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The correlation energy of the homogeneous three-dimensional interacting electron gas is calculated using the
variational and fixed-node diffusion Monte Carlo methods, with trial functions that include backflow and
three-body correlations. In the high-density regimg<(5) the effects of backflow dominate over those due to
three-body correlations, but the relative importance of the latter increases as the density decreases. Since the
backflow correlations vary the nodes of the trial function, this leads to improved energies in the fixed-node
diffusion Monte Carlo calculations. The effects are comparable to those found for the two-dimensional electron
gas, leading to much improved variational energies and fixed-node diffusion energies similar to the released-
node energies of Ceperley and Aldg80163-182608)00135-0

I. INTRODUCTION ods, have been developed to compute the properties of a
quantum many-body system such as the electron gas.
The homogeneous electron gas in three dimensions is th@eperley® first applied variational Monte CarlgdVMC)
simplest model to study the effects of correlation betweemmethods to calculate a much more accurate upper bound to
electrons in metal$.lts correlation energy, defined as the the ground-state energy of the electron gas than is given by
total ground-state energy minus the Hartree-Fock energy, hadartree-Fock methods. More accurate correlation energies
been used to give the exchange-correlation potential imvere computed by Ceperley and Alfewith the diffusion
density-functional calculations with the local-density Monte Carlo(DMC) method that projects the true ground
approximatiorf:3 The possible phases that this simple systenstate of a many-body system from a trial state. Even though
can display are prototypes for understanding interacting eledthe DMC method gives the exact ground-state energy for a
trons in extended mattér® system of many bosons, it has a serious difficulty in treating
The theoretical study of the interacting electron gas begafermion systems, because fermion wave functions must be
with Bloch* who discovered by using the Hartree-Fock ap-antisymmetric under particle exchandé#n order to address
proximation that the system would favor a ferromagnetic lig-this problem, Ceperley and Aldérdeveloped the released-
uid state over the normal paramagnetic state at low electronode method. Its only limitation is that the statistical fluctua-
densities. Wignérfirst calculated the correlation energy of tions can grow rapidly at large projection time. So the statis-
the homogeneous electrons at high-density limit, using théical noise can dominate the signal before converging to the
second-order perturbation theory. He also pointed out thaground state.
for sufficiently low densities the electrons would become In this paper, we use the fixed-node metfb&>°*where
localized and form an ordered array. After calculating thethe nodal surface of the exact ground-state wave function is
correlation energy of this electron solid with the Wigner- approximated by that of the trial wave function. We adopt
Seitz approximatiof® he proposed an interpolation formula the approach of systematically improving the fixed-node
for the correlation energy in a wide range of densities havin@MC results by using a trial function with better nodes,
his high- and low-density limits. The development of theanalogous to our work on the two-dimensional electron
field-theoretic approaches in the 1950s led to various apgas'® Unlike the released-node method this method is stable
proximate methodsto calculate the ground-state propertiesand does not have the convergence problem. It gives the best
of the electron gas. Among them, Gell-Mann and Bruecknerupper bound to the exact energy consistent with the assumed
summed the ring diagrams to compute the correlation energyodes.
in the high-density limit. The dielectric function formalism,  Ceperley and Alder used the Slater-Jastrow trial wave
especially with the self-consistent treatment of the screeninfunction in  both released-notfe and fixed-node
process introduced by Singwi, Tosi, Land, andI&joer'® calculations,” which consists of the Slater determinant of
gave more accurate ground-state properties at a wider rangéngle-body orbital§plane waves for a homogeneous liquid
of densities. phase and products of two-body correlation functions. Ac-
On the other hand, various stochastic numerical methodsgording to their released-node calculation, the electron gas
known collectively as quantum Monte Caf@MC) meth-  could exhibit three different phases at zero temperature, the
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paramagnetic and ferromagnetic liquids and the Wigner crys- FHGRE N

tal, depending on its density. More recently, Ortiz and = —22 V- (Vif—fV,In¥2)—[E (R) — E{]f,
Ballone'® reported a new fixed-node DMC calculation with at rgi=1

the Slater-Jastrow wave function. Their correlation energies ()

were found to be, as expected, smaller in magnitude than

Ceperley and Alder’s released-node calculations, especiall B -
at high metallic densities. In this paper, we report results of i/here_ f(R’t)_q),(Rjt)\PT(R)' Ngte that the Sphdmger
equation is multiplied by the trial wave functioW(R).

