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Spectral density of samarium sulfide
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The spectral density of samarium sulfide is calculated using a multiband periodic Anderson modebp,The
andd states are treated as band states within the local-density approximation. Realistic, local many-electron
states of the # shell are taken into account. Using projection technique$ actupation of 5.94 is found in
the semiconducting phase. The calculated spectral density is in fair agreement with the measured photoemis-
sion and inverse photoemission spectra. To simulate the mixed-valent phase, the global hybridization strength
between 4 and band states is empirically enhanced. The limits of a valence change controlled by the hybrid-
ization strength are discussd&0163-18208)01132-]

I. INTRODUCTION the occupied part of the spectrum. In a different approach,
Schumanret al® took into account the self-interaction cor-
Samarium sulfidéSm9 has attracted much attention dur- rection for the six relativistic states with total angular mo-
ing the last 25 year&or an early theoretical review see Ref. mentumj=5/2.
1). At 6.5 kbar and room temperature it shows an isostruc- By construction, one-particle band-structure calculations
tural first-order phase transition from a black, semiconductfor SmS(Refs. 4—9 do not address one-electron excitations
ing phase to a golden-yellow metallic phasecompanied that remain localized in the f4shell and form local many-
by a volume collapse of13%. Photoemission spectra of €lectron states. ~Such local states are seen by
semiconducting Sm&Ref. 3 show localized, atomiclike # photospectroscop¥, which probes the one-particle excita-

final states at binding energies of 0.5-4.0 eV, which imply dion Sp_ec”‘_imll e, the spectral density, within the sudden
dominating 4¢ ground state. Photoemission spectra Ofapproxmaﬂoﬁ valid at high photon energies. To calculate

. ) ; -~ the spectral density we adopted a generalized periodic
doped Srr51$ simulating the collapsgd pHesieow again lo Anderson model as the basis of the present work. It allows us
calized 4° final states and, energetically separatefd, fihal

. e . to evaluate one-particle excitation spectra that reflect, in ac-
states at higher binding energies that both clearly stem frorEordance with experiment, both the itinerant states and the
the two 4f configurations 4° and 4% contributing to the

A local many-electron states. These latter states do weakly hy-

ground state. Because of the strong localization of the 4 iqize with thes-, p-, andd-like band states.

wave function, photoemission spectra of SmS look in first  geyeral attempts have been made to calculate the excita-

approximation like spectra for the isolated, free’Srion in tion spectrum using simpler versions of the periodic Ander-

the semiconducting case and like a static mixture o#'Sm son model within a restricted space of localiz8Ufl/f?

with Snt™ ions in the mixed-valent case. Nevertheless, it iSstates and only one band orbita*® Although much can be

clear from the experimental equivalence of the Sm sites thgkarned about the approximations used, a comparison to

the mixed-valent state in SmS is homogeneous, and this capectroscopy or an analysis of the valence of SmS is not

only be provided by the hybridization off4states with de- possible in such a simplified frame. The emphasis in this

localized band states &f p, or d character. work is on the high-energy side of the spectral density with
A standard band-structure calculation in local-densityparticle and hole excitations of 0.3—10 eV. Special attention

approximatioi~’ (LDA) yields seven one-particlé bands s given to atomiclike excitations inside thé 4hell and the

with a total width of 0.7 eV at the Fermi energy. These stateghanges that occur when they hybridize with delocalized

are twofold spin degenerate in the nonrelativistic case an@and states.

twofold Kramers degenerate in the relativistic case. Attempts After introducing our model Hamiltonian and the projec-

at a description beyond LDA have been published, where théion technique in Sec. I, we present the results in Sec. IlI

common idea is to distinguish occupied and unoccupiecnd give finally our summary with conclusions in Sec. IV.

4f-states. One possibility is to approximate the self-energy

by introducing the Coulomb repulsiod as an additional

parameter to the one-partic(eDA) equations for a quasi- Il. THEORY

particle band structure, as performed bypea-Aguilar and i

Costa-Quintani. This leads, after choosing the occupied A. Multiband model for SmS

4f-states, to a splitting betweerf 4tates withT,,=1I",5 and A multiband Hubbard Hamiltonian naturally includes the

