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Superconductor disks and cylinders in an axial magnetic field. I.
Flux penetration and magnetization curves

Ernst Helmut Brandt
Max-Planck-Institut fu¨r Metallforschung, D-70506 Stuttgart, Germany

~Received 14 November 1997!

The current density in type-II superconductor circular disks of arbitrary thickness, or cylinders of finite
length, in an axial magnetic field is calculated from first principles by treating the superconductor as a
conductor with nonlinear resistivity or with linear complex resistivity, both caused by thermally activated
depinning of Abrikosov vortices. From these currents follows the magnetic field inside and outside the speci-
men and the magnetic moment, which in its turn determines the nonlinear and linear ac susceptibilities. The
magnetization loops and nonlinear ac susceptibilities are obtained directly by time integration of an integral
equation for the current density, which does not require any cutoff or approximation of the magnetic field
outside the cylinder. With increasing thickness the results go over from the recently obtained solutions for thin
disks in a perpendicular field to the classical behavior of long cylinders in a parallel field. Here this direct
method is applied to homogeneous disks with constant thickness, but it applies to any axially symmetric
superconductor with arbitrary cross section and inhomogeneity.@S0163-1829~98!06134-7#
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I. INTRODUCTION

Material properties of type-II superconductors, like t
critical current density and activation energy for thermal d
pinning, are most conveniently obtained by contact-f
magnetic measurements. To achieve high sensitivity the
perconductor typically is a thin platelet put into a perpe
dicular magnetic field. In this perpendicular geometry d
magnetization effects are crucial. One may account for th
geometry effects by the introduction of a demagnetizat
factor, but this works only for homogeneously magnetiz
ellipsoids with linear magnetic response; these three requ
ments usually are not satisfied in superconductors with v
tex pinning. On the other hand, a full three-dimensional~3D!
computation of the magnetic response of a supercondu
with arbitrary shape is a formidable task which, to m
knowledge, has not been tackled so far. As yet it appe
even unclear which equations have to be solved when
direction of the currents is not knowna priori in the full 3D
nonlinear problem.

There exist, however, two realistic nonparallel geometr
in which the direction of the currents is known, namely, lo
bars in a perpendicular field where the currents flow alo
the bar and axial symmetric specimens in an axial fi
where the currents flow on concentric circles.1 In both geom-
etries the problem is two dimensional and the current den
J, vector potentialA, and electric fieldE are parallel to each
other, having only az or w component. Recently the theor
of a long superconductor bar~or strip, slab! of rectangular
cross section in a perpendicular field has been develope
Ref. 1. The present paper extends this method to axial s
metry, in particular to the realistic case of disks or cylinde
with arbitrary constant extension along their axis.

The outline of this paper is as follows. In Sec. II explic
expressions are compiled for the current density and ma
tization curves of the Bean critical state model for infinite
long cylinders and thin disks in an axial magnetic field.
PRB 580163-1829/98/58~10!/6506~17!/$15.00
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Sec. III an equation of motion is derived for the curre
density in cylinders with arbitrary length, which applies
nonmagnetic materials with any nonlinear or linear resis
ity and explicitly contains the applied field as a driving forc
I then discuss various current-voltage laws and show tha
the~rather general! case of a power law, a scaling law relat
the frequency and amplitude dependences of the current
field profiles and of the ac susceptibility. Numerical resu
are presented in Sec. IV in the form of profiles of the curre
density and magnetic field during penetration and exit
magnetic flux, virgin magnetization curves, hysteresis loo
and current-density profiles. The corresponding nonlin
and linear ac susceptibilities of finite cylinders, which m
be used to extract the current-voltage law or the linear co
plex resistivity from magnetic measurements, are given
part II ~Ref. 2!.

II. CRITICAL STATE MODEL
AND MAGNETIZATION CURVES

A useful model to describe superconductors with stro
pinning in high magnetic fields is the critical state mod
introduced by Bean.3 This model assumes that the curre
densityJ„r … inside the superconductor is either zero or h
the critical magnitudeJc . In regions withJ50, magnetic
flux has not penetrated and the magnetic induction isB50.
Regions withJ[uJu5Jc are in the critical state. When th
applied fieldBa5m0Ha is changed, the flux lines~Abrikosov
vortices! rearrange themselves such that in regions wherJ
would exceedJc , J is reduced toJc again. In general,Jc
may depend on the local inductionB„r …, and in inhomoge-
neous materials also explicitly on the positionr ; Jc may
also be anisotropic. In most of this paperJc5const is as-
sumed, but the numerical procedures work equally well
any given dependenceJc(B,r ); see Sec. IV E.

The orientation of the currents in the critical state mod
depends on the specimen shape and on the magnetic his
i.e., on the previous applied fieldBa(t). For monotonically
6506 © 1998 The American Physical Society
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increasingBa(t) the current stream lines in the penetrat
region coincide with the virgin flux fronts. In 2D geometr
~either very long or very thin prismatic superconductors! the
stream lines follow from the simple principle4 that these
curves have a constant distance from the specimen boun
This general construction principle immediately tells, e.
that near the convex corners of a polygon-shaped~e.g., rect-
angular! film in a perpendicular field, and in a rectangul
bar in a parallel field, the stream lines are piecewise stra
lines performing sharp bends along straight ‘‘discontinu
lines,5’’ while near the concave edge of an indentation~and
near a short crack in the surface! the stream lines form
circles centered at the tip of this indentation. These circ
meet the regions with straight stream lines along parab
discontinuity lines. All these topological features are nice
confirmed by magneto-optic observations5–13 and by direct
computations.14–16 The stream lines may also be visualiz
by sand piles poured on plates with different shapes.4

The long cylinder and thin circular disk in axial field~axis
along ŷ) are 1D problems. For along cylinderof radiusa
and lengthL52b in a uniform longitudinal applied fieldHa

the Bean model yields the current densityJ5ŵJ(r ) @ŵ is
the azimuthal unit vector in thex,z plane, r 5(x21z2)1/2]
and the inductionB5 ŷB(r )@B(r )5m0H(r ) if the irrevers-
ible magnetization is disregarded#,

J~r !5H Jc , r p<r<a,

0, otherwise,
~1!

