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Superconductor disks and cylinders in an axial magnetic field. I.
Flux penetration and magnetization curves
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The current density in type-1l superconductor circular disks of arbitrary thickness, or cylinders of finite
length, in an axial magnetic field is calculated from first principles by treating the superconductor as a
conductor with nonlinear resistivity or with linear complex resistivity, both caused by thermally activated
depinning of Abrikosov vortices. From these currents follows the magnetic field inside and outside the speci-
men and the magnetic moment, which in its turn determines the nonlinear and linear ac susceptibilities. The
magnetization loops and nonlinear ac susceptibilities are obtained directly by time integration of an integral
equation for the current density, which does not require any cutoff or approximation of the magnetic field
outside the cylinder. With increasing thickness the results go over from the recently obtained solutions for thin
disks in a perpendicular field to the classical behavior of long cylinders in a parallel field. Here this direct
method is applied to homogeneous disks with constant thickness, but it applies to any axially symmetric
superconductor with arbitrary cross section and inhomoger&§163-182@08)06134-7

[. INTRODUCTION Sec. Il an equation of motion is derived for the current

density in cylinders with arbitrary length, which applies to

Material properties of type-ll superconductors, like thenonmagnetic materials with any nonlinear or linear resistiv-

critical current density and activation energy for thermal de-ty and explicitly contains the applied field as a driving force.
pinning, are most conveniently obtained by contact-fred then discuss various current-voltage laws and show that in

magnetic measurements. To achieve high sensitivity the sdbe (rather generalcase of a power law, a scaling law relates
perconductor typically is a thin platelet put into a perpen-the frequency and amplitude dependences of the current and

dicular magnetic field. In this perpendicular geometry defield profiles and of the ac susceptibility. Numerical results

magnetization effects are crucial. One may account for thes@'® p_resen:jed in Sec. I\é dethde form of profiles of thg cur_ren;
geometry effects by the introduction of a demagnetizatior{jens'ty and magnetic field during penetration and exit o

factor, but this works only for homogeneously magnetizeomagnetic flux, virgin magnetization curves, hysteresis loops,

ellipsoids with linear magnetic response; these three require"’}nd purrent—densﬂy p_rqf_ﬂgs. Th? .correspondmg F‘O”"“ear
ments usually are not satisfied in superconductors with vor‘:’1nd linear ac susceptibilities of finite cylinders, W.hICh may

o : . be used to extract the current-voltage law or the linear com-
tex pinning. On the other hand, a full three-dimensid&l)

; ) lex resistivity from magnetic measurements, are given in
computation of the magnetic response of a superconduct art Il (Ref. 2

with arbitrary shape is a formidable task which, to my
knowledge, has not been tackled so far. As yet it appears
even unclear which equations have to be solved when the
direction of the currents is not knowapriori in the full 3D
nonlinear problem. A useful model to describe superconductors with strong
There exist, however, two realistic nonparallel geometrieginning in high magnetic fields is the critical state model
in which the direction of the currents is known, namely, longintroduced by Bean.This model assumes that the current
bars in a perpendicular field where the currents flow alonglensityJ(r) inside the superconductor is either zero or has
the bar and axial symmetric specimens in an axial fieldhe critical magnitudel.. In regions withJ=0, magnetic
where the currents flow on concentric circlds. both geom-  flux has not penetrated and the magnetic inductioB 4s0.
etries the problem is two dimensional and the current densitfjRegions withJ=|J|=J, are in the critical state. When the
J, vector potentialA, and electric fielcE are parallel to each applied fieldB,= uoH, is changed, the flux line@brikosov
other, having only & or ¢ component. Recently the theory vorticeg rearrange themselves such that in regions whiere
of a long superconductor bdor strip, slab of rectangular would exceedl., J is reduced tal; again. In generalJ,
cross section in a perpendicular field has been developed imay depend on the local inductid(r), and in inhomoge-
Ref. 1. The present paper extends this method to axial synreous materials also explicitly on the position J. may
metry, in particular to the realistic case of disks or cylindersalso be anisotropic. In most of this pap&r=const is as-
with arbitrary constant extension along their axis. sumed, but the numerical procedures work equally well for
The outline of this paper is as follows. In Sec. Il explicit any given dependenck(B,r); see Sec. IV E.
expressions are compiled for the current density and magne- The orientation of the currents in the critical state model
tization curves of the Bean critical state model for infinitely depends on the specimen shape and on the magnetic history,
long cylinders and thin disks in an axial magnetic field. Ini.e., on the previous applied fieB,(t). For monotonically

Il. CRITICAL STATE MODEL
AND MAGNETIZATION CURVES
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increasingB,(t) the current stream lines in the penetrated For thin disksof radiusa and thicknessi=2b<a in a

region coincide with the virgin flux fronts. In 2D geometry perpendicular fieldH,, the current density averaged over the

(either very long or very thin prismatic superconductdr®  thickness isJ=¢J(r) with’

stream lines follow from the simple princiflghat these

curves have a constant distance from the specimen boundary. 2 cr

This general construction principle immediately tells, e.g., - Jc;tan‘lm, r<rp,

that near the convex corners of a polygon-shaeeg., rect- J(r)= (rg=r9)

angulaj film in a perpendicular field, and in a rectangular Je, rp<r<a,

bar in a parallel field, the stream lines are piecewise straight

lines performing sharp bends along straight “discontinuityW"€"€

lines;” while near the concave edge of an indentati@md

near a short crack in the surfacthe stream lines form

circles centered at the tip of this indentation. These circles

meet the regi i i i i ©
gions with straight stream lines along parabolic

discontinuity lines. All these topological features are nicely H.—3Jb=Jd/?2 (10)

confirmed by magneto-optic observations and by direct ¢ Yer T e e

computations*~*° The stream lines may also be visualized For flux-front positionsr ,<a/2, a good approximation is

Y

ro=alcoshiH,/H,), (8)

c=(1-rj/a®)¥=tani(H,/H,),

by sand piles poured on plates with different shdpes.
The long cylinder and thin circular disk in axial fiefexis

along 9) are 1D problems. For &ng cylinderof radiusa
and lengthL=2b in a uniform longitudinal applied fielt
the Bean model yields the current density &J(r) [ is
the azimuthal unit vector in the,z plane,r=(x?+2%)'?

and the inductiorB=yB(r)[B(r) = uoH(r) if the irrevers-
ible magnetization is disregardgd

Jeo TpSrsa,

J(r)= . 1
(r) 0, otherwise, @
0, r<rp,
H(r)y=4 Ha—=Jcr, rpsr=<a, 2
H,, asr.

J_(r):(ZJC/w)arcsin(r/rp). The magnetic moment of the
thin disk is

Ho— - 1d 2 01 +sith|
M(Ha) == Jeda"z] cos oo+ Cosith
for 0<h<te with h=H,/H.=2H,/3.d. The initial slope

m’(0)| for the thin disk ismuch larger than its volume
mazd,

(11)

m'(H,=0)=-8a%3 , (12
and the saturated moment coincides with Ej,
r
Mga=M(H >H ) =— =Ja%d . (13

3

For comparison, the corresponding expressions for a long
thin strip of lengthl and width 2a in a perpendicular field

8
Herer,=H,/J. is the radius of the penetrated flux and cur- are

rent front. The magnetic moment of the cylinder of length

L=2b in general ism=ym with

m=27-rj0adr rZJObdy Jr.y) . ©)

For long cylinders >a) Eq. (1) yields the virgin magnetic
moment

m(H,) = —mJ.a3L(h—h?+h%/3) (4
for 0<h<1 withh=H,/H,, whereH,=J.a is the field of
full penetration. FoH,=H,, i.e., h=1, m stays constant
since the current density has saturated +oJ.. in the entire
sample. The initial slopém’(0)| (the ideal magnetic mo-

ment divided byH,) for a long cylinder isequal to its vol-
ume

m'(H,=0)=—ma’L , (5)
and the saturate@maximum magnetic moment is
o3
Mga= m(HaBHc) =- §Jca L. (6)

m(H,) = —J.daltanh(H 7/ J.d), (14)
m'(H,=0)=—ma?l, (15)
Mga=M(H > J d7)=—J.da?l. (16)

The virgin magnetization curvéll) of the thin Bean disk
coincides to better than 0.0, with that of the long thin
strip Eq. (14) if both curves are normalized to unity initial
slopem’(0) and unity saturation value,; cf. Sec. IV C.
The normalized Bean magnetization curve of a thin square-
shaped disk~® deviates from that of the circular disk by
less than 0.008,.*°

The Bean critical state model of thin strips of constant
thickness was first solved for current-carrying strips by
Norris?° This classical work was then extended to strips in a
perpendicular magnetic field without transport curt®and
with transport current:?? and recently to current-carrying
strips with an elliptical cross sectidn.