A,,=T5 symmetry(cubic point-groupOy) in the unoccu- interplay between localized and delocalized states through

pied part and those witfi,,=1I"15 symmetry(six stateyin  the on-site Coulomb repulsion and Hamiltonian matrix ele-
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ments connecting different lattice sites. In the followirig, ot cor 100t
states will be treated differently frors, p, andd states, Hmix:k > o0 Hilaufi o TH.C.
where the latter are denoted astates. Starting from local- Tk =
ized f orbitals, we neglect-f Hamiltonian andf-f overlap ot cor— 11 1cf T
matrix elements for different lattice sites, as wellfas over- = > kIO T HELME#X( +H.c.
. . . . yo,a,um, = =
lap matrix element&? but take into accourft-c Hamiltonian,
c-c overlap, anct-c Hamiltonian matrix elements. Although ot s Tl
spin-orbit splitting is important it is neglected in the follow- = ;:1 - GkoVice Xk T H.C. (6)
ing because it only leads to a fine structure in the spectral o
density with splittings of order 0.1-0.5 eV for atomid 4 In the first line of Eq.(6), f{ , annihilates an electron in the
energy level$? and splittings of about 0.7 eV for one- Bloch state of 4 orbitals x with spin o-. In the second line
particle 4f bands® a point not addressed in this paper. Now, of Eq. (6), a basis transformation from Fermi operatéfs,

the Hamiltonian consists of three parts: to Hubbard operatof$
defl ) 1 .
Xp=n € FRX =2 e *Rii,n—1B)i.n Al
H:Hband+2_ Hif,local'i_Hmix- (1) N i N i
. 0
HpanaiS the one-patrticle part for states: has been performed:
fiﬂ:o': 1ifﬁu—1i
Hoand=, 2 | G0 HI(OL) apho- @
o = > (i,n—1B|f* |i,n,A)i,n—1B)i,n,A|
n,A,B ’
Here,cg'!) are annihilatior{creation operators for electrons
with lattice momentunk and spino in the ¢ orbital with d:efz MaexE ®)
index a. The Hamiltonian and overlap matricel§® andOg° T
are formed in the space of tlebasis states. The following The Hubbard operators’ make transitions
anticommutation relation holds: :
I'=(n,A;n—1B) 9
a Bt _ cc
[Ck.o+Ck,or]+ = 00,0 (Ok ) agp- (3 from local eigenstatéi,n,A) to local eigenstatéi,n—1,8).

The matrix elementd/# are site independent and can be

Hif,local is diagonal in the local #shell eigenstates at site reduced using the point-group symmetries of the rare-earth

i site. The symmetry-reduced matrix elements in spherical
symmetry were first calculated by Raéahnd can be chosen
as real numbergsee Appendix A The My fulfill the fol-

. . lowing sum rules:
Hif,localzg En.A||'n!A><|vn1A|- (4) g
. . . 2 MU'M. MU'M = 5 n
Here,|i,n,A) denotes a local eigenstate of theghell at site ooy MAN—LE T nANN-1BT TAATT
i, characterized by the occupation numipercertain addi- (10

tional quantum numberd, and energyE, ». The quantum
numbersA include total spirS and total angular momentum
L of the 4f shell together with their projectiod, andMs.
Note that within our basis of f4shell eigenstates the Cou-

lomb repuls_ion at_ sité inside 'Fhe 4 shell is ir_1c|uded i \which is a consequence [itn,A) being an eigenstate of the
En a. Atagiven site, the following orthonormality and com- number operatoE 1 £ Inthe third line of Eq(6) we

. . ouliolio-
pleteness relations hold: have used the additional abbreviation:

ZA M7 An-18M g,’K:nfl,B’ =[14-(n—1)]6gp ,
oM,

(i,n,Ali,m,B)=6nndas,

©) Vit =2 [(0F)HE(O) oM
1i:% ||,n,A><|,n,A|. :2 [(QEC)_lﬂﬁf]a#Mg'M. (11)
= =
Hnix describes the-c hybridization due tof-c Hamil-  The advantage of expressing &lbperators in terms of Hub-

tonian matrix elements: bard operators is that the physically important limit of non-
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hybridizing f and ¢ states can be treated accuratéhjith G(w)=x(w x+F) 1y, (20)
neglectingO°®f) and the hybridization as a weak perturba- = = = = =

tion. N and the numberK; = (K);; become
B. Projection technique o

In this paper our main interest is the spectral density K=—x"1F. (21

pi/°(w) for c andf states: =

Equation (20) can be solved through diagonalization The

pile(w)= —Ilm[G”C(w+|5) G/%(w—i8)], (120  matrix element§ andy contain expectation valug® D;)
5.0 to be determined from corresponding Green functions
which can be obtained from the corresponding one-particle through the spectral theorem until self-consistency is
flo feached:
Green functionGy “(w),
(@)=2 (o T (D! DJ>——|Im dw[GIJ w+i8)—G(w—i3)].
(13 (22)

Gi(w)= 2 <<[<0°°> Y0l 0 L (O ] ya)) -

Here,Ef is the Fermi energy.

A minimal choice of the relevant set of operators in Eq.
(17) should contain at least the unhybridized limit of model
(1) exactly and this means the choice of two classes of op-
erators:

Here, the energy representati¢(D;B)), for annihilation
operatordD andB refers to a retarded Green function:

(DB, =i [ atavem (D) 8(0)"],), (19

where the averagé - -) in general refers to the thermody- DEZZ e " Rili,n—1B)(i,n,Al, (23)
namic average at temperatufe Throughout this work it is
used for the ground-state expectation vallie;0. The one-
particlef Green function can be obtained using E&). from
the Hubbard Green functions:

D& =c& (24)
k,o k,o

The resulting matrlceE andX in these variables are listed in
f R Appendix B.

