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Superconductor disks and cylinders in an axial magnetic field: II.
Nonlinear and linear ac susceptibilities
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The ac susceptibilityy= x' —i x” of superconductor cylinders of finite length in a magnetic field applied
along the cylinder axis is calculated using the method developed in the preceding paper, part I. This method
does not require any approximation of the infinitely extended magnetic field outside the cylinder or disk but
directly computes the current densityinside the superconductor. The material is characterized by a general
current-voltage lanE(J), e.g.,E(J)=E[J/J(B)]"®), whereE is the electric fieldB=uH the magnetic
induction, E. a prefactorJ. the critical current density, ami=1 the creep exponent. Fae>1, the nonlinear
ac susceptibility is calculated from the hysteresis loops of the magnetic moment of the cylinder, which is
obtained by time integration of the equation fir,t). For n>1 these results go over into the Bean critical
state model. Fon=1, and for any linear complex resistiviy,{ w)=E/J, the linear ac susceptibility is
calculated from an eigenvalue problem which depends on the aspecbtataf the cylinder or disk. In the
limits b/a<1 andb/a>1, the known results for thin disks in a perpendicular field and long cylinders in a
parallel field are reproduced. For thin disks in a perpendicular field, at large frequgfeiErosses over to
the behavior of slabs in parallel geometry since the magnetic field lines are expelled and have to flow around
the disk. The results presented may be used to obtain the nonlinear or linear resistivity from contact-free
magnetic measurements on superconductors of realistic SI&E63-18208)05534-9

I. INTRODUCTION with thermally assisted flux floWTAFF), is considered in
Sec. V. Finally, some concluding remarks are made in Sec.
In the preceding paper part(Ref. 1), the current density V.
J, magnetic fieldB, and magnetic momema(H,) of super-
conductor cylinders of finite length or disks of arbitrary Il. ANALYTICAL ac SUSCEPTIBILITIES
thickness in an axial magnetic fieBL(t) = uoH,(t) (along

y) are calculated by time integration of the equation of mo- In this section | compile some analytical expressions for

. ) : . . nonlinear and linear ac susceptibilities of superconductors
tion for the circulating current density(r,t). This method, and general linear conductors in various geometries. Within

which does not require any approximation or cutoff of the,o pean critical state modthe full hysteresis loop of the

magnetic field in the infinite space outside the cylinder, 98Nmagnetic momenm in a cycled applied field with amplitude

eralizes a S|m|!ar calculation _for.strlps, barg, or slabs in &, is completely determined by the virgin magnetization
perpendicular field. The material is characterized by an ar- ¢ rye m(H,). One has the general prescriptioh

bitrary (in general nonlinear current—voltage lawE(J),

whereE is the electric field, which inside the superconductor o—Ha

is generated by moving Abrikosov vortices. A further as- ml(Ha’Ho):m(Ho)_zm(T>’

sumption, which cannot be relaxed so farBis ugH, which

means that the lower critical fie®;, of the superconductor Ho+H,

and its reversible magnetizati®+ u,H are assumed to be m;(Ha,Ho)=—m(Hg)+2m T) ()
zero. This approximation is allowed whénis large enough

everywhere in the specimen. werem; andm, are the branches in decreasing and increas-

In the present paper the amplitude-dependent ac susceptitg H, . This construction is independent of the type of time
bility of finite cylinders is calculated from magnetization dependence ofi,(t), providedH, increases and decreases
loops which are computed by the method of paftih. the ~ monotonically between the valuesH,. For sinusoidal
case of linear resistivitfg/J=p,{ w), the linear ac suscep- H,(t)=H;ysinwt, one may define the nonlinear complex ac
tibility is calculated more elegantly from an eigenvalue prob-susceptibilitiesy, = x, —ix},, ©«=123... J
lem which depends only on the geometry and therefore
yields a general expression into which any linear complex [ 2m e
resistivity p,d{ @) may be inserted. Before these two types of Xu(Ho, )= 7T_|'|ofo m(t)e”'““'d(wt). @
susceptibilities are considered in Secs. Ill and IV, first some
exact analytical expressions for both nonlinear and linear atJsually, they, are normalized such that fdf,—0 or
susceptibilities will be compiled in Sec. Il for rings, hollow —« the ideally diamagnetic susceptibility(0,w) results;
cylinders, infinite slabs, infinite cylinders, and spheres. Thehis normalization is achieved by dividing all,, Eq.(2), by
particular case of Ohmic conductors, or superconductorthe magnitude of the initial slope |m’(0)
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=IimHaHO|am(Ha)/aHa|. In this paper only the fundamen- becomes also compldxhe measured moment is fe(t)}]

tal susceptibility gz =1) will be considered, denoting, by ~ and the linear ac susceptibility is then definedyasw—1,

X
Note that in the critical state model thjs depends only 1 (2 it

on the amplitudeH, but not on the frequencw. For thin x(w)= mHoJo m(t)e™*" d(wt). @

circular Bean diskg(Hy) was calculated from the magneti-

zation curves of Refs. 6 and 8 in Refs. 6 and 9. The linear susceptibilityy,{w) or conductivity o,{ w)

For a thin-walled hollow cylinder and for a narrow planar _ 4, ; ; : ; P
. ; : 10111 =1/p,{ w) is obtained for various geometries by replacing in
ring the hysteresis loop is a parallelogram.'” This paral- the analytical expressions fot,. the Ohmic resistivityp by

lelogram applies to planar rings with arbitrary shape, mad‘?he complexp,{ ). For example, by solving the diffusion

f_rom fla? or round wires, containing no, one, or s_(_averal Weal<equation for the magnetic field, with the diffusion constant
links, with the weakest one determining the critical currentD:p/M replaced by the comple® = p,/ 110, one obtains
I.. This is so since at small, the screening is perfect and for slags of width 2 in a parallg(I: a?:, field H (t)

no magnetic flux penetrates the ring or tube. But whkn —Hoexp(wt) the permeability p=y+1=(H.{Xt))/

