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Optical properties of carbon nanotubes
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Using the extended Hubbard model and sum-over-state method, we have calculated the linear polarizability
a and the third-order nonlinear polarizabiligyfor carbon nanotubes with finite lengths. We find that the chiral
symmetry of nanotubes with finite length has a great effect on their optical properties. For example, the finite
length (h,m) tubes withn-m being not a multiple of 3, will have smaller and much smalley values than
other finite length tube§S0163-18208)01832-3

Carbon nanotubes have been investigated intensively asvaith the experiment, while the linear absorption spectra are
different form of one-dimensional materiaf. Each single- not in agreement with experiments. If Coulomb interactions
layer nanotube can be regarded as a rolled-up graphite sheste taken into account, the absorption spectra are in overall
in the cylindrical form. The geometrical structure of the agreement with the experiment, although the magnitude of
nanotube is uniquely determined by its circumference vectothe y decreases by a factor of about 6°t! For other
R=n;a; +n,a,, wherea; anda, are lattice translation vec- fullerenes, the effect of Coulomb interaction is not known.
tors on the graphite sheet, ang andn, are integers. The  So it is interesting to study whether or not Coulomb interac-
pair number ,n,) defines the radius and chirality of each tion also has a great effect on the electronic structure and
tube. As a result of their seamless Cylindrical graphitic strucpptical properties of the nanotubes. Therefore, in this paper,
ture, nanotubes are predicted to have interesting mechani will use the extended Hubbard motfab calculate elec-
properties, in particular, high stiffness and axial strer?gth.tronic structures of the nanotubes, and then use the sum-

Theoretical studies have shown that a carbon nanotube [§er.stategSOS approach to calculate their linear polariz-
either metallic or semiconducting, depending on its dlameteéb“ity « and the third-order polarizability. 3

and geometric symmetFyExperimer_ns also ir_1dicate _that the For the nanotubes, the model Hamiltonian can be written
nanotube can be used as an atomic-scale field emitter and 2
pinning material in highF, superconductor$® The nano-
tubes were wusually treated as periodic infinite one-
dimensional crystals in the aforementioned theoretical stud-
les. But actual nanotubes have finite lengths, so it is H= 2 [—to—a(|fi—fj|—do)](CiT,st,er H.c)
interesting to study physical properties of the carbon nano- (i).s
tubes with finite lengths. K

The nanotubes possess a large number of conjugated + _E (|ri_rj|_d0)2+UE CiTTCi TCiTLCiL
electrons and are entirely composed of carbon atoms. They 217) P
do not have any residual infrared absorption due to overtones
of C-H stretching vibrations that organic molecules usually +VZ > CiT,sCi,stT,s/Cj,s’v (1)
have. In this paper, we investigate how the finite length and (i) s ¢
the chiral symmetry of a nanotube influence its optical prop-
ertl-ﬁ"e tips of the nanotubes are very complicated. somavhere we have assumed that the bonds at the end caps of the
nanotubes have closed caps, and others do not. We call tf@notubes are hydrogenized, and so there is not dangling
nanotube with a cap a “capped nanotube,” and that withouonds in our calculatiort, is the hopping constant; is the
a cap an “uncapped nanotube.” We cut the nanotube perelectron-phonon coupling constant. The operalpg(cifs)
pendiculer to its axis, and make the carbon atoms at the opeannihilateqcreatega 7 electron at théth carbon atom with
end have twar bonds to connect with other carbon atoms.spin s, r; is the position of thdéth carbon atomd, is the
The exact geometry of the open end of the nanotube is vergverage separation between two adjacent atdfnss the
complicated, and we find that they are almost not relevant tepring constant between the adjacent urlitsis the usual
the optical properties of nanotube, in particular when theon-site Coulomb repulsion strength for a carbon atdhis
nanotube is long. For simplicity, we label the uncappedthe Coulomb interaction between the nearest-neighbor car-
(n,m) nanotube withk carbon atoms asn(m)k. In this  bon atoms, and the suri,j) is taken over the nearest-
paper, we study only uncapped nanotubes. Jhelues of neighbor pairs. Using the Hartree-Fock approximation, Eq.
Cgo calculated with the free-electron model are in agreementl) is transformed into
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FIG. 1. Energy-level structure around the HOMO and LUMO of 1
nanotubes. The line length is proportional to the degeneracy of the + (€pnt @) (€pmt 20) (€ — w)
energy level. The shortest line is for undegenerate levigs. P P P
(6,4200, (b) (6,3198. N 1
(Epn+w)(epm_2w)(6pl_w)
H=<2> [_to_Cl(|ri_rj|_do)](CiTYSCj'S+H.C.) n 1
ij),s .
(€pnt @)(€pmT2w)(€p+3w)
K
+t3 <.EJ> (Jri=rjl=do)*+ UZ (ZS Pi,sCi sCi.s The forms ofy,, y3, v4, andys are similar toy; .*3

In the above formulag,,,= €,— €,, andu,n, is the dipole
transition matrix elements between the one-electron state
2 pj, s'C. sCi,s Z,sandZ ¢, which is given by

s’

Vv D>

—PipP
nIEL (ij) s

s D pi— T Cist 7 2 (Nudm)=2) Z3 () (~ea)Zms(i)- (7

Equations(1)—(7) are our basic equations used to calcu-
late a(w) and y(—3w;w,w,w) for nanotubes.