_ . o, 2
Gk(“’)_; (X3 X >>02# (Mp*) The next dynamical varlable@:ﬁ,”AA to be taken into

account involve the annihilation of a band electron accom-

I .wAt P panied by a simultaneous fluctuation in thé ghell with
+A§r RE((Xi 3 X >>% MEEME® ] (9 fixed occupation number:

Evaluating the one-particle Green function, one makes use of
the equation of motion for Heisenberg operators: Dk,n,A,A’:E ei(k"")RJ|j,n,A’>(j n A|Ca,0. (25)
]

k', a,0

o((D;B")),=([D,B"],)+{(([D,H]-;B"),. (16

The projection or partitioning technig®i restricts the dy-  We neglect the influence of these higher-order processes on

namics to a certain subsBt (i=1,...n; D;=D) of op- the dynamics of one particle in E(L7).
erators, which are considered as relevant, neglecting the ir- Examples demonstrating the use and merits of the projec-
relevant part® tion technique can be found in the textbook by FuitiEwur-

ther, applications of this technique to multiband Hubbard
models for high¥ . superconductors andd3netals were pre-
[D; vH]f”Zl DiKji - (17 sented in the papers by Unger and co-work&r&
Generally speaking, the projection technique allows for a
Here,K,; are in general complex numbers to be determinedmapping of the spectral density to dynamical variables. In
With the definition of the frequency matn& and the sus- this way, a physical transparent interpretation of any given
ceptibility matnxX excitation becomes possible by considering the algebraic ex-
pressions of the dynamical variables. The relation of the pro-
jection technique to a moment expansion of the spectral

n

—/pt
X)ij={[Di.Djl+), (18) density° reproduces expecially well the high-energy region
def of the spectra. On the other hand, an accurate picture of the

(E)ii =<[D?,[H,D-],]+), (190 low-energy region of the spectral density involving an infi-

nite number of degrees of freedom is not easily obtained
the Green function matrGCQ)Il ((D; ,DT>> can be written  through the choice of a finite set of relevant dynamical vari-
as ables. However, the effect of dynamical variables not in-
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cluded in the relevant set, E¢L7) on the dynamics of one , def 1 o ans

electron could be captured by the memory matrix and calcu- M= N > (M)~ (27)
. 6 deg degeneracies

lated approximately?

_ _ Ngeg iS @ normalization constant and counts the number of
C. Quasidegeneracies terms in the sum. It turns out thM%eﬁ is o, u independent

Without spin-orbit coupling the eigenstates of an isolatedand essentially a symmetry-reduced matrix elemg@ntAp-
ion for given occupation number ateS terms that are in  pendix A all symmetry-reduced matrix elements used in this
general highly degenerate with respect to quantum numbesgork are listed. However, the coupling ﬁf of one-particlef
Ms and M, for a given quantization axis. The spectfal orbitals toc states is of cours@ot independent of the
density of the mode(1) in the case of nonhybridizing-c  orbital index u. Therefore, a simple summation ovgrin
states is diagonal in the space of Hubbard operators. It theRq. (11) might violate the crystal symmetry. We avoid this
consists of dispersionless, degenerate lines whose weighty restricting ourselves to afi orbital, which is a one-
are determined by the squared matrix elemeM¢§'¢)? ac-  dimensional representation of the real-space point group of
cording to Eq.(15) and the ground-state composition df-4 the Bravais lattice under consideration. In the cubic point
shell states. A uniform ground state for isolatefdshells on  group of Sm in SmS, thd,,, orbital plays this role and
a lattice, for example, consists of only oné dtate. replaces all seveh orbitals in our treatment. Equatiqdl)

In the case of nonhybridizingf4states, it is possible to is replaced by
sum the dynamical variables of E@3) over degeneracies of

local states from the beginning, which reduces the dimension (vehef=7[(0 % ~H ﬁf]a,M:mM T (28
of the matrices considerably. In the case of a weak hybrid- = =
ization, the degenerate excitations in the spedtreensity The introduction of effective dynamical variables in Eq.

are expected to split weakly and becomelependent. It is  (26) together with effective matrix elements in EQ7) en-
desirable to describe this narrow collection of lines by oneforces two further approximations. The effective matrix ele-

effective dynamical variable ments in Eq.(27) cannot reproduce off-diagonal sum rules
def [A#A’ or B#B' in Eq. (10)]. Therefore, only diagonal
Fe= > T, (26) Hubbard Green functions in E¢L5) are taken into account:

degeneracies

which is a further simplification on top of the approximate PP N Iy Tt o 2
treatment of the hybrigization in the selection of dynamical (flo T <r>>”; (XX D MPH)2, (29)
variables. The sum over degeneracies in ) is over all

