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Effects of backflow correlation in the three-dimensional electron gas:
Quantum Monte Carlo study
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The correlation energy of the homogeneous three-dimensional interacting electron gas is calculated using the
variational and fixed-node diffusion Monte Carlo methods, with trial functions that include backflow and
three-body correlations. In the high-density regime (r s<5) the effects of backflow dominate over those due to
three-body correlations, but the relative importance of the latter increases as the density decreases. Since the
backflow correlations vary the nodes of the trial function, this leads to improved energies in the fixed-node
diffusion Monte Carlo calculations. The effects are comparable to those found for the two-dimensional electron
gas, leading to much improved variational energies and fixed-node diffusion energies similar to the released-
node energies of Ceperley and Alder.@S0163-1829~98!00135-0#
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I. INTRODUCTION

The homogeneous electron gas in three dimensions is
simplest model to study the effects of correlation betwe
electrons in metals.1 Its correlation energy, defined as th
total ground-state energy minus the Hartree-Fock energy,
been used to give the exchange-correlation potentia
density-functional calculations with the local-dens
approximation.2,3 The possible phases that this simple syst
can display are prototypes for understanding interacting e
trons in extended matter.4–8

The theoretical study of the interacting electron gas be
with Bloch4 who discovered by using the Hartree-Fock a
proximation that the system would favor a ferromagnetic l
uid state over the normal paramagnetic state at low elec
densities. Wigner5 first calculated the correlation energy
the homogeneous electrons at high-density limit, using
second-order perturbation theory. He also pointed out
for sufficiently low densities the electrons would becom
localized and form an ordered array. After calculating t
correlation energy of this electron solid with the Wigne
Seitz approximation,1,8 he proposed an interpolation formu
for the correlation energy in a wide range of densities hav
his high- and low-density limits. The development of t
field-theoretic approaches in the 1950s led to various
proximate methods8 to calculate the ground-state properti
of the electron gas. Among them, Gell-Mann and Brueckn9

summed the ring diagrams to compute the correlation ene
in the high-density limit. The dielectric function formalism
especially with the self-consistent treatment of the screen
process introduced by Singwi, Tosi, Land, and Sjo¨lander,10

gave more accurate ground-state properties at a wider r
of densities.

On the other hand, various stochastic numerical meth
known collectively as quantum Monte Carlo~QMC! meth-
PRB 580163-1829/98/58~11!/6800~7!/$15.00
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ods, have been developed to compute the properties
quantum many-body system such as the electron
Ceperley11 first applied variational Monte Carlo~VMC!
methods to calculate a much more accurate upper boun
the ground-state energy of the electron gas than is given
Hartree-Fock methods. More accurate correlation ener
were computed by Ceperley and Alder12 with the diffusion
Monte Carlo ~DMC! method that projects the true groun
state of a many-body system from a trial state. Even tho
the DMC method gives the exact ground-state energy fo
system of many bosons, it has a serious difficulty in treat
fermion systems, because fermion wave functions mus
antisymmetric under particle exchanges.13 In order to address
this problem, Ceperley and Alder12 developed the released
node method. Its only limitation is that the statistical fluctu
tions can grow rapidly at large projection time. So the sta
tical noise can dominate the signal before converging to
ground state.

In this paper, we use the fixed-node method,14,12,15where
the nodal surface of the exact ground-state wave functio
approximated by that of the trial wave function. We ado
the approach of systematically improving the fixed-no
DMC results by using a trial function with better node
analogous to our work on the two-dimensional electr
gas.16 Unlike the released-node method this method is sta
and does not have the convergence problem. It gives the
upper bound to the exact energy consistent with the assu
nodes.

