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Superconductor disks and cylinders in an axial magnetic field: II.
Nonlinear and linear ac susceptibilities

Ernst Helmut Brandt
Max-Planck-Institut fu¨r Metallforschung, D-70506 Stuttgart, Germany

~Received 14 November 1997!

The ac susceptibilityx5x82 ix9 of superconductor cylinders of finite length in a magnetic field applied
along the cylinder axis is calculated using the method developed in the preceding paper, part I. This method
does not require any approximation of the infinitely extended magnetic field outside the cylinder or disk but
directly computes the current densityJ inside the superconductor. The material is characterized by a general
current-voltage lawE(J), e.g.,E(J)5Ec@J/Jc(B)#n(B), whereE is the electric field,B5m0H the magnetic
induction,Ec a prefactor,Jc the critical current density, andn>1 the creep exponent. Forn.1, the nonlinear
ac susceptibility is calculated from the hysteresis loops of the magnetic moment of the cylinder, which is
obtained by time integration of the equation forJ(r ,t). For n@1 these results go over into the Bean critical
state model. Forn51, and for any linear complex resistivityrac(v)5E/J, the linear ac susceptibility is
calculated from an eigenvalue problem which depends on the aspect ratiob/a of the cylinder or disk. In the
limits b/a!1 andb/a@1, the known results for thin disks in a perpendicular field and long cylinders in a
parallel field are reproduced. For thin disks in a perpendicular field, at large frequenciesx(v) crosses over to
the behavior of slabs in parallel geometry since the magnetic field lines are expelled and have to flow around
the disk. The results presented may be used to obtain the nonlinear or linear resistivity from contact-free
magnetic measurements on superconductors of realistic shape.@S0163-1829~98!05534-9#
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I. INTRODUCTION

In the preceding paper part I~Ref. 1!, the current density
J, magnetic fieldB, and magnetic momentm(Ha) of super-
conductor cylinders of finite length or disks of arbitra
thickness in an axial magnetic fieldBa(t)5m0Ha(t) ~along
y) are calculated by time integration of the equation of m
tion for the circulating current densityJ(r ,t). This method,
which does not require any approximation or cutoff of t
magnetic field in the infinite space outside the cylinder, g
eralizes a similar calculation for strips, bars, or slabs in
perpendicular field.2 The material is characterized by an a
bitrary ~in general nonlinear! current–voltage lawE(J),
whereE is the electric field, which inside the superconduc
is generated by moving Abrikosov vortices. A further a
sumption, which cannot be relaxed so far, isB5m0H, which
means that the lower critical fieldBc1 of the superconducto
and its reversible magnetizationB2m0H are assumed to b
zero. This approximation is allowed whenB is large enough
everywhere in the specimen.

In the present paper the amplitude-dependent ac susc
bility of finite cylinders is calculated from magnetizatio
loops which are computed by the method of part I.1 In the
case of linear resistivityE/J5rac(v), the linear ac suscep
tibility is calculated more elegantly from an eigenvalue pro
lem which depends only on the geometry and theref
yields a general expression into which any linear comp
resistivityrac(v) may be inserted. Before these two types
susceptibilities are considered in Secs. III and IV, first so
exact analytical expressions for both nonlinear and linea
susceptibilities will be compiled in Sec. II for rings, hollo
cylinders, infinite slabs, infinite cylinders, and spheres. T
particular case of Ohmic conductors, or superconduc
PRB 580163-1829/98/58~10!/6523~11!/$15.00
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with thermally assisted flux flow~TAFF!, is considered in
Sec. V. Finally, some concluding remarks are made in S
IV.

II. ANALYTICAL ac SUSCEPTIBILITIES

In this section I compile some analytical expressions
nonlinear and linear ac susceptibilities of superconduc
and general linear conductors in various geometries. Wit
the Bean critical state model,3 the full hysteresis loop of the
magnetic momentm in a cycled applied field with amplitude
H0 is completely determined by the virgin magnetizati
curvem(Ha). One has the general prescription4–6

m↓~Ha ,H0!5m~H0!22mS H02Ha

2 D ,

m↑~Ha ,H0!52m~H0!12mS H01Ha

2 D , ~1!

werem↓ andm↑ are the branches in decreasing and incre
ing Ha . This construction is independent of the type of tim
dependence ofHa(t), providedHa increases and decreas
monotonically between the values6H0 . For sinusoidal
Ha(t)5H0sinvt, one may define the nonlinear complex
susceptibilitiesxm5xm8 2 ixm9 , m51,2,3, . . . ,7

xm~H0 ,v!5
i

pH0
E

0

2p

m~ t !e2 imvtd~vt !. ~2!

Usually, thexm are normalized such that forH0→0 or v
→` the ideally diamagnetic susceptibilityx(0,v) results;
this normalization is achieved by dividing allxm , Eq.~2!, by
the magnitude of the initial slope um8(0)u
6523 © 1998 The American Physical Society
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6524 PRB 58ERNST HELMUT BRANDT
5limHa→0u]m(Ha)/]Hau. In this paper only the fundamen

tal susceptibility (m51) will be considered, denotingx1 by
x.

Note that in the critical state model thisx depends only
on the amplitudeH0 but not on the frequencyv. For thin
circular Bean disksx(H0) was calculated from the magnet
zation curves of Refs. 6 and 8 in Refs. 6 and 9.

For a thin-walled hollow cylinder and for a narrow plan
ring the hysteresis loop is a parallelogram.4,10,11 This paral-
lelogram applies to planar rings with arbitrary shape, ma
from flat or round wires, containing no, one, or several we
links, with the weakest one determining the critical curre
I c . This is so since at smallHa the screening is perfect an
no magnetic flux penetrates the ring or tube. But whenHa
exceeds some critical fieldHp , the screening current in th
ring exceeds the critical valueI c and magnetic flux can lea
into the ring such that the circulating currentuI u5I c and the
magnetic momentumu5msat remain constant. The full paral
lelogram then follows from Eq.~1! and the complex ac sus
ceptibility of the ring normalized to the initial valu
x(0)521 is4

x8~h!521,

x9~h!50, h<1,

x8~h!52
1

2
2

1

p
arcsins1

1

p
sA12s2,

x9~h!5
4

p

h21

h2 5
12s2

p
, h>1, ~3!

whereh5H0 /Hp and s52/h21. Note that the dissipation
~proportional tox9) sets in only at amplitudes exceeding t
penetration fieldHp . The polar plot of Eq.~3!, x9 versusx8
with h as the parameter, issymmetric; i.e., x9(x8) yields the
same curve asx9(212x8).

