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Disorder-induced broadening of the density of states for two-dimensional electrons
with strong spin-orbit coupling

A. G. Galstyan and M. E. Raikh
Department of Physics, University of Utah, Salt Lake City, Utah 84112
~Received 10 February 1998; revised manuscript received 4 May 1998!

We theoretically study the disorder-induced smearing of the density of states in a two-dimensional electron
system, taking into account a spin-orbit term in the Hamiltonian of a free electron. We show that the charac-
teristic energy scale for the smearing increases with increasing spin-orbit coupling. We also demonstrate that
in the limit of a strong spin-orbit coupling the diagrams with self-intersections make a parametrically small
contribution to the self-energy. As a result, the coherent potential approximation becomes asymptotically exact
in this limit. The tail of the density of states has an energy scale which is much smaller than the magnitude of
the smearing. We find the shape of the tail using the instanton approach.@S0163-1829~98!05836-6#
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It is well known how the random potential smears t
band-edge in a two-dimensional~2D! system. In the case o
a white-noise potential with a correlatorV(r )V(r 8)5gd(r
2r 8), the characteristic energy scale for the smearing can
estimated asE2D5gm/\2. Deep in the tail (E,0,
uEu@E2D) the density of states~DOS! falls off exponentially

r~E!}expS 2j
uEu
E2D

D , ~1!

where the numerical factorj is approximatelyj'5.8.1,2 The
form of tail ~3! follows from the instanton approach deve
oped in Refs. 3 and 4~see also Refs. 5 and 6!. The prefactor
in Eq. ~1!, including the numerical coefficient, was derive
in Ref. 2. In the intermediate region,E;E2D , the exact form
of the DOS is unknown. Within the coherent potential a
proximation it was studied in Ref. 1. The autors of Ref.
have also performed the approximate matching of the co
ent potential result and tail~1!.

Spin-orbit ~SO! interaction modifies the energy spectru
of 2D electrons. The origin of this modification is either th
absence of inversion symmetry in the bulk7,8 or the asymme-
try of the confinement potential. In the latter case the
interaction can be taken into account by adding to the Ham
tonian of a free electron the term9

ĤSO5a~ŝ3k!•n, ~2!

where the components ofŝ are the Pauli matrices,nuuz is the
normal to the 2D plane,a is the SO coupling constant, andk
stands for the electron wave vector. The energy spectrum
the Hamiltonian

Ĥ5
\2

2m
k21ĤSO5S \2

2m
k2 a~kx1 iky!

a~kx2 iky!
\2

2m
k2

D ~3!

consists of two branches

E1,2~k!5
\2k2

2m
7auku. ~4!
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The corresponding eigenstates have the form

Ck
~1,2!~r !5eikrxk

~1,2!, ~5!

where the spinorsxk
(1,2) are defined as

xk
~1!5

1

A2
S eifk

21 D , xk
~2!5

1

A2
S 1

e2 ifkD . ~6!

Here fk is the azimuthal angle of the wave vectork. The
lower branchE1(k) has a minimum atk5k05am/\2 with a
depthD5ma2/2\2. In the absence of a disorder the den
ties of states corresponding to each branch have the for

r1,2
~0!~E!5

m

2p\2

A11E/D61

A11E/D
. ~7!

It is seen thatr1
(0)(E) is 1D like, in the sense that it diverge

as (2uEu1D)21/2. The energy spectrum~4! and the densi-
ties of states~7! are shown in Fig. 1.

The relation between the disorder and the SO couplin
measured by a dimensionless parameter

k5
E2D

2D
5

g

a2
. ~8!

It is clear that, ifk@1, then the spin-orbit term has a neg
gible effect on the DOS. In other words, in the limit of wea
SO coupling the smearing is still determined by the ene
scaleE2D . In the present paper we study the opposite lim
of a strong SO coupling~or weak disorder!, k!1. Remark-
ably, in this case the DOS can be foundexactly.

Let us first determine the characteristic energy scaleE1D
for disorder-induced broadening.10 Using the golden rule, the
relaxation time for an electron with energy close toE
52D can be written as\/tE;gr1

(0)(E). ThenE1D can be
found from the conditionE1D;\/tE1D

, yielding

E1D5
m

\2
~ga!2/3. ~9!
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We see that fork!1 the energy scale is much larger th
E2D but much smaller than the depth of the minimum:

E1D5
E2D

k2/3
5k1/3D. ~10!

This last condition allows a strong simplification in the ca
culation of the DOS. Indeed, Eq.~10! suggests that the state
in the region of smearing are composed of plane waves w
magnitudes of wave vectors close tok0 ,

uku2k0;A2mE1D /\2;kk0!k0 . ~11!