M, ,Mg quantum numbers that are involved in the transitionConsequently, it is impossible to calculate off-diagonal ma-
I'. Note that this simplification keeps the size of the matricedrix elements betweenf4shell transitions in the susceptibil-

involved in Eq.(20) tractable. ity matrix (18), and they are neglected:
Summing the matrix elementd("#)? over single ion At ol It ol
degeneracies results in an effective matrix elenqt : (LX) X Ty = Srall(Xi) ' X I +)- (30
18.0 —— Smés
i g, 1 1T ~ Sm 6p
160 F, RS 1 ---- Sm5d
Y, O J ——-53s
MO E el o E — s
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> > .
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lll. RESULTS TABLE I. LS-term energies in eV, with respect to the ground
A Realisti state of thef" configuration. The term energies ftf, f°, 6, andf’
- Realistic parameters originate from P, SnP*, EW®, and Gd™ ultraviolet f-f absorp-

The Hamiltonian and overlap matrices for band states tion .data(Ref. 29. Y is. the contraction or expansion factor to be
are calculated in LDA to density-functional theory using anapplied as mentioned in the text. Some of tf@terms have been
optimized linear combination of atomic orbitaléCAO) classified by an additional number according to the notation used in
band-structure cod®.Sm 6s, 6p, and & states as well as S Ref. 32. Note that the statt®(®H1) cannot be reached from the

3s and states are treated as valence states. Sieldc- ground state due to a zero matrix element witt®H) and is left
trons Wg)e put in the core. In this way thes hybr.idization out here. Further, terms with the same energy are not distinguished

. - . in our approach and appear on the same line.
was completely switched off while calculating band states PP PP

The remaining interaction betwednand band states in this Term Energy(eV) y
type of calculation is indirect via electrostatidartreg and
exchange and correlation potential and determines the radi&f(°!) 0.00 1.11
dependence of thef4wave function. The lattice constant of f*(°F) 131 111
5.97 A for the black phase was taken to be representativé'(°G) 2.10 1.11
also for the golden phase as far as the band states are cai¢°D) 3.36 1.11
cerned. The one-particle LDA-Hamiltonian matrix elementsf5(éH) 0.00 1.00
betweenf andc states in the self-consistent charge distribu-f>(°F) 0.58 1.00
tion of ¢ states are determined and later used in expressiof?(°p) 2.67 1.00
(28). The resulting band structure af states is shown in  5(7F) 0.00 0.90
Fig. 1. £5(°D3) 2.34 0.90
We now turn to the choice of relevant local states. A6(5G3) 2.62 0.90
ground state with two coexisting configuratioffsand f"~* £5(5L) 272 0.90
implies final states in the spectral density, which range fron}a(sHZ) 314 0.90
f"~2to f"*1, if one electron is removed or added. Therefore,fe(sFl) f5(5F2) 3.40 0.90
we take into account all 22 excited statesdff 7, which can £5(511) ’fe(slz) 353 0.90
be reached by removing or adding an electron from/to thqs(sK) ' 3'94 0'90
atomic ground states df or f8. This gives 24LS terms as 15(D1), 15(°D2) 414 0.90
local eigenstategsee Eq.(5) and Table | for a complete f6(5G1)’ £5(5G2) 4'13 0'90
listing]. The sum over their ground state contributions is as-,,5-, ' ' '
. . f(°S) 0.00 0.81
sumed to be one. Together with the transition between th?7 6
two ground states of®> and f®, one obtains 23 local transi- 7(6P) 4.05 081
tions (see Table N, which enter as dynamical variables in N 4.52 0.81
f7(°D) 5.02 0.81
Eqg. (23). .
The relative energies for the local many-electron states 0?7(66) 6.22 0.81
the 4f shell with fixed occupation number, thes terms, are ' CF) 6.76 0.81
taken from experimental optical spectra of the free, trivalent'(°H) 7.27 0.81