H~r !5H 0, r<r p ,

Ha2Jcr , r p<r<a,

Ha , a<r .

~2!

Herer p5Ha /Jc is the radius of the penetrated flux and cu
rent front. The magnetic moment of the cylinder of leng
L52b in general ism5ŷm with

m52pE
0

a

dr r 2E
0

b

dy J~r ,y! . ~3!

For long cylinders (b@a) Eq. ~1! yields the virgin magnetic
moment

m~Ha!52pJca
3L~h2h21h3/3! ~4!

for 0<h<1 with h5Ha /Hp , whereHp5Jca is the field of
full penetration. ForHa>Hp , i.e., h>1, m stays constan
since the current density has saturated toJ5Jc in the entire
sample. The initial slopeum8(0)u ~the ideal magnetic mo
ment divided byHa) for a long cylinder isequal to its vol-
ume,

m8~Ha50!52pa2L , ~5!

and the saturated~maximum! magnetic moment is

msat5m~Ha>Hc!52
p

3
Jca

3L . ~6!
ry.
,

ht

s
ic

For thin disksof radiusa and thicknessd52b!a in a
perpendicular fieldHa , the current density averaged over th
thickness isJ̄5ŵJ̄(r ) with17

J̄~r !5H Jc

2

p
tan21

cr

~r p
22r 2!1/2

, r<r p ,

Jc , r p<r<a,

~7!

where

r p5a/cosh~Ha /Hc!, ~8!

c5~12r p
2/a2!1/25tanh~Ha /Hc!, ~9!

Hc5Jcb5Jcd/2. ~10!

For flux-front positionsr p,a/2, a good approximation is
J̄(r )5(2Jc /p)arcsin(r /r p). The magnetic moment of the
thin disk is

m~Ha!52Jcda3
2

3S cos21
1

coshh
1

sinhuhu
cosh2h D ~11!

for 0<h,` with h5Ha /Hc52Ha /Jcd. The initial slope
um8(0)u for the thin disk ismuch larger than its volume
pa2d,

m8~Ha50!528a3/3 , ~12!

and the saturated moment coincides with Eq.~6!,

msat5m~Ha@Hc!52
p

3
Jca

3d . ~13!

For comparison, the corresponding expressions for a l
thin strip of lengthl and width 2a in a perpendicular field
are18

m~Ha!52Jcda2l tanh~Hap/Jcd!, ~14!

m8~Ha50!52pa2l , ~15!

msat5m~Ha@Jcdp!52Jcda2l . ~16!

The virgin magnetization curve~11! of the thin Bean disk
coincides to better than 0.011msat with that of the long thin
strip Eq. ~14! if both curves are normalized to unity initia
slopem8(0) and unity saturation valuemsat; cf. Sec. IV C.
The normalized Bean magnetization curve of a thin squa
shaped disk13–16 deviates from that of the circular disk b
less than 0.002msat.

19

The Bean critical state model of thin strips of consta
thickness was first solved for current-carrying strips
Norris.20 This classical work was then extended to strips in
perpendicular magnetic field without transport current18 and
with transport current,21,22 and recently to current-carrying
strips with an elliptical cross section.23

The duality of the strip problems—with applied field o
transport current—has no equivalence in the disk proble
since a parallel current cannot be applied without disturb
the symmetry~but adding a radial current is possible, leadi
to Corbino disk symmetry!. However, the problem of a thin
ring in a perpendicular field has features of all three pro
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6508 PRB 58ERNST HELMUT BRANDT
lems, namely, of the disk and the strip with applied field a
current; see the recent theories24,25 and experiments26,27 on
superconducting rings. The extension to superconduc
with finite thicknessso far has been achieved only for a thi
strip without transport current in Ref. 1 and for a thick di
in the present paper. Computation of thick strips with tra
port currents in a perpendicular field is under way.

From the virgin magnetization curvesm(Ha) of the Bean
model like Eqs.~4! and~11!, the complete hysteresis loop i
a cycled applied field with amplitudeH0 is obtained by the
general prescription25,28,29

m↓~Ha ,H0!5m~H0!22mS H02Ha

2 D ,

m↑~Ha ,H0!52m~H0!12mS H01Ha

2 D , ~17!

wherem↓ andm↑ are the branches in decreasing and incre
ing Ha . If Ha(t)5H0sinvt is sinusoidal, one may define th
ac susceptibility30

x~H0 ,v!5
i v

pH0
E

0

2p/v

m~ t ! e2 ivt dt . ~18!

