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Optical properties of carbon nanotubes
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Using the extended Hubbard model and sum-over-state method, we have calculated the linear polarizability
a and the third-order nonlinear polarizabilityg for carbon nanotubes with finite lengths. We find that the chiral
symmetry of nanotubes with finite length has a great effect on their optical properties. For example, the finite
length (n,m) tubes withn-m being not a multiple of 3, will have smallera and much smallerg values than
other finite length tubes.@S0163-1829~98!01832-3#
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Carbon nanotubes have been investigated intensively
different form of one-dimensional material1–4. Each single-
layer nanotube can be regarded as a rolled-up graphite s
in the cylindrical form. The geometrical structure of th
nanotube is uniquely determined by its circumference vec
R5n1a11n2a2, wherea1 anda2 are lattice translation vec
tors on the graphite sheet, andn1 andn2 are integers.5. The
pair number (n1 ,n2) defines the radius and chirality of eac
tube. As a result of their seamless cylindrical graphitic str
ture, nanotubes are predicted to have interesting mecha
properties, in particular, high stiffness and axial streng6

Theoretical studies have shown that a carbon nanotub
either metallic or semiconducting, depending on its diame
and geometric symmetry.7 Experiments also indicate that th
nanotube can be used as an atomic-scale field emitter an
pinning material in high-Tc superconductors.8,9 The nano-
tubes were usually treated as periodic infinite on
dimensional crystals in the aforementioned theoretical s
ies. But actual nanotubes have finite lengths, so it
interesting to study physical properties of the carbon na
tubes with finite lengths.

The nanotubes possess a large number of conjugatep
electrons and are entirely composed of carbon atoms. T
do not have any residual infrared absorption due to overto
of C-H stretching vibrations that organic molecules usua
have. In this paper, we investigate how the finite length a
the chiral symmetry of a nanotube influence its optical pr
erties.

The tips of the nanotubes are very complicated. So
nanotubes have closed caps, and others do not. We ca
nanotube with a cap a ‘‘capped nanotube,’’ and that with
a cap an ‘‘uncapped nanotube.’’ We cut the nanotube p
pendiculer to its axis, and make the carbon atoms at the o
end have twos bonds to connect with other carbon atom
The exact geometry of the open end of the nanotube is v
complicated, and we find that they are almost not relevan
the optical properties of nanotube, in particular when
nanotube is long. For simplicity, we label the uncapp
(n,m) nanotube withk carbon atoms as (n,m)k. In this
paper, we study only uncapped nanotubes. Theg values of
C60 calculated with the free-electron model are in agreem
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with the experiment, while the linear absorption spectra
not in agreement with experiments. If Coulomb interactio
are taken into account, the absorption spectra are in ove
agreement with the experiment, although the magnitude
the g decreases by a factor of about 0.1.10,11 For other
fullerenes, the effect of Coulomb interaction is not know
So it is interesting to study whether or not Coulomb intera
tion also has a great effect on the electronic structure
optical properties of the nanotubes. Therefore, in this pa
we will use the extended Hubbard model12 to calculate elec-
tronic structures of the nanotubes, and then use the s
over-states~SOS! approach to calculate their linear polari
ability a and the third-order polarizabilityg.13

For the nanotubes, the model Hamiltonian can be writ
as

H5 (
^ i j &,s

@2t02a~ ur i2r j u2d0!#~ci ,s
† cj ,s1H.c!

1
K

2(̂
i j &

~ ur i2r j u2d0!21U(
i

ci ,↑
† ci ,↑ci ,↓

† ci ,↓

1V(̂
i j &

(
s

(
s8

ci ,s
† ci ,scj ,s8

† cj ,s8 , ~1!

where we have assumed that the bonds at the end caps o
nanotubes are hydrogenized, and so there is not dang
bonds in our calculation.t0 is the hopping constant,a is the
electron-phonon coupling constant. The operatorci ,s(ci ,s

† )
annihilates~creates! a p electron at thei th carbon atom with
spin s, r i is the position of thei th carbon atom,d0 is the
average separation between two adjacent atoms.K is the
spring constant between the adjacent units,U is the usual
on-site Coulomb repulsion strength for a carbon atom,V is
the Coulomb interaction between the nearest-neighbor
bon atoms, and the sum̂i , j & is taken over the neares
neighbor pairs. Using the Hartree-Fock approximation, E
~1! is transformed into
6756 © 1998 The American Physical Society
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H5 (
^ i j &,s

@2t02a~ ur i2r j u2d0!#~ci ,s
† cj ,s1H.c.!