FIG. 1. ~a! The energy spectrum of a 2D system with spin-or
coupling. ~b! The density of states for two branches of the sp
trum.
th

If we rewrite the energy spectrumE1(k) as

E1~k!52D1
\2

2m
~ uku2k0!2, ~12!

then Eq.~11! allows to consider the second term as a sm
correction. The crucial observation, which allows the calc
lation of the DOS

r~E!5
1

p
Im(

k

uxk
~1!u2

E2E1~k!2Sk~E!
~13!

in the closed form, is that under the conditionk!1 the con-
tribution of the diagrams with self-intersections to the se
energy,Sk(E), is much smaller than the contribution of dia
grams without self-intersections. In other words, in t
strong SO coupling limit the coherent potential approxim
tion becomes asymptotically exact. To illustrate this state-
ment, consider two second-order diagrams for the s
energy shown in inset of Fig. 2. The contributions of t
diagrams~a! and ~b! to Im S are

FIG. 2. Dimensionless functionf (x) defined by Eq.~24!. Inset:
two second-order diagrams for the self-energyS. ~a! The diagram
without self-intersection.~b! The diagram with self-intersection.

t
-

Im S~1!5g2ImE d2k1

~2p!2E d2k2

~2p!2

u~xk*
~1!xk1

~1!!~xk1
* ~1!xk2

~1!!u2

@E2E1~k1!#2@E2E1~k2!#
, ~14!

Im S~2!5g2ImE d2k1

~2p!2E d2k2

~2p!2

~xk*
~1!xk1

~1!!~xk1
* ~1!xk11k22k2

~1! !~xk11k22k* ~1! xk2

~1!!~xk2
* ~1!xk

~1!!

@E2E1~k1!#@E2E1~k2!#@E2E1~k11k22k!#
, ~15!
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respectively. Noting that the scalar products (xk*
(1)xk8

(1)) are
equal to

~xk*
~1!xk8

~1!
!5cosS fk2fk8

2 De2 i [ ~fk2fk8!/2], ~16!

the integration over the anglesfk1
andfk2

in Eq. ~14! can
be easily performed. The main contribution to the integr
over absolute valuesk1 and k2 comes from the regionsuk1
2k0u!k0 , uk22k0u!k0 . Then, using Eq.~12! and per-
forming the integration overk1 and k2 , we obtain the fol-
lowing estimate for ImS (1):

Im S~1!;g2
m

\2

k0
2

uE1Du2
. ~17!

In contrast to Eq.~14!, in the second diagram the conditio
that the magnitudes ofk, k1 , andk2 are close tok0 restricts
the integration over angles. Indeed, consider the last en
denominator in Eq.~15!. One can check that the condition

uk11k22ku2k0;AmuE1Du/\2 ~18!

confines one of the integration angles within the rangef
;AmuE1Du/(\k0). Then the estimate for ImS (2) yields

Im S~2!;g2S mk0

\2uE1Du
D 3/2

. ~19!

Thus we obtain the following estimate for the ratio of di
grams~a! and ~b!

Im S~2!

Im S~1!
;AmuE1Du/~\k0!. ~20!

In the region of broadening,uE1Du;E1D , this ratio is of
the order ofk1/3!1.

Once the diagrams with self-intersections can be
glected, the summation of the remaining series is straight
ward, and yields the following equation for the self-energ

Im Sk~E!5g Im E d2k1

~2p!2

u~xk*
~1!xk1

~1!!u2

E2E1~k1!2Sk1
~E!

.

~21!

Noting that ImSk(E) does not depend onk ~the explicit
dependence onfk disappears after the angular integratio!,
and using the expression~12! for E1(k1), we obtain

Im S5
E1D

24/3
f S 24/3«

E1D
D , ~22!

where the energy« is defined as

«5E1D2Re S, ~23!

and the dimensionless functionf (x) satisfies the algebrai
equation

f ~x!5Ax1Af ~x!21x2

f ~x!21x2
. ~24!
s

gy

-
r-
:

The function f (x) is shown in Fig. 2. It turns to zero atx
52221/3. In the vicinity ofx52221/3, it exhibits a square-
root behavior f (x).25/631/2Ax1221/3/51/2, which is usual
for the coherent potential approximation. Using Eq.~21!, the
density of states~13! can be expressed through the functi
f (x) as follows:

r~«!5
1

pg
Im S5

m

2p\2S 4

k D 1/3

f S 24/3«

E1D
D . ~25!

Clearly, the vanishing of the DOS at«52225/3E1D is the
consequence of neglecting the diagrams with s
intersections. Taking these diagrams into account leads to
smearing of this singularity and the formation of the tail
the DOS. The fact that intersecting diagrams are relativ
small indicates that the characteristic energy for this sme
ing should be much smaller thanE1D . Indeed, below we
demonstrate, using the instanton approach, that the DO
the tail has the form

r~«!}expS 2
pu«u

E2Dln~D/u«u! D . ~26!