Ceperley and Alder used the Slater-Jastrow trial wa
function in both released-node12 and fixed-node
calculations,17 which consists of the Slater determinant
single-body orbitals~plane waves for a homogeneous liqu
phase! and products of two-body correlation functions. A
cording to their released-node calculation, the electron
could exhibit three different phases at zero temperature,
6800 © 1998 The American Physical Society
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paramagnetic and ferromagnetic liquids and the Wigner c
tal, depending on its density. More recently, Ortiz a
Ballone18 reported a new fixed-node DMC calculation wi
the Slater-Jastrow wave function. Their correlation energ
were found to be, as expected, smaller in magnitude t
Ceperley and Alder’s released-node calculations, espec
at high metallic densities. In this paper, we report results o
fixed-node DMC calculation using a trial function with bac
flow and three-body correlations in addition to two-body c
relation. Our previous calculations in the two-dimension
electron gas16 showed that the inclusion of the backflow co
relation in a trial state greatly improved the fixed-node res
beyond that given by the Slater-Jastrow function. This
similar to what has been observed on calculations of
other strongly correlated system of fermions, liquid3He.19

Our fixed-node DMC results in three dimensions will
compared with Ceperley and Alder’s released-node resu

All ground-state properties of the electron gas at z
magnetic fields are determined only by the dimensionl
density parameterr s5a/a0 , wherea0 is the Bohr radius,a
5(3/4pr)1/3 is the radius of a sphere that encloses one e
tron on the average andr is the number density. With energ
units of Rydbergs~Ry! and the length units ofa, the Hamil-
tonian of the electron gas is

H52
1

r s
2(i 51

N

¹ i
21

2

r s
(
i , j

1

ur i2r j u
1const, ~1!

where the constant is the term due to the uniform ba
ground of opposite charge. We consider the density rang
1<r s<20, where Ceperley and Alder found the system
the normal liquid phase. We do not consider spin-polariz
or superconducting states.

II. METHODOLOGY

In a VMC calculation, one estimates the properties o
quantum state, by assuming a trial wave functionCT(R)
with the correct symmetry, whereR5(r1 ,r2 , . . . ,rN) is a
3N-dimensional vector representing the positions ofN par-
ticles. With a set of configurations$Ri% sampled with a prob-
ability density proportional toCT

2(R), the variational energy
is just the average of local energies,EL(Ri)
5HCT(Ri)/CT(Ri). This method can give a good upp
bound to the exact energy if the trial state is accurate as
for the homogeneous electron gas.11

Even more accurate ground-state properties of a ma
body system can be obtained with the DMC method, wh
the Schro¨dinger equation is solved by treating it as a diff
sion equation.12 The solution of the Schro¨dinger equation in
imaginary time t, 2]uF&/]t5(Ĥ2ET)uF&, can be ex-
pressed in terms of the exact energy eigenvaluesEi and
eigenstatesf i :

F~R,t !5(
i

ciexp@2t~Ei2ET!#f i~R!. ~2!

At sufficiently long times only the ground statef0 survives
in Eq. ~2!, if F(R,0) is not orthogonal to it. In order to
implement this idea with a stochastic procedure, we cons
the real-space representation of the Schro¨dinger equation:
s-
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] f ~R,t !

]t
5

1

r s
2(i 51

N

¹ i•~¹ i f 2 f ¹ i lnCT
2!2@EL~R!2ET# f ,

~3!

where f (R,t)5F(R,t)CT(R). Note that the Schro¨dinger
equation is multiplied by the trial wave functionCT(R).
Equation ~3! can be viewed as a diffusion equation in
3N-dimensional space with the density of diffusing particl
f (R,t). Its second term imposes a drift and the final te
gives rise to a branching process by which the sampled c
figurations converge to the lowest-energy state. The ini
ensemble of configurations$R% with probability density
f (R,0)5CT

2(R) is evolved forward in time by the abov
diffusion equation and reaches the equilibrium distributi
f (R,`)5f0(R)CT(R) at large enought. From this distri-
bution of random walks, the exact ground-state energyE0

5^f0uĤuCT&/^f0uCT& can be estimated as the average
the local energy:EL(R)5HCT(R)/CT(R).