rare earth ions PH, Sn?*, EUW**, and Gd' in the
solution?® These energies in the experimental spectra are
contracted or expanded by 10% in order to account for eacfor the metallic, mixed-valent phase of SmS. As a justifica-
nuclear charge less or larger, respectively, than that ofion for this choice one should keep in mind thepriori
samariunt’ The experimental. SJ energies corresponding approximative character of the model Hamiltonian and the
to the same.S term are averaged according to théimul- ~ additional approximations used for the determination of the
tiplicity in order to get an averageS energy. All averagéS ~ Green function which might be not enough sensitive for
energies used in this work are listed in Table I. The relativesmall changes of matrix elements caused by the lattice con-
energy differences between ground states of different occuraction. Note that all other parameters of the model Hamil-
pation cannot be taken from single ion values, since screeffonian remain fixed and the same for both phases. We do not
ing by conduction electrons is present in the solid. They havéttempt to explain the thermodynamics of the first order
to be adjusted to photoemission and inverse Phase transition in SmS.
photoemissiorf® with respect to a given band reference en-
ergy. The optimal parameter choice is shown in Table IlI.
For the description of the mixed-valent phase, the LDA
hybridization strength is scaled with a global, empirical pa- The spectral density for isolatedf 4hells shows disper-
rametera to account for the increase of tifiec hybridization  sionless lines with weights different from unity in contrast to
matrix elements during lattice contraction from the black tosimple one-particle states. In the case of an emgtshiell
the golden phase. These matrix elements would increase igr example, the weight corresponding to the transitidn
approximately a factow=1.2 due to the volume collapse. —f1in the unoccupied part of the spectrum is 14 and 0 in
This factor is too small for a reasonable valence change anithe occupied part of the spectrum. In the unhybridized limit
visible changes of the spectral density. To demonstrate theur model shows a purt’(’F) ground state. This is due to
gualitative effect of a volume change in our model morethe fact that the lowest-lying occupiddexcitation is 0.7 eV
clearly, we chose arbitrarily a factar=2 in the following  below the bottom of the conduction band fostates, as seen

B. Spectral density
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TABLE Il. Reduced matrix elements of tHfeoperator between many-electron states of thelell. They
have been calculated first by Racdref. 22. Degenerate transition®n the same lineenter as the same
dynamical variable in our approach.

Transition Matrix element Value
f7—£° [FOCR)E7(39)] \/56
[FOCR)IFIF7(CN)] — 91
LFOCR)[FI£7(°H)] —\77
[FOCR)[FIF7(°G)] — /63
[FeCF)fF7(°F)] — /49
[FoCR)[fIf7(°D)] —35
LR IflE7(°P) ] -\21
f6— £ [FS(CH)[flIfe("F)] V154
[F5CR)F5(F)] 7\2
[F5CP)[f1f8("F)] V42
[F5C°H) I £8(°L)] V102
[5(°H)f[|f°(°K)] V90
[5CCH)[[F]18(512)1, [F5(CH)[IFF8(512)] NEEENES
(f5(°H)[[]1f8(°H1)] 0
[£5C°H) (|| F8(°H2)] \/66
[FPCH)IFIFCGL)] [FPCH)IFlIfo(°G2)] _ i\ [ax
[£5(°H) ||| f°(°G3)] 81
[5CCH) I £8(5F 1)1, [F5(°H)[IfIf8(°F2)] Vi1, 3
[f5(°H)[If]|£8(°D 1)1, [5(°H)|f[|f°(°D2)] SN TN T
[5(°H)[[8(°D3)] 2410
£ 4 [F4CNFlIF5(°H)] \182
[F4CG) ]I £5(°H)] NES
[F4CR)[IF1£5(CH) ] —/33

[FCD)IFIF2(°H)]

_ J220
7
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in Table I1I. The three transitions witf’(’F) as initial state, Finally, a direct comparison of experimental
"F—5%H, "F—5F, and "F—°®P lie in the occupied part of photoemissiohand inverse photoemission spectraith the
the spectrum, and have the noninteger weights of squarezhlculated partiaf density is made in Fig. 3. For the semi-
reduced matrix element&ee Table I, which sum up to conducting phase of SmS the theoretical Fermi energy of a
exactly six. The unoccupied part of the spectrum consists gbure sample should lie very close to the lower conduction-
seven transitiong®(’F)— f’ according to Table Il with an band edge due to the strongly different effective masses of
integrated weight of eight. conduction states with Smdscharacter and valence states
It follows from the definition(13) of the f spectral density with Sm 4f character. Without any major error, we put the
that its normalization is 14 also in the general case withFermi energy in the theoretical calculations exactly at the
hybridization. Our choice of dynamical variables shows dis-lower conduction-band edge. Note that the experimentally
crete poles at eadk point. In general, theif weights differ ~ determined chemical potential of a semiconductor can be
from their unhybridized values due to a change of theeasily shifted by defects or additional charges on the sample
ground-state composition. Moreover, the excitations withand is moreover influenced by the surface sensitivity of pho-
dominantf character now show a dispersion due to hybrid-toemission in general. In addition, the X-ray photoemission
ization. Figure 2 shows the partial spectral densities for the
semiconducting and mixed-valent phase. THieodcupation TABLE llI. Adjustment of energy differences for differentf 4
is determined by integration giving 5.94 in the semiconduct-occupations. The bottom of the conduction band is taken to be the
ing and 5.78 in the mixed-valent pha@ee the next subsec- Fermi level.
tion). The main change in the spectral density when going

from the semiconducting to the mixed-valent phase is the Ground-state energy difference (V)
occurrence off* final states at higher binding energies be- Eo(f7)— Eq(f) 3.0
tween—8.0 and—12.5 eV and more pronounce final- Eo(f8) — Eq(5) —07
state multiplets in the unoccupied part at energies between 2 Eo(f5) — Eo(f4) —7.7

and 4 eV.
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FIG. 2. k-resolved spectral densities for the semiconduct@x@nd the mixed-valent phagb), in the left part of the figures. The width
of the crosses is proportional to the total pole strength. Note that poles with wel@B65 in left part of(a) at energies betweerll0 and
—12 eV can graphically not be correctly resolved and are overemphakizetbgrated spectral densities are given in the right part of the
figures. The reference point of zero energy is as in Fig. 1 and temperaftireGs K.