The ac susceptibilities obtained from the critical sta
model arequasistatic; i.e., they depend only on the ampl
tudeH0 but not on the frequency. This statement is true ev
when the critical current densityJc5Jc(B) depends on the
local induction and thus Eq.~1! does not apply, e.g., for th
magnetization loops computed in Refs. 12,4 and 13 for d
with Jc(B)5Jc(0)/(11uBu/B1) ~Kim model!.

In contrast to these nonlinear quasistatic ac suscepti
ties x(H0), the linear ac susceptibilities of materials wi
linear resistivity,rac(v), depend only on the ac frequenc
but not on the ac amplitudeH0 . Examples for this are the
Ohmic conductors with real and constant resistivityrac(v)
5r, and superconductors in the Meissner state with L
don’s magnetic penetration depthl, which formally are de-
scribed by a purely imaginary~nondissipative! resistivity
rac5 ivm0l2. More complicated complex linear resistivitie
rac5r81 ir9 occur in superconductors with thermally ac
vated depinning above the irreversibility line~or depinning
line! in the B-T plane; see, e.g., the models of Refs. 14–
and the experimentally determinedrac in Refs. 19 and 20. In
complex notation one usually writesHa(t)5Re$H0eivt%
where Re$•••% denotes the real part andH0 is a complex
amplitude, e.g.,H052 i uH0u if Ha(t)5H0sinvt is chosen to
obtain Eq.~2!. The magnetic momentm(t) then formally
e
k
t

n

s

li-

-

0

becomes also complex@the measured moment is Re$m(t)%]
and the linear ac susceptibility is then defined asx5m21,

x~v!5
1

pH0
E

0

2p

m~ t !e2 ivt d~vt !. ~4!

The linear susceptibilityxac(v) or conductivity sac(v)
51/rac(v) is obtained for various geometries by replacing
the analytical expressions forxac the Ohmic resistivityr by
the complexrac(v). For example, by solving the diffusion
equation for the magnetic field, with the diffusion consta
D5r/m0 replaced by the complexD5rac/m0 , one obtains
for slabs of width 2a in a parallel ac field Ha(t)
5H0exp(ivt) the permeability m5x115^Hac(x,t)&x /
Ha(t) and the susceptibilityx5m21,21,22

xslab~v!5
tanhu

u
21, u5

a

lac
, ~5!

where

lac5~rac/ ivm0!1/2 ~6!

is the complex penetration depth orrac(v)5 ivm0lac
2 . For a

long cylinder with radiusa in an axial field one finds23 for
x5m215^Hac(r ,t)& r /Ha(t)21,

xcyl~v!5
2I 1~u!

uI0~u!
21, u5

a

lac
, ~7!

with the samelac, Eq. ~6!; I 1(u) and I 0(u) are modified
Bessel functions.

Remarkably, formula~7! applies also to cylinders in
transverse field and thus, due to the linearity, to any inclin
field Ha(t) forming an angleu with the cylinder axis. The
axial and circulating current components in the tilted
finite cylinder exhibit the same radial dependen
f (r )5(Ha /lac)I 1(r /lac)/I 0(a/lac): Ji52coswsinuf(r),
Jw5cosuf(r), wherew is the azimuthal angle. The magnet
moment of cylinders in a transverseHa is twice as large as in
a parallel field; this may be ascribed to the demagnetiza
factor N51/2 or to the contribution of the U turn of th
currents at the ends of the cylinder. Thusumu contains a
factor (cos2u14sin2u)1/2, which, however, drops out in the
normalized susceptibility~7!.

For the sphere one may use London’s solution24 for the
magnetic moment of a sphere with radiusa in the Meissner
state,

m522pH0a3S 12
3l

a
coth

a

l
1

3l2

a2 D . ~8!

Defining x5m(l)/um(l→0)u and replacing the reall by
the complexlac, Eq. ~6!, one obtains the susceptibility of
sphere with arbitrary complex resistivityrac(v) and radius
a,

xsphere~v!5
3cothu

u
2

3

u2 21, u5
a

lac
. ~9!
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For the susceptibility of thin disks or strips in perpendicu
field, analytical expressions are not available. However,
may express the linearxac(v) for any geometry by an infi-
nite sum of the form

x~v!52w(
n

Lnbn
2

w1Ln
Y (

n
Lnbn

2 . ~10!

Here the complex variablew depends onrac andv and on
the geometry, and the dipole momentsbn and eigenvalues
Ln follow from an eigenvalue problem which is different fo
each geometry; see the examples for thin strips25,26 and
disks20,25 and thick strips and bars in a perpendicular field27

for rectangular bars in a parallel field,28 and for finite cylin-
ders in an axial field, below in Sec. IV. The sum in th
denominator of Eq.~10! provides the normalizationx(v
→`)521 ~ideal diamagnetic screening!.