The diffusion equation formulation described above
quires for implementation that the population densityf (R,t)
be non-negative. For Bose systems, this is not a prob
since their ground-state wave functions can be chosen t
non-negative. However, fermion wave functions are an
symmetric, change sign, and have nodes. This leads to
famoussign problem13 in the QMC calculations of Ferm
systems. The apparent limitation of the diffusion analogy
this case can be dealt with by treating positive and nega
regions separately. One easy way to accomplish this is no
allow diffusion between these two regions, which corr
sponds to thef ixed-nodeapproximation.14,12 If CT were to
have the exact nodes of the ground state, one could trea
fermion system immediately and exactly, sincef would
never change sign. Unfortunately, the exact location of
nodes in many-fermion systems is not known.20 The fixed-
node approximation is based on the requirement t
f0(R)CT(R) be non-negative. The fixed-node DMC ener
is an upper bound to the exact energy, the best upper bo
with the given nodes, and usually lies well below the var
tional energy.20

Another way to deal with the sign problem is to use t
released-node method,12 which puts no constraints on th
nodal structure of the true ground-state wave function. In t
method, there is a population of positive random walks t
give positive contributions to any average, and a populat
of negative walks with negative contributions. Wheneve
random walk diffuses across the nodes of the trial functi
the sign of its contribution changes. Even though it can
shown that the population of the difference converges to
antisymmetric fermion ground state, it does not proce
without problems. Since both the positive and negative po
lations grow geometrically with long projection timet, the
statistical fluctuations in the average increa
exponentially.12 For this method to be successful, the diff
sion process needs to converge to the ground state befor
fluctuations become large. Since the fluctuations grow as
system size gets larger, the released-node method bec
more difficult for systems with many fermions, and there
increased advantage in using the fixed-node method w
nodes given by improved trial functions.
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TABLE I. Optimized variational parameters ofthree-bodyand backflow correlation functions forN
554. dx is the average change in the nodal position due to the backflow correlation.

r s lB sB r B wB lT r T wT dx

1.0 0.025 0.395 0.210 0.689 0.006 0.293 0.949 0.0191~1!

5.0 0.105 0.158 0.180 0.670 -0.060 0.286 1.176 0.0580~1!

10.0 0.959 -0.672 0.247 3.788 -0.258 0.257 0.918 0.0657~1!

20.0 1.249 -0.938 0.275 3.787 -0.255 0.252 0.911 0.0549~1!
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III. MONTE CARLO CALCULATIONS

A. Trial wave function

In all QMC methods mentioned above, a good trial fun
tion is very important for accurate results. The converge
time in a released-node calculation can be reduced wi
better trial function while the nodes of a trial function dete
mine the ultimate accuracy of a fixed-node calculation. T
usual choice of a trial function is of the Slater-Jastrow ty
which considers only two-body correlations@see Eq.~4! of
Ref. 16#. The nodes of the wave function are determined
only the Slater determinant. We use the two-body correla
function that minimizes the variational energy in th
random-phase approximation.21 This trial wave function has
been used in the previous VMC,11,18 fixed-node DMC,17,18

and released-node DMC calculations12 to investigate the
ground-state properties of the electron gas.

In order to improve the nodes, we consider a more co
plicated trial function,16 which includes backflow and three
body correlations. Our wave function has the form

CT~R!5det~eiki•xj !expF2(
i , j

N

ũ~r i j !2
lT

2 (
l 51

N

G~ l !•G~ l !G ,

~4!

wherexi ’s arequasiparticlecoordinates defined as

xi5r i1(
j Þ i

N

h~r i j !~r i2r j !. ~5!

The displacement of the quasiparticle coordinatesxi from the
real coordinatesr i incorporates effects of hydrodynam
backflow,22 and changes the nodes of the trial wave functi
The backflow correlation functionh is parametrized as

h~r !5lB

11sBr

r B1wBr 1r 4
, ~6!

which has the long-range behavior (;1/r 3) in three dimen-
sions predicted by the local-energy method of Ref.
~though this behavior is smoothed by the periodic bound
conditions!. Three-body correlation is included through th
vector functions

G~ l !5(
iÞ l

N

j~r li !~r l2r i !. ~7!