In the critical state modelx depends only on the amplitud
H0 but not on the frequencyv. For the thin diskx(H0) was
calulated from Eq.~11! in Refs. 29 and 31. The ac suscep
bilities of cylinders of various lengths are given in Ref. 2

III. COMPUTATIONAL METHOD

A. Cylinders of finite length

The aim of this paper is the computation of the magne
properties of thick circular disks or cylinders of finite leng
2b and radiusa, in a magnetic fieldBa(t)5m0Ha(t) applied
parallel to the cylinder axis alongy. Here mainly cylinders
with constant length 2b in a homogeneous applied field wi
be considered,r 5(x21z2)1/2<a, 2b<y<b, but our nu-
merical method applies also to axially symmetric specim
of any cross section and to inhomogeneousHa(r ,y,t).

The material will be characterized byB5m0H, which
means zero reversible magnetization or zero lower crit
field Hc1 ~practically valid if uHu@Hc1 everywhere!, and by
a given current-voltage lawE5E(J)J/J or resistivity r
5E/J. This resistivity may be nonlinear and real, e.g.,
power law E(J)5Ec(J/Jc)

n, with critical current density
Jc(B).0 and exponentn(B)>1, which in general may both
depend on the inductionB(r ). In the latter example an ex
ponentn51 describes Ohmic behavior andn→` the Bean
model. Alternatively, the resistivityr5rac(v) may be lin-
ear, complex, and frequency dependent. By assumingEiJ we
restrict our considerations here to materials which are iso
pic in the xz plane. If required, anisotropicE„J… laws may
also be considered in such computations.13 However, as
shown by Gurevich,32 some nonlinear anisotropic curren
voltage laws~or anisotropic critical current densities! may
cause an instability of the current distribution and lead
macroturbulence.

For the short cylinder, to my knowledge exact analytic
solutions are not available, neither for the Ohmic limitn
d

rs

-

s-

c

s

l

o-

o

l

51) nor for the Bean limit (n→`). Note that the solution of
the London equation for the penetration of magnetic flux
equivalent to the solution of the Ohmic problem, since Lo
don superconductors formally exhibitrac(v)5 ivm0l2

wherel is the London penetration depth; cf. Eqs.~20! and
~21! and the screening of two coils by a superconducting
Ohmic thin film calculated in Ref. 33.

However, for short cylinders in the Bean limit, one has
explicit expression for the field of full penetrationHp , i.e.
the value of the increasing applied fieldHa at which the
penetrating flux and current fronts have reached the sp
men center.34 At uHau>Hp , the current density in the Bea
model does not change anymore and the magnetic mom
Eq. ~3!, saturates to the valuemsat52(2p/3)Jca

3b, Eq. ~6!.
For cylinders with arbitrary aspect ratiob/a, the field of full
penetration is1,34

Hp5JcblnFa

b
1S 11

a2

b2D 1/2G . ~19!

In the limit of a long cylinder (b@a) this formula yields
Hp5Jca as stated below Eq.~4!. For thin disks (b!a) one
obtains, from Eq.~19!, Hp5Jcbln(2a/b). Inserting this value
Ha5Hp into Eq. ~8! one finds that the finite thickness 2b
formally yields an inner cutoff for the thin-film expressio
~7! at a flux-front position r p5a/cosh@ln(2a/b)#'b. For
comparison, the full penetration field for a long rectangu
bar of cross section 2a32b in a perpendicular field@Eq. ~65!
of Ref. 1# has the thin-film limitHp5Jc(2b/p)ln(ea/b) and
yields an inner cutoff of the penetrating flux front at a d
tance xp5a/cosh(pHa /2Jcb)→xp5a/cosh@ln(ea/b)#'2b/e
with e52.718.

B. Equation of motion for the current density

To avoid an explicit computation of the infinitely ex
tended magnetic fieldB(r ,t) outside the cylinder, we try to
find an equation of motion for the current densityJ„r ,t)
inside the cylinder, using the Maxwell equationsJ5¹3H
andḂ52¹3E, which imply ¹•J50 and¹•B50 if there
are no current sources~no contacts! and if Ḃ50 at some time
t. As usual, the displacement current, which contributes o
at very high frequencies, is disregarded in this ‘‘eddy-curr
approximation.’’ As stated in Sec. III A, we describe the s
perconductor by the material lawsB5m0H and E
5E(J)J/J.

The main problem is now to find for this geometry a
equation forJ„r ,t) that explicitly contains the applied field
Ha(t), which we assume to be homogeneous for simplic
In other words, we want to incorporate the known bound
conditions forH(r ,t) (H→Ha for ur u→`) into an equation
for J(r ,t) which applies onlyinside the specimen. The cor
responding problem for parallel geometry~infinite cylinder!
is trivial, amounting to the solution of a differential equatio
for H(r ,t) with the boundary conditionH5Ha at the surface
and in infinite outer space. But for perpendicular geome
the stray field outside the specimen is inhomogeneous
would have to be computed in the entire outer space or
proximately in some finite volume extending far beyond t
specimen, using some artificial boundary condition at
surface of this large volume.
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The desired integral equations for the current density i
perpendicular field recently were found for thin strips35 and
disks,36 for thin rectangles,14 and for long bars.1 Here we
derive such an equation for problems with axial symme
In this case the current densityJ, electric fieldE, and vector
potentialA ~defined by¹3A5B, ¹–A50, ^A& r50) have
only one component pointing along the azimuthal directi
ŵ; thus J5J(r ,y)ŵ, E5E(r ,y)ŵ, and A5A(r ,y)ŵ. The
vector potential of the applied fieldBa5Baŷ is Aa
52(r /2)Ba . SinceB5m0H, one hasm0J52¹2(A2Aa),
or explicitly in axial symmetry,m0J52¹2@A1(r /2)Ba#.
The solution of this Laplace equation in cylindrical geome
is