For practical purposes, a finite number of termsn
51, . . . ,N in the sum~10! is sufficient; cf. Sec. IV. When
the ~real and positive! numbersLn andbn are known for a
given geometry, thenx(v) may be calculated from the sum
~10! for any complex resistivityrac(v). By inverting this
relationship between the two complex functionsx(v) and
rac(v) numerically, the complex resistivityrac(v) may be
obtained from measured ac susceptibilities as done by K¨t-
zler et al.20

III. NONLINEAR ac SUSCEPTIBILITIES

We model the superconductor as a nonlinear condu
with general current-voltage dependenceE5E(J)J/J, e.g.,
E(J)5Ec(J/Jc)

n with arbitrary creep exponentn>1. In ad-
dition; B5m0H is assumed, see the discussion in Sec. V
part I.1 The nonlinear resistivity forn@1 is caused by ther
mally activated depinning with an activation energyU(J)
5U0ln(Jc /J) yielding a creep exponentn5U0 /kT; see Sec.
III D of part I. In axial symmetric geometry, i.e., for cylin
drical specimens in an axial magnetic field alongŷ, the cur-
rents, electric field, and vector potential are directed alongŵ,
where w5atan(z/x), namely, J5J(r ,y,t)ŵ, E
5E(r ,y,t)ŵ, and A5A(r ,y,t)ŵ. In particular, the applied
field is now Ba5Ba(t) ŷ5¹X(Aaŵ) with Aa52(r /2)Ba .
The components of the magnetic field areBr5]A/]y and
By52(1/r )](rA)/]r . During our computation ofJ and
m, Br andBy do not have to be calculated except when o
assumes aB-dependent current-voltage law, e.g., of the fo
E(J,B)5Ec@J/Jc(B)#n(B). In general,E(J,Br ,By) may de-
pend on both components ofB, e.g., whenJc(Br ,By) is
anisotropic like inc-axis-oriented cylinders of uniaxial high
Tc superconductors. Our method applies also to these an
tropic materials.

The equation of motion for the current densityJ(r ,y,t) in
cylinders or disks is given in part I.1 On a two-dimensiona
~2D! grid of N pointsr i5(r i ,yi)( i 51, . . . ,N) spanning the
quarter cross section 0<r<a, 0<y<b ~or half cross sec-
tion 0<r<a, 2b<y<b if the specimen has no symmetr
plane aty50) this equation of motion reads

m0J̇i~ t !5(
j

Ri j FE~Jj !2
1

2
r j ḂaG . ~11!
r
e

or

f

e

o-

Here the vectorJi(t)5J(r i ,t) and the applied fieldBa(t)
depend on the timet, E(J) is a given function, e.g.,E
5Jn in reduced units, andRi j 5(Qi j wj )

21 is a reciprocal
matrix into which enters the matrixQi j 5Q(r i ,r j ) defined in
part I and the weightswi of the grid points ~e.g., wi
5ab/N for equidistant grids!. Throughout this paper, fo
increased accuracy I use nonequidistant grids which
denser~and have thus smaller weights! near the cylinder sur-
face.

Equation~11! is easily time integrated by starting at tim
t50 with Ba50 andJi50 and then increasing the applie
field Ba(t) to obtain the solutionJi(t). From the current
densityJi(t) the magnetic momentm(t) of the cylinder~di-
rected alongy like Ba) is obtained as

m~ t !52pE
0

a

dr r 2E
0

b

dy J~r ,y,t !52p(
i 51

N

r i
2Ji~ t !wi .

~12!

In this sectionBa(t)5m0H0sinvt is chosen; the nonlinear a
susceptibility then follows from Eq.~2!.

The resulting magnetization loopsm„Ba(t)… become sta-
tionary shortly after 1/4 cycle or even earlier; i.e., the tra
sition from the virgin curve to the final hysteresis loop o
curs rapidly ~see Figs. 14–17 in part I!. This is a
consequence of the nonlinearE(J) relation; in the Ohmic
case withE}J the transient time is somewhat larger and t
stationary loop is reached exponentially in time. For exp
nentsn>2 it is thus sufficient to calculatex from the half
loops in the time interval 0.55p<vt<1.55p.

Without restriction of generality we may choose the c
cular frequencyv51 corresponding tov5Ec /(m0Jca

2)
when reduced unitsa5Jc5Ec5m051 are used. The scal
ing law of part I, Sec. III E, states that when a material la
E}Jn is assumed, then the susceptibilityx(H0 ,v) depends
only on combinations of the formH0 /v1/(n21) or v/H0

n21 or
on any function of these ratios. Therefore, thex(H0 ,v) for
different frequenciesv are obtained by rescaling the amp
tude axis. For example, one hasx(H0 ,10v)
5x(101/(n21)H0 ,v). This scaling to a good approximatio
applies also to otherE(J) laws if these are sufficiently non
linear and if the effective exponentn is defined asn
5](lnE)/](lnJ) taken atJ5Jc whereJc is the typical current
density of the experiment. The nonlinear susceptibility th
depends only ononevariable combining amplitude and fre
quency, further on the effective exponentn, and on the ge-
ometry expressed, e.g., by the aspect ratiob/a of the cylin-
der.

Figures 1–6 show the nonlinear susceptibilitiesx(H0 ,v)
at v5Ec /(m0Jca

2) for various geometries, for creep expo
nentsn53, 5, 11, 51, and for constantJc andB-dependent
Jc(B), using various types of plots. The real and imagina
parts ofx5x82 ix9 of cylinders with half length to radius
ratio a/b53, 0.3, and 0.03 in an axial magnetic field a
plotted in Fig. 1 versus log(H0 /Hp), in Fig. 3 versus
H0 /Hp , and in Fig. 5,x9 is plotted versus2x8 ~polar plot!.
Here H0 is the amplitude of the applied ac fieldHa(t)
5H0sinvt andHp is the field where full penetration occur
in the Bean model. For bars in a perpendicular field a
cylinders in an axial field, both with rectangular cross se
tions 2a32b, one has2,29
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Hp5Jc

b

pF2a

b
arctan

b

a
1 lnS 11

a2

b2D G ~bar!, ~13!

Hp5JcblnFa

b
1S 11

a2

b2D 1/2G ~cylinder!. ~14!