It is seen from Eq.~26! that the rate of the decay of the DO
in the tail is E2Dln(D/E2D)!E1D . Note that, atu«u;D, Eq.
~26! matches the result~1! for the zero SO coupling. This
conclusion could be anticipated since at energiesu«u@D the
density of states does not depend on the SO coupling,
Eq. ~1! applies.

Within the instanton approach the density of states
given by

r~E!}expS 2
1

2gE d2r uF~r !u4D , ~27!

where the functionF(r ) is the solution of the nonlinea
equation

ĤF~r !2uF~r !u2F~r !5EF~r !. ~28!

When the energyE is close to2D, the two-component
wave functionF(r ) is modulated in space with a perio
2p/k0 . Then it is convenient to perform the Fourier tran
formation of Eq.~28!. Substituting

F~r !5E d2r A~k!xk
~1!e2 ik•r, ~29!

we obtain

A~k!@E1~k!2E#5
1

~2p!2E d2rE S )
i 51,2,3

d2k iA~k i ! D
3~xk*

~1!xk1

~1!!

3~xk2
* ~1!xk3

~1!!ei ~k12k21k32k!•r. ~30!

SinceA(k) depends only on the absolute value ofk, the
angular integration in Eq.~30! can be easily performed. Us
ing Eq. ~16!, we obtain
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A~k!@E1~k!2E#

5p2E dr r E S )
i 51,2,3

dkikiA~ki ! D
3@J0~kr !J0~k1r !1J1~kr !J1~k1r !#

3@J0~k2r !J0~k3r !1J1~k2r !J1~k3r !#, ~31!

whereJ0(x) andJ1(x) are the Bessel functions of the zero
and first orders, respectively. Now we make use of the
that for E'2D the typical range of the change of eachk is
uk2k0u;k«5Am(E1D)/\2. If we replacek, k1 , k2 , and
k3 in the arguments of Bessel functions byk0 , then the prod-
uct of Bessel functions will fall off asr 22, and the integral
over r would diverge logarithmically atr→`. Cutting this
divergence atr;k«

21 we obtain

A~k!S \2

2m
~k2k0!22« D54k0ln

k0

k«
S E

0

`

dk8A~k8! D 3

.

~32!

The obvious solution of this equation is

A~k!5
C

\2

2m
~k2k0!21u«u

. ~33!

Substituting Eq.~33! into Eq. ~32!, we find the value of the
constantC,

C5
1

2p3/2
k0

21/2S 2m

u«u\2D 23/4

ln21/2~k0 /k«!. ~34!

Performing the inverse Fourier transformation, we obtain
solution of the instanton equation in the coordinate spa
which is valid for r &k«

21 :

F~r !52p2Ck0S m

\2u«u
D 1/2S J1~k0r !

2J0~k0r !
D . ~35!
ct

e
e,

Finally, upon substituting Eq.~35! into Eq. ~27! we arrive at
Eq. ~26!.

In conclusion, we have calculated the DOS for 2D ele
trons in the Gaussian random potential in the limit of
strong spin-orbit coupling. The summation of the diagra
series became possible due to the fact that in the absen
disorder the energy spectrum has a minimum at some fi
k5k0 . This causes he magnitude of smearing of the DOS
increase with increasing the strength of the SO coupling

The physical origin of the SO-induced enhancement
the width is the following. It is well known that without SO
coupling an arbitrary weak attractive potential creates
bound state which in the 2D case is exponentially shallow11

In the presence of the SO coupling the same model quant
mechanical problem can be easily solved. The solution in
cates that the bound state is always present for an arbit
weak attraction and, moreover, that its binding energy
much greater~quadratic instead of exponential with respe
to the attraction strength! than without SO coupling. It is
obvious that as the strength of the attractive potential
creases, so that the binding energy grows, the difference
tween the two cases gradually vanishes.

Note that the depth of the minimum in the energy sp
trum decreases in the presence of a magnetic field, and
appears completely when the Zeeman splitting exceedsD.
This suggests that the tail of the DOS is very sensitive t
weak magnetic field. The latter property~disappearing of a
peak in DOS at small fields! can be used as an experimen
test of the theory in optical absorption.

The applicability of the theory developed requires the S
induced energy scaleD to be larger than the inverse relax
ation timeE2D in the absence of the SO coupling. This co
dition seems to be met in high-mobility silicon metal-oxid
semiconductor field-effect transistors.12,13 According to Ref.
13, the coupling constanta in this structures is
;231026 meV cm, which corresponds toD;1 K. How-
ever, in the experimentally interesting situation where
metal-insulator transition occurs ~see, e.g., recen
references14!, the Fermi energy lies much higher thanD.
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