exceeds some critical field,,, the screening current in the dite 4 2122
ring exceeds the critical valug and magnetic flux can leak Ha(1) and the susceptibility =~ 1,
into the ring such that the circulating curréht=1, and the
. = ; tantu a
magnetic momenjtm| = mg, remain constant. The full paral- Xelatf ©®) = -1, u=—, (5)
lelogram then follows from Eq(1) and the complex ac sus- u Nac
ceptibility of the ring normalized to the initial value h
X(O): -1 i54 wnere
x'(h)y=-1, )\ac:(Pac/i‘U,U«O)l/2 (6)
x'(h)=0, h=<1, is the complex penetration depth @f{ ) =i w,uo)\gc. For a
long cylinder with radiusa in an axial field one finds for
1 1 1 =u—1=(H{r,t)), /Hy(t)—1,
x'(h)=— = — —arcsis+ —sy1—s?, XK {Hadr, 1)) Ha(t)
2 T
211(u) a
4h-1 1-¢° Xey(@)= 5y W b ouTy @)
X"(h)= p— = pu h=1, (3 0 ac

with the same\ .., Eqg. (6); 1(u) andly(u) are modified
whereh=Hgy/H, ands=2/h—1. Note that the dissipation gasse| functions. a- (6): 12(u) o(¥)

(proportipnal_tox") sets in only at amplitudes exceeding the Remarkably, formula(7) applies also to cylinders in
penetration fieldd, . The polar plot of EQ(§)= ){” versusy’  yransverse field and thus, due to the linearity, to any inclined
with h as the parameter, gymmetrici.e., x"(x') yields the  fie|q H(t) forming an angled with the cylinder axis. The
same curve ag"(—1—x’). . 3 axial and circulating current components in the tilted in-
The ac susceptibilities obtained from the critical statefjniie cylinder exhibit the same radial dependence
model arequasistatic i.e., they depend only on the ampli- f(r)=(Ha/\od!1(r/Nad/1o(a/N 50" J|=2cospsinf(r),
tudeH, but not on the frequenc_:y. This statement is true everh(P:cosﬁf(r), whereg is the azimuthal angle. The magnetic
when the critical current density.=Jc(B) depends on the  moment of cylinders in a transversk, is twice as large as in
local induction and thus Eq1) does not apply, e.g., for the 5 araie| field; this may be ascribed to the demagnetization
magnetization loops computed in Refs. 12,4 and 13 for disk§yctor N=1/2 or to the contribution of the U turn of the
with J¢(B) =Jc(0)/(1+|B|/B,) (Kim mode). currents at the ends of the cylinder. Thus| contains a

In contrast to these nonlinear quasistatic ac susceptibilie; ~tor (cod¢-+4sirtd)Y2, which, however, drops out in the
ties x(Ho), the linear ac susceptibilities of materials with |, 5rmalized susceptibili’tW). ' '

linear resistivity, p,{ @), depend only on the ac frequency o the sphere one may use London’s solifidior the

but not on the ac amplitudel,. Examples for this are the magnetic moment of a sphere with radisn the Meissner
Ohmic conductors with real and constant resistiyity o) state

=p, and superconductors in the Meissner state with Lon-

don’s magnetic penetration depth which formally are de- 3\ a  3)\2

scribed by a purely imaginarynondissipativg resistivity m=—2mH,a® 1——c0tf‘$+—2 . (©)]
pac=iwmoh2. More complicated complex linear resistivities a a

pac=p’ +ip” occur in superconductors with thermally acti- - _ .

v;ied depinning above the irreversibility lifer depinning [r)]eflnlng )I(—m()\)/|m()\—>0)| and_replacmg the r_e@_{ by
line) in the B-T plane; see, e.g., the models of Refs. 14—20t M comp.exkac,.Eq. (6), one obta|rjs.the suscept|b|l|ty'of a
and the experimentally determingg. in Refs. 19 and 20. In sphere with arbitrary complex resistivipy.{«) and radius
complex notation one usually writesl,(t)=Re{Hye'“'} &
where R¢- - -} denotes the real part artd, is a complex
amplitude, e.g.Ho=—i|Hg| if Ha(t) =Hgsinwt is chosen to
obtain Eq.(2). The magnetic moment(t) then formally

3cothu 3 1 ! 9
u ? , U=1—. 9

Xspheré w)=
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For the susceptibility of thin disks or strips in perpendicularHere the vectold;(t)=J(r;,t) and the applied fieldB,(t)
field, analytical expressions are not available. However, onéepend on the time, E(J) is a given function, e.g.E

may express the lineagy,{ w) for any geometry by an infi- =J" in reduced units, antRijz(Qijwj)*l is a reciprocal
nite sum of the form matrix into which enters the matri®;; = Q(r; ,r;) defined in
A b2 part | and the weightsw; of the grid points(e.g., w;
_ vy 2 =ab/N for equidistant grids Throughout this paper, for
x(@)= WZV W+AV/ Ey A, (10 increased accuracy | use nonequidistant grids which are

) denser(and have thus smaller weightsear the cylinder sur-
Here the complex variables depends omp,.andw and on  fgce.
the geometry, and the dipole mometts and eigenvalues Equation(11) is easily time integrated by starting at time
A, follow from an eigenvalue problem which is different for t=0 with B,=0 andJ;=0 and then increasing the applied
each geometry; see the examples for thin stfifsand  field B,(t) to obtain the solutionJ;(t). From the current

disks®?*and thick strips and bars in a perpendicular fféld, densityJ;(t) the magnetic momen(t) of the cylinder(di-
for rectangular bars in a parallel fieféiand for finite cylin-  rected alongy like B,) is obtained as
ders in an axial field, below in Sec. IV. The sum in the

denominator of Eq.(10) provides the normalizatiorny(w a , [P N 5
—»)=—1 (ideal diamagnetic screening m(t)=277f0 drr fo dy J(f,y,t)=27721 ridi(tw;.
For practical purposes, a finite number of terms ' (12)