This givesHp /Jca50.9824 (0.8814, 0.5757, 0.1260) fo
cylinders with b/a53 (1, 0.3, 0.03), and Hp /Jca
50.7206 for a bar withb/a51. In Figs. 2, 4, and 6 simila
x8 and x9 are plotted for a cylinder withb/a51 and Jc
5const orJc(B)5Jc(0)/(112B/m0Hp) ~Kim model! with
B5uB(x,y)u, and for a bar withb/a51. Note that the de-
picted curves look qualitatively similar for all six cases. T
slight oscillation of some of the curves with largeb/a is an
artifact due to a too small numberNx of grid planes alongx
~or cylinders alongr ); e.g., in these figures nonequidista
grids were used withNx59, Ny520 for b/a53 and Nx
530, Ny53 for b/a50.03.

In the Bean limitn→`, the general behavior ofx8 and
x9 at small and large amplitudesH0 is explicitly known.
Expanding the virgin magnetization curve at smallH0 ,

FIG. 1. Nonlinear magnetic susceptibilityx(H0 ,v)5x82 ix9
of cylinders with aspect ratiosa/b53, 0.3, and 0.03 in an axial a
magnetic field with frequencyv5Ec /(m0Jca

2) and amplitudeH0

referred to the field of full penetrationHp , Eq. ~14! (Hp /Jca
50.9824, 0.5757, 0.1260 forb/a53, 0.3, 0.03!. Depicted isx8
~monotonic curves! andx9 ~curves with maximum! on a semiloga-
rithmic plot for creep exponentsn53 ~solid lines!, n55 ~long
dashed lines!, n511 ~medium dashed lines!, and n551 ~short
dashed lines! for constantJc . The curvesn551 are close to the
Bean limit.
M ~H0!5aH01bH0
21gH0

31•••, ~15!

one obtains, from Eqs.~1! and ~2! x5x82 ix9,

x8~H0!5a1bH01
15

16
gH0

21•••, ~16!

x9~H0!5
4

3p
bH01

2

p
gH0

21•••. ~17!

In particular, using the virgin curves of part I, Sec. II, on
obtains the following relations. For long cylinders and sla
in a parallel field the coefficients in Eq.~15! are a,0, b
.0, and g<0; thus whenx is normalized tox(H050)
521, both 12ux8u and x9 start linearly with a term
}bH0 /uau. This result applies also to our numerically o
tainedx(H0) of cylinders of finite lenght. Thus, in the pola
plots of Figs. 5 and 6, the curvesx9(2x8) start linearly in
the lower right corner. Explicitly one has, up to terms line
in h05H0 /Hp in longitudinal geometry,

x~H0!5211
1

2
h02 i

2

3p
h01••• ~slab!, ~18!

x~H0!5211h02 i
4

3p
h01••• ~cylinder!. ~19!

FIG. 2. Similar as in Fig. 1 but for a cylinder withb/a51 and
Jc5const ~top, Hp /Jca50.8814), Jc(B)5Jc(0)/(112B/m0Hp)
~middle, Kim model!, and for a bar withb/a51 and Jc5const
~bottom,Hp /Jca50.7206). Four creep exponentsn53, 5, 11, and
51 are shown, as in Fig. 1.
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For thin strips and disks in a perpendicular field one haa
,0, b50, andg.0; i.e., there is no quadratic term in th
virgin magnetization curve@cf. Eqs.~11! and~14! in part I#.
Explicitly, for the thin strip one hasm(Ha)}tanh(h)5h
2h3/31O(h5) with h5Ha /Hs and Hs52Jcb/p; thus b
50 andg52a/(3Hs

2). For the thin disk the expansion o
the bracket in Eq.~11! of part I yields 2h2h31O(h5) with
h5Ha /Hd and Hd5Jcb; thus b50 and g52a/(2Hd

2).
With theseg/a values the small-amplitude expansion ofx
yields

x~H0!5211S 5

16
2

2i

3p DH0
2

Hs
2 1O~H0

4! ~strip!, ~20!

x~H0!5211S 15

32
2

i

p DH0
2

Hd
2 1O~H0

4! ~disk!. ~21!

The slope ofx9(2x8) in the lower right corner of Figs. 5
and 6 in the Bean limit should thus take the universal val

x9

11x8
U

x9→0

5H 4/3p50.42 for bÞ0,

32/15p50.68 for b50,
~22!

where the caseb50 corresponds to thin films in a perpe
dicular magnetic field andbÞ0 to all other geometries
These slopes are approximately reached in the depicted
n551, but for stronger creep (n511, 5, 3) the slopes ar
larger. Note also that our assumptionB5m0H requires that

FIG. 3. As in Fig. 1 but with a linear abscissa.
s

se

FIG. 4. As in Fig. 2 but with a linear abscissa.

FIG. 5. The data of Fig. 1 plotted asx9 vs 2x8. The open
circles in the lower plot show the fit, Eq.~24!.
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the amplitudes be not too small,H0@Hen , whereHen is the
field above which the penetrating vortices can overcome
geometric edge barrier.31,32

At large amplitudesH0@Hp the magnetization loop in the
Bean limit may be approximated by a parallelogram for
geometries. Therefore,x(H0) is given by expressions of th
type of Eq.~3!; see also Ref. 10. In the limitH0@Hp one has
then x8(H0)}H0

23/2 and x9(H0)}H0
21 . The curves

x9(2x8) in Figs. 5 and 6 in the lower left corners thu
behave as

x95const3ux8u2/3. ~23!

For all computed cylinders in the Bean limit we find for th
constant in Eq.~23! the value 0.80. A very good fit for al
values of 0<2x8<1 for the cylinder withb/a50.03 in the
Bean limit is

x9'0.80ux8u2/3~12ux8u!1.19, ~24!

depicted as dots in the lower plot of Fig. 5. Similar fits a
possible for the other cylinders and the bar, but for stro
creep (n<11) and nonconstantJc(B) the limit ~23! does not
apply.

