
.

~A3!

Here,@A#[2A11 stands for the number of basis functio
associated with quantum numberA. Use has been made o
the closing relations for Wigner 3j symbols.38 Therefore,
one finds for the effective matrix elements defined in E
~27!:

MGeff

2 5~n21,L8,S8i f s
l in,L,S!2

1

@ l #@s#@L#@S#@L8#@S8#
.

~A4!

APPENDIX B: FREQUENCY AND SUSCEPTIBILITY
MATRIX ELEMENTS

In the following, the frequency and susceptibility matr
elements in the space of the dynamical variables~23! and
~24! are given.G5(n,A;n21,B), D5(m,C;m21,D), and
L5( l ,E; l 21,F) denote local transitions,n,m,l are occupa-
tion numbers, andA,B,C,D,E,F the quantum numbersLS of
the 4f shell. A summation over free ion degeneraci
M L ,MS in G,D,L is assumed, according to Eq.~26!. The
multiplicity of quantum numberA is abbreviated with@A#
52A11. k,q,p are lattice momenta.a,b indicate orbital
indices ands,t spin indices of the band basis statesc. The
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approximation~30! is used.Vk,s
a,G has to be considered as th

effective matrix element (Vk
a,G)eff of Eq. ~28!:

xk,q
D,G5

def

^@~Xk
D!†,Xq

G#1&

5~dkqdDG@B#^u i ,n,A&^ i ,n,Au&

1@A#^u i ,n21,B&^ i ,n21,Bu&!, ~B1!

Fk,q
D,G5

def

^@~Xk
D!†,@H,Xq

G#2#1&

5dkqdGG~En21,B2En,A!xk,q
G,G

2dkq

1

N (
i ,p,L,s,a

~Vp,s
a,L!* dnle

ipRi
e

tti

e

ys

,

a

3~dBFdDEdm21,l^u i ,n11,C&^ i ,n,Aucp,s
a &

2dBFdACdnm@B#^u i ,n,E&^ i ,n21,Ducp,s
a &

1dAEdDBdnm@A#^u i ,n,C&^ i ,n21,Fucp,s
a &

2dAEdCFdm,l 21^u i ,n21,B&^ i ,n22,Ducp,s
a &!, ~B2!

Fk,q
G;a,s5

def

^@Xk
G† ,@H,cq,s#2#1&52dkq(

L
Vk,s

a,Lxk,q
G,L ,

~B3!

xk,q
a,s;bt5

def

^@ck,s
a† ,cq,t

b #1&5dkqdst~Ok
cc!ab , ~B4!

Fk,q
a,s;b,t5

def

^@ck,s
a† ,@H,cq,t

b #2#1&52dkqdst~Hk
cc!ab .

~B5!
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