=1,... N in the sum(10) is sufficient; cf. Sec. IV. When
the (real and positivenumbersA , andb, are known for a  In this sectiorB,(t) = uoHgSinwt is chosen; the nonlinear ac
given geometry, thew(w) may be calculated from the sum susceptibility then follows from E¢2).
(10) for any complex resistivityo,{ w). By inverting this The resulting magnetization loops(B,(t)) become sta-
relationship between the two complex functiopéw) and tionary shortly after 1/4 cycle or even earlier; i.e., the tran-
pad @) numerically, the complex resistivity,{w) may be  sition from the virgin curve to the final hysteresis loop oc-
obtained from measured ac susceptibilities as done By Kocurs rapidly (see Figs. 14-17 in part).l This is a
zler et al2° consequence of the nonline&(J) relation; in the Ohmic
case withEocJ the transient time is somewhat larger and the
IIl. NONLINEAR ac SUSCEPTIBILITIES stationary loop is reached exponentially in time. For expo-
nentsn=2 it is thus sufficient to calculatg from the half
We model the superconductor as a nonlinear conductapops in the time interval 0.55< wt<1.55r.
with general current-voltage dependeriee E(J)J/J, e.g., Without restriction of generality we may choose the cir-
E(J)=E(J/Jc)" with arbitrary creep exponemt=1. In ad-  cular frequencyw=1 corresponding tow=E./(uqJ.a?)
dition; B=uoH is assumed, see the discussion in Sec. V ofyhen reduced unita=J,=E.=uo=1 are used. The scal-
part |1 The nonlinear resistivity fon>1 is caused by ther- ing law of part I, Sec. Ill E, states that when a material law
mally activated depinning with an activation energyJ) ExJ" is assumed, then the susceptibilyHy,») depends
=UoIn(J./J) yielding a creep exponemt=U,/KT; see Sec.  only on combinations of the fortH o/ w*™ ™Y or w/H] ~* or
11D of part I. In axial symmetric geometry, i.e., for cylin- on any function of these ratios. Therefore, thH,,w) for
drical specimens in an axial magnetic field alonghe cur-  different frequencieso are obtained by rescaling the ampli-

rents, electric field, and vector potential are directed alpng tude  axis. For example, one hasy(Ho,100)
where  o=atang/x), namely, J=J(r.y.t)e, E =)((.101/("_1)H0,w). This scaling to a good approximation
—E(r.y.0)¢, andA=A(r,y.)¢. In particular, the applied a_lpplles also_to otheE(J) I_aws if these are suffl_mently non-
~Eny.be, \rLY.Le. 1npa ’ PP linear and if the effective exponem is defined asn
field is now Bo=Ba(t)y=VX(Aap) With A;=—(r/12)Ba. = y(InE)/a(InJ) taken at)=J, wherel, is the typical current
The components of the magnetic field @g=0JA/Jdy and  gensity of the experiment. The nonlinear susceptibility thus
By=—(1r)o(rA)/or. During our computation of] and  depends only omnevariable combining amplitude and fre-
m, B, andB, do not have to be calculated except when onegyency, further on the effective exponentand on the ge-
assumes 8-dependent current-voltage law, e.g., of the formgometry expressed, e.g., by the aspect rhfia of the cylin-
E(J,B)=E[J/I(B)]"®. In generalE(J,B, ,B,) may de-  der,
pend on both components &, e.g., whenJ.(B, ,B,) is Figures 1—6 show the nonlinear susceptibilitigs o, )
anisotropic like inc-axis-oriented cylinders of uniaxial high- gt w=E/(ugd.a?) for various geometries, for creep expo-
T, superconductors. Our method applies also to these anisgentsn=3, 5, 11, 51, and for constadt and B-dependent
tropic materials. . _ J<(B), using various types of plots. The real and imaginary
The equation of motion for the current densifr,y,t) in  parts of y=y’ —iy” of cylinders with half length to radius
cylinders or disks is given in part!lOn a two-dimensional ratio a/b=3, 0.3, and 0.03 in an axial magnetic field are
(2D) grid of N pointsr;=(r;,y;)(i=1, ... N) spanning the  piotted in Fig. 1 versus log{o/H,), in Fig. 3 versus
quarter Cross sections@r_sa, Osys_b (or half cross sec- Ho/H,, and in Fig. 5" is plotted versus- x' (polar plop.
tion O<r=a, —b=y=b if the specimen has no symmetry Here H, is the amplitude of the applied ac field ,(t)
plane aty=0) this equation of motion reads =H,sinot andH, is the field where full penetration occurs
1 in the Bean model. For bars in a perpendicular field and
T — - N_T L, F cylinders in an axial field, both with rectangular cross sec-
Hodi(t) 2 R"[E(JJ) Zr'Ba}' (1 tions 2ax 2b, one ha%?°
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: cylinder
| J =const

I b/a=0.03
F thin disk

0.1
HO/HP
FIG. 1. Nonlinear magnetic susceptibiliy(Hq,w)=x"—ix"
of cylinders with aspect ratioa/b=3, 0.3, and 0.03 in an axial ac

magnetic field with frequencw=E./(uqJ.a%) and amplitudeH,
referred to the field of full penetratiobl,, Eq. (14) (Hp/J.a
=0.9824, 0.5757, 0.1260 fdo/a=3, 0.3, 0.03. Depicted isy’
(monotonic curvesand xy” (curves with maximurnon a semiloga-
rithmic plot for creep exponenta=3 (solid lineg, n=5 (long
dashed linegs n=11 (medium dashed lings and n=51 (short
dashed linesfor constant].. The curvesn=51 are close to the
Bean limit.

H,=J bj 22 b In| 1 2 b 13

p=Je ] Farctar-ng n +F (ban, (13
a 2\ 1/2

Hp=Jcbln 5+(1+F } (cylinden. (14

This givesH,/J.a=0.9824 (0.8814, 0.5757, 0.1260) for
cylinders  with b/a=3 (1, 0.3, 0.03), and Hy/J.a
=0.7206 for a bar wittb/a=1. In Figs. 2, 4, and 6 similar
x' and x” are plotted for a cylinder witth/a=1 and J.
=const orJ¢(B) =J.(0)/(1+ 2B/ ueHp) (Kim mode) with
B=|B(x,y)|, and for a bar withb/a=1. Note that the de-
picted curves look qualitatively similar for all six cases. The
slight oscillation of some of the curves with larbgéa is an
artifact due to a too small numbak, of grid planes along
(or cylinders along); e.g., in these figures nonequidistant
grids were used witiN,=9, N,=20 for b/a=3 and N,
=30, Ny=3 for b/a=0.03.