The duality of the strip problems—with applied field or
transport current—has no equivalence in the disk problems,
since a parallel current cannot be applied without disturbing
the symmetrybut adding a radial current is possible, leading
to Corbino disk symmetyy However, the problem of a thin
ring in a perpendicular field has features of all three prob-
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lems, namely, of the disk and the strip with applied field and=1) nor for the Bean limit §—o°). Note that the solution of
current; see the recent theof&® and experiment§?’ on  the London equation for the penetration of magnetic flux is
superconducting rings. The extension to superconductorsquivalent to the solution of the Ohmic problem, since Lon-
with finite thicknesso far has been achieved only for a thick don superconductors formally exhibip,.(w) =i wmw\?
strip without transport current in Ref. 1 and for a thick disk where\ is the London penetration depth; cf. Eq20) and
in the present paper. Computation of thick strips with trans{21) and the screening of two coils by a superconducting or
port currents in a perpendicular field is under way. Ohmic thin film calculated in Ref. 33.

From the virgin magnetization curves(H,) of the Bean However, for short cylinders in the Bean limit, one has an
model like Egs(4) and(11), the complete hysteresis loop in explicit expression for the field of full penetratidthy, i.e.
a cycled applied field with amplitude, is obtained by the the value of the increasing applied fiel, at which the

general prescripticii282° penetrating flux and current fronts have reached the speci-
men centef! At [H,|=H,, the current density in the Bean
m, (H, . Hg) =m(Hg) — 2m Ho—Ha model does not change anymore and the magnetic moment,
11Ha 1o 0 2 ) Eq. (3), saturates to the valuag,= — (2/3)J.a°b, Eq.(6).
For cylinders with arbitrary aspect ratida, the field of full
Ho+H, penetration i53*
m;(Ha,Hg)=—m(Hg)+2m > ) (17
a 2\ 1/2
wherem; andm; are the branches in decreasing and increas- Hp=Jcbln ot 1+52 } (19
ing H, . If H,(t) =Hgsinwt is sinusoidal, one may define the
ac susceptibility In the limit of a long cylinder b>a) this formula yields
_ ” Hp=J.a as stated below Ed4). For thin disks b<a) one
(Howw)= o m(t) e~ ot dt . (18) obtains, from Eq(19), H,=J.bIn(2a/b). Inserting this value

mHoJo Ha=H, into Eq. (8) one finds that the finite thicknes?2
formally yields an inner cutoff for the thin-film expression
In the critical state mode} depends only on the amplitude (7) at a flux-front positionr ,= a/cosHIn(2a/b)]~b. For
H, but not on the frequency. For the thin disky(Ho) was  comparison, the full penetration field for a long rectangular
calulated from Eq(11) in Refs. 29 and 31. The ac suscepti- bar of cross sectionx 2b in a perpendicular fielfEq. (65)
bilities of cylinders of various lengths are given in Ref. 2. of Ref. 1] has the thin-film limitH ;= J¢(2b/ 7)In(edb) and
yields an inner cutoff of the penetrating flux front at a dis-
Ill. COMPUTATIONAL METHOD tance  x,=al/coshgrH,/2J.b)—x,=alcosljin(eab)]~2ble
_ . with e=2.718.
A. Cylinders of finite length
The aim of this paper is the computation of the magnetic B. Equation of motion for the current density
properties of thick circular disks or cylinders of finite length
2b and radius, in a magnetic field(t) = uoH 4(t) applied
parallel to the cylinder axis along. Here mainly cylinders g ) ,
with constant length & in a homogeneous applied field will find an equation of motion for the current densiyr,t)
be considered; = (x2+z?)Y?<a, —b=<y=<b, but our nu- InSId.e the cylinder, using the Maxwell equatiods=V X H
merical method applies also to axially symmetric specimen@ndB=—VXE, which imply V-J=0 andV-B=0 if there
of any cross section and to inhomogeneblgr,y,t). are no current sourcéso contactsand ifB=0 at some time
The material will be characterized Wy=ugH, which  t. As usual, the displacement current, which contributes only
means zero reversible magnetization or zero lower criticaht very high frequencies, is disregarded in this “eddy-current
field H, (practically valid if[H|>H., everywherg and by  approximation.” As stated in Sec. Ill A, we describe the su-
a given current-voltage lave=E(J)J/J or resistivity p perconductor by the material law8=uoH and E
=E/J. This resistivity may be nonlinear and real, e.g., a=E(J)J/J.
power law E(J)=E(J/J.)", with critical current density The main problem is now to find for this geometry an
J.(B)>0 and exponent(B) =1, which in general may both equation forJ(r,t) that explicitly contains the applied field
depend on the inductioB(r). In the latter example an ex- H,(t), which we assume to be homogeneous for simplicity.
ponentn=1 describes Ohmic behavior amd- the Bean In other words, we want to incorporate the known boundary
model. Alternatively, the resistivity=p,.(w) may be lin-  conditions forH(r,t) (H—H, for |r|—) into an equation
ear, complex, and frequency dependent. By assuiidgve  for J(r,t) which applies onlyinsidethe specimen. The cor-
restrict our considerations here to materials which are isotroresponding problem for parallel geometigfinite cylinden
pic in the xz plane. If required, anisotropiE(J) laws may s trivial, amounting to the solution of a differential equation
also be considered in such computatiGhddowever, as for H(r,t) with the boundary conditiohi =H, at the surface
shown by Gurevicii? some nonlinear anisotropic current- and in infinite outer space. But for perpendicular geometry
voltage laws(or anisotropic critical current densitiesnay  the stray field outside the specimen is inhomogeneous and
cause an instability of the current distribution and lead towould have to be computed in the entire outer space or ap-
macroturbulence. proximately in some finite volume extending far beyond the
For the short cylinder, to my knowledge exact analyticalspecimen, using some atrtificial boundary condition at the
solutions are not available, neither for the Ohmic limit ( surface of this large volume.

To avoid an explicit computation of the infinitely ex-
tended magnetic fiel&(r,t) outside the cylinder, we try to
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The d.esired .integral equations for the current density in an this form (containing the kerneD.,, rather than the recip-
perpendicular field recently were found for thin stfpand  rocal kernelQ,/) when one is interested in the linear re-

falea36 i 4 -
disks3® for thin rectangles? and for long bars. Here we sponse to a periodic signd,oi wexp(at). In this case the

derive such an equation for problems with axial symmetry. . B . ..

In this case the current densily electric fieldE, and vector Ume dependence di(r,t) =J(r)exp(w) is explicitly known

potentialA (defined byVxA=B, V-A=0, (A),=0) have and the amplitudd(r) follows from alinear integral equa-
’ ’ r

only one component pointing along the azimuthal direction fion as descri_bed in Ref. 2. In the gengral case of _nonlinear
- thus J=J S E—E A dA=A . Th E(J) and arbitrary sweep dB,(t), the time integration of

¢, tus /= (r.,y)<p, - (r’y)?o’ andA= (”1)?- € Eq. (29 has to be performed numerically as described in
vector potential of the applied fieldB,=B,y is Ay  Ref. 1. For this purpose, the time derivative should be moved

- i - - _V2(A_ .
=~ (r/2)B, . SinceB=yuoH, one hasuol=—Vi(A—A,), out from the integral to obtaid as an explicit functional of

or explicitly in axial symmetry,uqd=—V?A+(r/2)B,]. . o ) . .
The solution of this Laplace equation in cylindrical geometry? @dBa. This inversion may be achieved by tabulating the
; kernelQcy(r,r ') on a 2D gridr;, r; and then inverting the

is
matrix Q;; to obtainQﬁl, which is the tabulated reciprocal
a fb , LT kerneIng,l(ri ,I;}). The equation of motion for the azimuthal
A(r)=—,quO dr fo dy’ Qey(rr’) I(r')— >Ba. current densityd(r,y,t) then reads
(20 '
. . E -1 a ’ b ’ -1 ’ r.
with r=(r,y) andr’=(r’,y’). The integral kernel J(r,t)=pug Jodr JO dy’ Qg (r,r )[E(J)—EBa}.
Quy(rr ) =F(r,r"y=y ) +f(r,r y+y'), (21 29
with This nonlocal andin general nonlinear diffusion equation
for J(r,y,t) ¢ looks very similar to the corresponding equa-
mde —r' cosp tion for the longitudinal current density(x,y,t)z in strips,

fr.r',m)= 0 27 (72+12+1'2—2r1 ' cose) V2’ (22) bars, or slabs derived in Ref. 1. The same numerical program
K can thus be used to compute the electrodynamics of long
is obtained by integrating the 3D Green function of thebars in a perpendicular field and of an axially symmetric
Laplace equation, 1/(#|r;—r's]) with rz=(x,y,z), over specimens in axial field.
the anglep=arctang/x). The functionf(r,r’,») may be As they stand, Eqg20) and (24) apply to cylinders with
expressed in terms of elliptic integrals, but here it is moreconstant height & or disks with constant thickness. But they
convenient to evaluate the integral (22) numerically. A are easily generalized to an arbitrary cross section of an axi-
high-precision integration method which accounts for the in-ally symmetric specimen by replacing the integration bound-
finities of the periodic integrand)(¢) in Eq. (22) at ¢  aryb for y by a functionb(r) of the radiusr = (x?+z?)*2,

=0, 2m, ..., etc., uses the substitutiop=¢(u)=mu  For example,b(r)=(a?—r?)¥? describes a sphere and
—sinmu(u=0, ...,1) and weight function ¢'(u)==  b(r)=b(0)(1—r?%a??*? an axially symmetric ellipsoid.