A~r !52m0E
0

a

dr8E
0

b

dy8 Qcyl~r,r 8! J~r 8!2
r

2
Ba ,

~20!

with r5(r ,y) and r 85(r 8,y8). The integral kernel

Qcyl~r,r 8!5 f ~r ,r 8,y2y8!1 f ~r ,r 8,y1y8!, ~21!

with

f ~r ,r 8,h!5E
0

pdw

2p

2r 8 cosw

~h21r 21r 8222rr 8cosw!1/2
, ~22!

is obtained by integrating the 3D Green function of t
Laplace equation, 1/(4pur32r 83u) with r35(x,y,z), over
the anglew5arctan(z/x). The function f (r ,r 8,h) may be
expressed in terms of elliptic integrals, but here it is mo
convenient to evaluate thew integral ~22! numerically. A
high-precision integration method which accounts for the
finities of the periodic integrandg(w) in Eq. ~22! at w
50, 2p, . . . , etc., uses the substitutionw5w(u)5pu
2sinpu(u50, . . . ,1) and weight function w8(u)5p
2pcospu with equidistant grid ui5( i 2 1

2 )/M ,
( i 51,2, . . . ,M , M'30) by writing Eq.~22! in the form

f 5E
0

p

g~w! dw5E
0

1

g@w~u!# w8~u! du

'
1

M(
i 51

M

g@w~ui !#w8~ui !. ~23!

To obtain the desired equation forJ(r ,y,t) we express the
induction law ¹3E52Ḃ52¹3Ȧ in the form E52Ȧ.
The gauge ofA, to which an arbitrary curl-free vector fiel
may be added, presents no problem in this simple geom
Knowing the material law E5E(J), e.g., E
5Ec(J/Jc)

nsgn(J) or a linear and complexE5rJ, one ob-
tainsȦ52E(J). This relation betweenȦ andJ allows us to
eliminate eitherA or J from Eq. ~20!. Eliminating A, one
obtains

E@J~r,t !#5m0E
S

d2r 8Qcyl~r,r 8!J̇~r 8,t !1
r

2
Ḃa~ t !.

~24!

This implicit equation for the current densityJ(r ,t) contains
the time derivativeJ̇ under the integral sign. It may be use
a

.

e

-

ry.

in this form ~containing the kernelQcyl rather than the recip-
rocal kernelQcyl

21) when one is interested in the linear r

sponse to a periodic signal,Ḃa} ivexp(ivt). In this case the
time dependence ofJ̇(r ,t)5J(r )exp(ivt) is explicitly known
and the amplitudeJ(r ) follows from a linear integral equa-
tion as described in Ref. 2. In the general case of nonlin
E(J) and arbitrary sweep ofBa(t), the time integration of
Eq. ~24! has to be performed numerically as described
Ref. 1. For this purpose, the time derivative should be mo
out from the integral to obtainJ̇ as an explicit functional of
J andḂa . This inversion may be achieved by tabulating t
kernelQcyl(r,r 8) on a 2D gridr i , r j and then inverting the
matrix Qi j to obtainQi j

21 , which is the tabulated reciproca
kernelQcyl

21(r i ,r j ). The equation of motion for the azimutha
current densityJ(r ,y,t) then reads

J̇~r ,t !5m0
21E

0

a

dr8E
0

b

dy8 Qcyl
21~r,r 8!FE~J!2

r 8

2
ḂaG .

~25!

This nonlocal and~in general! nonlinear diffusion equation
for J(r ,y,t)ŵ looks very similar to the corresponding equ
tion for the longitudinal current densityJ(x,y,t) ẑ in strips,
bars, or slabs derived in Ref. 1. The same numerical prog
can thus be used to compute the electrodynamics of l
bars in a perpendicular field and of an axially symmet
specimens in axial field.

As they stand, Eqs.~20! and~24! apply to cylinders with
constant height 2b or disks with constant thickness. But the
are easily generalized to an arbitrary cross section of an
ally symmetric specimen by replacing the integration bou
ary b for y by a functionb(r ) of the radiusr 5(x21z2)1/2.
For example, b(r )5(a22r 2)1/2 describes a sphere an
b(r )5b(0)(12r 2/a2)1/2 an axially symmetric ellipsoid.

One may also drop the mirror symmetry at the planey
50, expressed by Eq.~21!. This allows us to consider, e.g
superconductors of conical shape in an inhomogeneous
plied field Ha(r ,y,t). In this case one replaces in Eq.~25!

the applied vector potentialAa5(r /2)Ba(t)ŵ by some other
axially symmetric vector potentialA(r ,y,t)ŵ, which is
caused, e.g., by a small coil or by a permanent magnet w
levitates the superconductor. Our method thus allows u
compute repulsive or attractive hysteretic levitation forces
magnets and superconductors in axial symmetric config
tions.

C. Interpretation of the equation of motion

The equation~25! for J̇(r ,t) as a function ofJ(r ,t) and of
Ḃa(t) ‘‘works,’’ i.e., the solutionJ(r ,t) is obtained by direct
numerical time integration, starting, e.g., withBa50 andJ
50 at timet50, and then increasingBa gradually to obtain
a nontrivial solutionJ(r ,t). But how is the boundary condi
tion B(r→`)→Ba actually incorporated into Eq.~25! ?