In the Bean limith—o, the general behavior of’ and
x" at small and large amplituddd, is explicitly known.
Expanding the virgin magnetization curve at snidy,
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(SRR e N
T ~..

| b/a=1
| cylinder
| J =const

=T

=0

I cylinder
r J.(B)

HO/Hp

FIG. 2. Similar as in Fig. 1 but for a cylinder wita=1 and
Jc=const (top, H,/J.a=0.8814), J.(B)=J(0)/(1+2B/ueH,)
(middle, Kim mode), and for a bar withb/a=1 and J.=const
(bottom,H,/J.a=0.7206). Four creep exponents-3, 5, 11, and
51 are shown, as in Fig. 1.

M(Ho)=aHq+ BH3+ yH3+ - - -, (15
one obtains, from Eggl) and(2) y=x"—1ix",
’ 15 2
X (Ho)=a+,3Ho+1_67Ho+"', (16)
" 4 2 2
X"(Ho)= 35— BHo+ —yHo+---. 17)

In particular, using the virgin curves of part I, Sec. Il, one
obtains the following relations. For long cylinders and slabs
in a parallel field the coefficients in Eql5) are <0, B
>0, and y=<0; thus wheny is normalized toy(Hy=0)

1, both 1-|x'| and x” start linearly with a term
xBHy/|@|. This result applies also to our numerically ob-
tainedy(Hg) of cylinders of finite lenght. Thus, in the polar
plots of Figs. 5 and 6, the curvgg(—x') start linearly in
the lower right corner. Explicitly one has, up to terms linear
in ho=Hy/H, in longitudinal geometry,

12
X(Ho)=—1+§ho—|§h0+--- (slah, (18
x(Ho)=—1+hg—i=z—hy+--- (cylinden. (19

37
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1

N b/a=3 | TR T
KON cylinder 1 N b/a=1
AN s J,=const’ 1 N cylinder
:x/\\‘ ---------- -~ 1 [ \‘\& - S J,=const
X e T e
KA S
;X TN =
N o \\\\\\
1 I/ ~ e Tl \\\\
 / T e T T
i/ ey e |
0 1
A\ b/a=1
z by » cylinder
OO S J (B)
0 I /\/\ )}V\':(\ - ’—"'\f‘\\:‘k —
NN ST
bad 1/ N ST
| 'l/, SO : \\:\\\~
l", = ::l::\‘:t?::':':-; .......
‘ . . i ? G K e G e ot
A b/a=0.03 | I~
A thin disk | NN b/a=1
H /H 1 o 1
of Ho/H,
FIG. 3. As in Fig. 1 but with a linear abscissa. FIG. 4. As in Fig. 2 but with a linear abscissa.
For thin strips and disks in a perpendicular field one has
<0, B=0, andy>0; i.e., there is no quadratic term in the I —
virgin magnetization curvécf. Egs.(11) and(14) in part I]. b/a=3
Explicitly, for the thin strip one hasn(H,)xtanhf)=h o3 T T TN cylinder |
—h%3+0(h®) with h=H,/Hs and Hg=2J.b/; thus B [ T N Yemeonst
=0 andy=— a/(3H2). For the thin disk the expansion of e 0 ,,’,/" NN '
. . . (54
the bracket in Eq(11) of part | yields 2v—h3+ O(h®) with W4
h=H,/Hy and Hy=J:b; thus =0 and y=— a/(2H3). 7
With thesey/a values the small-amplitude expansion yof :
yields 0.0 —_—
| b/a=0.3
’ . H3 orH) (st 20 0.3 SPTSE thick disk
=—1+|—=— 5 + strip), i gL, S~ 1
x(Ho) 16~ 372 OHD) (strip), (20 B —
-X //, T \:\\ ~
Wi SN
/ N
(Ho) 1+(15 i)Hé +O(HY) (disk.  (21) 4 R
=— ———|— isk). / BN
XiTo 32 w/H3 0 N
00 —"———+—
The slope ofy”(—x') in the lower right corner of Figs. 5 - b/a=0.03
and 6 in the Bean limit should thus take the universal values 0.3F T I thin disk |
i ///// e-eﬁ.%;\\\ AN
ey ~ N
X’ [4/3’7720.42 for B+#0, 22 e I /;/ ﬂe \;\\::\\
= 22 A O
! = = 1 NN
1+x o 32/157=0.68 for =0, |/ e\\:‘\
where the cas@=0 corresponds to thin films in a perpen- 0.0 e :
dicular magnetic field ang3#0 to all other geometries. 0 —y 1