fixed-node DMC calculation using a trial function with back- ) . o= A
flow and three-body correlations in addition to two-body cor-Eauation (3_) can be weyved as a d_lffu5|0rj equation in a
relation. Our previous calculations in the two-dimensional3N-dimensional space with the density of diffusing particles
electron ga¥ showed that the inclusion of the backflow cor- f(R.t). Its second term imposes a drift and the final term
relation in a trial state greatly improved the fixed-node resul@ives rise to a branching process by which the sampled con-
beyond that given by the Slater-Jastrow function. This igfigurations converge to the lowest-energy state. The initial
similar to what has been observed on calculations of th@nsemble of configuration$R} with probability density
other strongly correlated system of fermions, liqdide.’®  f(R,0)=¥2(R) is evolved forward in time by the above
Our fixed-node DMC results in three dimensions will be diffusion equation and reaches the equilibrium distribution
compared with Ceperley and Alder’s released-node resultsf(R,«) = ¢o(R)¥(R) at large enough. From this distri-

All ground-state properties of the electron gas at zerdoution of random walks, the exact ground-state enegy
magnetic fields are determined only by the dimensionlesg<¢O||:||\I,T>/<¢O|WT> can be estimated as the average of
iensny palgglmeterfa'/ao, whereay is the Bohr radiusa  he |ocal energyE, (R)=HW¥(R)/¥(R).
= (3/4mp) ™~ is the radius of a sphere that encloses one elec- The diffusion equation formulation described above re-
tron on the average andis the number density. With energy quires for implementation that the population den$iti,t)
units of RydberggRy) and the length units od, the Hamil-  pe non-negative. For Bose systems, this is not a problem
tonian of the electron gas is since their ground-state wave functions can be chosen to be

LN ) non-negative. However, fermion wave functions are anti-
__* 2, % symmetric, change sign, and have nodes. This leads to the
H= riz‘l Vi +r52‘,— ri—r;] +const, @ famoussign problen?® in the QMC calculations of Fermi
systems. The apparent limitation of the diffusion analogy in
where the constant is the term due to the uniform backthis case can be dealt with by treating positive and negative
ground of opposite charge. We consider the density range atgions separately. One easy way to accomplish this is not to
1=ry =20, where Ceperley and Alder found the system inallow diffusion between these two regions, which corre-
the normal liquid phase. We do not consider spin-polarizedponds to théixed-nodeapproximationt*12If ¥ were to

or superconducting states. have the exact nodes of the ground state, one could treat the
fermion system immediately and exactly, sinéewould
II. METHODOLOGY never change sign. Unfortunately, the exact location of the

] ] ] nodes in many-fermion systems is not knoffrthe fixed-

In a VMC calculation, one estimates the properties of & ode approximation is based on the requirement that
qgantum state, by assuming a trial wave functlba(R) #o(R)¥1(R) be non-negative. The fixed-node DMC energy
with the correct symmetry, whem@=(r;,r>, ... .I'n) iS @ s an upper bound to the exact energy, the best upper bound
3N-dimensional vector representing the positiondNopar-  wjith the given nodes, and usually lies well below the varia-
ticles. With a set of configuratio®;} sampled with a prob- tjonal energy?°
ability density proportional to¢ #(R), the variational energy  Another way to deal with the sign problem is to use the
is just the average of local energiesE (R)) released-node methdf,which puts no constraints on the
=HWV(R)/¥(R). This method can give a good upper nodal structure of the true ground-state wave function. In this
bound to the exact energy if the trial state is accurate as it ifnethod, there is a population of positive random walks that
for the homogeneous electron das. give positive contributions to any average, and a population