—mcosmu  with  equidistant  grid  u;=(i—3)/M, One may also drop the mirror symmetry at the plane
(i=1,2,... M, M=30) by writing Eq.(22) in the form =0, expressed by Eq21). This allows us to consider, e.g.,

superconductors of conical shape in an inhomogeneous ap-
plied field H,(r,y,t). In this case one replaces in E@5)
the applied vector potenti#{,= (r/2)Ba(t)<}> by some other
M axially symmetric vector potential\(r,y,t)e, which is
~ %2 gle(u)]e’ (uy). (23 caqsed, e.g., by a small coil or by a permanent magnet which
i=1 levitates the superconductor. Our method thus allows us to
compute repulsive or attractive hysteretic levitation forces on
To obtain the desired equation @t ,y,t) we express the  magnets and superconductors in axial symmetric configura-
induction law VXE=—-B=—VXA in the form E=—A. tions.
The gauge ofA, to which an arbitrary curl-free vector field

T 1
f:Jo a(e) d<p=JO gle(u)] ¢'(u) du

may be added, presents no problem in this simple geometry. C. Interpretation of the equation of motion
Knowing the material law E=E(J), eg., E . ) _
= EC(J/JC)nsgnO) or a linear and Comp|eE:p‘], one ob- The equatlor(25) for J(r,t) as a function Oﬂ(r,t) and of

tainsA= —E(J). This relation betweeh andJ allows us to ~ Ba(t) “works,” i.e., the solutionJ(r,t) is obtained by direct

eliminate eitherA or J from Eq. (20). Eliminating A, one ~ numerical time integration, starting, e.g., w3 =0 andJ
obtains =0 at timet=0, and then increasinB, gradually to obtain

a nontrivial solutionJ(r,t). But how is the boundary condi-
5, o r. tion B(r—o)— B, actually incorporated into Eq25) ?
E[J(r,t)]:,qu'S dr" Qey(r,r )I(r, 1) + 5Ba(1). To answer this question one has to reconsider the deriva-
(24) tion of Eqg. (25). One realizes that in the equatiqigyJ
=—V2(A-A,) above Eq.(20) the last term actually could
This implicit equation for the current densifyr,t) contains  have been omitted because inside the specimen one has
the time derivativel under the integral sign. It may be used V?A,=0 or, explicitly, V?(r/2)B,=0, since the currents
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causing the applied field flow in a faraway coil. But this D. Current-voltage laws
omission would hav_e left us without th®, terms in Egs. The equations of motiot24) and (25) still apply to any
(20) and(25). While in Eq.(20) the term (-r/2)B;, should ¢ rrent-voltage lawE(J). From the theories of collective

be clearly there, the meaning of the term(/2)B, in Eq.  creef”*®and also from the vortex glass pictéfene obtains
(25) is less trivial. One may argue that, since the operatothe useful interpolation formufl
Q(r,r') is the inverse of the Laplacian operafof, the in-

verted kerneQ ~1(r,r ) should be identical t&? and there- u(d)

fore the last term in Eq(24) should vanish. This is indeed E(J):EceXF{ - W)

true for positions insidethe specimen: One can show that

[d%r’ Qc_y,l(r,r ")r'=0 for r inside the cylinder. But for on (I /-1

the cylinder surface this term is infinite and describes a U(\]):UOT- (30

screening current flowing in a thin surface layer.

The existence and size of this surface screening current igere U(J) is a current-dependent activation energy for de-
easily seen when one starts at tive0 with B,=0 andJ  pinning which vanishes at the critical current density and
=0 and then switches on the applied field such Bia£0 in  «a is a small positive exponent. Formally, far= — 1 expres-
Eg. (25). Immediately after that, at time=+ ¢, the induc-  sion Eq.(30) coincides with the result of the Kim-Anderson
tion and current density inside the cylinder are still zeromodel?® E(J)=Eexq (Ug/kT)(1—J/Jy)]. Fora=1 one gets
since they need some time to diffuse into the conductindg=(J) =E.exd(Uy/kT)(J./I—1)]. In the limit «—0 one has
material. Therefore, at= + € also the electric fielEE(J) is  U(J)=UqIn(J./J) and thus
zero and thus the first term in E¢RS) vanishes. What re-
mains is the last term, which should be the time derivative of E(J)=E(J/JI)" with n=Ug/kT . (31)
the Meissner screening curredy,.

. This surface screening This power law has been found in many experiments. It con-
current is thus

tains only one essential parameter, the expomertesides

a b r the trivial prefactorE./J7. Forn=1 it describes an Ohmic

Jscr(rat):_Ha(t)J dr’f dy’ Qu(r,1") % . (26)  conductor with constant resistivity=E/J, which applies
0 0 also to superconductors in the regime of thermally activated

flux flow*! (TAFF) at low frequencies. In the limit—o the

The thickness of this current-carrying layer depends onyqg\er Jaw(31) is equivalent to the Bean model, and for 1
the choice of the computational grid in the cylinder. The <~ it describes flux creep. In general, the prefadgqr

layer thickness may be reduced, and the precis'ion of thg§ng activation energy in Eq. (30) depend on the local
computed magnetic moment enhanced, by chosing a noRsq . ction B(r): therefore, in general alsm(B,T) and

equidistant grid which is denser near the cylinder surface. Ib B.T) depend orB. But thisB dependence mav be disre-
each grid point; has a weigthw; such that with integrands o(B.T) dep -t P y !

) L ) garded ifB is sufficiently large. In the following computa-
eglg(nrp)rgiprf:tletjoiaj)ghnrgzc;l tE:EOlf)(I)?mS the integrals are well ong | shall use the simple power lai®1) to model super-

conductors with flux creep.

J’ g(r) d’r=> g(rpw;, (27) E. Useful scaling law
1
For the power law current-voltage cur@l), E«J" or
then the matrix which has to be inverted is the original ma-p=E/J=J° with o=n—1, a general scaling law follows
trix times this weight. Namely, for arbitrary functiomgr) from the Maxwell equations wheB= MOH,ZE’ Namely, when
and h(r) tabulated inside the cylinder ag=g(r;) and h; one changes the time unit by an arbitrary constant factor of

=h(r;), one has with the definition and the current and field units by a factor df” where o
=n—1, then Egs(24) and (25) for the current density are
_ 2 , invariant; i.e., the same solutions result for the scaled quan-
h(r)—j dr Q(rrig(r), (28) tities. This means, if these equations and the Biot-Savart law