In our numerical calculation, the Coulomb interaction pa-
rameters are taken to hgé=2V=t,, and other parameters

where p; = (c, Ci s Is the electron density at thigh site
with spins, andq-Il =(c! sCj.s) is the bond order parameter.
Equation(1) is solved by the adiabatic approximation for

phonons. The Schdinger equation for ther electron is are taken as,=1.8 eV, a=3.5 eV/IA, K=30 eV/A? and
do=1.42 A, which have been successfully used ig.&"
exZis(i)= 2 [—to—a(|ri—rj|—do) = V7j 1Z¢ «(}) Based upon a periodic boundary condition along the nano-

tube axis, electronic structure of the infinite length nanotubes

has first been calculated, and obtained results are in agree-
Z,.s(i), () ment with other theoretical results, i.e.,@fn) tube is metal

or semiconductor, depending on whether or nohim is a

multiple of 3. We then have calculated electronic structures
wheree, andZ, s are the eigenvalue and eigenfunction, re-of the uncapped nanotubes, and obtained electronic energy
spectively. The self-consistent equation for the lattice is  band structures fo(6,4200 and (6,3198 nanotubes are

shown in Figs. (a) and Xb), respectively. From Fig. 1, it

+ Upi,s+VE Pj,s’

j.s’

A, . . can be seen that the rotational symmetries of nanotubes have
(Iri=rjl=do)=~ ?Z Zy s(1)Zy s()) a great influence upon their electronic structures. The tubes
(6,9198 and(6,4200 haveC; and C, symmetry, respec-
2a 1 tively. Since the former has higher symmetry, its energy lev-

K N<m|> 2 Zis(mMZys(h, - (4) els have higher degeneracies than the latter. The energy gap
(Eg) of (6,3198 is not zero, but foK6,4)200, its highest

where the prime in the summation indicates a sum over oceccupied molecular orbitdHOMO) and its lowest unoccu-
cupied states, the second term is due to the constraimied molecular orbita(LUMO) are degenerate. We increase
E<i,j>(|ri—rj|—d0)=0, andN is the number ofr bonds. lengths of both th€6,3) and(6,4) tubes and find that their
From Egs.(3) and (4), we can gete, and Z, ¢ self- electronic structures are similar to those @3198 and
consistently. (6,4200, respectively. For the uncapp@d) tubes, theitg

Within the independent electron approximation and sumis not zero, and the intervals between two neighboring en-
over-states approach, the linear polarizabilitfw) is ex-  ergy levels near the Fermi surface are similar. For the un-
pressed as capped(6,4) tubes, theirEy is zero, and the energy differ-
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FIG. 3. The third-order polarizability spectra for nanotubém
20 10 ?° esu). The unit of thex coordinate is eV(a) (6,4200, (b)
(6,3198.
10
making the transition between HOMO and LUMO very im-
0 ; | portant. Thex spectra 0{6,3)198 and(6,4)200 are shown in
0 1, 2 3 Fig. 2, from which it can be seen that althou@h3)198 and

(6,4200 have similarw values, theira spectra are greatly

FIG. 2. The linear polarizabilityx spectra for nanotubegn  different. For(6,3198, the first peak in the spectra is the
10° A%). The unit ofx coordinate is eV(a) (6,4200, (b) (6,3198,  highest peak with height of 30410° A%, which is much
(c) same(6,3)198, but for free electron case. bigger than the values of other peaks. However{éo#)200,

its value of highest peak is only 7<110* A2, which is four

ence between the HOMO and the next highest occupied levéimes smaller than that of6,3)198. It is because the first
is much bigger than the interval of other two neighboringP€ak of (6,3198 is produced by the transition between
energy levels. Similarly, the energy difference between théiOMO and LUMO, and its(HOMO| u,|LUMO)=5.56 is
LUMO and the next lowest unoccupied level is also muchthe biggest term in its dipole matrix elements. On the other
bigger than the interval of other two neighboring energy lev-hand, for(6,4200, its HOMO and LUMO are degenerate,
els. This means that the uncapp@dd and (6,4) tubes are and so, its highest peak is produced by a transition between
semiconductor and metal, respectively. Oppositely, infinitehe 98th and 101st energy levels, but(i€s|u,|101)=2.78,
length (6,3 and (6,4) tubes are metal and semiconductor, causing the correspondingvalue to be smaller than that of
respectively. The difference between the electronic structure®,3)198. The difference between spectra 0f(6,3)198 and
of infinite and finite length nanotubes comes from the peri<(6,4200 tubes mainly comes from the difference in their
odic boundary condition along the axis of the nanotube withelectronic structures. Since most of finite-lengthnq) tubes
infinite length. On the other hand, the rotational symmetry ofwith n-m being not a multiple of 3 have similar electronic
the finite length tubes has also an important effect on thétructures to those of finite lengt,4) tube, all of them will
differences between the electronic structures(@B) and have smalle values. For example, the uncapp@dd) tubes
(6,4 tubes. We have also calculated other uncapped tubes. liave smallew values. Its static and the biggestvalues are
seems that for an uncapped,in) tube, if itsn-mis not a  1.1x10° A3 and 6.2x10* A3, respectively. On the other
multiple of 3, its electronic structure is similar to that of the hand, the static values 6,3)198, (5,5200, (9,0198, and
uncapped6,4) tube. (6,49200 are 2.4, 1.8, 2.4, and XAC® A3, respectively.