Even more accurate ground-state properties of a manyf negative walks with negative contributions. Whenever a
body system can be obtained with the DMC method, wherg@andom walk diffuses across the nodes of the trial function,
the Schrdinger equation is solved by treating it as a diffu- the sign of its contribution changes. Even though it can be
sion equatiort? The solution of the Scfidinger equation in  shown that the population of the difference converges to the
imaginary timet, —d|®)/dt=(H—E;)|®), can be ex- antisymmetric fermion ground state, it does not proceed
pressed in terms of the exact energy eigenvalEesand  without problems. Since both the positive and negative popu-
eigenstates; : lations grow geometrically with long projection time the

statistical  fluctuations in the average increase

exponentially*? For this method to be successful, the diffu-

P(RY= Z ciexd —t(Ei—En]ai(R). 2 sion process needs to converge to the ground state before the

fluctuations become large. Since the fluctuations grow as the
At sufficiently long times only the ground sta#l, survives  system size gets larger, the released-node method becomes
in Eq. (2), if ®(R,0) is not orthogonal to it. In order to more difficult for systems with many fermions, and there is
implement this idea with a stochastic procedure, we consideéncreased advantage in using the fixed-node method with
the real-space representation of the Sdimger equation: nodes given by improved trial functions.
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TABLE |I. Optimized variational parameters dfiree-bodyand backflow correlation functions folN
=54. 5x is the average change in the nodal position due to the backflow correlation.

I \g S e Wg A rv Wt OX

1.0 0.025 0.395 0.210 0.689 0.006 0.293 0.949 0.am91
5.0 0.105 0.158 0.180 0.670 -0.060 0.286 1.176 0.0B80
10.0 0.959 -0.672 0.247 3.788 -0.258 0.257 0.918 0.aB57
20.0 1.249 -0.938 0.275 3.787 -0.255 0.252 0.911 0.0549

Ill. MONTE CARLO CALCULATIONS

A. Trial wave function

PRB 58

Our calculations are done fot electrons in a cube with

the periodic boundary conditions. The Ewald mettois

_ _ used for the Coulomb potential and the two-body correlation
~ In all QMC methods mentioned above, a good trial func-to minimize size effects. The higher-order correlation func-
tion is very important for accurate results. The convergencegons n(r) and f(r) are required to go to zero smoo[h|y at a

time in a released-node calculation can be reduced with gutoff distancer ., which is set to half the side of the simu-
better trial function while the nodes of a trial function deter- |ation cell, as in Eq(13) of Ref. 16.

mine the ultimate accuracy of a fixed-node calculation. The |n order to optimize our higher-order correlation func-

usual choice of a trial function is of the Slater-Jastrow typetions, we minimize the variance of the local enef8yt our
which considers only two-body correlatiofsee Eq.(4) of  trial function W1 were an exact eigenfunction of the Hamil-
Ref. 16. The nodes of the wave function are determined byonian, the variance would be zero. Because the variance is a
only the Slater determinant. We use the two-body correlatiomonlinear function of the parameters we cannot be certain
function that minimizes the variational energy in the that we have achieved converged results for this class of trial
random-phase approximatiéhThis trial wave function has  functions. The optimum variational parameters that we have
been used in the previous VME:"® fixed-node DMC,"*®  gptained as a function of density are given in Table I.

and released-node DMC calculatidhdo investigate the Figure 1 shows the three-body contribution to the loga-
ground-state properties of the electron gas. rithm of the wave function due to three electrons aligned and

In order to improve the nodes, we consider a more comseparated by a distance Note that this contribution has a
p”CEltEd trial fl,ll’lCtiOf'I]',6 which includes backflow and three- strong density dependence. The effect is almost negligible at
body correlations. Our wave function has the form r=1 but as large as 7% at=10. Negative values imply
that electron configurations in which the local environment is

i ~ A7 not “balanced” are slightly enhanced; for these configura-
r(R)=dee's XJ)ex;{ _gj u(rij) = 7;1 G(H-GM|, tions the true wave fungctio)a is larger than the SIater—Jagstrow
(4 pair product wave function.