(20) are expressed in terms of a new timet/c, then the
_ new solutions take the form

hi“; Qijw; gj, gi“; (Qiw) *h;. (29

J(r,H)=J(r,t)c™,  B,(1)=Ba(t)c'”,
Thus the required reciprocal matrix is the inverseQfw;
(no summation ovey in this product. An appropriate choice BTy Vo = F\_ o
of such a nonequidistant grig=(r; ,y;) is obtained, e.g., by B(r,)=Br.Hc™,  m(H)=m(t)c™. (32
the substitutionsr=r(u)=3(3u—u’a, y=y(v)=3(3v In particular, wherB,(t) = Bysint is periodic, the shape of
—v?)f_J, and then tabulating=0, ...,1 and)=0,...,1 0on the hysteretic magnetization curven(B,) remains un-
equidistant gndsuk=(k—_%)/_l\lr(k=l, c _,Nr) and v, =(l changedif one increasesv by a factor ofc and By by a
—3)INy(I=1,... N,), yielding a 2D grid ofN=N;-N,  factor ofc’*. By the same token, the complex susceptibility
points with weights vanishing at the boundariesa andy  y(B,,w) normalized toy(0,0) = x(Bg,*)=—1, i.e., to the
=b, namely,w;=w,w, with Wr=drk/dk=§(1—uﬁ)a/Nr ideal diamagnetic limit occurring at zero amplitude or infi-
andwyzdy|/dI=%(1—v|2)b/Ny. nite frequency, remains unchanged during such scaling.
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A useful consequence of this scaling law is thus that the

normalized ac susceptibility(By,w) and the shape of the

hysteresis loopm(B,) depend only on the combinations

Bo/ 0 or w/BJ. One may write, e.g.,

X(Bo,@)="f,[ BBo/ 0™+ w/(BBo)”], (33
wheref (X) is a universal complex functiofdepending on
o and on the geometjyand 8 is an arbitrary constant of the
same dimension a&'’/B,, introduced to make the argu-
ment x of f_ (x) dimensionless. Therefore, j§(Bg,w) is
known for a wide range of amplitudd, at one frequency
w/27, then the scaling relatio(83) gives usy for different
frequencies. A further consequence
plots?®>2742 y"(y') of the complex ac susceptibility =y’
—ix" depend only on the exponeat Though this scaling
law was derived for a power la«J", it applies to a wide
class of nonlinear E(J) if one defines o=n—-1
=4d(InE)/d(InJ)—1 taken atl=~J., i.e., at the characteristic
current density of the experiment. With this definitie(J),
Eq. (29), yieldsn=(Uy/kT)(J./I)*~Uy/kT.

The scaling relatiori33) correctly yields the two limiting
cases of Ohmic conductors, which exhikit=0 and x
= x(w), and of Bean superconductors, exhibitimng>< and
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FIG. 1. Current and flux fronts in superconductor cylinders with
aspect ratiod/a=2, 1, 0.5, 0.25, 0.125, and 0.0625 in an axial

X= X(By). It thus connects these two limits in a natural way. magnetic fieldH,. First H, is increased gradually from zero to

IV. RESULTS
A. Flux penetration and exit

The time integration of Eq25) is described in Ref. 1. To

obtain flux fronts and magnetic field lines, an equidistan
spatial gridr; works well, but for accurate computation of
magnetization curves and susceptibilities a nonequidistaq
grid with denser points near the cylinder surfaces is pre-

ferred. First one tabulates the matr@®;=Q(r;,r;), Eq.
(21). As with the strip geometry, the diagonal terms(@f
formally diverge as It;—r;| and have to be cut off appro-
priately. The optimal choice of the tern@; in the strip and

t

0.9H, (solid lines; shown ar¢d,/H,=0.05, 0.1, 0.2,...,0.9)
and then decreased again(dashed lines; H,/H,
=038, 0.7, 0.5, 0.3,...,-0.5, —0.7), whereH , is the field of

full penetration, Eq.(19). Shown is the Bean limitr{(=51) at a
constant ramp ratJeBa| =E./a. For increasindd , the depicted con-
tour linesJ=*J /2 separate the inner core with=0 from the
outer regions withJ==J.. For decreasingi, the contour lines
J=0 separate regions with-J. and —J.. In the genuine Bean
ﬁnit (n—o°) the solid and the dashed lines should exactly coincide.

(34)

: b i
JO=12 Qi | 31" rz—'Bam};

cylinder geometries is not yet solved satisfactorily; cf. thecf. Ed.(20) of Ref. 1. The time integration of this first-order
Appendix. Good numerical accuracy is achieved by replachonlinear differential matrix equation fak(t) may be per-

ing 7% by 7°+ €2 in Eq. (22) with €2=0.015dx dy where
dx=a/N, anddy=Db/N, are the grid spacingsTo stress the
similarity with the bar geometry we write helg, for N, and
dx for dr.) This e value works well when the grid cells are
approximately quadratiajx~dy or Ny~N,b/a. To check
the accuracy one may use the fact thatrier1 the profiles

formed by starting at timé=0 with J;(0)=0 and then in-
creasingt in stepsdt to obtain J;(t+dt)=J;(t) +J;(t)dt.
The computational speed and stability of this time integra-
tion are strongly increased by using a variable time step
=c,/(maXp|+0.01) with p=E/J and c;=0.3/(Nn) in
units of a=J.=E.=ue=1. Up to grid sizes of abouN

of the penetrating magnetic field should be positive outside=N,N,~1200 this calculation may be performed easily on a
the flux-free core, go steeply to zero at the core boundarRC.

and stay zero inside the core; cf. Figs. 9 and 10 belowidf
chosen too large or too small, thBrjust inside the flux front

The shapes of the penetrating flux fronts for finite cylin-
ders of various lengths in increasing axial fiéld are shown

artificially may take a small negative or positive value. Inin Fig. 1 for n=51. These fronts look very similar to the
principle, some method of finite elements might be used tdronts in long rectangular bars with the same aspect tio

define the matrixQ;; and obtain finite diagonal elemerfts,

shown in Fig. 2 of Ref. 1. We compute these fronts most

but so far our trials gave less accurate results than the abow@nveniently as the two contour lines where the current den-
definition of Q;;; see also Sec. IV E. This matrix is then sity J equals +3J.. Other methods for obtaining these

inverted to yieIinjl. Here we use unita=J.=E.=ug
=1, yielding E=J", Eqg. (31). Finally, time integration of

fronts within the Bean model are given in Refs. 3 and 43-46.
The dashed lines in Fig. 1 are the flux fronts which form

Eq. (25) is performed by writing the continuous current den-when B, is decreasechgain after an almost complete pen-

sity as a discrete vectdi(r; ,y;,t)=J;(t) and its equation of
motion (25) as a matrix equation,

etration of flux. At these penetrating fronts of flux with op-
posite signJ jumps from—J; to +J.; the depicted dashed
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FIG. 3. The magnetic field lines during flux penetration into a
cylinder with b/a=2 and creep exponemt=51 at applied field
valuesH,/H,=0.2 (top) and 0.8(bottom). Left: contours of the
vector potentialA(r,y) at equidistant levels. Right: contours of
rA(r,y) at nonequidistant levels; see text. The rectangular frame

FIG. 2. Comparison of the computed flux frortsolid lines  jngicates the border of the disk and the bold liitee contours)
with the analytic expressio(84) (dashed linesfor disks withb/a =+J./2) delimit the field- and current-free core.
=0.1, 0.025, and for strips with/a=0.025(from top to botton).

Shown are the contour line$=J./2 in half the cross section in . . .
increasing applied fielth,/H,=0.5, 0.1, 0.2, ...,0.9. For clar- long as the penetration radllug, Eq. (8), exceeds the disk

ity the thickness B is exaggerated in these plots by factors of 2.5th'CkneSS . At larger applied fields, Whenp<b' the C.om'
and 10. The creep exponentris51 and the number of grid points, Puted flux front detaches from the surface of the disk, and
N, X N,=80x 14 and 90 7. the field- and current-free core becomes isolated from the
outer world. From Eq(19) one finds that fob<<a full pen-
lines are thus chosen as the contodirsO. In the genuine etration occurs whem,, Eq. (8), has reached the value
Bean model §— o) these fronts should have the same shapéZ/e)b:OJ‘b- ) . )
as the incoming virgin fronts. In Fig. 1 the fronts are plotted " Specimens with finite thickness the computed flux
for H,/H,=0, 0.05, 0.1, 0.2,..,0.9, 0.8, 0.7, 0.5, 0.3, fr_onts penetrate faster than predicted by By); i.e., at a
...,—0.5-0.7, whereH, is given by Eq.(19). These in- given _val_ue_ ofH, the real _front has penetrated deeper than
tervals are twice as large during the decreaseHgfthan the thin-limit front (34). This effect. becomes Igrger yvhen a
during the increase. Therefore, the two series of front$maller exponenn is used. For disks and strips with'a
should exactly coincide within the Bean model; see also Eq—0-025 andn=>51 the depicted fronts are nearly identical
(17). For the depicted large creep exponant51 the solid except near the specimen center. The wiggles in the plotted
and dashed flux fronts indeed coincide almost perfectly. Fifronts (computed as the contouts=Jc/2) are due to the
nite creep (<) initially leads to a slower penetration of Small number of grid planesy,=7, in the grid used oN
oppositely oriented flux, but then these new flux fronts over-= NxXNy=80X7 points.
take the virgin fronts and reach the specimen center before
H, is decreased te-H,, .