IV. LINEAR ac SUSCEPTIBILITIES

If the resistivityr5E/J of the material is linear, the mag
netic response is also linear and may be expressed in
most general form by a linear complex susceptibilityx(v)
which depends on the linear complex ac resistivityrac(v).
In this case it is not necessary to time integrate the equa
of motion ~11! containing the inverse kernelRi j . One may

FIG. 6. The data of Fig. 2 plotted asx9 vs 2x8.
e

l

g

he

n

directly solve the original equation for the current density
a bar@Eq. ~6! or ~44! in Ref. 2# or cylinder@Eq. ~24! in Ref.
1#. Inserting the periodic time dependencesHa(t)
5H0eivt, J(r ,t)5J(r )eivt, and E(r ,t)5E(r )eivt, where
now formally H0 , J(r ), and E(r )5rac(v)E(r ) are com-
plex amplitudes@as usual, the physical quantities are o
tained by taking the real part ofHa(t), J(r ,t), andE(r ,t)],
one obtains, for the cylinder in an axial ac magnetic field
integral equation forJ(r ),

rac~v!

ivm0
J~r !5E

S
Qcyl~r,r 8!J~r 8! d2r 81

r

2
H0 . ~25!

Here r5(r ,y), r 85(r 8,y8), and S5ab is the integration
area ~a quarter of the clinder cross section 2a32b). The
kernel Qcyl(r,r 8) is defined by Eq.~21! of part I. Equation
~25! is related to the eigenvalue problem

f n~r !52Ln

4p

S8
E

0

a

dr8E
0

b

dy8Qcyl~r,r 8! f n~r 8!, ~26!

with positive eigenvaluesLn and real eigenfunctions
f n(r ,y), n51,2, . . . ,̀ . For cylindrical symmetry we may
normalize thef n(r ) as25

4p

S8
E

0

a

dr r E
0

b

dy fm~r ! f n~r !5dmn . ~27!

~A different normalization introducing the symmetric kern
Q(r,r 8)Ar /r 8 is used in Ref. 30.! The arbitrary areaS8 in
Eqs. ~26! and ~27! was introduced to make theLn and f n

dimensionless. Natural choices ofS8 are7,27 S85S54ab in
the limit b@a ~long cylinder! and S8516a2/p in the limit
b!a ~thin disk!; see below.

ExpandingJ(r ) into a series of the eigenfunctions,

J~r !5(
n

an f n~r !, ~28!

we obtain from Eqs.~25!–~28! the magnetic momen
m(t)5m(v)eivt, Eq. ~12!,

m~v!52pE
0

a

dr r 2E
0

b

dy J~r ,y!5
S8

2 (
n

anbn , ~29!

where we have defined the ‘‘oscillator strengths’’

bn5
4p

S8
E

S
r 2f n~r ,y! d2r . ~30!

Multiplying Eq. ~25! by f m(r ) and integratingr over S on
both sides using formulas~26! and~27!, one obtains the ex-
pansion coefficients

an5H0

2p

S8

wLn

w1Ln
bn ~31!

and the magnetic moment~29! becomes

m~v!5H0pw(
n

Lnbn
2

w1Ln
. ~32!
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The results~31! and ~32! depend on the complex variable

w5
ivm0S8

4prac~v!
5

S8

4plac
2

5 ivt~v!, ~33!

which combines the complex resistivityrac(v) with the fre-
quencyv and with the arbitrary areaS8 appearing also in the
definitions~26!, ~27!, and~30!. Thisw may also be written in
terms of the complex penetration depthlac5( ivm0 /rac)

1/2;
cf. the variableu5a/lac in Eqs.~59!, ~7!, and~9!.

With formula ~33! we may express the linear ac suscep
bility x(v)52m(v)/m(v→`)5m(v)21 of cylinders in
axial field in the form of Eq.~10!,

x~v!52(
n

wcn

w1Ln
, m~v!5(

n

cnLn

w1Ln
, ~34!

cn5Lnbn
2Y (

n
Lnbn

2 . ~35!

Here w is the variable~33!, Ln are the eigenvalues of Eq
~26!, andbn are the integrals~30! over the eigenfunctions o
Eq. ~26!. The normalization in Eq.~35! guarantees that fo
v→` one hasx→2(ncn521 andm→0, irrespective of
the values ofLn andbn . With theLn andbn computed from
Eqs. ~26!, ~27!, and ~30!, the limit m(v→`) exactly coin-
cides with the ideal diamagnetic moment of cylinde
m8(0), Eq.~42! of part I. Sum rules for thebn

2 , bn
2Ln , and

bn
2/Ln for thin strips and disks are given in Ref. 25.

Examples for the normalized amplitudescn and eigenval-
ues~or pole positions! Ln are given in Table I for cylinders
with aspect ratiosb/a50.15, 0.3, 1, and 3. For this Table
choseS854ab; thus one hast(v)5m0ab/@prac(v)# in
Eq. ~33!. The gridsr i5(r i ,yi) were chosen to be nonequ
distant~denser near the cylinder surface! as decribed below
Eq. ~29! of part I. For transparency a constant number of g
points was used,N5Nx3Ny536 with Nx3Ny51233, 9
34, 636, and 439. The obtainedLn and cn were sorted
for increasingLn ; at largen these positive numbers are ve
sensitive to the choice of the grid, but the resultingx(v) is
less sensitive. Thex(v) calculated from Table I are valid
from v50 up to at leastvt5200. For higher frequencie
more grid points are required. At extreme aspect ratiosb/a
!1 andb/a@1 theN3N matrix Qi j 5Qcyl(r i ,r j ) ~cf. part
I! of the eigenvalue problem may become singular, or so
of the eigenvalues artificially may turn out to be negativ
depending on the choice of the grid.

The finite numberN of grid points results in the sam
finite number of eigenvalues,n51,2, . . . ,N. At small b/a a
nearly equidistant series ofLn results, which is typical for
thin strips and disks in a perpendicular field; see Eqs.~48!
and~49! below. The rapid increase of theLn as the indexn
approachesN is an artifact caused by the finiteN. With
increasing aspect ratiob/a, Ln and cn arrange in groups
which for b/a→` degenerate and coincide with the res
for the long cylinder; cf. Eq.~47! below.