To answer this question one has to reconsider the der
tion of Eq. ~25!. One realizes that in the equationm0J
52¹2(A2Aa) above Eq.~20! the last term actually could
have been omitted because inside the specimen one
¹2Aa50 or, explicitly, ¹2(r /2)Ba50, since the currents
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causing the applied field flow in a faraway coil. But th
omission would have left us without theBa terms in Eqs.
~20! and ~25!. While in Eq. ~20! the term (2r /2)Ba should
be clearly there, the meaning of the term (2r /2)Ḃa in Eq.
~25! is less trivial. One may argue that, since the opera
Q(r,r 8) is the inverse of the Laplacian operator¹2, the in-
verted kernelQ21(r,r 8) should be identical to¹2 and there-
fore the last term in Eq.~24! should vanish. This is indee
true for positionsr inside the specimen: One can show th
*d2r 8 Qcyl

21(r,r 8)r 850 for r inside the cylinder. But forr on
the cylinder surface, this term is infinite and describes
screening current flowing in a thin surface layer.

The existence and size of this surface screening curre
easily seen when one starts at timet50 with Ba50 andJ

50 and then switches on the applied field such thatḂaÞ0 in
Eq. ~25!. Immediately after that, at timet51e, the induc-
tion and current density inside the cylinder are still ze
since they need some time to diffuse into the conduct
material. Therefore, att51e also the electric fieldE(J) is
zero and thus the first term in Eq.~25! vanishes. What re-
mains is the last term, which should be the time derivative
the Meissner screening currentJscr. This surface screening
current is thus

Jscr~r ,t !52Ha~ t !E
0

a

dr8E
0

b

dy8 Qcyl
21~r,r 8!

r 8

2
. ~26!

The thickness of this current-carrying layer depends
the choice of the computational grid in the cylinder. T
layer thickness may be reduced, and the precision of
computed magnetic moment enhanced, by chosing a n
equidistant grid which is denser near the cylinder surface
each grid pointr i has a weigthwi such that with integrands
g(r ) typical for cylindrical problems the integrals are we
approximated by sums of the form

E g~r ! d2r'(
i

g~r i!wi , ~27!

then the matrix which has to be inverted is the original m
trix times this weight. Namely, for arbitrary functionsg(r )
and h(r ) tabulated inside the cylinder asgi5g(r i) and hi
5h(r i), one has with the definition

h~r ![E d2r Q~r,r 8!g~r !, ~28!

hi'(
j

Qi j wj gj , gi'(
j

~Qi j wj !
21hj . ~29!

Thus the required reciprocal matrix is the inverse ofQi j wj
~no summation overj in this product!. An appropriate choice
of such a nonequidistant gridr i5(r i ,yi) is obtained, e.g., by
the substitutions r 5r (u)5 1

2 (3u2u3)a, y5y(v)5 1
2 (3v

2v3)b, and then tabulatingu50, . . . ,1 andv50, . . . ,1 on
equidistant gridsuk5(k2 1

2 )/Nr(k51, . . . ,Nr) and v l5( l
2 1

2 )/Ny( l 51, . . . ,Ny), yielding a 2D grid of N5Nr•Ny
points with weights vanishing at the boundariesr 5a andy
5b, namely,wi5wrwy with wr5drk /dk5 3

2 (12uk
2)a/Nr

andwy5dyl /dl5 3
2 (12v l

2)b/Ny .
r

is

g

f

n

e
n-
If

-

D. Current-voltage laws

The equations of motion~24! and ~25! still apply to any
current-voltage lawE(J). From the theories of collective
creep37,38and also from the vortex glass picture39 one obtains
the useful interpolation formula40

E~J!5EcexpS 2
U~J!

kT D ,

U~J!5U0

~Jc /J!a21

a
. ~30!

Here U(J) is a current-dependent activation energy for d
pinning which vanishes at the critical current densityJc , and
a is a small positive exponent. Formally, fora521 expres-
sion Eq.~30! coincides with the result of the Kim-Anderso
model,40 E(J)5Ecexp@(U0 /kT)(12J/Jc)#. For a51 one gets
E(J)5Ecexp@(U0 /kT)(Jc /J21)#. In the limit a→0 one has
U(J)5U0ln(Jc /J) and thus

E~J!5Ec~J/Jc!
n with n5U0 /kT . ~31!

This power law has been found in many experiments. It c
tains only one essential parameter, the exponentn, besides
the trivial prefactorEc /Jc

n . For n51 it describes an Ohmic
conductor with constant resistivityr5E/J, which applies
also to superconductors in the regime of thermally activa
flux flow41 ~TAFF! at low frequencies. In the limitn→` the
power law~31! is equivalent to the Bean model, and for
!n,` it describes flux creep. In general, the prefactorEc
and activation energyU in Eq. ~30! depend on the loca
induction B(r ); therefore, in general alson(B,T) and
Jc(B,T) depend onB. But thisB dependence may be disre
garded ifB is sufficiently large. In the following computa
tions I shall use the simple power law~31! to model super-
conductors with flux creep.

E. Useful scaling law

For the power law current-voltage curve~31!, E}Jn or
r5E/J}Js with s5n21, a general scaling law follows
from the Maxwell equations whenB5m0H.25 Namely, when
one changes the time unit by an arbitrary constant factorc
and the current and field units by a factor ofc1/s wheres
5n21, then Eqs.~24! and ~25! for the current density are
invariant; i.e., the same solutions result for the scaled qu
tities. This means, if these equations and the Biot-Savart
~20! are expressed in terms of a new timet̃ 5t/c, then the
new solutions take the form

J̃~r , t̃ !5J~r ,t !c1/s, B̃a~ t̃ !5Ba~ t !c1/s,

B̃~r , t̃ !5B„r ,t)c1/s, m̃~ t̃ !5m~ t !c1/s. ~32!