The similarity of the Bean flux fronts for not too thick o ] o ) o
disks and stripst{<a) follows from the similarity of the The magnetic field lines in increasing axial fi¢ld(t) are
solutions for the thickness-averaged current den_ls'mtlthin shown in Figs. :.)’_6 for cyllnder_s W't.h various aspect ratios
disks and strips in a perpendicular field; cf. E@) for the b/?_dz (Iozrlg( ;:32/I|nd_er, ;/’%EA(') ger'd EP'E%’. bk/a2_82.75 (short
disk. The same equatidi@) applies also for the long strip if cyln er,_ _ngQ), a=>o. .(t IcK disk, grid),
 is replaced by andH =bJ, by H,=2bJ, /. Since in- andb/a=0.1 (thin disk, 60x6 grid), for creep exponem

side the diskJ| is either 0 orl., the shape of the flux fronts =51. These magnetic field lines, and also the contour lines

) s — and profiles of the electric field not shown here, look similar

in thin disks follows fromJ(r), Eq. (7), as for cylinders and bars with same cross sectiax2b; see

L Refs. 1 and 47. However, a general difficulty arises when
J(r) 2 r one tries to visualize 3D magnetic field lines with axial sym-
Je ~b ;arcco?—p (39 metry in a 2D plot. While for infinite strips or bars the field

lines of B(x,y) =V X zA(x,y) are actually 2D and coincide

for r<r,. Figure 2 compares the computed flux fronts with with the contour lines of the vector potenti®(x,y) directed

Eq. (35) for a disk with aspect ratib/a=0.1 and for disks along the strip, this elegant plotting method does not work

and strips withb/a=0.025 and creep exponent=50. For  for a cylinder in an axial field. Namely, for a bar one has

thin disks and strips the qualitative agreement is good aB,=dJdA/dy and By=—JA/dx, but for a cylinder withA

B. Local magnetic field

1—

y(r)=+*b
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FIG. 6. Magnetic field lines during flux penetration into a thin
FIG. 4. Magnetic field lines during flux penetration into a short gisk with b/a=0.1 and creep exponenh=51 at H a/Hp

cylinder withb/a=0.5 and creep exponent=51 at applied field  _g 1 0.2, 0.4, 0.6, 0.8, and(from top to bottor. Deplcted are

valuesH,/H,=0.2 (top, middi§ andH,/H,=0.6 (bottom. The  he contours of A(r,y) at nonequidistant levels. The bold lines are
middle part shows the current-caused fiBle B, . Depicted are the  {he contoursl= +J./2.

contours ofrA(r,y) at nonequidistant levels. The bold lines are the
contoursJ= *J./2.

e

contour lines exaggerates the real field strerigitirhis can

be seen in Fig. 3, where the field lines are plotted by both
along ¢=atan@/x) the components of B(r,y)=V methods. In this caséb(a=2) the axial componerB,(r,y)

X[ @A(r,y)] are B.(r,y)=dAldy and B,=—(1/r)(dlar) in the midgile planey=0 goes linearly to zero at the flux
X(rA). front; cf. Fig. 9 below.

For the present problem, reasonable magnetic field lines In Fig. 3 (left column and Figs. 4-6 the field lines are
are obtained by plotting contour linesig&(r,y) at nonequi-  Plotted as the contour linesA=*const<(1,3,5...); see
distant levelsrA=constx (u—2)|u—3%| with w=0+1, above. These figures show the field lines of tbml mag-
+2,... . These lines are directed alorg and they are netic field B(r,y) in increasing external field3,. The
equidistant wherB=const, with(2D) line density propor- middle part of Fig. 4 shows also the fieB(r,y)—yB,
tional to the(3D) field strengthB. But at positions wherd  caused by the currents circulating in the cylinder. Inside the
goes to zero away from the axis=0, the density of these current-free core this field is exactly homogeneous and op-

posed to the applied fielB,; the superconducting cylinder
behaves thus like an ideal coil with constant current density
‘ = i in an optimally shaped cross section.
H Figure 7 shows the magnetic field lines whidy is de-
N 0.2 creased again after full penetration of flux and current has
<<<<<<<<<< >> 0.4 depicted volume close to the superconductor give virtually
identical pictures for strips and disks with the same aspect

) been reached atl,=H,, Eq. (19). In this figure the field
1) ////////)\\\\\\\\\\\\ ratio b/a. Shown are the field valuerom top H,/H,
(( | ))

lines are plotted as the contour lines Af which in the
=0.5, 0.25, 0,—0.25, —0.5, and —0.75. Note that the
(((<<<<<<<< >>>>>>>>)))) 0.8 picture of the field lines changes qualitatively several times
S whenH, is decreased fron, to —H,. In particular, at
T

i
L [ in such fee minma GB(xy
S superconductor; and in principle any diamagnet;”™ can
levitate freely. Note also that along any diameter the current

FIG. 5. Magnetic field lines during flux penetration into a thick density changes its direction three times: frend, to +J. at
disk with b/a=0.25 and creep exponemi=51 at H,/H, the flgx frpnt, to—J. atthe <_:enter, and again toJ;. There-
=0.2, 0.4, 0.8, and {from top to bottor). Depicted are the con- fore, in Fig. 7 the also depicted contour lings 0 mark the
tours of rA(r,y) at nonequidistant levels. The bold lines are thelens-shaped core into which the opposite flux has not yet
contoursJ= *J./2. penetrated, and they mark the specimen center.

\

Il

Ha/H,=—0.25 the field strengtlB has two zeros away
from the disk on the axis. Near these zeros the magnetic field
1 is quadrupolar. In such free minima oB?(x,y,z) a
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e
e
—
—
—
"
——
—

e

o



6514 ERNST HELMUT BRANDT PRB 58

) )LL) ) IR i

ORI (o .
/ 2

@) il (GOE i
@\g_;;))))))))»,,, i) .

/

./
(@ ©® ( B vrosocs
% | I
AN\

/ / ° r/a !
M««(«(( m >>>>)>>>))WD —08 FIG. 8. The thickness-integrated sheet curréyr) for disks
| | with b/a=0.5, 0.1, and 0.05 and creep exponent51 during flux
//Z/Z/ \ penetration, plotted in units)ca for applied fields H,/H,
=0.1, 0.2, 0.4, 0.6, 0.8, 0.9, and(ftom right to left, the solid
ﬂ((((«((((((@« | >>>>)))))))))})W -0 line with dotg. The bold lines give the radigtangential compo-
\\\\\\\\ \\ /// //7/// nent of the magnetic field at the surfad(r,b), which for thin

o ‘ . ‘ disks withb<a should coincide with the depicted curvég? for
FIG. 7. Magnetic field lines during the penetration of flux of y < and vanish for >a (outside the disk The finite thickness 12

opposite orientation, occurring wheth, is decreased again after it rounds the jumps oB,(r) at the flux front and at the edge.
had first been increased to the field of full penetratiyy Eq. (19).

Shown are the field line&he contour lines ofA) for a strip with
b/a=0.1 and creep exponem=51 at H,/H,=0.5, 0.25, 0,
—0.25, — 0.5, and—0.75(from top to bottom. Also indicated are
the specimen cross section and the lens-shaped core into which t
opposite flux has not yet penetrated.

the surface planes. For very thin disks the compuge(t)
coincides with the one calculated directly from the sheet cur-
fant (7). To my knowledge, an analytic expression for this
By(r) is available only for strip§ but not for disks."#%!

Figure 8 shows the tangential componé&p(r,y) of the
magnetic field at the flat surface=b of cylinders with
b/a=0.5, 0.1, and 0.05 in an axial field,. This radial 0.5
component is compared with the current density integrated

over the thickness, the sheet currdg(r)=2bJ. In the thin-

film limit, B,(r,b) should coincide withl (r)/2. This coin- Eu 0-0
cidence is nicely seen near the center. At the flux front the R
computedl(r) (for exponenin=>51) has a sharp bend, and >

for thin disks J¢(r) is well described by Eq(7). For the .05
depicted thicknesseB, (r,d) is still rounded at the front and Eo
near the edge of the cylinder, sinBg is caused by currents n
flowing not only in a shell of constant radius But in the =00

thin-film limit b<<a, B,(r,y) is generated mainly by cur-
rents flowing in the immediate vicinity af.

Figures 9 and 10 show the axial magnetic fiBldr,y) at
the flat surfacey=+*b and at the central plang=0 for
cylinders and disks with various side ratios in an increasing
axial field. Note that the field on the middle plape0 has 00, 1
a nearly constant slogéB, /Jr|~J., down to aspect ratios r/a

of b/a=0.25, as predicted by the Bean model for long cyl- £y, 9. profiles of the axial flux densiB,(r,y) at the surface
inders withb>a. The field at the surface, which may be y—+p (thin lineg and at the central plang=0 (thick lines.

measured by magneto-optics, also has a nearly constaBhown are the results for cylinders wittia=2, 1, and 0.5 in an
Slope, but the Slope is smaller tthl For thin disks with increasing applied axial field Ha/HpZO-lv 0.2, 0.4, 0.6,
b/a<0.25, a sharp cusp iB, develops at the edge of the 0.8, 0.9, and 1 at=>51. The corresponding radial compon&ntis
disk; this cusp is much sharper in the middle plane than irplotted in Fig. 8.