These slopes are approximately reached in the depicted case
n=51, but for stronger creemE& 11, 5, 3) the slopes are FIG. 5. The data of Fig. 1 plotted ag’ vs —x'. The open
larger. Note also that our assumptiBr= woH requires that circles in the lower plot show the fit, Eq4).
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i - 7 directly solve the original equation for the current density in
0.3 | b/a=1 | a bar[Eq. (6) or (44) in Ref. 2] or cylinder[Eg. (24) in Ref.
P cylinder . . .
I L R J =const 1 1]. Inserting the periodic time dependenced(t)
I R A O ] =Hge', J(r,t)=J(r)e', and E(r,t)=E(r)e'*!, where
ol | ,’/ \'\\\\\ ] now formally Hy, J(r), and E(r)=p,{w)E(r) are com-
Y \\\\ | plex amplitudes/as usual, the physical quantities are ob-
N tained by taking the real part f,(t), J(r,t), andE(r,t)],
"N one obtains, for the cylinder in an axial ac magnetic field the
0.0 — integral equation fod(r),
0.3 b/a=1 |
. L - cylinder pad @) , N o2 T
AP, BRNEAG) o I(N)=] Qeu(rr)I(r’) dr'+ 5 Ho. (25
e v TN ] Mo s
/ \\\\\ 1 Herer=(r,y), r'=(r’,y’), and S=ab is the integration
\\:\\ ] area(a quarter of the clinder cross sectiom’22b). The
N\ kernel Qy(r,r ') is defined by Eq(21) of part I. Equation
0.0 N (25) is related to the eigenvalue problem
0.3} -~ Eéf=1 1 4 (a_ (b , ,
/// \\\\\ Jc=const 1 fV(r):_AVg Odr Ody QCy|(r7r )fV(r )l (26)
= // .\\ \\ ] with positive eigenvaluesA, and real eigenfunctions
»/// BN N ] f(r,y), v=1.2,...¢. For cylindrical symmetry we may
' \\\ normalize thef (r) as®
"% X 1 47Tjad fbd £ (=8 27)
- — rr rNf,(r)=6,,.
S, 0 0 y )73 v y12%
FIG. 6. The data of Fig. 2 plotted a8 vs — x'. (A different normalization introducing the symmetric kernel

r,r )yrir’ is used in Ref. 30.The arbitrary are&’ in
the amplitudes be not too smaly>H,,,, whereH, is the Qrr’) 0 y

. : X i Egs. (26) and (27) was introduced to make th&, andf,
field above which the penetrating vortices can overcome thg; ,ansionless. Natural choices 8f ard"2’ S’ = S=4ab in
geometric edge barriéf:>2 '

the limit b>a (long cylinde) and S’ =16a% = in the limit
At large amplitudesi,>H , the magnetization loop in the b<a| (tlhin disk§' sege gelmwb ! m

Bean limit may be approximated by a parallelogram for all
geometries. Thereforg,(Hg) is given by expressions of the
type of Eq.(3); see also Ref. 10. In the limid,>H , one has

ExpandingJ(r) into a series of the eigenfunctions,

then x'(Ho)xH,%¥? and x"(Hg)xHy'. The curves In=2 a,f(n), (28)
x"(—x') in Figs. 5 and 6 in the lower left corners thus ’
behave as we obtain from Egs.(25-(28) the magnetic moment

m(t)=m(w)e'“!, Eq.(12),
x"=cons |x'|??, (23 (O =m(e) 9-(12

For all computed cylinders in the Bean limit we find for the m(w)=27rjadr rszdy xAry)= S—,E ab,, (29
constant in Eq(23) the value 0.80. A very good fit for all 0 0 ' 245 v

values of O< — x' =<1 for the cylinder withb/a=0.03 in the

Bean limit is where we have defined the “oscillator strengths”

X'~0.80x"[#3(1=[x' D™, (24)

depicted as dots in the lower plot of Fig. 5. Similar fits are
possible for the other cylinders and the bar, but for stron
creep <11) and nonconstadt(B) the limit (23) does not

4
by=—J r2f (r,y) dr. (30)
S’ Js

g}\/Iultiplying Eqg. (25 by f,(r) and integrating over S on
both sides using formula®6) and(27), one obtains the ex-

apply. pansion coefficients
IV. LINEAR ac SUSCEPTIBILITIES 2m WA, a
a = —_—
If the resistivityp=E/J of the material is linear, the mag- v 0g WA,
netic response is also linear and may be expressed in the _
most general form by a linear complex susceptibijiyw)  @nd the magnetic momer29) becomes
which depends on the linear complex ac resistiyify o). A b2
In this case it is not necessary to time integrate the equation m(w)= Howwz vy (32)
of motion (11) containing the inverse kern&;;. One may > WHA,



PRB 58 SUPERCONDUCTOR DISKS AND ... .1l ... 6529

The resultg31) and(32) depend on the complex variable TABLE |. EigenvaluesA, (sized and amplitudes, entering
the general linear ac susceptibilipf ), Eq.(34), of cylinders with
oS s’ ) radiusa and length ® in an axial magnetic field. In all three ex-
w= = =lo(0), (33 amples nonequidistant grids witN=N,xN,=36 points were
Ampad @) 4arA2 : y
& Thac used, with N,xN,=12x3, 9x4, 6x6, and 4x9 for b/a
which combines the complex resistivibg( @) with the fre-  =0.15, 0.3, 1, and 3. For this tab® =4ab was used, which

quencye and with the arbitrary are&’ appearing also in the Meanst(w)=uoabl[mpadw)] in Eq. (33).
definitions(26), (27), and(30). Thisw may also be written in
terms of the complex penetration depth= (i wuo/pa0*2 b/a 015 03 ! 3
cf. the variableu=a/\ .. in Egs.(59), (7), and(9). v A, 10, A, 10c, A, 10c, A, 10%c,
With formula (33) we may express the linear ac suscepti-1 1,125 610.3 1.371 590.2 2.561 575.8 6.127 590.9
bility x(w)=—-m(w)/M(w—*)=u(w)—1 of cylindersin 2 3002 1256 4.391 129.1 7.710 53.58 9.108 50.49
axial field in the form of Eq(10), 5900 54.63 9.261 59.10 11.17 1162 13.91 17.64
9.621 30.98 14.03 32.31 17.59 17.83 20.44 8.587
14.25 20.16 16.16 25.20 18.66 9.554 28.19 6.187
19.62 14.67 18.71 9.800 27.56 53.78 33.44 128.4
25.19 31.03 24.80 23.23 29.66 2.400 36.57 5.350
25.85 0.168 25.05 0.044 34.43 7.138 37.04 2.437
29.11 6.139 32.63 2.847 35.31 2.601 42.72 4.352
10 30.66 0.224 33.48 2.780 46.28 4.477 49.99 2.179
11 3352 5.880 39.55 14.81 47.22 4.409 52.73 3.018