V. OHMIC AND TAFF RESISTIVITY

In the Ohmic case or for thermally assisted flux flo
~TAFF! ~Ref. 22! in superconductors, the resistivityrac5r
-

d

e
,

t

51/s is real and independent ofv. Therefore, the time con
stantt5m0S8/(4pr) in Eq. ~33! is also real and constan
and the variable w5 ivt is purely imaginary. With
the choice S854ab one then hast5m0abs/p and
w5 ivm0abs/p.

For Ohmic conductivity the timet has the following
physical meaning. When the applied field is sudde
switched on or off at timet50, the current densityJ(r ,t) at
t>0 may be expressed as a linear superposition of relax
eigenmodes,

Jn~r ,t !5 f n~r !e2t/tn. ~36!

TABLE I. EigenvaluesLn ~sized! and amplitudescn entering
the general linear ac susceptibilityx(v), Eq.~34!, of cylinders with
radiusa and length 2b in an axial magnetic field. In all three ex
amples nonequidistant grids withN5Nx3Ny536 points were
used, with Nx3Ny51233, 934, 636, and 439 for b/a
50.15, 0.3, 1, and 3. For this tableS854ab was used, which
meanst(v)5m0ab/@prac(v)# in Eq. ~33!.

b/a 0.15 0.3 1 3

n Ln 103cn Ln 103cn Ln 103cn Ln 103cn

1 1.125 610.3 1.371 590.2 2.561 575.8 6.127 590
2 3.092 125.6 4.391 129.1 7.710 53.58 9.108 50.
3 5.900 54.63 9.261 59.10 11.17 116.2 13.91 17.
4 9.621 30.98 14.03 32.31 17.59 17.83 20.44 8.5
5 14.25 20.16 16.16 25.20 18.66 9.554 28.19 6.1
6 19.62 14.67 18.71 9.800 27.56 53.78 33.44 128
7 25.19 31.03 24.80 23.23 29.66 2.400 36.57 5.3
8 25.85 0.168 25.05 0.044 34.43 7.138 37.04 2.4
9 29.11 6.139 32.63 2.847 35.31 2.601 42.72 4.3
10 30.66 0.224 33.48 2.780 46.28 4.477 49.99 2.1
11 33.52 5.880 39.55 14.81 47.22 4.409 52.73 3.0
12 35.39 7.806 41.88 6.768 50.32 9.523 57.75 1.3
13 38.75 2.176 48.22 0.206 55.43 0.222 66.18 1.2
14 44.43 2.054 51.02 9.942 63.20 0.032 71.81 11
15 50.27 1.658 57.45 1.860 65.29 40.67 77.27 6.0
16 56.57 2.473 57.86 0.903 65.67 5.003 80.52 1.5
17 57.29 10.15 64.38 1.557 67.29 0.089 83.57 1.3
18 60.20 0.017 72.33 1.287 74.23 0.003 85.14 0.0
19 67.40 2.413 80.59 1.495 78.85 0.002 90.22 0.1
20 91.61 1.188 84.38 23.46 80.83 1.564 94.89 0.0
21 129.2 24.75 86.91 0.002 87.21 1.963 104.6 4.5
22 141.6 10.22 94.39 0.442 97.66 0.781 107.4 0.4
23 170.6 0.443 108.3 1.607 101.8 1.166 140.1 1.9
24 171.1 0.006 143.6 1.618 112.3 0.090 160.6 0.2
25 193.6 2.257 213.5 18.31 133.8 1.630 190.5 63
26 213.1 0.223 272.8 0.203 300.5 52.28 234.6 13
27 229.9 0.771 318.6 2.432 321.4 2.736 266.6 29
28 242.1 0.481 355.7 1.198 407.0 5.490 292.1 12
29 251.1 0.079 375.6 0.411 409.3 0.009 316.0 15
30 269.6 0.000 441.7 0.070 467.4 12.17 340.1 0.7
31 293.0 0.000 470.1 23.89 471.0 0.755 348.6 5.6
32 314.4 0.000 512.5 0.000 555.9 11.35 396.1 1.8
33 322.9 2.335 569.6 0.000 562.8 0.004 552.6 6.4
34 824.8 16.36 659.1 4.704 674.7 0.000 843.4 0.6
35 1114.0 0.965 840.1 4.733 707.3 5.585 895.7 1.5
36 2483.0 11.33 897.2 3.531 794.4 3.173 1280.0 0.0
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Here f n(r ) are the eigenfunctions of Eq.~26! ~or of another
equation for different geometry! and thetn5t/Ln are relax-
ation times depending on the eigenvaluesLn . In particular,
for thin strips ~disks! one has~choosing S854ab)25 L1
50.638 523 (0.876 827) andLn'L11n21 for all n
51,2, . . . ,̀ . In general, the relaxation times are given b2

tn5m0S8/(4prLn). For long slabs (b@a) in a parallel
field, the eigenvalues of Eq.~26! are 4pLn /S85p2(n

2 1
2 )2/a2. For S854ab this gives Ln5(n2 1

2 )pb/a, but
the different choiceS8516a2/p in this geometry yields
more natural ~size-independent! values Ln5(2n21)2

51, 9, 25, . . . .
Figures 7–10 show the linear ac susceptibilityx5x8

2ix95m21 or permeabilitym5m82 im95x11 of Ohmic
bars and cylinders of various aspect ratios, calculated f
Eq. ~34! as a function of the frequencyv/2p. In these plots
the time unit ist5m0ab/(pr) wherer is the Ohmic resis-
tivity. This t means thatS854ab was chosen. Thus, forb
!a the plottedx(vt) is independent ofb/a ~except at very
large frequencies; see below!, but forb@a thex(vt) curves
depend onb such thatx(vta/b) becomes a universal func
tion. This invariance may be seen from the expressions~5!
and ~7! for x(v) of long slabs and cylinders in a parall
field, which depend on the variable u5a/lac
5(a2ivm0 /r)1/2. In our time unit t this becomesu
5( ivtpa/b)1/2; thusx for b@a becomes a universal func
tion of the variableu or of the combinationvta/b. In this
longitudinal limit a more natural choice of the time un

