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Disorder-induced broadening of the density of states for two-dimensional electrons
with strong spin-orbit coupling
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We theoretically study the disorder-induced smearing of the density of states in a two-dimensional electron
system, taking into account a spin-orbit term in the Hamiltonian of a free electron. We show that the charac-
teristic energy scale for the smearing increases with increasing spin-orbit coupling. We also demonstrate that
in the limit of a strong spin-orbit coupling the diagrams with self-intersections make a parametrically small
contribution to the self-energy. As a result, the coherent potential approximation becomes asymptotically exact
in this limit. The tail of the density of states has an energy scale which is much smaller than the magnitude of
the smearing. We find the shape of the tail using the instanton appi&@t63-18208)05836-9

It is well known how the random potential smears theThe corresponding eigenstates have the form
band-edge in a two-dimension@D) system. In the case of _
a white-noise potential with a correlatdf(r)V(r')=y(r V() =e" M2, 6)
—r"), the characteristic energy scale for the smearing can be . (1.2) _
estimated asE,p=ym/%2. Deep in the tail E<0, Where the spinory,~ are defined as
|E|>E,p) the density of stateOS) falls off exponentially
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Here ¢, is the azimuthal angle of the wave vector The
lower branchE, (k) has a minimum ak=ky,= am/#2 with a
depthA =ma?/242. In the absence of a disorder the densi-
ties of states corresponding to each branch have the form

where the numerical factaris approximately¢~5.812 The
form of tail (3) follows from the instanton approach devel-
oped in Refs. 3 and &ee also Refs. 5 and.6The prefactor
in Eq. (1), including the numerical coefficient, was derived

in Ref. 2. In the intermediate regioB~E,p, the exact form =Ty

of the DOS is unknown. Within the coherent potential ap- p %) E)= m 1+E/A_1_ (7)
proximation it was studied in Ref. 1. The autors of Ref. 1 ' 2wh? J1+E/IA

have also performed the approximate matching of the coher- O o o

ent potential result and taflL). It is seen thapi ’(E) is 1D like, in the sense that it diverges

Spin-orhit (SO) interaction modifies the energy spectrum aS (—|E[+A)~ "2 The energy spectrurtd) and the densi-
of 2D electrons. The origin of this modification is either the ties of stateg7) are shown in Fig. 1. o
absence of inversion symmetry in the bifftor the asymme- The relation between the disorder and the SO coupling is
try of the confinement potential. In the latter case the SOneasured by a dimensionless parameter
interaction can be taken into account by adding to the Hamil-
tonian of a free electron the tePm Eap v
K= 55— =—. (8

. - 20,2
Hso=a(oxk)-n, v
It is clear that, ifk>1, then the spin-orbit term has a negli-
gible effect on the DOS. In other words, in the limit of weak

O coupling the smearing is still determined by the energy

caleE,p . In the present paper we study the opposite limit
of a strong SO couplingor weak disorder k<1. Remark-

where the components of are the Pauli matrices)|z is the
normal to the 2D planey is the SO coupling constant, akd
stands for the electron wave vector. The energy spectrum
the Hamiltonian

52 ably, in this case the DOS can be fouexictly
) —k2 a(kytiky) Let us first determine the characteristic energy ségle
N ﬁ_ 2.0 2m for disorder-induced broadenid@Using the golden rule, the
H=-—k°+Hgo= 5 (3) . . .
2m K —ik he relaxation time for an electron with energy close o
a(ky—iky) mK =—A can be written a#/ 7=~ yp{®(E). ThenE;p can be

) found from the conditiorE,p~#/7¢_ _, yielding
consists of two branches 1D

Eiak =iia|k|. 4) E1p= 2 (ya)® 9)
1,2( ) om ( ﬁ2
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gl FIG. 2. Dimensionless functiof(x) defined by Eq(24). Inset:
s ‘ two second-order diagrams for the self-enekgy(a) The diagram
< without self-intersection(b) The diagram with self-intersection.
! If we rewrite the energy spectrui, (k) as
1
2 | 72
— . F Ey(k)=—A+ (k| —ko)?, (12)
-1 0 1 2 3 4 m
(b) E/A then Eq.(11) allows to consider the second term as a small