Figure 2 shows the magnitude of the displacement of the
quasiparticle coordinate caused by an electron a distance
away. The strongest effects are observed when two electrons
are very close, for distances less than the average nearest-
neighbor distance, which is 2 in the units we have used. We
also note that a backflow potential has an attractive tail for
The displacement of the quasiparticle coordinatdsom the  r<=10. We calculated the average distance between the real
real coordinatesr; incorporates effects of hydrodynamic and the quasiparticle coordinates during a VMC calculation
backflow?? and changes the nodes of the trial wave functionwith the backflow wave function. The average difference,
The backflow correlation functiowy is parametrized as

N N
wherex;’s are quasiparticlecoordinates defined as

N
Xi:ri+j2#i 7(rip(ri=rj). 5)

0.00
(N=rp— 2 ©®) [
r = —l
7 ®r g+ wer +1 -0.02
which has the long-range behavior L/r3) in three dimen- & 004} \ // 1
sions predicted by the local-energy method of Ref. 16 j_ I \ /j’
(though this behavior is smoothed by the periodic boundary -0.06 N 1
conditiong. Three-body correlation is included through the [ -
vector functions -0.08 ' 1
N -0.10 L L .
0.0 1.0 2.0 3.0
G(I):m E(r)(ri—rp). (7 t/a

FIG. 1. The three-body contribution to the logarithm of the
We call £(r) the three-body correlation function, for which wave function due to three electrons aligned and separated by a
we take the same functional form as in our previous study otlistancer. Solid line,r¢=1; dotted line,r¢=5; dot-dashed line,
the two-dimensional electron gésee Eq(15) of Ref. 16| r=10; long dashed line,s=20.
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FIG. 2. The change in the quasiparticle coordinate caused by an
electron a distance away. Solid line,r;=1; dotted line,r;=5;
dot-dashed liners=10; long dashed lina,s= 20.

FIG. 3. Effects ofthree-bodyand backflow correlations as a
function of the density of the system. The vertical axis shows
AE/AEg=(E—ERN/(EVY c—ESXN), that is, top axis corre-

. . . . sponds to the Slater-Jastrow variational enegy,. and bottom
defined assx=(|x;—r;|), is shown in Table I. The displace- P ¢

A : , xis to the fixed-node DMC enerdsiy , calculated with our best
ment .Of th‘? quasiparticle Coordmate r_elatlve tc_) the aCtua‘T:ial function includingthree-bodyand backflowcorrelations. The
coordinate is about ,1% of _the interparticle spacing gt 1 diamonds show the effect of ontliree-bodycorrelation, the circles
and 3% forrs=5. This implies that a released-node calcula-ihe effect of onlybackflow and the squares represent the combined
tion with a relatively short projection time should be able t0effect of both correlations. Finally, the filled triangles show the
correct the nodal surfaces from those of a free fermion triatesult using the fixed-node DMC method with free-fermion nodes

function. of the Slater-Jastrow function.
The main difficulties in the use of the backflow wave

function is that firstly, the implementation is c:onsiderablyboth VMC and fixed-node DMC methods. Table Il shows
mOJIe Ct? mplex thag Iorf the ISIater-Jas:rgw forrg,t and S(;C'Ehe results obtained from the improved trial wave functions
ondly, because update formufas cannot be used to spee Eq. (4) as well as the Slater-Jastrow wave functions. It can

single particle maves, Monte Carlo moves are updating al e seen that both VMC and fixed-node calculations with the

partic_les simultqneogsly. Details and fuller discussion of the[rial functions including backflow correlation improve sig-

algorithm are given in Ref. 16. nificantly the Slater-Jastrow results at all densities consid-

ered. However, the three-body correlation is found to have

minimal effect forr =<5, which corresponds to typical me-
We first calculated the ground-state energy of the systertallic densities.

with N=54 electrons at a density range okt,<20 by In Fig. 3 we compare different contributions to the im-

B. Ground-state energy

TABLE II. VMC and fixed-node(FN) DMC energiesE and the variances of the local enefgyobtained
with various trial wave functions foN=54 (SJ, the Slater-Jastrow function; 3BD, three-body correlation;
BF, backflow correlation The energies are in units of Ry per electron and the variances in units of
r;‘(Ry/eIectron}’. ey is the estimate of the fixed-node error in the backflow fixed-node DMC calculation
obtained using Eq9).