spectroscopy(XPS) and bremsstrahlung isochromat spec-has not enough predictive power for absolute values of bind-
troscopy (BIS) experiments were not done with the sameing energies because the position of the lowest-lyfirexci-
sample and hence the coincidence of the two individuatation in the semiconducting pha$€ — °H is approximately
chemical potentials is not guaranteed. Despite these uncegiven by a fit parameter, namely, the related energy differ-
tainties, we assume sufficient accuracy of both experimentanceEy(f®) —Eq(f°) (see Table Il). This fit parameter de-
chemical potentials. It should be mentioned that our theoryermines essentially the band gap for the photoemission ex-
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(a) phase consisting of SmS and 803 was prepared by partial
50 AR AALRRAS AR oxidation. In particular, the amount of divalent and trivalent
T o unoccupied Sm sites contributing to the spectrum was unknown. On the
0 o— exp. XPS-spectrum theoretical side, the itinerant character fostates resulting
O F s—a gxp. BIS-spectrum | 1 . .
5 —— Fermi—energy from nonzerof-f hopping matrix elements that are neglected
2 ; in this calculation should play a more important role for the
>0t g‘* unoccupied part of the spectrum with the more extended
‘a ! +1 final-state wave functions.
3 i
@20} )
E C. Ground state and final states
[0
3 The self-consistent ground state can be analyzed in terms
1or of occupation numbers andl S-term contributions. The
; ground-state weighp, o of the state|n,A) (i.e., theLS
J ) ’ o termg for a ground stat€GS) that does not break translation
0140120100 80 60 —40 20 00 20 40 60 80 100 120 symmetry of the lattice,
energy [eV]
(b) def ) ]
4.0 . . . . r . . . . . . pnyA:<Gq|1n1A><|1n1A|GS>y (31)
s Sm 4f )
) A= can be easily related to thef 4ccupation:
| s—a exp. BIS-spectrum
530 H —— Fermi-energy
2 ‘i def
= . _ t
g S‘ <nf>_k2 <f/kj',0'f}k’d,a'>
B 2O, L
S 20
©
©
g e —(GSn(1|G =2, (GYni|i,n,AXi,nAIGS
% 10 b h ; p ": W |“ n,A
H f{ i ," AN ,, v
% H\ i ,/ S, /I 1y
, i i " - “\
S\ AF R - =3 npy. 32)

'~14.0 -120-10.0 -80 -6.0 -40 -20 00 20 40 6.0 80 100 120
energy [eV]

) ) The 4f occupation is therefore simply determined by taking
FIG. 3. Spectraf density compared to experlmental XPS spec-iha probability of finding an(initial) state |n,A) in the
tra (Ref. 3 and BIS spectrdRef. 33. The experimental spectra ground state, multiplied by the number of possibilities to

have k_)een normalized to the calculated ones, for occupied and ur('amove an electron out of this configuratigthat is, the
occupied states separately. The calculated spectra have been broad- b f elect ytand finall . I
ened by a Lorentzian of 0.2 eV full width at half maximum for the num 't?lm'o' € Iec rons erese han inally Seuamrr]nll?jg ?verha
occupied states and 0.5 eV for the unoccupied states. Temperat pSsiole |_n|F|a states. Note, that gxpressﬁ ) ho S or the
isT=0 K. (a) Semiconducting SmSb) collapsed(mixed-valent ully hyb.ndlzed gugggcgd state. Similarly, for the m"tegrated
SmS. Experimentally, the mixed-valent phase was prepared eithdfnoccupied part™™°*=14—n; of the spectral density, one
by doping with thorium(XPS spectrum, Ref.)3or as inhomog-  finds

enous mixed-valent phase by partial oxidati@&iS spectrum, Ref.
33).