1
K

2 (̂
i j &

~ ur i2r j u2d0!21U(
i

S (
s

r i ,sci ,s
1 ci ,s

2r i ,↑r i ,↓D 1V (
^ i , j &

(
s S (

s8
r j ,s8ci ,s

† ci ,s

2r i ,s (
s8

r j ,s82t i j ,sci ,s
† cj ,s1t i j ,s

2 D , ~2!

where r i ,s5^ci ,s
† ci ,s& is the electron density at thei th site

with spins, andt i j ,s5^ci ,s
† cj ,s& is the bond order paramete

Equation~1! is solved by the adiabatic approximation f
phonons. The Schro¨dinger equation for thep electron is

«kZk,s~ i !5(̂
i j &

@2t02a~ ur i2r j u2d0!2Vt i j ,s#Zk,s~ j !

1FUr i ,s1V(
j ,s8

r j ,s8GZk,s~ i !, ~3!

where«k andZk,s are the eigenvalue and eigenfunction, r
spectively. The self-consistent equation for the lattice is

~ ur i2r j u2d0!52
2a

K ( 8
k,s

Zk,s~ i !Zk,s~ j !

1
2a

K

1

N(
^ml&

( 8
k,s

Zk,s~m!Zk,s~ l !, ~4!

where the prime in the summation indicates a sum over
cupied states, the second term is due to the constr
(^ i , j &(ur i2r j u2d0)50, and N is the number ofp bonds.
From Eqs. ~3! and ~4!, we can get«k and Zk,s self-
consistently.

Within the independent electron approximation and su
over-states approach, the linear polarizabilitya(v) is ex-
pressed as

FIG. 1. Energy-level structure around the HOMO and LUMO
nanotubes. The line length is proportional to the degeneracy o
energy level. The shortest line is for undegenerate levels.~a!
~6,4!200, ~b! ~6,3!198.
-

c-
int

-

a~v!52 (
nPocc.

pPunocc.

mnpmpnS 1

epn2v
1

1

epn1v D , ~5!

and the third-order polarizabilityg can be expressed as fo
lows:

g~23v;v,v,v!5g11g21g31g41g5 , ~6!

g1~23v;v,v,v!52 (
l ,m,nPocc.
pPunocc.

mpnmnmmmlm lpS1~v!,

S1~v!5
1

~epn23v!~epm22v!~epl2v!

1
1

~epn1v!~epm12v!~epl2v!

1
1

~epn1v!~epm22v!~epl2v!

1
1

~epn1v!~epm12v!~epl13v!
.

The forms ofg2 , g3 , g4 , andg5 are similar tog1 .13

In the above formula,enp5en2ep , andmnm is the dipole
transition matrix elements between the one-electron s
Zn,s andZm,s , which is given by

^numaum&5(
j ,s

Zn,s* ~ j !~2ea j !Zm,s~ j !. ~7!

Equations~1!–~7! are our basic equations used to calc
late a(v) andg(23v;v,v,v) for nanotubes.

In our numerical calculation, the Coulomb interaction p
rameters are taken to beU52V5t0 , and other parameter
are taken ast051.8 eV, a53.5 eV/Å, K530 eV/Å2 and
d051.42 Å, which have been successfully used in C60.14