rs=1.0 rs=5.0 rs=10.0 rs=20.0
ESY . 1.06696) -0.155587) -0.1074%2) -0.063331)
ESy o8P 1.06635) -0.155695) -0.107732) -0.063481)
ESYBF 1.06174) -0.157295) -0.108292) -0.0636%1)
ES)r3BD+BF 1.06134) -0.1573%5) -0.1083%2) -0.063782)
EZY 1.06194) -0.157343) -0.108492) -0.063881)
ES) 38D+ BF 1.06012) -0.157984) -0.108822) -0.064031)
o 0.02134) 0.02663) 0.0741) 0.1893)
\/S3+38D 0.020%4) 0.02294) 0.0542) 0.1443)
\/SH+BF 0.00543) 0.00692) 0.0271) 0.1112)
\/S3+3BD+BF 0.00532) 0.00662) 0.02G61) 0.0792)

€y 0.00076) -0.0000%8) 0.000025) 0.000074)
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0.08 - T T T fusion process in Eq3). It has been estimated by making an
extrapolation using the VMC and the DMC resuiislt is
£ clear from the figure that the missing correlation energy from

0.06 | . . . ;
both types of trial wave functions becomes a smaller fraction

e of the kinetic energy at higher densities.
S 0.04 | “ 1 Since our calculation has been done on the system with a
< finite number of electrons, we extrapolate the energies to the
0.02 L y’” e i thermodynamic limit to compare with other calculations. We
e follow the extrapolation scheme based upon the Fermi-liquid
24 theory?52°which assumes that the energy per particle for a
0.00, 50 " To0 150 200 5.0 finite system with the periodic boundary conditions is related
P, to the bulk energy by
FIG. 4. The energy missing from the Slater-Jastrow wave func- 1
tion (¢) and from the three-body and backflow wave function _
(®) (div)ided by the kinetic energil/ as a function of the density EN_Ex+bl(rS)ATN+b2(rS)N' ®

parameter ;. The vertical axis showsHy,c—EZS)/(T).

Here,Ey (E.) is the total energy per electron of the finite
provement in correlation energy beyond the Slater-Jastrowinfinite) system andATy, is the free-particle kinetic-energy
VMC result. The figure shows the changes relative to thaglifferences between two systems. We determine the param-
given by the backflow fixed-node calculation, which is as-etersE.., b;, andb, by a least-squares fit to VMC calcu-
sumed to be exact in the following discussion. We will ex-lations with Slater-JastrowSJ trial functions at different
amine this assumption at the end of this section. It can b&¥alues ofN=54,66,114,162,246. In Table Ill are shown the
seen that at high densities of<5, the effect due to the energies, fitted parameters, and frevalue of the fit. The
three-body correlation is negligible and the backflow effectreasonable values of? show that the Fermi-liquid theory
is dominant. However, as the density decreases, the threeompletely explains the size dependence of the energy to
body effect increases while the backflow effect decreasestatistical accuracy of the VMC energies over this range of
We can conclude from the trends of Fig. 3 that at the densitparticle numbers. To extract the extrapolated three-body and
where Wigner crystallization occurs, estimated to he backflow DMC energy for the infinite systenk32FPMe
~100 by Ceperley and Aldéf the effect in the energy of we did the DMC runs only dil=54 whose results are shown
the three-body term will be much larger than the backflowin Table Il and then use the parameters determined from
term. This is consistent with the expectation that backflowWMC to get E3BFPMC |t is assumed that the size depen-
correlation is energetically less important as electrons areences for the VMGSJ) and the DMC(3BF) results are the
localized by strong correlation at low densities. Note, how-same. This assumption needs to be tested in future calcula-
ever, that the actual effect of the backflow correlation on theions. The same procedure was successfully applied to assess
wave function increases at low density, as shown in Fig. 2.the finite-size effects in our previous QMC calculation for