The linear polarizabilitye of a nanotube is calculated, The biggestx values of(5,5200 and(9,0/198 are 18.1 and
based upon their electronic structures obtained above. B&5.5< 10° A3, respectively. So, we can conclude that the
cause the ratios between the different components afe finite length tubes witm-m being a multiple of 3 have big-
not known, its spatial averages are definedaas3(a,  ger a values than other finite length tubes.
+ayyt+a,,). Here, thez axis is taken along the nanotube = We have also investigated the third-order nonlinear polar-
axis. Because a nanotube length is much larger than its dizability y of nanotube. A spatial average ¢fis given as
ameter, itsu, is much larger than itg, andu, , making the  y= Yot Yyyyyt Yzzzit 2(Vxxyyt Yyyzzt Yzzxd - The
a value increase with increasing of the atom number in thelispersion curves of the third-order polarizability of
nanotube. For most of uncapped nanotubes, the transitioi$,3)198 and (6,4200 have been shown in Fig. 3, from
between their HOMO and LUMO is allowed, and the valuewhich it can be seen that the rotational symmetry also has
of (HOMOJ|u,|LUMO) is much bigger than other terms, great effect on the spectra. Both the highest peaks in the



PRB 58 BRIEF REPORTS 6759

TABLE I. Heights of the highest peaks in thespectra of finite  the o spectra 0f(6,3)198 in Fig. Zc). It has been found that
length nanotubes. Coulomb interactions among electrons increase the energy
difference between two neighboring energy levels. From Fig.

(7,3200 (6,49200 (6,3198 (55200 (9,0198 2(c), we can find that the Coulomb interactions will decrease
(10" % esu) 0.6 6.4 68.6 63.5 69.7 thea value of the tube and make peak positiongrispectra
go to the right, i.e., to higher frequencies. The influence of
Coulomb interaction ony spectra is similar to that oa
spectra 0f(6,3198 and(6,4200 are three resonance en- spectra, but the former is bigger. However, compared with
hancement peak@&e., single-photon, two-photon, and three- the chiral symmetry of tubes, the Coulomb interaction has
photon resonance enhancement peBlit, the height of the  peen found to have a much smaller effect on the electronic
highest peak 0f6,3)198 is about ten times bigger than that g cture and optical properties of the finite length tubes. So,

of (6,4200. The reason is that for uncappé3) tube, the ¢, freeelectron case, the conclusions obtained above about

intervals between two neighboring energy levels near thg, onq.,, spectra are still correct. The- band mixing effect

Fermi surface are similar, making thevalues increase. S0, e t'the curvature of the nanotubes is srialihis effect
although(6,3198 and(6,4200 tubes have almost the same 5 heen neglected in our calculation, so our conclusion is
size, the uncappeb,3 tubes have much biggey values qualitatively correct.

than those of uncappe@,4) tubes. Thus, we can also con- |, conciusion, we find that the finite lengtim,(n) tubes
clude that the finite length tubes witm{m)/3 being an ith n-m being not a multiple of 3 will have smaller and
integer have much largey values than other finite length .\ 3ues, no matter whether or not Coulomb interaction is

tubes. We listed the highest values for some finite length nqjded. It should be indicated that we assume the bonds at
nanotubes in Table |. From Table I, we can see that th@g eng caps of the nanotubes are hydrogenized and so the
uncapped7,3 tube has the smallest value, and the un-  etect of the dangling bonds has not included in our calcula-
capped(9,0) tube has the biggest value, which is in agree- {ion.
ment with the aforementioned discussion. So, by analyzing only their electronic structure, we can
In addition t0(5,9), (9,0), (6,3), (6,4), and(7,3) tubes, we  \nq\y the optical properties of the uncapped nanotubes. On
have also calculated other finite length tubes with differente other hand. if we know their optical properties, we can
symmetries, and found tha#,4), (6,6), (7,7), and (12,0 350 deduce some of their electronic properties and geometri-
tubes have bigges andy values, but oppositely, the and | structures. We hope that obtained results in this paper

y values 0f(8,0), (14,0, and(7,1) tubes are smaller. On the || he helpful to distinguish different nanotubes by their
other hand, we have also increased the tube lengths, a'?ﬂ)tical properties.

found that thea values 0f(6,3)1998 are also much larger
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