Eq. (26). The normalization in Eq(35) guarantees that for 3539 7.806 41.88 6.768 5032 9.523 57.75 1.385
w— o one hasy— —=,c,=—1 andu—0, irrespective of 38.75 2.176 48.22 0.206 55.43 0.222 66.18 1.254
the values of\ , andb, . With the A, andb, computed from 14 4443 2.054 51.02 9.942 63.20 0.032 71.81 11.35
Egs. (26), (27), and (30), the limit m(w— ) exactly coin- 15 50.27 1.658 57.45 1.860 65.29 40.67 77.27 6.078
cides with the ideal diamagnetic moment of cylinders1® 56.57 2.473 57.86 0.903 65.67 5.003 80.52 1.519
mr(o), Eq(42) of part I. Sum rules for thb,z,, b]%AV’ and 17 57.29 10.15 64.38 1.557 67.29 0.089 83.57 1.334
b,z,/A,, for thin strips and disks are given in Ref. 25. 18 60.20 0.017 72.33 1.287 74.23 0.003 85.14 0.000

Examples for the normalized amplitudesand eigenval- 19 67.40 2.413 80.59 1.495 78.85 0.002 90.22 0.142
ues(or pole positions A, are given in Table I for cylinders 20 91.61 1.188 84.38 23.46 80.83 1.564 94.89 0.040
with aspect ratiob/a=0.15, 0.3, 1, and 3. For this Table | 21 129.2 24.75 86.91 0.002 87.21 1.963 104.6 4.555
choseS' =4ab; thus one hasr(w)=puabl[mp,(w)] in 22 1416 10.22 9439 0.442 97.66 0781 107.4 0.444
Eq. (33). The gridsr;=(r;,y;) were chosen to be nonequi- 23 170.6 0.443 1083 1.607 101.8 1.166 140.1 1.943
distant(denser near the cylinder surfaces decribed below 24 1711 0.006 143.6 1.618 1123 0.090 160.6 0.214
Eq. (29 of part I. For transparency a constant number of grid25  193.6 2.257 213.5 18.31 133.8 1.630 190.5 63.31
points was usedN=N,XN,=36 with N, XN, =12X3, 9 26 213.1 0.223 272.8 0.203 300.5 52.28 234.6 13.07
X4, 6X6, and 4<9. The obtained\ , andc, were sorted 27 2299 0.771 318.6 2.432 321.4 2.736 266.6 29.39
for increasingA ,; at largev these positive numbers are very 28 242.1 0.481 355.7 1.198 407.0 5490 292.1 12.37
sensitive to the choice of the grid, but the resultjpp@y) is 29 251.1 0.079 375.6 0.411 409.3 0.009 316.0 15.08
less sensitive. Thg(w) calculated from Table | are valid 30 269.6 0.000 441.7 0.070 467.4 12.17 340.1 0.735
from =0 up to at leastw7=200. For higher frequencies 31 293.0 0.000 470.1 23.89 471.0 0.755 348.6 5.622
more grid points are required. At extreme aspect ratiess 32 314.4 0.000 512.5 0.000 555.9 11.35 396.1 1.890
<1 andb/a>1 the NXN matrix Qj; =Qcy(r;.rj) (cf. part 33 3229 2.335 569.6 0.000 562.8 0.004 552.6 6.473
1) of the eigenvalue problem may become singular, or somg4  824.8 16.36 659.1 4.704 674.7 0.000 843.4 0.652
of the eigenvalues artificially may turn out to be negative,35 1114.0 0965 840.1 4.733 707.3 5585 8957 1.585

depending on the choice of the grid. _ 36 2483.0 11.33 897.2 3531 794.4 3.173 1280.0 0.003
The finite numbemN of grid points results in the same

finite number of eigenvalueg=1,2, ... N. At smallb/a a

nearly equidistant series df, results, which is typical for = 1/o is real and independent of. Therefore, the time con-
thin strips and disks in a perpendicular field; see E48)  stantr= uyS'/(4mp) in Eq. (33 is also real and constant
and(49) below. The rapid increase of the, as the indexr  and the variablew=iwr is purely imaginary. With
approacheN is an artifact caused by the finitd. With  the choice S'=4ab one then has7=pugabo/7 and
increasing aspect ratib/a, A, andc, arrange in groups w=iwugabo/ .

which for b/a—< degenerate and coincide with the result For Ohmic conductivity the timer has the following

c, c, A,
x0) == e w@=3 6

© 0o ~NO 0w

cyszbﬁ/ > ALb2. (35)

Herew is the variable(33), A, are the eigenvalues of Eq.
(26), andb,, are the integral$30) over the eigenfunctions of

for the long cylinder; cf. Eq(47) below. physical meaning. When the applied field is suddenly
switched on or off at timé&=0, the current density(r,t) at
V. OHMIC AND TAFF RESISTIVITY t=0 may be expressed as a linear superposition of relaxing
eigenmodes,

In the Ohmic case or for thermally assisted flux flow
(TAFF) (Ref. 22 in superconductors, the resistivips=p J,(r,t)y="f, (re Ym, (36)



6530

1000

FIG. 7. The real parttop) and imaginary partbottom of the ac
permeabilityu=y—1=u'—iu” for Ohmic bars with rectangular

cross section @x 2b in a perpendicular magnetic ac field for aspect

ratiosb/a=0 (thin strip, b/a=0.01, 0.03, 0.1, 0.3, 1, 2, 3, 5, and
10 as computed from the su(@4) (solid lineg. The dashed curves
give the analytic expressioifs) for long slabs wittb/a=5 and 10,
with the variableu=a/\ .= (i w7ma/b)*? inserted. Forb/a=10
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FIG. 8. As in Fig. 7, but for Ohmic cylinders in axial magnetic
ac field and forb/a=0 (thin disk, b/a=0.01, 0.03, 0.1, 0.3, 1, 2,
and 3 as computed from the suB¥) (solid lineg, and forb=3, 5,
and 10 from the analytical expression for longitudinal cylinders
(dashed lines The numerical and analytical curves tota=3 are
very close.

the numerical and analytical curves are very close. To facilitate 5 ] )
comparison, some:’ curves are repeated as dotted lines in thewould thus ber,y,q=(4a“uq/7p) corresponding to a choice

lower plot. The time scale is= uqab/(7p).