In particular, whenBa(t)5B0sinvt is periodic, the shape o
the hysteretic magnetization curvem(Ba) remains un-
changedif one increasesv by a factor ofc and B0 by a
factor ofc1/s. By the same token, the complex susceptibil
x(B0 ,v) normalized tox(0,v)5x(B0 ,`)521, i.e., to the
ideal diamagnetic limit occurring at zero amplitude or in
nite frequency, remains unchanged during such scaling.
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A useful consequence of this scaling law is thus that
normalized ac susceptibilityx(B0 ,v) and the shape of the
hysteresis loopm(Ba) depend only on the combination
B0 /v1/s or v/B0

s . One may write, e.g.,

x~B0 ,v!5 f s@bB0 /v1/s1v/~bB0!s#, ~33!

where f s(x) is a universal complex function~depending on
s and on the geometry! andb is an arbitrary constant of th
same dimension asv1/s/B0 , introduced to make the argu
ment x of f s(x) dimensionless. Therefore, ifx(B0 ,v) is
known for a wide range of amplitudesB0 at one frequency
v/2p, then the scaling relation~33! gives usx for different
frequencies. A further consequence is that the po
plots25,27,42 x9(x8) of the complex ac susceptibilityx5x8
2 ix9 depend only on the exponents. Though this scaling
law was derived for a power lawE}Jn, it applies to a wide
class of nonlinear E(J) if one defines s5n21
5](lnE)/](lnJ)21 taken atJ'Jc , i.e., at the characteristi
current density of the experiment. With this definitionE(J),
Eq. ~29!, yieldsn5(U0 /kT)(Jc /J)a'U0 /kT.

The scaling relation~33! correctly yields the two limiting
cases of Ohmic conductors, which exhibits50 and x
5x(v), and of Bean superconductors, exhibitings→` and
x5x(B0). It thus connects these two limits in a natural wa

IV. RESULTS

A. Flux penetration and exit

The time integration of Eq.~25! is described in Ref. 1. To
obtain flux fronts and magnetic field lines, an equidista
spatial gridr i works well, but for accurate computation o
magnetization curves and susceptibilities a nonequidis
grid with denser points near the cylinder surfaces is p
ferred. First one tabulates the matrixQi j 5Q(r i ,r j ), Eq.
~21!. As with the strip geometry, the diagonal terms ofQi j
formally diverge as lnur i2r j u and have to be cut off appro
priately. The optimal choice of the termsQii in the strip and
cylinder geometries is not yet solved satisfactorily; cf. t
Appendix. Good numerical accuracy is achieved by repl
ing h2 by h21e2 in Eq. ~22! with e250.015dx dy where
dx5a/Nx anddy5b/Ny are the grid spacings.~To stress the
similarity with the bar geometry we write hereNx for Nr and
dx for dr.) This e value works well when the grid cells ar
approximately quadratic,dx'dy or Ny'Nxb/a. To check
the accuracy one may use the fact that forn@1 the profiles
of the penetrating magnetic field should be positive outs
the flux-free core, go steeply to zero at the core bound
and stay zero inside the core; cf. Figs. 9 and 10 below. Ife is
chosen too large or too small, thenB just inside the flux front
artificially may take a small negative or positive value.
principle, some method of finite elements might be used
define the matrixQi j and obtain finite diagonal elements4

but so far our trials gave less accurate results than the a
definition of Qi j ; see also Sec. IV E. This matrix is the
inverted to yieldQi j

21 . Here we use unitsa5Jc5Ec5m0

51, yielding E5Jn, Eq. ~31!. Finally, time integration of
Eq. ~25! is performed by writing the continuous current de
sity as a discrete vectorJ(r i ,yi ,t)5Ji(t) and its equation of
motion ~25! as a matrix equation,
e

r

.

t

nt
-

-

e
y,

o

ve

J̇i~ t !5
b

N(
j

Qi j
21 FJj~ t !n2

r j

2
Ḃa~ t !G ; ~34!

cf. Eq. ~20! of Ref. 1. The time integration of this first-orde
nonlinear differential matrix equation forJi(t) may be per-
formed by starting at timet50 with Ji(0)50 and then in-
creasingt in stepsdt to obtain Ji(t1dt)5Ji(t)1 J̇i(t)dt.
The computational speed and stability of this time integ
tion are strongly increased by using a variable time stepdt
5c1 /(maxuru10.01) with r5E/J and c150.3/(Nx

2n) in
units of a5Jc5Ec5m051. Up to grid sizes of aboutN
5NxNy'1200 this calculation may be performed easily on
PC.