) ) _correction. The crucial observation, which allows the calcu-
FIG. 1. (a) The energy spectrum of a 2D system with spin-orbit lation of the DOS

coupling. (b) The density of states for two branches of the spec-

trum.
: 1 Mk
We see that fok<<1 the energy scale is much larger than p(E)= —ImE Xk (13
E,p but much smaller than the depth of the minimum: m K E—Ei(k)—Z(E)
E
Em=% =k'PA. (100 in the closed form, is that under the conditierc 1 the con-
K

tribution of the diagrams with self-intersections to the self-

energy,2(E), is much smaller than the contribution of dia-
This last condition allows a strong simplification in the cal- grams without self-intersections. In other words, in the
culation of the DOS. Indeed, E(LO) suggests that the states Strong SO coupling limit the coherent potential approxima-
in the region of smearing are composed of plane waves witfion becomes asymptotically exadto illustrate this state-

magnitudes of wave vectors closekg, ment, consider two second-order diagrams for the self-
energy shown in inset of Fig. 2. The contributions of the
[k| — ko~ V2ME;p /7%~ kko<Kg. (11)  diagrams(a) and(b) to Im > are

*(1) (1) * (1), ,(1)y]2
- 2<1>:y2|mf d2k1f d%k, 1O xg) O, x| "
(2m)2) (2m)? [E—Ey(ky)JAE—Ey(ky)]’
o szkl [ 6%, O XDk, 1) O Bk O Pxi) .
m =vIm ,
P 2m2) 2m2 T [E-Edk)I[E—Ey(k) [E-Eq(Ki+kp—K)]
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respectively. Noting that the scalar productg (Vx{}) are  The functionf(x) is shown in Fig. 2. It turns to zero at
equal to =—2"18 |n the vicinity ofx=—2"%3 it exhibits a square-
root behaviorf (x) =2%%3Y2,/x+2" 352 which is usual
for the coherent potential approximation. Using E2fl), the
density of state$13) can be expressed through the function
f(x) as follows:

(X:u)X(kl)):COE{@ e -2 (1¢)

the integration over the angIeﬁ(l and bx, in Eq. (14) can

be easily performed. The main contribution to the integrals 1 m [ 4\13 [ 243
over absolute valuek, andk, comes from the regionkk; p(e)= Tr—lm 3= A ( S ) (25
—kol<kKg, |ko—ko|<ko. Then, using Eq.(12) and per- Y 27h 1D

forming the integration ovek,; andk,, we obtain the fol-

lowing estimate for IS (®: Clearly, the vanishing of the DOS at=—2"%%E,, is the

consequence of neglecting the diagrams with self-
5 intersections. Taking these diagrams into account leads to the
Im S @~ yzm ko _ 17) smearing of this singularity and the formation of the tail of
h% |[E+A|? the DOS. The fact that intersecting diagrams are relatively
] ) _.small indicates that the characteristic energy for this smear-
In contrast to Eq(14), in the second diagram the condition ing should be much smaller tha,. Indeed, below we

that the magnitudes df, k;, andk, are close td, restricts  gemonstrate, using the instanton approach, that the DOS in
the integration over angles. Indeed, consider the last energye tail has the form

denominator in Eq(15). One can check that the condition

+Ks—K|—Kqa~VM|E+ 2 oc _—_—
|kq+ko— k| — ko~ Vm[E+A]/% (18) p(e) exp< i /|8|)). (26)

confines one of the integration angles within the rarfge

~\Jm[E+A[/(%ko). Then the estimate for Ik yields Itis seen from Eq(26) that the rate of the decay of the DOS
in the tail is E,pIn(A/E,p)<E;p. Note that, afe|~A, Eq.

3/2 (26) matches the resultl) for the zero SO coupling. This

m
Im 32~ 52 Z—ko (199  conclusion could be anticipated since at enerfi¢s A the
AeE+A density of states does not depend on the SO coupling, and

Eq. (1) applies.
Within the instanton approach the density of states is
given by

Thus we obtain the following estimate for the ratio of dia-
grams(a) and (b)

Im 32
ey ~JM[E+ A/ (fiko). (20)

In the region of broadeningE+A|~E;p, this ratio is of
the order ofx3<1.