The combined effects of both higher-order correlations inthe two-dimensional electrotfs
the variational wave function account for 60—80 % of the One can see in Table Il that our extrapolated backflow
correlation energy missing in the Slater-Jastrow function. Afixed-node energies are lower, even if the differences are
high densitiesi(s=<5), this variational energy is shown to be small, than Ceperley and Alder's released-node results as
roughly as good as the Slater-Jastrow fixed-node DMC enwell as Ortiz and Ballone’s Slater-Jastrow fixed-node results.
ergy, which captures 70—80 % of the missing correlation enThe systematic differences between these independent calcu-
ergy throughout our density range. lations are found to be mostly due to the difference in the

The backflow and three-body effects in the electron gasvay of correcting for the finite-size errors. As a matter of
discussed above are very similar to the situation in two difact, our backflow fixed-node energies for 54 electrons given
mensions. See Fig. 4 of Ref. 16. The only notable differencén Table Il are virtually identical to the corresponding
is that at the lowest density considerad=20), the back- released-node results of Ceperley and Alder within statistical
flow effect is more important than the static three-body cor-errors. Considering that a fixed-node energy is an upper
relation in three dimensions while the two correlations havebound to the true ground-state energy, this validates our as-
virtually equal importance in two dimensions. This can besertion that our backflow fixed-node results are accurate. Our
understood in terms of the increased importance of correlgsresent results show that the calculations of Ceperley and
tions in lower dimensions for the same valuergf for ex-  Alder only got approximately half of the Slater-Jastrow
ample, this is reflected in the fact that Wigner crystalizationfixed-node error with their released-node procedure due to
occurs at smallerrg in two dimensions than in three computer limitations at that time.
dimensiong>2° Since the fixed-node results depend only on the nodal

Figure 4 shows the correlation energies missing from thestructures of the trial functions used, one can speculate that
Slater-Jastrow wave function and from the three-body andhe nodal locations of the backflow wave function are fairly
backflow wave function divided by the kinetic energy. Sinceclose to those of the exact ground state. Without more inves-
the kinetic-energy operator does not commute with thdigation, we cannot quantify this statement, because there is
Hamiltonian, the kinetic energy cannot be computed directlynot a simple relationship between nodal locations and fixed-
with the distribution¢g(R) ¥ +(R) sampled through the dif- node energy. The accuracy of the backflow nodes was also
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TABLE Ill. Size dependence in the Slater-Jastrow VMC method of normal electron liquidsat 1
<20 andy?-fit parameters. Also shown are the extrapolated DMC energies at an infinite sysfM"C
and E3BFPMCy  Ceperley and Alder's released-node result t¢Aand Ortiz and Ballone’s Slater-Jastrow
fixed-node result (OB").

rs=1.0 rs=5.0 r«=10.0 r=20.0
N=54 1.06696) -0.155587) -0.10745%2) -0.063331)
N=66 1.14965) -0.151664) -0.106372) -0.063031)
ESuc N=114 1.20795) -0.148673) -0.1055%2) -0.062781)
N=162 1.11624) -0.152383) -0.106421) -0.0627@1)
N=246 1.19383) -0.148863) -0.105481) -0.0627%1)
ESIVMC 1.17954) -0.149143) -0.105492) -0.062731)
by(ry) 1.0966) 1.181) 1.21(2) 1.223)
by(r) -1.165) -0.1344) -0.0512) -0.01817)
X2 1.20 1.29 2.22 2.26
gSIbmc 1.17444) -0.150944) -0.106542) -0.063291)
ESBF-DMC 1.17262) -0.151585) -0.106872) -0.063441)
CA* 1.1741) -0.15121) -0.106755) -0.063293)
OB** 1.181(1) -0.15143)

shown in our previous released-nadensient-estimajecal-  r =10. As can be seen, the variance decreases roughly pro-
culation for the two-dimensional electron ¢ds. portional to the drop in energy for the four trial functions
Although comparison with well-converged exact results isconsidered. The dotted line in Fig. 5 represents a linear fit
the best method of assessing the accuracy of a fixed-nodgnd the triangle our beébackflow fixed-node energy. There
result for the energy, in the remainder of this section wejs no fundamental reason why the energy and variance for
develop another estimate that requires only the VMC energyeneral trial functions would have a linear relationship.
and the variance of the local energy. This relies on the obrjowever, in practice this relation is often obser¢édhe
servation that both the error in the variational eneig)ic  opserved linear relationship both validates our optimization

and the varianc¥ are quadratic in the difference between a,5cequre and provides an independent estimate of the exact

trial function and the true ground state. Thus, as a trial f”ncénergy.