We call j(r ) the three-body correlation function, for whic
we take the same functional form as in our previous study
the two-dimensional electron gas@see Eq.~15! of Ref. 16#.
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Our calculations are done forN electrons in a cube with
the periodic boundary conditions. The Ewald method23 is
used for the Coulomb potential and the two-body correlat
to minimize size effects. The higher-order correlation fun
tions h(r ) andj(r ) are required to go to zero smoothly at
cutoff distancer c , which is set to half the side of the simu
lation cell, as in Eq.~13! of Ref. 16.

In order to optimize our higher-order correlation fun
tions, we minimize the variance of the local energy.24 If our
trial function CT were an exact eigenfunction of the Ham
tonian, the variance would be zero. Because the variance
nonlinear function of the parameters we cannot be cer
that we have achieved converged results for this class of
functions. The optimum variational parameters that we h
obtained as a function of density are given in Table I.

Figure 1 shows the three-body contribution to the log
rithm of the wave function due to three electrons aligned a
separated by a distancer . Note that this contribution has
strong density dependence. The effect is almost negligibl
r s51 but as large as 7% atr s>10. Negative values imply
that electron configurations in which the local environmen
not ‘‘balanced’’ are slightly enhanced; for these configu
tions the true wave function is larger than the Slater-Jast
pair product wave function.

Figure 2 shows the magnitude of the displacement of
quasiparticle coordinate caused by an electron a distanr
away. The strongest effects are observed when two elect
are very close, for distances less than the average nea
neighbor distance, which is 2 in the units we have used.
also note that a backflow potential has an attractive tail
r s>10. We calculated the average distance between the
and the quasiparticle coordinates during a VMC calculat
with the backflow wave function. The average differenc

FIG. 1. The three-body contribution to the logarithm of th
wave function due to three electrons aligned and separated
distancer . Solid line, r s51; dotted line,r s55; dot-dashed line,
r s510; long dashed line,r s520.
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defined asdx5^uxi2r i u&, is shown in Table I. The displace
ment of the quasiparticle coordinate relative to the act
coordinate is about 1% of the interparticle spacing atr s<1
and 3% forr s>5. This implies that a released-node calcu
tion with a relatively short projection time should be able
correct the nodal surfaces from those of a free fermion t
function.

The main difficulties in the use of the backflow wav
function is that firstly, the implementation is considerab
more complex than for the Slater-Jastrow form, and s
ondly, because update formulas cannot be used to spee
single particle moves, Monte Carlo moves are updating
particles simultaneously. Details and fuller discussion of
algorithm are given in Ref. 16.

B. Ground-state energy

We first calculated the ground-state energy of the sys
with N554 electrons at a density range of 1<r s<20 by

FIG. 2. The change in the quasiparticle coordinate caused b
electron a distancer away. Solid line,r s51; dotted line,r s55;
dot-dashed line,r s510; long dashed line,r s520.
al
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l

c-
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both VMC and fixed-node DMC methods. Table II show
the results obtained from the improved trial wave functio
in Eq. ~4! as well as the Slater-Jastrow wave functions. It c
be seen that both VMC and fixed-node calculations with
trial functions including backflow correlation improve sig
nificantly the Slater-Jastrow results at all densities cons
ered. However, the three-body correlation is found to ha
minimal effect forr s<5, which corresponds to typical me
tallic densities.

In Fig. 3 we compare different contributions to the im

an FIG. 3. Effects ofthree-bodyand backflow correlations as a
function of the density of the system. The vertical axis sho
DE/DESJ5(E2EFN

3BF)/(EVMC
SJ 2EFN

3BF), that is, top axis corre-
sponds to the Slater-Jastrow variational energyEVMC

SJ and bottom
axis to the fixed-node DMC energyEFN

3BF , calculated with our best
trial function includingthree-bodyand backflowcorrelations. The
diamonds show the effect of onlythree-bodycorrelation, the circles
the effect of onlybackflow, and the squares represent the combin
effect of both correlations. Finally, the filled triangles show t
result using the fixed-node DMC method with free-fermion nod
of the Slater-Jastrow function.
on;
ts of
tion
TABLE II. VMC and fixed-node~FN! DMC energiesE and the variances of the local energyV obtained
with various trial wave functions forN554 ~SJ, the Slater-Jastrow function; 3BD, three-body correlati
BF, backflow correlation!. The energies are in units of Ry per electron and the variances in uni
r s

4(Ry/electron)2. eV is the estimate of the fixed-node error in the backflow fixed-node DMC calcula
obtained using Eq.~9!.

r s51.0 r s55.0 r s510.0 r s520.0

EVMC
SJ 1.0669~6! -0.15558~7! -0.10745~2! -0.06333~1!