unocc—
periment, which is different from the optical gap due to fast ! _% (14=N)Pna- (33
time scale (10'® s) of the photoemission experiment com-
pmaerre]td to the slow time scale (18 s) of an optical experi- Table IV shows the ground-state composition in terms of
Wé compare the partidl density with experimental data statesin,A) a_nd _occupation numbers.. :
for high photon energies~1500 eV), where the cross Th(_e contributions of spectral ngght to the mtegrate_d
section of 4 states is a factor of 10 I:':lrger than the crossquam'tynf can be analyzed further in terms of local transi-
. ; tions. We define, in analogy to E@L5), a partialf Green
section of other states. The calculated spectra are in fa*r tion Gf iated with the local t i
agreement for the occupied region, and in reasonable agreéj-nC lonp associated wi € local transitl
ment in the unoccupied region. One should note that the
collapsed phase of SmS was prepared with thorium doping Gl(w)= EE ((XF .XFT>>E (M &2
rather than by applying pressure in the photoemission r N“% ko Tk R
experiment In the case of inverse photoemissitinthe

comparison remains only qualitative for the collapsed phase, + 2 Re((XF .XAT»E MZEMTE | (34)
because in the experiment amhomogenousnixed valent AFT Tk e T A
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TABLE IV. Analysis of the semiconducting and the mixed-valent phase.

Semiconducting Mixed valent
4f-shell Snf* <0.001 <0.001
weight p, A Smf3(6H) 0.051 0.192

Smf5(6F) 0.008 0.025

Smf5(6P) <0.001 0.003

Smfé("F) 0.939 0.771

Smt® (othep <0.001 0.007

Smf (sum <0.001 <0.001

SmfS (sum 0.059 0.220

Smf8 (sum 0.940 0.778

Smf? (sum <0.001 0.003

Sm (sum 1.000 1.000

Occupation Sm # 5.940 5.783
per Sm 0.339 0.451
unit cell Sm & 0.056 0.056
Sm ép 0.079 0.114

S 3s 1.994 1.994

S 3p 5.603 5.607
total charge 14.000 14.000

For the following consideration we do not make use of ap-states. The crucial step in the derivation of E85) is the

proximation(29). Integrating the spectral densin{u associ-
ated witthF up to the Fermi energy, thieoccupation num-
ber can be alternatively expressed as

ne=>, (2 (XETXE) 2 (M2
r k o,u
+ 2 ReX (Xg'X[) X MEFMEH
A#D K o
-3 [(C8inAnAGSE Mk ia?

+ > (GSi,n,A')i,n,A|GS)

AT £A

o, u g,ML
X E M n,A;n—l,B'vI n,A";n—1B
B,o,u

=2 Pnal, (35)
n,A

in agreement with Eq32). In the third line of Eq(35), use
of the local orthonormality relation®) was made. Note that
the off-diagonal terms in Eq34) give no contribution ton;
due to the sum rules, E¢10), and independent of the ap-
proximation(29). The individual termsp, 4 in the last sum
of Eq. (35 arise from all local transitiond =(n,A;n
—1,B) with arbitrary B. The weight of all occupied states
[n—1,B) in the one-particlef-excitation spectrum arising
from local transitions from statgn,A) is exactly np, 4.
Sincep, a is the ground-state contribution of stateA) and

implicit integration over energies of all occupied final states
In—1,B), which excludes information about the position of
these states in energy. By integration, final-state mixing is
a priori not addressed, which is a mixing of various final
states at energies in the occupied part of the spectral density
that are dominated by one final state. We note that within the
approximations in this work mixing effects are small.

IV. SUMMARY AND CONCLUSIONS

The spectral density for SmS is determined using a multi-
band Anderson Hamiltonian. Emphasis is put on the high-
energy one-particle and one-hole excitations up to 10 eV.
The states are divided into localized, strictly nonitineraht 4
states, and delocalized band statex s, p, andd character.
The parameters for the band part are taken from a standard
LDA calculation within the LCAO schenié where six 4
states corresponding to divalent Smare put in the core.
The 4f states form local many-electron states.l25 terms
from 4f* to 4f7 are taken into account together with corre-
sponding transitions betweérs terms that change the occu-
pation number of the #shell by one. Spin-orbit splitting is
neglected since it only leads to a fine structure in the excita-
tion spectrum.

Next, the Hamiltonian is treated within a projection tech-
nique that is well suited to deal with local excitations. Two
classes of dynamical variables are taken into account that
contain the unhybridized limit exactly, and the effects of
hybridization approximately. They form elementary excita-
tions of the solid with a transparent interpretation. The next
dynamical variables of typ€25) that are neglected here
should change the elementary excitations only in the low-
energy region0-0.3 eV near the chemical potential.