FIG. 7. The real part~top! and imaginary part~bottom! of the ac
permeabilitym5x215m82 im9 for Ohmic bars with rectangula
cross section 2a32b in a perpendicular magnetic ac field for aspe
ratiosb/a50 ~thin strip!, b/a50.01, 0.03, 0.1, 0.3, 1, 2, 3, 5, an
10 as computed from the sum~34! ~solid lines!. The dashed curves
give the analytic expressions~5! for long slabs withb/a55 and 10,
with the variableu5a/lac5( ivtpa/b)1/2 inserted. Forb/a510
the numerical and analytical curves are very close. To facili
comparison, somem8 curves are repeated as dotted lines in
lower plot. The time scale ist5m0ab/(pr).
m

would thus bet long5(4a2m0 /pr) corresponding to a choice
S8516a2/p in the general expressiont5m0S8/(4pr). If
desired, a functiont̃(a,b) may be fitted such that for al
ratiosa/b the Ohmicx9(vt̃) exhibit their maximum at the
same position. Alternatively,t̃(a,b) may be chosen such
that the initial slope ofx9(vt̃) becomes unity for alla/b;

t

e

FIG. 8. As in Fig. 7, but for Ohmic cylinders in axial magnet
ac field and forb/a50 ~thin disk!, b/a50.01, 0.03, 0.1, 0.3, 1, 2
and 3 as computed from the sum~34! ~solid lines!, and forb53, 5,
and 10 from the analytical expression~7! for longitudinal cylinders
~dashed lines!. The numerical and analytical curves forb/a53 are
very close.

FIG. 9. As in Fig. 7 but with a linear abscissa.
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see Eqs.~39! and~42! below. With both choices the resultin
curvesx8(vt̃) andx9(vt̃) for all b/a will nearly coincide;
see Fig. 11 below.

Figure 7 shows the real and imaginary parts of the
permeabilitym5m82 im95x21 for Ohmic bars with rect-
angular cross section 2a32b in a perpendicular magnetic a
field for aspect ratios b/a50 ~thin strip!, b/a
50.01, 0.03, 0.1, 0.3, 1, 2, 3, 5, and 10, as compu
from the sum~34!. Also shown in this plot are the analyti
expressions~5! for long slabs withb/a55 and 10, with the
variableu5a/lac5( ivtpa/b)1/2 inserted. Note that the nu
merical and analyticalm(vt) for b/a510 nearly coincide.

The corresponding ac permeabilities for Ohmic cylind
in axial magnetic ac field are shown in Fig. 8 forb/a50

FIG. 10. As in Fig. 8 but with a linear abscissa.

FIG. 11. The linear ac susceptibilities of cylinders in axial fie

from Figs. 8 and 10, plotted vsvt̃(a,b) such that the initial slope

dx9/d(vt̃) is unity for all plotted values b/a

50, 0.01, 0.03, 0.1, 0.3, 1, 2, 3, and̀. The time unitt̃(a,b)
is given by Eq.~42!.
c

d

s

~thin disk!, b/a50.01, 0.03, 0.1, 0.3, 1, 2, and 3 as com
puted from the sum~34!, and forb53, 5, and 10 from the
analytical expression~7! for longitudinal cylinders. Again
the numerical and analytical curves forb/a53 are very
close. Note also that bars and cylinders behave very s
larly, but for cylinders the longitudinal limit is reached a
lower values ofa/b.

The most interesting feature in these double-logarithm
plots is that for sufficiently thin specimens with increasi
frequencym(v) crosses over from the behavior in perpe
dicular geometry~nonlocal flux diffusion!,25

m85x811}1/v, m95x9} ln~const3vt!/v, ~37!

to the parallel geometry~local flux diffusion!,

m8'm9}1/Av. ~38!

This crossover is clearly seen with the curvesb/a50.01,
0.03, and 0.1 in Figs. 7 and 8. One furthermore realizes
for all aspect ratiosb/a, except for the limitb50, the real
and imaginary parts at large frequencies coincide,m8(v)
5m9(v). The physical reason for this finding is that abo
the frequency where the skin depthd5A2lac
5(2r/ ivm0)1/2 coincides with the half thicknessb, the
Ohmic conductor nearly behaves like an ideal diamagnet~or
superconductor in the Meissner state!, screening almost al
magnetic flux from the interior of the conductor. The ma
netic field lines thus cannot penetrate into the bulk but h
to flow around the bar or cylinder such that everywhereB is
parallel to the specimen surface. Therefore, at high frequ
cies even thin conductors~whether Ohmic or non-Ohmic! in
a perpendicular ac fieldbehave as if the magnetic field we
applied parallel.

Figures 9 and 10 show the same data as Figs. 7 and 8
with a linear ordinate. This presentation clearly shows t
with increasing specimen thickness the height of the ma
mum of x9(v) ~i.e., of the energy dissipation! goes through
a minimum atb/a'1.

In Fig. 11 the susceptibility of Ohmic cylinders with var
ous lengths is plotted such that the initial slope ofx9(v) is
normalized to unity. This is achieved by introducing an a
propriate time unitt̃(a,b). The plottedx8(vt̃) andx9(vt̃)
then look qualitatively similar for all aspect ratiosa/b. An
analytical expression for the timet̃(a,b) may be found in
the following way. From the definitionx(v)5m(v)/m(v
→`)5x82 ix9 and the small-frequency behaviorx
52 ivt̃2bv21•••, where b is a positive constant, one
sees that this time constantt̃5]x9/]vuv50 may be written
as

t̃~a,b!5
2m~v→0!

ivm~v→`!
. ~39!

The magnetic momentm(v) of an Ohmic cylinder in the
limit of low frequenciesis obtained noting that in this limit
the magnetic field penetrates completely; thus the elec
field is

E~r ,t !5
r

2
Ḃa~ t !5

r

2
ivm0Ha~ t ! ~40!
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and the current density isJ(r ,t)5E(r ,t)/r. With the defini-
tion ~12! the magnetic moment of the cylinder at low fr
quencies then becomes

m~v→0!5
pba4

4r
ivm0Ha~ t !. ~41!