EVMC
SJ13BD 1.0663~5! -0.15569~5! -0.10773~2! -0.06348~1!

EVMC
SJ1BF 1.0617~4! -0.15729~5! -0.10829~2! -0.06365~1!

EVMC
SJ13BD1BF 1.0613~4! -0.15735~5! -0.10835~2! -0.06378~2!

EFN
SJ 1.0619~4! -0.15734~3! -0.10849~2! -0.06388~1!

EFN
SJ13BD1BF 1.0601~2! -0.15798~4! -0.10882~2! -0.06403~1!

VSJ 0.0213~4! 0.0266~3! 0.074~1! 0.189~3!

VSJ13BD 0.0205~4! 0.0229~4! 0.054~2! 0.144~3!

VSJ1BF 0.0054~3! 0.0069~2! 0.027~1! 0.111~2!

VSJ13BD1BF 0.0053~2! 0.0066~2! 0.026~1! 0.079~2!

eV 0.0007~6! -0.00005~8! 0.00002~5! 0.00007~4!
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provement in correlation energy beyond the Slater-Jast
VMC result. The figure shows the changes relative to t
given by the backflow fixed-node calculation, which is a
sumed to be exact in the following discussion. We will e
amine this assumption at the end of this section. It can
seen that at high densities ofr s<5, the effect due to the
three-body correlation is negligible and the backflow eff
is dominant. However, as the density decreases, the th
body effect increases while the backflow effect decrea
We can conclude from the trends of Fig. 3 that at the den
where Wigner crystallization occurs, estimated to ber s
;100 by Ceperley and Alder,12 the effect in the energy o
the three-body term will be much larger than the backfl
term. This is consistent with the expectation that backfl
correlation is energetically less important as electrons
localized by strong correlation at low densities. Note, ho
ever, that the actual effect of the backflow correlation on
wave function increases at low density, as shown in Fig.

The combined effects of both higher-order correlations
the variational wave function account for 60–80 % of t
correlation energy missing in the Slater-Jastrow function.
high densities (r s<5), this variational energy is shown to b
roughly as good as the Slater-Jastrow fixed-node DMC
ergy, which captures 70–80 % of the missing correlation
ergy throughout our density range.

The backflow and three-body effects in the electron
discussed above are very similar to the situation in two
mensions. See Fig. 4 of Ref. 16. The only notable differe
is that at the lowest density considered (r s520), the back-
flow effect is more important than the static three-body c
relation in three dimensions while the two correlations ha
virtually equal importance in two dimensions. This can
understood in terms of the increased importance of corr
tions in lower dimensions for the same value ofr s ; for ex-
ample, this is reflected in the fact that Wigner crystalizat
occurs at smallerr s in two dimensions than in thre
dimensions.12,25

Figure 4 shows the correlation energies missing from
Slater-Jastrow wave function and from the three-body
backflow wave function divided by the kinetic energy. Sin
the kinetic-energy operator does not commute with
Hamiltonian, the kinetic energy cannot be computed direc
with the distributionf0(R)CT(R) sampled through the dif

FIG. 4. The energy missing from the Slater-Jastrow wave fu
tion (L) and from the three-body and backflow wave functi
(l) divided by the kinetic energy as a function of the dens
parameterr s . The vertical axis shows (EVMC2EFN

3BF)/^T&.
w
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fusion process in Eq.~3!. It has been estimated by making a
extrapolation using the VMC and the DMC results.13 It is
clear from the figure that the missing correlation energy fr
both types of trial wave functions becomes a smaller fract
of the kinetic energy at higher densities.