The semiconducting phase of SmS can be described with

therefore a ground-state property, the ground state uniqueljiree parameters according to energy differences between lo-
and exactly reflects the integrated weight of occupied finatal eigenstates of thef4shell. The’F ground-state configu-
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ration of f® representative for unhybridizedf 4hells loses symmetry although this would nat priori be necessary.
weight in favor of the ground-state configurationfdfand  However, a realistic point group does not make any differ-
band states, dominated by Snd States. Fair agreement is ence because we sum in E@7) over all single-ion, i.e.,
found between our calculated spectral density and expergpherical degeneracies.
mental XPS data, while the BIS data are matched qualita- The transitiond” take the form
tively. The 4f occupation of 5.94 in the semiconducting
phase as found in this work is somewhat lower than the value
>5.97 that was deduced from the experimental proportion of r=(n,L,SSM_,Mg;n—=1L",S" M| ,Mg). (A1)
f4/£5 final-state weights in photoemissidrin light of our
analysis, the contribution df* final-state weight below 9.5 _ o .
eV binding energy was underestimated in the experimental '€ matrix elementM* in spherical symmetry can be
analysis. reduced according to the Wigner-Eckart theor&rit

An attempt has been made to simulate the mixed-valent
phase by scaling the hybridization matrix elements. The scal- def
ing factor 2 used here for the golden phase is to be under- M{*=(n—1L',S',M{ ,Mgf.=% |n,L,SMg,M)
stood as an upper bound for the enlargement of the hybrid-

ization matrix elements due to the lattice contraction. Our L | L

hope was to model the experimental tendency for the change =(= 1)LML( -M M )

of the ground-state composition and the corresponding LK L

changes of final-state weights for the spectral density. We s g

obtained a 4 occupation of 5.78 for the goldeeontracted X(—1)S"Ms )

phase. This value fits well to the value 5:7@.06 obtained —Ms o Mg

from Vegard's law analysis of lattice constant =3

measurements and to that obtained from photoemission x(n—l,L’,S’ f -1 n,L,S). (A2)

data (5.75, Ref. B It is higher, however, than the values of
about 5.6 deduced from other spectroscopic methods like
x-ray absorption at thé, edge (5.570.04, Ref. 34 and  Here, the terms in large parentheses denote the Wigper 3
Mdssbauer isomer shift (5.620.08, Ref. 36. An unreason- symbol?® and (- -||---||---) is a reduced matrix element.
able high scaling factor of about 5 would be needed to reAll reduced matrix elements that are used in this work are
produce the latter values. We therefore conclude that ouisted in Table II.

model is capable of describing the correct tendency; how- Summation over single-ion degeneracies gives

ever, for a quantitative description either the approximations

for the determination of the Green function are not accurate

enough or the model itself is insufficient. In particular, hy- > (MZ#)2=(n—1L",S'[f|n,L,S)? 1 _
bridization enlargement is possibly not the only mechanism v, M& M, Mg T ST s]
responsible for the valence transition in SmS. On the other (A3)

hand, we would like to point to the obviously differenf 4

occupations found by different experimental techniques.  pere [A]=2A+1 stands for the number of basis functions
Calculated and experimental spectral densities for theggociated with quantum numbér Use has been made of

mixed-valent phase agree reasonably well. However, thig,q closing relations for Wigner j3symbols® Therefore,

comparison is not free of ambiguity since the experiment,ne finds for the effective matrix elements defined in Eq.
were not carried out under pressure but using chemical modj, 7).

fications to prepare the mixed-valent phase. Because of the

rather gross treatment of the excitation spectrum, our model

is not suited to reproduce the insulator-to-metal transition

connected with the mixed-valence transition of SmS. M2 ff:(n—1,L’,S’Hf'S||n,L,S)2 —.
From the experimental side, measurements of occupied ¢ [HEsILLIESIL IES']

and unoccupied states spectra on one and the same sample (A4

are still lacking. Such data could provide a safer basis for

further theoretical investigations. APPENDIX B: FREQUENCY AND SUSCEPTIBILITY
MATRIX ELEMENTS
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APPENDIX A: SYMMETRY-REDUCED the 4f _shell. A summation over fre_e ion degeneracies
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multiplicity of quantum numbeR is abbreviated witf A]

In the following, the matrix elements!7# occurring in ~ =2A+1. k,q,p are lattice momentaw, B indicate orbital

Eq. (8) will be reduced. We assume an underlying sphericaindices ando, 7 spin indices of the band basis statesThe
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approximation(30) is used.Vﬁ‘"lf has to be considered as the

effective matrix element\(ﬁ"r)eff of Eq. (28):
def
Xica =((XiO " Xq1+)

= (8qOar[BI(li,n,A)i,n,Al)

+[A){]i,n—1B)i,n—1Bl)), (B1)
def
Feo=([(XO)T[H.XE1-1+)

= 8q0rr(En-18—Ena) Xiy
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X (8grdpedm-1i(|i,n+1C)i,n,Alcy )
— JgrdacOnm BI([i,n,EX(i,n—1Dlcy )
+ 8aebpe Sl AI([i,n,C)(i,n— 1-F|Cg,g>
— 8ae0cFOm, - 1(li,n—1B)i,n—2Dlcy ,)), (B2

. def
Froa =% [H.Cq0] - 10)= ~ 8ig 2 Vi Xk -

(B3)

_ def
X =(le €510 = 8g0rr( O )ap,  (BA)

d

) ef
Fralr=([cgt [H,c8 1-14)=— 6kq8sr(H ) g

(B5)
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