The magnetic moment athigh frequenciesis that of an ideal
diamagnet since in this limit the magnetic field is complet
screened from the interior of the specimen by the skin eff
One has m(v→`)5m8(0)Ha(t) where m8(0)
'2(2pba218a3/3) is the initial slope of the virgin mag
netization curve given by Eq.~43! of part I. With the above-
defined t5m0ab/(pr) one may thus write for the initia
slope ofx9(v) of cylinders

t̃5
~3p2/32!t

113pb/4a1
1

2
tanh@1.27~b/a!ln~11a/b!#

. ~42!

This t̃(a,b) and the corresponding areaS854prt̃/m0 have
the limits t̃/t53p2/32'1, S853p2ab/8 for b/a!1 and
t̃/t5pa/(8b), S85pa2/2 for b/a@1.

From Fig. 11 one sees that for all ratiosb/a the dissipa-
tive part x9(v) has its maximum close tov51/t̃. More
precisely, for b/a50, 0.01, 0.03, 0.1, 0.3, 1, 2, 3, an
` one has xmax9 5x9(vmax)50.4406, 0.4256, 0.4045
0.3803, 0.3521, 0.3482, 0.3591, 0.3694, and 0.3
occurring at vmaxt̃50.948, 0.918, 0.877, 0.832, 0.77
0.779, 0.792, 0.805, and 0.794.

VI. CONCLUDING REMARKS

For long slabs and cylinders (b@a) in a parallel field the
eigenvaluesLn and eigenfunctionsf n(r ) may be derived di-
rectly from a differential equation with boundary conditio
for the magnetic inductionB5Bŷ. Namely, from the Max-
well equationsJ5¹3H ~neglecting the displacement cu
rent!, Ḃ52¹3E, ¹•B50, and the material equationsE
5rJ andB5m0H one obtains the diffusion equation

Ḃ~r ,t !5
r

m0
¹2B„r ,t). ~43!

Inserting here the periodic time dependenceeivt one obtains
the eigenvalue equation (ivm0 /r)B„r …5¹2B„r …. For the
slab geometry with boundary conditionsB8(0)5B(a)50
for B(x) along y, one finds that the solution of this linea
diffusion problem is a linear superposition of eigenfunctio
gn(x) of the eigenvalue problem

gn~x!952kn
2gn~x!, gn8~0!5gn~a!50. ~44!

This is solved bygn(x)5cosknx with kn5(n2 1
2 )p/a, n

51,2,3, . . . . The current density alongz now is J(x)
5B8(x)/m0 , and the eigenvalues of the differential equati
~44! for B(x) and integral equation forJ(x) @Eq. ~25! with
the kernelQcyl replaced by the kernelQsym of Ref. 2# obey
the identity2 4pLn /S85kn

2 .
t.

4

s

Similarly, for long cylinders in a parallel field Eq.~43!
leads to a diffusion equation forB(r ,t) in cylindrical coor-
dinates. The corresponding eigenvalue problem is

gn~r !91
gn8~r !

r
52kn

2gn~r !, gn8~0!5gn~a!50. ~45!

This is solved bygn(r )5J0(knr ) whereJ0(r) is a Bessel
function and thekn5r0n /a are related to the zeros o
J0(r), r0n52.405, 5.520, 8.634, . . . for n51,2,3, . . . .
One has approximately33 r0n'p(n2 1

4 )1(1/8p)/(n2 1
4 ).

Thus, the eigenvaluesLn5kn
2S8/4p for the long slab and

cylinder are

Ln5S n2
1

2D 2pS8

4a2
~slab!, ~46!

Ln'S n2
1

4D 2 pS8

4a2
~cylinder!. ~47!

The eigenfunctions for the current densitiesJ(x)
5B8(x)/m0 andJ(r )5B8(r )/m0 of the long slab and cylin-
der are f n(x)5sinknx and f n(r )5J1(knr ) where J1(r)
52J08(r) is another Bessel function. From these solutio
f n and Ln one may, after some lengthy calculation, repr
duce the closed-form expressions~5! and~7! for the linear ac
susceptibilityx(v) by evaluating the sum~34! analytically.

For thin strips and disks (b!a) in a perpendicular field
the eigenvaluesLn of Eq. ~26! are approximately linear
functions of the indexn,25

Ln'~n2110.6385!
S8

4ab
~strip!, ~48!

Ln'~n2110.8768!
S8

4ab
~disk!. ~49!

The formulas ~46!–~49! show that S8516a2/p and S8
54ab are natural choices forS8 in the parallel and perpen
dicular geometries, respectively, since they yieldLn values
that are independent of the specimen width 2a and length 2b
and start with lowest eigenvalues which are of order un
namely,L151 (2.344'9/4, 0.6385, 0.8768) for the sla
~cylinder, strip, disk!. The eigenfunctionsf n(x) and f n(r ) for
the thin strip and disk look similar as in the parallel geo
etry; see Fig. 2 in Ref. 20.

For more complicated geometries like cylinders of fin
length, closed-form expressions for the linear susceptibi
x(v) are not available, and all the more not for the nonline
susceptibilities. One thus has to use sums of the form~34!
with numerically obtained numberscn andLn ; see Table I.

The explicit expressions~5!, ~7!, ~9!, ~10!, and ~34! for
x@v,rac(v)# are very useful since they apply to arbitra
linear complex resistivity, including the Ohmic and TAF
~Ref. 22! casesrac(v)5r51/s and the Meissner state de
scribed by the London equation, in which formallyrac(v)
5 ivm0l2 wherel is the London penetration depth. By in
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verting such a relationship betweenx and rac numerically,
one may extract the linear complex resistivity from measu
ments of the ac susceptibility as was done in Ref. 20. In
nonlinear case one has to fit or compare the measuredx to
the computedx(H0) or x(H0 ,v) as was done, e.g., in Refs
6–13,34, and 35.
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