0.5
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FIG. 10. As in Fig. 9, but for thinner disks with side ratios h

b/a=0.25, 0.1, and 0.05. o o )
FIG. 11. Top: virgin magnetization curves(H,) for strips or

] ) ) bars with side ratiod/a=0.03, 0.1, 0.3, 1, 3, and 7 in increas-

Comparing Figs. 8-10 to Figs. 7, 13, and 14 of Ref. 1ing perpendicular fielt,, in the Bean limit o =101). The plots are
(which were computed with the same grid gizBe notes in reduced unitsn/mg, vs h=H,m’(0)/mgy such that the initial
that the magnetic field distributions at the upper surfaces oflope and the saturation value equal unity. Also shown are the limits
cylinders in axialH, and of bars in perpendiculdi, are  b/a=0 [thin strip, mM/mg=tanhh, Eq. (14)] and b/a=« (long
almost identical if the specimen cross sectia>2b is the  slab,m/mg,=h—h?/4 forh<2, m/mg,=1 for h>2). Bottom: de-
same. A small difference is that the deviation of the fieldviation from the limitb=0, m/mg,—tanhh.
profiles B, on the flat surfacey=+b from that on the
mi(_jdle planey=0 is larger for the disk than for the strip. Egs. (4—(6) and (11)—(13). The Bean magnetization
This can be understood from the fact that the flat surface of @,ryes for thin strips and disks in reduced units almost coin-
disk is surrounded by a current-free vacuum in boththe ¢ige 0<f,(h)—tanth<0.011, with maximum deviation at
and z directions, while the strip surface sees the current,—1 37 The lower plots in Figs. 11 and 12 show the devia-
carrying strip in thez direction and thus behaves more like tion of the computed reduced magnetic moment from the
the bulk. thin-film limit. Note that this deviation is small and non-
monotonic as a function df/a. The deviation is largest for
h~1 andb/a~0.6.

The saturated magnetic momemt,,=m(H,—%=) and

Figures 11 and 12 show computed virgin magnetizatiornitial slopem’(0) of the magnetization curves in real units
curves of bars and cylinders with various aspect rdti@sin ~ are given by the following expressions. In the Bean limit
the Bean limit (=101). Plotted is the magnetic moment (n—«) one has, for long bars of length, mgy
M(H_,) in reduced unitsm/mg, versus a reduced fieltd =-2J.a°bl and, for cylinders of length 12 mgy
=H,m’(0)/mgy, such that the initial slopes and saturation = — (27/3)J.ab; cf. Eq. (6). For finite creep exponents
values of all curves equal unity. Also shown are the limiting <« in the current-voltage laiE = E(J/J.)", the saturation

curves for parallel geometrp/a>1, nagnely, T/msat:h value ofm depends on the ramp raig, of the applied field
—h?/4 (long slab,h<2) andm/mg,=h—h</3+h>/27 (long . . L e 1

. : - and is reached exponentially in timeBf,= const. For bars
cylinder,h=3) with m/mg,=1 for h=2 or h=3, and per- and strios with lenath one had
pendicular geometry in the thin-film limib/a<<1, namely, P 9
m/mg,=tanth (thin strip and m/mg,= f4(h) (thin circular
disk) with

C. Virgin magnetization curves

o[ Bad " on
msat:_z\lca bl E 2n+1 .

C

1 sink(|7h/4]) |
costimh/4)  cosH(whi4))’

(36)

2
fq(h)=—| cos?®
a== For cylinders and disks the restitt!
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FIG. 12. Top: as in Fig. 11, but for disks and cylinders with
various aspect ratid¥/a in increasing axial field. The reduced units

and limits forb/a=0 [thin disk, m/mg,=f4(h) andb/a=c (long

cylinden, m/mg,=h—h?/3+h%27 for h<3, m/mg=1 for h

>3] follow from Egs. (4)—(6) and (11)—(13). Bottom: deviation
from the limitb=0, m/mgy— fq4(h).

2
3

Baa) U 3n

3
Jea’d 3n+1

Mga= — (39

is obtained by inserting in Eq3) the electric fieldE(r) and
current densityd(r) =J.(E/E.)'" of the saturated state,

Esalr)= %Bav (39
r 1/n 'Baa 1/n
‘]sa“):Jc(a) (f) . (40

The initial slopem’(0) is computed from the surface-

screening currenlg.(r), Eqg. (26). With Eq. (3) this yields

a b a b
m’(0)=—wf de dyj dx’J' dy’ r2Q Y(r,r"yr'.
0 0 0 0
(41)
On an appropriate grid with positioms and weightsw; [cf.

Eg. (29) and the Appendikone computes this as

m'(0)=—m>, wirZ(Q;w;) r;. (42)
ij
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FIG. 13. The initial slopgm’(0)| of the virgin magnetization
curvem(H,) of disks and cylinders in an axial fiel,, equal to
the ideal diamagnetic momenty(H,)=H_,m'(0), as afunction
of the aspect ratit/a. The dots are computed using Eg2) and
the lines show the fit formuld43). The inset shows the full
|m’(0)|. The main plot gives the small differenchn’(0)|
—mb/2a—3/2, which vanishes in the thin-disk lintit<a and takes
the value 0.42 in the limib>a.

To a very good approximation with relative errarl% one

may write the resulting initial slopéor ideal diamagnetic
momenj of cylinders with radius and length ® in an axial

field as

-m(0) @b 2 1 b a
=+ -+ Ztanf 1.27%In| 1+ ~
4a° a

2a 3 3 b 43

This formula has the correct limits1' (0)=—8a%3 for b
<a andm’(0)=—2ma®b for b<a; cf. Egs.(12) and (5).
The last term in Eq(43) is a small fitted correction. The
computed slopen’(0) for cylinders is plotted in Fig. 13
together with the fit(43). The corresponding slope for bars
[given by Fig. 15 and Eq.77) in Ref. 1] in principle can be
calculated analytically by conformal mapping, but for the
cylinder this method does not work.

D. Magnetization loops

Figure 14 shows hysteresis loops of the magnetic moment
m(H,) of a round cylinder with aspect ratla=1 (square
cross sectionfor three creep exponents=51, 11, and 5.
The amplitudesBy= uoHq of the cycled applied field are
Ho/Hp=1.5, 1, and 0.5, wher#l, is the field (19) of full
penetration. For cylinders withb/a=1 one hasH,
=0.8814).a. In the upper plot the applied field was in-
creased and decreased zigzaglike, i.e., at a constant ramp rate
H.(t) = (2w/w)Hosgn(cost), and in the lower plot sinusoi-
dally, Ha(t)=Hgsinwt, H,(t)=Hcoswt. In both plots
=1 was chosen, which with our reduced uréts J.=E,
=po=1 means w=E./(u¢J.a®) in physical units. As
stated in Sec. Il E, the choice of this frequency is irrelevant
since any other frequency leads to exactly the same magne-
tization loops if the unit of the magnetic field is changed
appropriately. In all loops in Figs. 14—17 the time ranges
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FIG. 14. Magnetization loopm(H,) of a cylinder with aspect -0.05 -
ratiob/a=1 for creep exponents=>51 (bold lineg, n=11 (dashed L
lines), andn=5 (dotted line3 at amplitudes of the cycled applied —0.2
field Ho/Hp,=1.5, 1, and 0.5, whertl ,=0.8814).a is the field of
full penetration, Eq(19). Top: zigzag applied field with piecewise

. B e FIG. 15. Magnetization loops(H,) of cylinders withb/a=3
constant ramp rate(t) = (2w/m)Hosgn(comt). Bottom: sinu- 150 cylinder, top, 0.3 (short cylinder, middlg and 0.03(thin
§0|dal Ha(t):HOS'nwt with same frequency):E?/(;Lcha ):,1 disk, bottom for creep exponents=51 (bold line9 and n=11
in reduced unit@=Jo=E.=uo=1. The plotted time interval is  (ja5heq Jinesin a sinusoidal fieldH ,(t) = Hosinwt at amplitudes
=0, ...,2.6r, which means 1.3 cycles including the virgin curves. Ho/H,=15, 1, and 0.5hereH,/J.a=0.9824, 0.5757, 0.1260)
p -y ) . p c . ) . ] .