Based upon a periodic boundary condition along the na
tube axis, electronic structure of the infinite length nanotu
has first been calculated, and obtained results are in ag
ment with other theoretical results, i.e., a (n,m) tube is metal
or semiconductor, depending on whether or not itsn-m is a
multiple of 3. We then have calculated electronic structu
of the uncapped nanotubes, and obtained electronic en
band structures for~6,4!200 and ~6,3!198 nanotubes are
shown in Figs. 1~a! and 1~b!, respectively. From Fig. 1, it
can be seen that the rotational symmetries of nanotubes
a great influence upon their electronic structures. The tu
~6,3!198 and~6,4!200 haveC3 and C2 symmetry, respec-
tively. Since the former has higher symmetry, its energy l
els have higher degeneracies than the latter. The energy
(Eg) of ~6,3!198 is not zero, but for~6,4!200, its highest
occupied molecular orbital~HOMO! and its lowest unoccu-
pied molecular orbital~LUMO! are degenerate. We increas
lengths of both the~6,3! and ~6,4! tubes and find that thei
electronic structures are similar to those of~6,3!198 and
~6,4!200, respectively. For the uncapped~6,3! tubes, theirEg
is not zero, and the intervals between two neighboring
ergy levels near the Fermi surface are similar. For the
capped~6,4! tubes, theirEg is zero, and the energy differ
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ence between the HOMO and the next highest occupied l
is much bigger than the interval of other two neighbori
energy levels. Similarly, the energy difference between
LUMO and the next lowest unoccupied level is also mu
bigger than the interval of other two neighboring energy le
els. This means that the uncapped~6,3! and ~6,4! tubes are
semiconductor and metal, respectively. Oppositely, infin
length ~6,3! and ~6,4! tubes are metal and semiconducto
respectively. The difference between the electronic structu
of infinite and finite length nanotubes comes from the pe
odic boundary condition along the axis of the nanotube w
infinite length. On the other hand, the rotational symmetry
the finite length tubes has also an important effect on
differences between the electronic structures of~6,3! and
~6,4! tubes. We have also calculated other uncapped tube
seems that for an uncapped (n,m) tube, if its n-m is not a
multiple of 3, its electronic structure is similar to that of th
uncapped~6,4! tube.

The linear polarizabilitya of a nanotube is calculated
based upon their electronic structures obtained above.
cause the ratios between the different components ofa are
not known, its spatial averages are defined asa5 1

3 (axx
1ayy1azz). Here, thez axis is taken along the nanotub
axis. Because a nanotube length is much larger than its
ameter, itsmz is much larger than itsmx andmy , making the
a value increase with increasing of the atom number in
nanotube. For most of uncapped nanotubes, the trans
between their HOMO and LUMO is allowed, and the val
of ^HOMOumzuLUMO& is much bigger than other terms

FIG. 2. The linear polarizabilitya spectra for nanotubes~in
103 Å 3). The unit ofx coordinate is eV.~a! ~6,4!200, ~b! ~6,3!198,
~c! same~6,3!198, but for free electron case.
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making the transition between HOMO and LUMO very im
portant. Thea spectra of~6,3!198 and~6,4!200 are shown in
Fig. 2, from which it can be seen that although~6,3!198 and
~6,4!200 have similarm values, theira spectra are greatly
different. For~6,3!198, the first peak in thea spectra is the
highest peak with height of 30.13103 Å 3, which is much
bigger than the values of other peaks. However, for~6,4!200,
its value of highest peak is only 7.13103 Å 3, which is four
times smaller than that of~6,3!198. It is because the firs
peak of ~6,3!198 is produced by the transition betwee
HOMO and LUMO, and itŝ HOMOumzuLUMO&55.56 is
the biggest term in its dipole matrix elements. On the ot
hand, for ~6,4!200, its HOMO and LUMO are degenerat
and so, its highest peak is produced by a transition betw
the 98th and 101st energy levels, but its^98umzu101&52.78,
causing the correspondinga value to be smaller than that o
~6,3!198. The difference betweena spectra of~6,3!198 and
~6,4!200 tubes mainly comes from the difference in th
electronic structures. Since most of finite-length (n,m) tubes
with n-m being not a multiple of 3 have similar electron
structures to those of finite length~6,4! tube, all of them will
have smalla values. For example, the uncapped~7,3! tubes
have smallera values. Its static and the biggesta values are
1.13103 Å 3 and 6.13103 Å 3, respectively. On the othe
hand, the static values of~6,3!198, ~5,5!200, ~9,0!198, and
~6,4!200 are 2.4, 1.8, 2.4, and 1.23103 Å 3, respectively.
The biggesta values of~5,5!200 and~9,0!198 are 18.1 and
25.53103 Å 3, respectively. So, we can conclude that t
finite length tubes withn-m being a multiple of 3 have big-
ger a values than other finite length tubes.