Since our calculation has been done on the system wi
finite number of electrons, we extrapolate the energies to
thermodynamic limit to compare with other calculations. W
follow the extrapolation scheme based upon the Fermi-liq
theory,26,25 which assumes that the energy per particle fo
finite system with the periodic boundary conditions is rela
to the bulk energy by

EN5E`1b1~r s!DTN1b2~r s!
1

N
. ~8!

Here,EN (E`) is the total energy per electron of the fini
~infinite! system andDTN is the free-particle kinetic-energ
differences between two systems. We determine the par
etersE` , b1 , andb2 by a least-squares fit to VMC calcu
lations with Slater-Jastrow~SJ! trial functions at different
values ofN554,66,114,162,246. In Table III are shown th
energies, fitted parameters, and thex2 value of the fit. The
reasonable values ofx2 show that the Fermi-liquid theory
completely explains the size dependence of the energ
statistical accuracy of the VMC energies over this range
particle numbers. To extract the extrapolated three-body
backflow DMC energy for the infinite system,E`

3BF-DMC ,
we did the DMC runs only atN554 whose results are show
in Table II and then use the parameters determined fr
VMC to get E`

3BF-DMC . It is assumed that the size depe
dences for the VMC~SJ! and the DMC~3BF! results are the
same. This assumption needs to be tested in future calc
tions. The same procedure was successfully applied to as
the finite-size effects in our previous QMC calculation f
the two-dimensional electrons16.

One can see in Table III that our extrapolated backfl
fixed-node energies are lower, even if the differences
small, than Ceperley and Alder’s released-node results
well as Ortiz and Ballone’s Slater-Jastrow fixed-node resu
The systematic differences between these independent c
lations are found to be mostly due to the difference in
way of correcting for the finite-size errors. As a matter
fact, our backflow fixed-node energies for 54 electrons giv
in Table II are virtually identical to the correspondin
released-node results of Ceperley and Alder within statist
errors. Considering that a fixed-node energy is an up
bound to the true ground-state energy, this validates our
sertion that our backflow fixed-node results are accurate.
present results show that the calculations of Ceperley
Alder only got approximately half of the Slater-Jastro
fixed-node error with their released-node procedure due
computer limitations at that time.

Since the fixed-node results depend only on the no
structures of the trial functions used, one can speculate
the nodal locations of the backflow wave function are fai
close to those of the exact ground state. Without more inv
tigation, we cannot quantify this statement, because ther
not a simple relationship between nodal locations and fix
node energy. The accuracy of the backflow nodes was

-
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TABLE III. Size dependence in the Slater-Jastrow VMC method of normal electron liquid at 1<r s

<20 andx2-fit parameters. Also shown are the extrapolated DMC energies at an infinite system (E`
SJ-DMC

andE`
3BF-DMC), Ceperley and Alder’s released-node result (CA* ), and Ortiz and Ballone’s Slater-Jastro

fixed-node result (OB** ).

r s51.0 r s55.0 r s510.0 r s520.0

N554 1.0669~6! -0.15558~7! -0.10745~2! -0.06333~1!

N566 1.1496~5! -0.15166~4! -0.10637~2! -0.06303~1!

EVMC
SJ N5114 1.2079~5! -0.14867~3! -0.10552~2! -0.06278~1!

N5162 1.1162~4! -0.15238~3! -0.10642~1! -0.06270~1!

N5246 1.1938~3! -0.14886~3! -0.10548~1! -0.06275~1!

E`
SJ-VMC 1.1795~4! -0.14914~3! -0.10549~2! -0.06273~1!

b1(r s) 1.096~6! 1.18~1! 1.21~2! 1.22~3!

b2(r s) -1.16~5! -0.134~4! -0.051~2! -0.0181~7!

x2 1.20 1.29 2.22 2.26

E`
SJ-DMC 1.1744~4! -0.15094~4! -0.10654~2! -0.06329~1!

E`
3BF-DMC 1.1726~2! -0.15158~5! -0.10687~2! -0.06344~1!

CA* 1.174~1! -0.1512~1! -0.10675~5! -0.06329~3!