. . ) and frequencyn=1 like in Fig. 14. The dotted lines give E4),
the virgin curves (&st<mx/2, 1/4 cycle.

Remarkably, the stationary situation is reaclfee., the  computed magnetization loops. This close coincidence
memory about the magnetic history is lpatready after 1/4  proves that the slight decrease of the magnetization loops
cycle or even ealier at large amplitudeg>H,,. This canbe  after the maximum was reached ;=0 is not a direct
seen from the fact that the loop precisely closes after ongonsequence of flux creep. In fact this decrease is absent for
complete cycle at=2.57. So for 2.5<t/7<2.6 the de-  zigzagH,(t) but occurs with sinusoidafi(t), where it re-
|c_J|cted magnetization curves ShOW two closely c0|nC|d|r_lgﬂects the graduabecrease of the ramp rate ) after
lines, and all loops exhibit inversion symmetry. The rapid (t) has passed through zeto.Therefore, alsoE
loss of magnetic memory is due to the nonlinearity of the . : '

9 y y ~(r/2)B, andJxE'" decrease; cf. Eq$39) and (40).

current-voltage law used(J) «J", with n=5 in these plots. M ; . ‘

In the Ohmic casen=1, the stationary hysteresis loop is tMag/r]eEz:)’at|8n3Ioo%sof(())rgcylmgerg ?rzjd. les.ks ;Y-SIT aspect

reached exponentially in time, but fer>1 it is reached ratiosbra=s, 1.5, ahd®.4s are gepicted in Fig. or creep

faster. exponent:=51 andn=11 in a sinusoidaH ,(t) at ampli-
Note that in Fig. 14 the zigzag and sinusoidal appliedgugSZHO/';P:l'S’ L ar_ldl Ollf }(!p/‘lquazlel.g?\lzi, ?h5157ll

fields yield almost the same hysteresis loom ifs large, in tH OI and frequencyw = " : eTI‘I]n '9. I ote i a ta th

accordance with the prediction of the critical state model. A €s€ loops are very similar. 1hey aré aiso simifar 1o the

corresponding loops of bars. For comparison, Fig. 16 shows

small difference is that fofH,|=const, the saturatiom \oonetization loops for a bar with a square cross section
— Msais reached exponentially in tinf&q. (42) of Ref. 1, (/31 jike Fig. 14 in a perpendicular applied field

while for H,=Hgsinwt the upper and lower branches of the (t)=Hsinwt at four amplitudesHy/H,=2, 1.5, 1, and
magnetization loops are slightly curved, closely fitting theoa5 H =% 7206)a for this baj and0w=7£ /(,Mo.J ,az),=1

s 25 . p . c c c
predictior? for creep exponents=5, 11, and 51.

_ 27142y 2n)
M(Ha) = = Mea(1=H/Hp) ’ (44 E. Field-dependentJ (B)

wheremg,is given by Eq(38) [or Eq.(37) for the baj with Also shown in Fig. 16 is one example for a field-
B.= wuoH, inserted. As is shown in Fig. 15, the theoretical dependent critical current densifiy(B)=J.o/(1+|B|/B;)
curve (44) closely fits the upper and lower branches of the(Kim mode) entering the lawE(J)=EJJ/J.(B)]". Here
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cylinder

0
HG/JCOG

0
Ho/dcoo

FIG. 16. Magnetization loops of a long bar with square cross FIG. 17. Magnetization loops of cylinders with field-dependent
sectionb/a=1, as the cylinder in Fig. 14, in a perpendicular ap- critical current densityl.(B) for b/a=1, creep exponents=51
plied field H,(t)=Hgsinwt at four amplitudesH,/H,=2, 1.5, 1,  (bold lineg and n=5 (dotted liney, at amplitudesHqy/H,

and 0.5 H,=0.720@.a for this bay andw=E_/(ugla?) =1 for =2, 15,1, and 05 of the applied field,=Hgsinwt(H,
creep exponents=5 (solid ling, n=11 (dashed lines and n =0.8814.a, w=1 as in Figs. 14-16 Top: Kim modelJ.(B)
=51 (dotted line$. Top: constant critical current densif=J.q =Jeo/(1+3pB) with B(r)=|B|/(ueHp). Bottom: nonmonotonic

(Bean model Bottom: field-dependenf (B)=J.,/(1+|B|/B,) modelJ (B)=J.(1—38+33%). BothJ,(B) have the same initial
(Kim mode) with B;/uy=0.36039a= %Hp inserted intoE(J) slope, but at largél, the lower plot exhibits a “fishtail effect.”
=EJJ/I(B)]". Here o=E¢/(ugleoa®)=1 in unitsa=J=E,
=uo=1. The loop forn=11, falling between the two depicted

curves, is omitted for clarity. at large applied fields1,>H, does the relative variation of

B(r) become small compared to the aver&yewhich then
we choseB;/uy=H,/2=0.3603a (for this ba) and w  approximately equal8,; cf. Figs. 9 and 10.
=E./(uode0a?)=1 in unitsa=Jy=E.=ue=1. For such Whereas for constant. the current density in the pen-
figures the required local inductioB(r) is most conve- etrated regions in the cylinder saturates toJ., the
niently computed from the current densifyr) using the B-dependend (B) causes a nonconstahtn these regions.
Biot-Savart law and the specimen symmetry. This integraExamples for the resulting current profilég,y) are shown
tion is much more accurate than taking the numerical derivain Fig. 18 for the same cylinder as in the upper plot of Fig.
tive of the vector potential(r), and it works even for very 17 [b/a=1, J.(B)=J¢/(1+3|B|/uoHp)], at one ampli-
small numbers of grid planesy, or Ny (as small as B  tude Ho=H,=0.8814.:a and creep exponem=21. For
reproducing the field-free central zone with an accuracy otomparison, in Fig. 19 the profiles are shown for the same
up to 102 The integral kernel relatin®(r)=V XA to  cylinder but with constani,=J.,. In both plots the profiles
J,(r") follows from Eq.(20) as — uoV, X Qey(r,r ). are depicted at fieldsl,/(J.a)=0.36, 0.54, 0.88, and 0.60,
Figure 17 shows two examples for magnetization loops otorresponding to timest=0.42, 0.66, 1.60, and 2.39. For
cylinders with field-dependerdt(B). As in Figs. 14 and 16, these plots onlyN,XN,=11x11 equidistant grid points
the aspect ratio wab/a=1, creep exponents=51 andn were used, yielding still smooth profiles and smooth magne-
=5 are shown, and a field ,= Hsinwt was applied. For the tization loops. In the upper plots of Figs. 18 and (Y&gin
upper plot we chose the Kim modél(B)=J./(1+38) curve, H,<H) the field- and current-free central zone is
with B(r)=|B(r)|/(uoHp) (here H,=0.8814.a), which  clearly seen. In Fig. 18 the current profiles of the virgin
means a monotonically decreasifgB). In the lower plot, curve have sharp ridges, which are not easily understood,
to simulate the so-called fishtail effe@r peak effect, but- while in the saturated staté&hird plot from above,H,
terfly effecy) we chose a nonmonotonic critical current den-=H) the monotonically decreasirlr) is due to the nearly
sity Jo(B)=J.(1—38+38?), which has the same initial constant slope of the flux densiB/enteringJ(B); cf. Figs.
slope as the Kim model used in the upper plot. The virgin8—10. In the lowest plotdecreasingH,<H,) the penetra-
curves in both plots of Fig. 17 thus look very similar. But tion of currents of opposite orientation is obvious. In Fig. 19
with increasingH, the magnetization in the lower plot goes the slight curvature of the current profiléis spite of con-
through a minimum that reflects the minimum &(B). stantJ.) is caused by the finite creep exponent21; for
Note thatJ. depends on théocal flux densityB, which in  n=51 these plateaus look perfectly flat; cf. Figs. 4 and 5 of
general is different from the applied fieBL=uoH,. Only  Ref. 1.
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FIG. 18. Current profilesl(r,y) for the same cylinder with
field-dependent)o(B) as in Fig. 17 top, namelyb/a=1 and FIG. 19. Current profiles as in Fig. 18 but for constagt

Je(B)=Jco/(1+3|B[/uoHy), at amplitudeHo=H,=0.8814.a Otherwise, the same cylinder and same amplitudes are shown.
of H,=Hgsinwt with creep exponenh=21. From top to bottom

the applied fields arél,/(J.a)=0.36, 0.54, 0.88, and 0.60, cor- . _
responding to timest=0.42, 0.66, 1.60, and 2.39. The used grid plex ac susceptibilities which depend only on the geometry

has onlyN, X N,=11x11 points. (here, on the aspect ratim’a) but otherwise apply to any
linear and frequency-dependent resistiviy.
V. CONCLUDING REMARKS While the considere&(J) dependence may be quite gen-