Heref (r) are the eigenfunctions of ER6) (or of another
equation for different geometrand ther,= 7/ A , are relax-
ation times depending on the eigenvalues. In particular,
for thin strips (disk9 one has(choosingS’=4ab)?® A,
=0.638523 (0.876 827) and\,~A;+v—1 for all »
=1,2,...¢. In general, the relaxation times are given2 by
7,= uoS' /(4mpA,). For long slabs lf>a) in a parallel
field, the eigenvalues of Eq(26) are 4mwA,/S =m?(v
— 1)2/a?. For S'=4ab this givesA ,=(v—3%)wb/a, but
the different choiceS'=16a%/ 7 in this geometry yields
more natural (size-independept values A,=(2v—1)?
=1,9, 25,....
Figures 7-10 show the linear ac susceptibiljy= x’

—ixY'=p—1 or permeabilityu=p'—iu"=x+1 of Ohmic

bars and cylinders of various aspect ratios, calculated from

Eq. (34) as a function of the frequenay/27. In these plots
the time unit isT= uqgab/(mp) wherep is the Ohmic resis-
tivity. This 7 means thatS’' =4ab was chosen. Thus, fdy
<a the plottedy(w7) is independent ob/a (except at very
large frequencies; see belpvbut forb>a the y(w ) curves
depend orb such thaty(wra/b) becomes a universal func-
tion. This invariance may be seen from the expressi®hs
and (7) for x(w) of long slabs and cylinders in a parallel
field, which depend on the variableu=a/\,.
=(a%ioug/p)Y? In our time unit r this becomesu
=(iwrmwal/b)V% thusy for b>a becomes a universal func-
tion of the variableu or of the combinationwra/b. In this
longitudinal limit a more natural choice of the time unit

'=16a%/ in the general expression=u,S'/(4mp). If
desired, a functionr(a,b) may be fitted such that for all
ratiosa/b the Ohmicy”(w7) exhibit their maximum at the
same position. Alternatively7(a,b) may be chosen such
that the initial slope ofy”(w7) becomes unity for alb/b;

w=x'+1

u'=x

@wT

FIG. 9. As in Fig. 7 but with a linear abscissa.
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T (thin disk), b/a=0.01, 0.03, 0.1, 0.3, 1, 2, and 3 as com-
3 cylinder | puted from the sung34), and forb=3, 5, and 10 from the

1 analytical expressiort7) for longitudinal cylinders. Again
the numerical and analytical curves foya=3 are very
close. Note also that bars and cylinders behave very simi-
larly, but for cylinders the longitudinal limit is reached at
lower values ofa/b.

The most interesting feature in these double-logarithmic
plots is that for sufficiently thin specimens with increasing
frequencyu(w) crosses over from the behavior in perpen-
dicular geometrynonlocal flux diffusion,?

p'=x'+1

p'=x"+1x1lo, p"=x"<In(consk wr)/w, (37)

to the parallel geometrglocal flux diffusion,

=X

p'=p" = 1o. (38)

This crossover is clearly seen with the cuni@a=0.01,
0.03, and 0.1 in Figs. 7 and 8. One furthermore realizes that
for all aspect ratiod/a, except for the limitb=0, the real
and imaginary parts at large frequencies coincidé(w)
o _ ] ) =u"(w). The physical reason for this finding is that above

FIG. 10. As in Fig. 8 but with a linear abscissa. the frequency where the skin depthd= \/E)\ac

_ _  =(2pliwug)Y? coincides with the half thicknesb, the

see Eqs(39) and(42) below. With both choices the resulting ohmic conductor nearly behaves like an ideal diamagoet
curvesy' (w7) and x”(w7) for all b/a will nearly coincide; superconductor in the Meissner sjatscreening almost all
see Fig. 11 below. magnetic flux from the interior of the conductor. The mag-

Figure 7 shows the real and imaginary parts of the ametic field lines thus cannot penetrate into the bulk but have
permeabilityu=u' —iu”=x—1 for Ohmic bars with rect- to flow around the bar or cylinder such that everywhiris
angular cross sectionaX 2b in a perpendicular magnetic ac parallel to the specimen surface. Therefore, at high frequen-
field for aspect ratios b/a=0 (thin strip, b/a cies even thin conductofsvhether Ohmic or non-Ohmijén
=0.01, 0.03, 0.1, 0.3, 1, 2, 3, 5, and 10, as computea perpendicular ac fieldehave as if the magnetic field were
from the sum(34). Also shown in this plot are the analytic applied parallel
expressiongb) for long slabs withb/a=5 and 10, with the Figures 9 and 10 show the same data as Figs. 7 and 8 but
variableu=a/\ .= (i o 7ra/b) Y2 inserted. Note that the nu- with a linear ordinate. This presentation clearly shows that
merical and analytical.(w7) for b/a=10 nearly coincide.  with increasing specimen thickness the height of the maxi-

The corresponding ac permeabilities for Ohmic cylindersmum of x”(w) (i.e., of the energy dissipatiprgoes through
in axial magnetic ac field are shown in Fig. 8 fofa=0  a minimum atb/a~1.