The shapes of the penetrating flux fronts for finite cyli
ders of various lengths in increasing axial fieldBa are shown
in Fig. 1 for n551. These fronts look very similar to th
fronts in long rectangular bars with the same aspect ratiob/a
shown in Fig. 2 of Ref. 1. We compute these fronts m
conveniently as the two contour lines where the current d
sity J equals 6 1

2 Jc . Other methods for obtaining thes
fronts within the Bean model are given in Refs. 3 and 43–

The dashed lines in Fig. 1 are the flux fronts which for
when Ba is decreasedagain after an almost complete pe
etration of flux. At these penetrating fronts of flux with op
posite sign,J jumps from2Jc to 1Jc ; the depicted dashed

FIG. 1. Current and flux fronts in superconductor cylinders w
aspect ratiosb/a52, 1, 0.5, 0.25, 0.125, and 0.0625 in an ax
magnetic fieldHa . First Ha is increased gradually from zero t
0.9Hp ~solid lines; shown areHa /Hp50.05, 0.1, 0.2, . . . ,0.9)
and then decreased again ~dashed lines; Ha /Hp

50.8, 0.7, 0.5, 0.3, . . . ,20.5, 20.7), whereHp is the field of
full penetration, Eq.~19!. Shown is the Bean limit (n551) at a

constant ramp rateuḂau5Ec /a. For increasingHa the depicted con-
tour lines J56Jc/2 separate the inner core withJ50 from the
outer regions withJ56Jc . For decreasingHa the contour lines
J50 separate regions with1Jc and 2Jc . In the genuine Bean
limit ( n→`) the solid and the dashed lines should exactly coinci
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lines are thus chosen as the contoursJ50. In the genuine
Bean model (n→`) these fronts should have the same sha
as the incoming virgin fronts. In Fig. 1 the fronts are plott
for Ha /Hp50, 0.05, 0.1, 0.2,. . . ,0.9, 0.8, 0.7, 0.5, 0.3
. . . ,20.5,20.7, whereHp is given by Eq.~19!. These in-
tervals are twice as large during the decrease ofHa than
during the increase. Therefore, the two series of fro
should exactly coincide within the Bean model; see also
~17!. For the depicted large creep exponentn551 the solid
and dashed flux fronts indeed coincide almost perfectly.
nite creep (n,`) initially leads to a slower penetration o
oppositely oriented flux, but then these new flux fronts ov
take the virgin fronts and reach the specimen center be
Ha is decreased to2Hp .

The similarity of the Bean flux fronts for not too thic
disks and strips (b!a) follows from the similarity of the
solutions for the thickness-averaged current densityJ̄ of thin
disks and strips in a perpendicular field; cf. Eq.~7! for the
disk. The same equation~7! applies also for the long strip i
r is replaced byx andHc5bJc by Hc52bJc /p. Since in-
side the diskuJu is either 0 orJc , the shape of the flux fronts
in thin disks follows fromJ̄(r ), Eq. ~7!, as

y~r !56bF12
J̄~r !

Jc
G'b

2

p
arccos

r

r p
~35!

for r<r p . Figure 2 compares the computed flux fronts w
Eq. ~35! for a disk with aspect ratiob/a50.1 and for disks
and strips withb/a50.025 and creep exponentn550. For
thin disks and strips the qualitative agreement is good

FIG. 2. Comparison of the computed flux fronts~solid lines!
with the analytic expression~34! ~dashed lines! for disks withb/a
50.1, 0.025, and for strips withb/a50.025~from top to bottom!.
Shown are the contour linesJ5Jc/2 in half the cross section in
increasing applied fieldHa /Hp50.5, 0.1, 0.2, . . . ,0.9. For clar-
ity the thickness 2b is exaggerated in these plots by factors of 2
and 10. The creep exponent isn551 and the number of grid points
Nr3Ny580314 and 9037.
e

s
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-
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long as the penetration radiusr p , Eq. ~8!, exceeds the disk
thickness 2b. At larger applied fields, whenr p,b, the com-
puted flux front detaches from the surface of the disk, a
the field- and current-free core becomes isolated from
outer world. From Eq.~19! one finds that forb!a full pen-
etration occurs whenr p , Eq. ~8!, has reached the valu
(2/e)b50.74b.

In specimens with finite thickness the computed fl
fronts penetrate faster than predicted by Eq.~34!; i.e., at a
given value ofHa the real front has penetrated deeper th
the thin-limit front ~34!. This effect becomes larger when
smaller exponentn is used. For disks and strips withb/a
50.025 andn551 the depicted fronts are nearly identic
except near the specimen center. The wiggles in the plo
fronts ~computed as the contoursJ5Jc/2) are due to the
small number of grid planes,Ny57, in the grid used ofN
5Nx3Ny58037 points.

B. Local magnetic field

The magnetic field lines in increasing axial fieldHa(t) are
shown in Figs. 3–6 for cylinders with various aspect rat
b/a52 ~long cylinder, 12324 grid points!, b/a50.5 ~short
cylinder, 24312 grid!, b/a50.25 ~thick disk, 2837 grid!,
and b/a50.1 ~thin disk, 6036 grid!, for creep exponentn
551. These magnetic field lines, and also the contour li
and profiles of the electric field not shown here, look simi
for cylinders and bars with same cross section 2a32b; see
Refs. 1 and 47. However, a general difficulty arises wh
one tries to visualize 3D magnetic field lines with axial sym
metry in a 2D plot. While for infinite strips or bars the fiel
lines of B(x,y)5¹3 ẑA(x,y) are actually 2D and coincide
with the contour lines of the vector potentialA(x,y) directed
along the strip, this elegant plotting method does not w
for a cylinder in an axial field. Namely, for a bar one h
Bx5]A/]y and By52]A/]x, but for a cylinder withA

FIG. 3. The magnetic field lines during flux penetration into
cylinder with b/a52 and creep exponentn551 at applied field
valuesHa /Hp50.2 ~top! and 0.8~bottom!. Left: contours of the
vector potentialA(r ,y) at equidistant levels. Right: contours o
rA(r ,y) at nonequidistant levels; see text. The rectangular fra
indicates the border of the disk and the bold lines~the contoursJ
56Jc/2) delimit the field- and current-free core.
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along w5atan(z/x) the components of B(r ,y)5¹

3@ŵA(r ,y)# are Br(r ,y)5]A/]y and By52(1/r )(]/]r )
3(rA).