Once the diagrams with self-intersections can be ne
glected, the summation of the remaining series is straightfor-

1
p(E)“exp(—z—yf d2r|¢(r)l4>, (27)

where the function®(r) is the solution of the nonlinear
equation

ward, and yields the following equation for the self-energy: HO(r)— | (r)|2d(r)=Ed(r). (29)
d2k O )2 When the energ)E is close to—A, the two-component
Im 3 (E)=7y Im J- 1 ! ] wave function®(r) is modulated in space with a period
(2m)? E—Ea(ky) =2 (E) 2m/ky. Then it is convenient to perform the Fourier trans-

(21)  formation of Eq.(28). Substituting

Noting that ImX,(E) does not depend ok (the explicit
dependence om, disappears after the angular integration ¢(r)=f d?r Ak) xiMe T, (29)
and using the expressiat?2) for E;(k;), we obtain

E 43, we obtain
_ 12 ©
Im 3= 24/3f i ) (22 1

A(K)[E (k)—E]= J dzrf( dzkiA(ki))

where the energy is defined as (2m) i=1,23

e=E+A—Re3, (23) X(xi Pxi)

and the dimensionless functidr{x) satisfies the algebraic X(Xzz(l)xfé))ei(krkz+k3*k>-r_ (30)

equation
SinceA(k) depends only on the absolute valuekofthe

/ 2 2
f(x)= m (24) angular integration in Eq:30) can be easily performed. Us-

f(x)24+x2 ing Eq. (16), we obtain
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A(K)[E (k)—E] Finally, upon substituting Eq35) into Eq.(27) we arrive at
Eqg. (26).
_.2 AL In conclusion, we have calculated the DOS for 2D elec-
i fdr rf (ilzsdk'k'A(k')) trons in the Gaussian random potential in the limit of a
strong spin-orbit coupling. The summation of the diagram
X[Jo(kr)Jo(ker)+Ja(kr)Ig(kyr)] series became possible due to the fact that in the absence of
X[ Jo(Kor ) Jo(Kar ) + I (Kor) Iy (Kar) 1, (31) disorder the energy spectrum has a minimum at some finite

k=Kky. This causes he magnitude of smearing of the DOS to
whereJy(x) andJy(x) are the Bessel functions of the zeroth increase with increasing the strength of the SO coupling.
and first orders, respectively. Now we make use of the fact The physical origin of the SO-induced enhancement of
that forE~— A the typical range of the change of edclis  the width is the following. It is well known that without SO
[k—ko|~k,=Vm(E+A)/#%2. If we replacek, ki, k,, and  coupling an arbitrary weak attractive potential creates a
ks in the arguments of Bessel functions ky, then the prod- bound state which in the 2D case is exponentially shaffow.
uct of Bessel functions will fall off as 2, and the integral In the presence of the SO coupling the same model quantum-
overr would diverge logarithmically at—co. Cutting this mechanical problem can be easily solved. The solution indi-
divergence at~k;1 we obtain cates that the bound state is always present for an arbitrary
. 5 weak attraction and, moreover, that its binding energy is
of (=, , much greatefquadratic instead of exponential with respect
Nk)(ﬁ(k_k(’)z_s) :4k0|nk_£< jo dk’Ack )) : to the attraction strengththan without SO coupling. It is
(32) obvious that as the strength of the attractive potential in-
creases, so that the binding energy grows, the difference be-

2

The obvious solution of this equation is tween the two cases gradually vanishes.
Note that the depth of the minimum in the energy spec-
c trum decreases in the presence of a magnetic field, and dis-

appears completely when the Zeeman splitting exceéds 2
This suggests that the tail of the DOS is very sensitive to a

- . ) weak magnetic field. The latter properftgisappearing of a
Substituting Eq(33) into Eq.(32), we find the value of the  eay in DOS at small fieldsan be used as an experimental

ﬁ(k—ko)2+|8|

constantC, test of the theory in optical absorption.
-3/4 The applicability of the theory developed requires the SO-
Cc= 1 K- L2 2m In~Y2(ky /K, ). (34) induced energy scalé& to be larger than the inverse relax-
273270 | |g|A2 ° ation timeE,p, in the absence of the SO coupling. This con-

Performing the inverse Fourier transformation. we obtain th dition seems to be met in high-mobility silicon metal-oxide
eI ?i T ?the n (te ?‘(ta nou e ; an Sinotha 0 ’rdi(r?lot a emiconductor field-effect transistdrs'® According to Ref.
solution ot the instanton equatio € coordinate spacels, the coupling constantae in this structures is

which is valid forr <k, n ~2%x10® meV cm, which corresponds th~1 K. How-
ever, in the experimentally interesting situation where the

)_ (35) ~ metal-insulator  transition occurs(see, e.g., recent
reference¥), the Fermi energy lies much higher thAn

m )1’2( J1(kor)

_ 2
Q)(r)_ZWCk"(ﬁ2|s| —Jo(Kof)
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