The magnetic field and current profiles and the magneti ral, the assumptioB=uoH in our theory(which disregards

moment of finite cylinders in an axial magnetic field are he lower critical fieldB.,) cannot be relaxed so far. The

calculated from first principles. The presented method is Ver}gx-tensmn- to arbitrary reversible magnetizatiB(H) with
effective and elegant, since it directly calculates the currentnite Bey is under way. Therefore, the presented method so
density inside the cylinder and does not require any approxitar _does not aIIov_v one to compute geometric sqrface
mation or cutoff of the magnetic field in the infinite space barriers;>>*though it may simulate surfader edge barri-
outside the cylinder. This novel method avoids any numeri€rs by using an inhomogeneous critical current density
cal differentiation but uses only integrals over the specimedc(r).> It also cannot describe the “current string” dis-
cross section. It is fast and stable and works very well evegussed and observed by Indenbetnal.>® which occurs in
on a PC. Our method applies to conductors and supercotthe center of a superconductor strip with finite thickness due
ductors with axial symmetry, but otherwise with an arbitraryto the abrupt jump oB(H) at the penetrating flux front.
cross section like cylinders of finite length, thin and thick Both interesting phenomena will automatically result from
disks, cones, spheres, and rotational ellipsoids. The specimam extension of our calculations to arbitraByH). For re-
may even be inhomogeneous and anisotrdpis long as  cent progress in this direction and explicit calculations of the
axial symmetry pertains. edge barrier for flux penetration into superconductors with a
In our calculations the material is assumed to be nonmagrectangular cross section see Refs. 57-59. See also the older
netic B=uqH) but conducting, with either a nonlinear re- analytical calculatiorf8 of the edge barrier for flux penetra-
sistivity or with a linear complex and frequency-dependenttion into type-l superconductors.
resistivity. Both types ofE(J) laws successfully model If one is only interested in the Bean limit, one may com-
type-ll superconductors with pinning and thermally activatedpute the magnetization curve of short cylinders by
depinning of Abrikosov vortices in different situations. For Prigozhin’s elegant variational mettbdr by static finite
the nonlinear case a power la&(J)=E[J/J.(B)]"® was element method¥, which in principle work also in fully
assumed, but for any oth&(J) curve this method works as three-dimensional geometri€sPart Il (Ref. 2 of this paper
well. For the linear case the results are even more generdeals with the linear and nonlinear susceptibilities of finite
and will be presented in part (Ref. 2 in the form of com-  cylinders calculated by the present method.
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wy=dr,/dk=3(1—ud)a/N,, and w,=dy, /dI=3(1
—vf)b/Ny, which vanish at the cylinder boundaries-a
andy=b.

With an appropriate grid one has, for any sufficiently
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APPENDIX A: THE INTEGRAL KERNEL

fdzr f(r)=> f(r)w. (AB)
S i

The integral kernel€(r,r ') required above and in Ref. 1 In particular, Eq(A5) is approximated by
are Green’s functions of the Laplace equation in particular T

geometries. In general, the equation for the vector potential

A(r)

pod(r)=—V2A(r), (A1)

is solved by

A(r)= —,uofvdV' Q(r,r") J(r) , (A2)

where the integralf\,dV is over the volume in which the
current densityd(r) flows. In the three-dimensional infinite
spaceQ(r,r')=1/(4x|r—r’|) is well known. For a bar with

infinite extension along and with an arbitrarily shaped cross

section in a perpendicular fieldy and J are alongi and
integration overz’ yields

1
Qbar(r,r’)=ﬂlnlr—r’|, (A3)

with r=(x,y). For cylinders in an axial fieldA andJ are
along ¢ and integration ovep yields

Qcyl(r!r’):f(r7r’1y_y,)1 (A4)

with f(r,r’,y—y’) given by Eq.(26) and r=(r,y), r
= x?+7%. The kernel(A4) is more general than Eq25),

which applies only if the axially symmetric specimen has an

additional symmetry plang=0. In both bar and cylinder
geometries one may write

A(r)=—MoLd2f’ Qa(r,r’) J(r') (A5)

whereQ,(r,r ') meansQy,, or Q. The integral(A5) may
be evaluated numerically by introducing a 2D grid Nf
pointsr; with weights(grid cell areagw;. This grid has to
span the cross secti@of the bar or cylindefor one-half or
one-quarter of it, depending on the specimen symmetny

may be chosen equidistant or nonequidistant, preferably su

that the grid is denser near the specimen surface.

A possible equidistant grid of N=N;N, points
ri=(r;,y;) with constant weights w,=ab/N is r;
=re=(k=3)a/N/(k=1, ... N), yi=y;=(1=2)b/Ny(l
=1,... Ny). A possible nonequidistant grig=(r;,y;) is
obtained by the substitutions=r(u)=3(3u—uda, y
=y(v)=3(3v—v?b, and then tabulating=0, ...,1 and
v=0,...,1 on equidistant grids uc=(k—3)/N,(k
=1,...N;) andv;=(1-3)/Ny(I=1,... Ny); this yields a
2D grid of N=N,XN, points with weightsw;=w,w,,

A= (A7)

_MOEJ_: Qijw;Jj,

with Aj=A(r;), Ji=J(r;), and Q;;=Q(r;,r;). This matrix
equation is easily inverted to give

MOJi:_; (Qijwj) A, (A8)

where (Qijwj)‘l is the reciprocal matrix oQ;;w; (no sum-
mation overj).

The kernelsQyp,, EQ. (A3), andQy, Eq. (A4), have a
logarithmic infinity whenr—r’. This means that the diago-
nal elements of the matriQ;; formally are infinite and thus
have to be defined separately. The optimum choice of these
diagonal terms is an intricate problem which is not yet
solved completely. For the 1D problems of thin strips and
thin disks with integral kerneQ(x,x’), maximum accuracy
is achieved by choosing the diagonal ter@s=Q(X;,X;)
such that an infinitely extended superconducting thin film
ideally screens the magnetic field of a coil placed on one side
of the film 32 This definition is identical to choosing;; such
that

> Qij:fdx' QUx; ') (A9)
] S

is exactly satisfied>® This choice replaces in the 1D kernel
the diverging logarithm lx—x;| ati=j for the strip by®
In(wi/27), wherew; is the (in general nonconstangrid
spacing or weight, and for the disk $in(0.923 63v;/2),
where® 0.923 63=exp(2)/8.

For the 2D problems of bars and cylinders, such a choice
of Q;; did not work well as yet, possibly due to limited
numerical accuracy. However, a different choice of @
works satisfactorily, namely, equatir@;;w; to the integral

fQ(r;,r') over the grid cell arew; centered at’ =r;. For

ctangular grid cells this means that whienj, one then
replaces in both Eq$A3) and(A4) the term @i—yj)2 by a
small areae? given by

5 5 5 u v v u
e =expgIn(u“+v )—3+5atanL—l+Gatar2)—, (A10)

whereu=dx/2 andv=dy/2 are the half widths of théth
rectangular grid cell with areavi=4uv=dx dy. Here |
have used the formula
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u v

f(u,v)=f de dy In(x?+y?)=uvIn(u?+v?)—3uv
o Jo

20,0 o U
+u atanJ +v atar?)— . (Al11)

In particular, for square-shaped grid cells of width=22v
=dx=dy one has

eZ=exp(In2u?—3+ 7/2)=0.12dx dy.  (A12)

Formula(A10) is exact for equidistant rectangular grid cells,
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The choice(A10) appears to yield maximum accuracy
when one calculates the linear ac susceptibilities of bars or
cylinders, Sec. IV E. However, in the calculation of flux pen-
etration, the choic€A10) for the Q;; leads to large unphysi-
cal spatial oscillations of the profiles of the current density
near the flux front. This artifact is suppressed by choosing
larger diagonal terms, e.g., by dividinﬁ, Eq. (A10), by a
factor of up to 8. This finding partly explains why the heu-
ristic choicee’=0.015dx dy works so well.

A more rigorous choice of the integral kernels, which
automatically yields finite diagonal elements, is the method
of finite element$.But so far the diagonal elements obtained
in this way proved to be too small and led to artificially

but it is also a good approximation for grid cells of varying oscillating current profiles. Here again the enhancing of the
size. In the limitb—0, Ny=1, these diagonal terms nearly diagonal terms of the matrix “by hand” suppresses these

reproduce those which follow from conditidA9).
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