In Fig. 11 the susceptibility of Ohmic cylinders with vari-
ous lengths is plotted such that the initial slopex6{w) is
normalized to unity. This is achieved by introducing an ap-
propriate time unit(a,b). The plottedy’ (w7) and y"(w)
then look qualitatively similar for all aspect rati@gb. An
analytical expression for the timg(a,b) may be found in

1 T T T T T T T T T T T T T
cylinder

<
; the following way. From the definitiory(w)=m(w)/M(w
< —ow)=y"—iy” and the small-frequency behaviox
El =—iwr— Bw?+---, where 8 is a positive constant, one
3 sees that this time constant dy"/dw|,—o may be written
as
o b)= —m(w—0) 39
0 1 2 3
w#(a,b) The magnetic momenn(w) of an Ohmic cylinder in the

limit of low frequenciess obtained noting that in this limit
FIG. 11. The linear ac susceptibilities of cylinders in axial field the magnetic field penetrates completely; thus the electric
from Figs. 8 and 10, plotted v +(a,b) such that the initial slope field is
dy"/d(w7) is unity for all plotted values b/a
=0, 0.01, 0.03, 0.1, 0.3, 1, 2, 3, and The time unitz(a,b) E(r D)= “B(D) =i o H.(t 40
iS giVen by Eq(42) ( ' ) 2 a( ) 2 wMO a( ) ( )



6532 ERNST HELMUT BRANDT PRB 58

and the current density &r,t) =E(r,t)/p. With the defini- Similarly, for long cylinders in a parallel field Eq43)
tion (12) the magnetic moment of the cylinder at low fre- leads to a diffusion equation fd(r,t) in cylindrical coor-
guencies then becomes dinates. The corresponding eigenvalue problem is
ba* g(r) ,
m(w—0)= a i wuoH4(t). (41) 9u(N)"+ ——= —k29,(r), g,(0)=g,(a)=0. (45)

The magnetic moment &igh frequenciess that of an ideal  This is solved byg,(r)=Jo(k,r) whereJo(p) is a Bessel
diamagnet since in this limit the magnetic field is completelyfunction and thek,=p,,/a are related to the zeros of
screened from the interior of the specimen by the skin effectlo(p), po,=2.405, 5.520, 8.634.. for »=1,23... .
One has m(w—x)=m’(0)H,(t) where m'(0) One has approximately po,~m(v—3)+(1/8m)/(v—13).
~—(2wba?+8a%/3) is the initial slope of the virgin mag- Thus, the eigenvaluea ,=k2S'/4x for the long slab and
netization curve given by Eq43) of part I. With the above- cylinder are

defined 7= upabl/(7p) one may thus write for the initial

slope of y"(w) of cylinders

277_ '
~ 37232 Au:(V_ —) — (slab, (46)
7= 1( T (42 2/ 4a
1+37rb/4a+Etani{l.Z?(b/a)In(lJra/b)]
_ _ 1\? 7S ]
This 7(a,b) and the corresponding ar&=4mp 7/ u have Ay~lv=7 el (cylinden. (47)

the limits 7/7=372/32~1, S'=3w%ab/8 for b/a<1 and
7l=mal(8b), S'=ma?/2 for b/a>1. _ _ N

From Fig. 11 one sees that for all ratib& the dissipa- The eigenfunctions for the current densitied(x)
tive part y"() has its maximum close to=17 More B (X)/umoandJ(r)=B'(r)/u, of the long slab and cylin-
precisely, forb/a=0, 0.01, 0.03, 0.1, 0.3, 1, 2, 3, and der are f,(x)=sinkx and f,(r)=Ja(k,r) where J,(p)

 one has xu=X"(0ma)=0.4406, 0.4256, 0.4045, = —Jg(p) is another Bessel function. From these solutions

0.3803, 0.3521, 0.3482, 0.3591, 0.3694,  and  0.3774» @ndA, one may, after some lengthy calculation, repro-
. ~ duce the closed-form expressia and(7) for the linear ac
occurring  at wmar=0.948, 0.918, 0.877, 0.832, 0.779, g,qcentibilityy(w) by evaluating the surt4) analytically.
0.779, 0.792, 0.805, and 0.794. For thin strips and disksb<a) in a perpendicular field
the eigenvalues\, of Eq. (26) are approximately linear

VI. CONCLUDING REMARKS functions of the index,?®
For long slabs and cylinderd#a) in a parallel field the S/

eigenvalues\ , and eigenfunctions,(r) may be derived di- A,~(v—1+0.6385 —— (strip), (48
rectly from a differential equation with boundary conditions 4ab

for the magnetic inductiorB=B§/. Namely, from the Max- g

well equationsJ=V><H (neglecting the displacement cur- Aym(y—1+0_8768m (disk). (49)
reny, B=—VXE, V-B=0, and the material equatioris

=pJ andB= ugH one obtains the diffusion equation The formulas (46)—(49) show thatS'=16a%/7 and S’

=4ab are natural choices fd8' in the parallel and perpen-
dicular geometries, respectively, since they yidlg values
that are independent of the specimen widtheghd length B
‘ and start with lowest eigenvalues which are of order unity,
Inserting here the periodic time dependesté one obtains namely, A;=1 (2.344~9/4, 0.6385, 0.8768) for the slab
the eigenvalue equationi guq/p)B(r)=V?2B(r). For the (cylinder, strip, disk The eigenfunctions,(x) andf (r) for
slab geometry with boundary conditio®' (0)=B(a)=0  the thin strip and disk look similar as in the parallel geom-
for B(x) alongy, one finds that the solution of this linear etry; see Fig. 2 in Ref. 20.
diffusion problem is a linear superposition of eigenfunctions For more complicated geometries like cylinders of finite
g,(x) of the eigenvalue problem length, closed-form expressions for the linear susceptibility
x(w) are not available, and all the more not for the nonlinear
9,(x)"=—k%g,(x), g,(0)=g,(a)=0. (44)  susceptibilities. One thus has to use sums of the B
with numerically obtained numbers, and A, ; see Table I.
This is solved byg,(x)=cok,x with k,=(v—3)m/a, v The explicit expressionss), (7), (9), (10), and (34) for
=1,2,3... . The current density alongz now is J(x) xlw,padw)] are very useful since they apply to arbitrary
=B’(x)/ng, and the eigenvalues of the differential equationlinear complex resistivity, including the Ohmic and TAFF
(44) for B(x) and integral equation fod(x) [Eq. (25) with  (Ref. 22 casesp,{ w)=p=1/o and the Meissner state de-
the kernelQ, replaced by the kernédg,, of Ref. 2] obey  scribed by the London equation, in which formafy{ )
the identity? 47TAV/S’:k§. =iwuoh? where\ is the London penetration depth. By in-

B(r,t)= - V2B(r.1). 43)
Mo
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