We have also investigated the third-order nonlinear po
izability g of nanotube. A spatial average ofg is given as
g5 1

5 @gxxxx1gyyyy1gzzzz12(gxxyy1gyyzz1gzzxx)#. The
dispersion curves of the third-order polarizabilityg of
~6,3!198 and ~6,4!200 have been shown in Fig. 3, from
which it can be seen that the rotational symmetry also
great effect on theg spectra. Both the highest peaks in theg

FIG. 3. The third-order polarizabilityg spectra for nanotubes~in
10229 esu). The unit of thex coordinate is eV.~a! ~6,4!200, ~b!
~6,3!198.
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spectra of~6,3!198 and ~6,4!200 are three resonance e
hancement peaks~i.e., single-photon, two-photon, and thre
photon resonance enhancement peak!. But, the height of the
highest peak of~6,3!198 is about ten times bigger than th
of ~6,4!200. The reason is that for uncapped~6,3! tube, the
intervals between two neighboring energy levels near
Fermi surface are similar, making theg values increase. So
although~6,3!198 and~6,4!200 tubes have almost the sam
size, the uncapped~6,3! tubes have much biggerg values
than those of uncapped~6,4! tubes. Thus, we can also con
clude that the finite length tubes with (n2m)/3 being an
integer have much largerg values than other finite lengt
tubes. We listed the highestg values for some finite length
nanotubes in Table I. From Table I, we can see that
uncapped~7,3! tube has the smallestg value, and the un-
capped~9,0! tube has the biggestg value, which is in agree-
ment with the aforementioned discussion.

In addition to~5,5!, ~9,0!, ~6,3!, ~6,4!, and~7,3! tubes, we
have also calculated other finite length tubes with differ
symmetries, and found that~4,4!, ~6,6!, ~7,7!, and ~12,0!
tubes have biggera andg values, but oppositely, thea and
g values of~8,0!, ~14,0!, and~7,1! tubes are smaller. On th
other hand, we have also increased the tube lengths,
found that thea values of~6,3!1998 are also much large
than those of~6,4!2000. Thus we can conclude that our co
clusions obtained above are correct for most finite len
tubes.

We have also investigated the free-electron case in o
to see clearly the effect of Coulomb interaction, and sho

TABLE I. Heights of the highest peaks in theg spectra of finite
length nanotubes.

~7,3!200 ~6,4!200 ~6,3!198 ~5,5!200 ~9,0!198

g(10229 esu) 0.6 6.4 68.6 63.5 69.7
B
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e

e
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the a spectra of~6,3!198 in Fig. 2~c!. It has been found tha
Coulomb interactions amongp electrons increase the energ
difference between two neighboring energy levels. From F
2~c!, we can find that the Coulomb interactions will decrea
thea value of the tube and make peak positions ina spectra
go to the right, i.e., to higher frequencies. The influence
Coulomb interaction ong spectra is similar to that ona
spectra, but the former is bigger. However, compared w
the chiral symmetry of tubes, the Coulomb interaction h
been found to have a much smaller effect on the electro
structure and optical properties of the finite length tubes.
for free-electron case, the conclusions obtained above a
a andg spectra are still correct. Thes-p band mixing effect
due to the curvature of the nanotubes is small.15 This effect
has been neglected in our calculation, so our conclusio
qualitatively correct.

In conclusion, we find that the finite length (n,m) tubes
with n-m being not a multiple of 3 will have smallera and
g values, no matter whether or not Coulomb interaction
included. It should be indicated that we assume the bond
the end caps of the nanotubes are hydrogenized and so
effect of the dangling bonds has not included in our calcu
tion.

So, by analyzing only their electronic structure, we c
know the optical properties of the uncapped nanotubes.
the other hand, if we know their optical properties, we c
also deduce some of their electronic properties and geom
cal structures. We hope that obtained results in this pa
will be helpful to distinguish different nanotubes by the
optical properties.
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