tion is improved in going from a two-body levéElater- ) - ; ;
Jastrowy to a higher-order levelbackflow and three-body f?ll-g\?v?n(gex:é:;ugr;%l:igi'State energy is estimated using the

one can estimate the exact energy by the improvements o
the variational energy relative to the variance.
The variances of the local energy for the various trial

wave functions are given in Table Il and plotted in Fig. 5 at v — const ©)
EVinc—Eo '
-0.1070 T T . T
-0.1075 ‘ . We extrapolated using only the results from the Hbsick-
o flow + three-body and worst(Slater-Jastroywrial functions
> —0.1080 . to minimize the extrapolation error. Shown in Tabled), is
5 . .. our estimate of the error of the computed backflow fixed-
W _0.1085 . node energy, which is an upper bound to the true ground-
I state energy(There is also the Temple lower boffido the
-0.1090 - ground-state energy, which involves the energy and the vari-
ance. However, it is not useful for many-body systerBe-
~0.1095 P T T S cause our procedure is not rigorous, there is no guarantee
0.00 002 004 006 008 010 that the estimated energy will lie below our computed best
Variance (x,*) fixed-node result. In fact at=>5 the estimate lies above it. It

FIG. 5. Variational energy versus the variance of local energy afan be seen in Table II tha_‘t the estimated ﬁxec_l'nOde error is
r<=10. Each point® represents one variational calculation: from Much smaller at all densities than the energy improvements

higher to lower energies, the Slater-Jastrow, three-body, backflowdue to the nodal change from the Slater-Jastrow function to
and (backflow + three-body results. The filled triangle represents the backflow wave function. This is another evidence that

our backflow fixed-node result and the dotted line shows a linear fipur fixed-node DMC calculations using the backflow trial
through® points. The statistical errors of the data are smaller tharfunctions give very accurate results for the ground-state en-
the sizes of the symbols. ergy.
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IV. CONCLUSION than 80% of the remaining correlation energy.
After making a careful finite-size analysis, we have com-
ared our backflow fixed-node energies with Ceperley and

. . : Ider’s released-node results. These two independent calcu-
DMC ca}lculauons mc_ll_Jdlng the thre_e—body and the b""Ckﬂowlations using different methods are found to give nearly iden-
correlation. The additional correlation energy due to backs

flow is dominant over the three-body effect in the hi h_tical results within statistical and systematic errors. From a
density regime but the relative im ortgnce of the formergde—Iinear extrapolation to zero variance of the local energy, we

y reg o portanc find further evidence that our backflow fixed-node results are
creases as the density is reduced. This is the same trend

. . & \?gry close to the true ground-state energy.
misi:]?ugg;ggéhgft\gségﬁrg v?/nizlcr)w?gieelseicmir::ant ig?ﬁt rt_g’r‘t di- For future work, we conclude that one should be able to
P . re signitice 9 se much improved wave functions, better released-node
mensions, especially at low densities. This is due to the fac

that in two dimensions the effects of interactions are larger ethods;” with more size-dependence studies and full utili-
: . . . 980 ation of current computer hardware to achieve an order of
than in three dimensions at a givepand other effects tend

to dominate more over the effects of backflow. magnitude more accurate results for the energy of the elec-

The variational wave function with backflow and three- tron gas than was done nearly two decades ago.
body correlations is a large improvement over the Slater-
Jastrow function. We find that these higher-order correla-
tions account for 60—80 % of the remaining correlation
energy beyond the Slater-Jastrow variational results. Since This work has been supported by the Korea Science and
backflow changes the nodes, the fixed-node DMC results arféngineering Foundation under Grant No. 96-0207-045-2,
also significantly improved. The fixed-node method basedhrough its SRC program, and by the National Science Foun-
upon the Slater-Jastrow nodes is found to capture no mordation under Grant No. DMR 94-224-96.

We have studied the correlation energy of the interactin
three-dimensional electron gas, using VMC and fixed-nod
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