OB** 1.181~1! -0.1514~3!
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shown in our previous released-node~transient-estimate! cal-
culation for the two-dimensional electron gas.27

Although comparison with well-converged exact results
the best method of assessing the accuracy of a fixed-n
result for the energy, in the remainder of this section
develop another estimate that requires only the VMC ene
and the variance of the local energy. This relies on the
servation that both the error in the variational energyEVMC
and the varianceV are quadratic in the difference between
trial function and the true ground state. Thus, as a trial fu
tion is improved in going from a two-body level~Slater-
Jastrow! to a higher-order level~backflow and three-body!,
one can estimate the exact energy by the improvement
the variational energy relative to the variance.

The variances of the local energy for the various tr
wave functions are given in Table II and plotted in Fig. 5

FIG. 5. Variational energy versus the variance of local energ
r s510. Each pointd represents one variational calculation: fro
higher to lower energies, the Slater-Jastrow, three-body, backfl
and ~backflow1 three-body! results. The filled triangle represen
our backflow fixed-node result and the dotted line shows a linea
throughd points. The statistical errors of the data are smaller th
the sizes of the symbols.
s
de
e
y
-

-

of

l
t

r s510. As can be seen, the variance decreases roughly
portional to the drop in energy for the four trial function
considered. The dotted line in Fig. 5 represents a linea
and the triangle our best~backflow! fixed-node energy. There
is no fundamental reason why the energy and variance
general trial functions would have a linear relationsh
However, in practice this relation is often observed.16 The
observed linear relationship both validates our optimizat
procedure and provides an independent estimate of the e
energy.

The exact ground-state energyE0 is estimated using the
following assumption:

V~k!

EVMC
~k! 2E0

5const. ~9!

We extrapolated using only the results from the best~back-
flow 1 three-body! and worst~Slater-Jastrow! trial functions
to minimize the extrapolation error. Shown in Table II,eV is
our estimate of the error of the computed backflow fixe
node energy, which is an upper bound to the true grou
state energy.~There is also the Temple lower bound28 to the
ground-state energy, which involves the energy and the v
ance. However, it is not useful for many-body systems.! Be-
cause our procedure is not rigorous, there is no guara
that the estimated energy will lie below our computed b
fixed-node result. In fact atr s55 the estimate lies above it. I
can be seen in Table II that the estimated fixed-node erro
much smaller at all densities than the energy improveme
due to the nodal change from the Slater-Jastrow function
the backflow wave function. This is another evidence t
our fixed-node DMC calculations using the backflow tr
functions give very accurate results for the ground-state
ergy.
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IV. CONCLUSION

We have studied the correlation energy of the interact
three-dimensional electron gas, using VMC and fixed-no
DMC calculations including the three-body and the backfl
correlation. The additional correlation energy due to ba
flow is dominant over the three-body effect in the hig
density regime but the relative importance of the former
creases as the density is reduced. This is the same tren
was found for the two-dimensional electron gas16 except that
the importance of backflow is more significant in higher
mensions, especially at low densities. This is due to the
that in two dimensions the effects of interactions are lar
than in three dimensions at a givenr s and other effects tend
to dominate more over the effects of backflow.

The variational wave function with backflow and thre
body correlations is a large improvement over the Sla
Jastrow function. We find that these higher-order corre
tions account for 60–80 % of the remaining correlati
energy beyond the Slater-Jastrow variational results. S
backflow changes the nodes, the fixed-node DMC results
also significantly improved. The fixed-node method bas
upon the Slater-Jastrow nodes is found to capture no m
d

ter
g
e

-

-
as

ct
r

r-
-

ce
re
d
re

than 80% of the remaining correlation energy.
After making a careful finite-size analysis, we have co

pared our backflow fixed-node energies with Ceperley a
Alder’s released-node results. These two independent ca
lations using different methods are found to give nearly id
tical results within statistical and systematic errors. From
linear extrapolation to zero variance of the local energy,
find further evidence that our backflow fixed-node results
very close to the true ground-state energy.

For future work, we conclude that one should be able
use much improved wave functions, better released-n
methods,29 with more size-dependence studies and full ut
zation of current computer hardware to achieve an orde
magnitude more accurate results for the energy of the e
tron gas than was done nearly two decades ago.
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