For the present problem, reasonable magnetic field li
are obtained by plotting contour lines ofrA(r ,y) at nonequi-
distant levels rA5const3(m2 1

2 )um2 1
2 u with m50,61,

62, . . . . These lines are directed alongB and they are
equidistant whenB5const, with ~2D! line density propor-
tional to the~3D! field strengthB. But at positions whereA
goes to zero away from the axisr 50, the density of these

FIG. 4. Magnetic field lines during flux penetration into a sh
cylinder with b/a50.5 and creep exponentn551 at applied field
valuesHa /Hp50.2 ~top, middle! and Ha /Hp50.6 ~bottom!. The
middle part shows the current-caused fieldB2Ba . Depicted are the
contours ofrA(r ,y) at nonequidistant levels. The bold lines are t
contoursJ56Jc/2.

FIG. 5. Magnetic field lines during flux penetration into a thi
disk with b/a50.25 and creep exponentn551 at Ha /Hp

50.2, 0.4, 0.8, and 1~from top to bottom!. Depicted are the con
tours of rA(r ,y) at nonequidistant levels. The bold lines are t
contoursJ56Jc/2.
s

contour lines exaggerates the real field strengthB. This can
be seen in Fig. 3, where the field lines are plotted by b
methods. In this case (b/a52) the axial componentBy(r ,y)
in the middle planey50 goes linearly to zero at the flu
front; cf. Fig. 9 below.

In Fig. 3 ~left column! and Figs. 4–6 the field lines ar
plotted as the contour linesrA56const3(1,3,5, . . . ); see
above. These figures show the field lines of thetotal mag-
netic field B(r ,y) in increasing external fieldBa . The
middle part of Fig. 4 shows also the fieldB(r ,y)2 ŷBa
caused by the currents circulating in the cylinder. Inside
current-free core this field is exactly homogeneous and
posed to the applied fieldBa ; the superconducting cylinde
behaves thus like an ideal coil with constant current den
in an optimally shaped cross section.

Figure 7 shows the magnetic field lines whenHa is de-
creased again after full penetration of flux and current
been reached atHa5Hp , Eq. ~19!. In this figure the field
lines are plotted as the contour lines ofA, which in the
depicted volume close to the superconductor give virtua
identical pictures for strips and disks with the same asp
ratio b/a. Shown are the field values~from top! Ha /Hp
50.5, 0.25, 0,20.25, 20.5, and 20.75. Note that the
picture of the field lines changes qualitatively several tim
when Ha is decreased fromHp to 2Hp . In particular, at
Ha /Hp520.25 the field strengthB has two zeros away
from the disk on the axis. Near these zeros the magnetic fi
is quadrupolar. In such free minima ofB2(x,y,z) a
superconductor,48 and in principle any diamagnet,49,50 can
levitate freely. Note also that along any diameter the curr
density changes its direction three times: from2Jc to 1Jc at
the flux front, to2Jc at the center, and again to1Jc . There-
fore, in Fig. 7 the also depicted contour linesJ50 mark the
lens-shaped core into which the opposite flux has not
penetrated, and they mark the specimen center.

t
FIG. 6. Magnetic field lines during flux penetration into a th

disk with b/a50.1 and creep exponentn551 at Ha /Hp

50.1, 0.2, 0.4, 0.6, 0.8, and 1~from top to bottom!. Depicted are
the contours ofrA(r ,y) at nonequidistant levels. The bold lines a
the contoursJ56Jc/2.
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Figure 8 shows the tangential componentBr(r ,y) of the
magnetic field at the flat surfacey5b of cylinders with
b/a50.5, 0.1, and 0.05 in an axial fieldHa . This radial
component is compared with the current density integra
over the thickness, the sheet currentJs(r )52bJ̄. In the thin-
film limit, Br(r ,b) should coincide withJs(r )/2. This coin-
cidence is nicely seen near the center. At the flux front
computedJs(r ) ~for exponentn551) has a sharp bend, an
for thin disks Js(r ) is well described by Eq.~7!. For the
depicted thicknesses,Br(r ,d) is still rounded at the front and
near the edge of the cylinder, sinceBr is caused by current
flowing not only in a shell of constant radiusr . But in the
thin-film limit b!a, Br(r ,y) is generated mainly by cur
rents flowing in the immediate vicinity ofr .

Figures 9 and 10 show the axial magnetic fieldBy(r ,y) at
the flat surfacesy56b and at the central planey50 for
cylinders and disks with various side ratios in an increas
axial field. Note that the field on the middle planey50 has
a nearly constant slopeu]By /]r u'Jc , down to aspect ratios
of b/a>0.25, as predicted by the Bean model for long c
inders with b@a. The field at the surface, which may b
measured by magneto-optics, also has a nearly cons
slope, but the slope is smaller thanJc . For thin disks with
b/a<0.25, a sharp cusp inBy develops at the edge of th
disk; this cusp is much sharper in the middle plane than

FIG. 7. Magnetic field lines during the penetration of flux
opposite orientation, occurring whenHa is decreased again after
had first been increased to the field of full penetrationHp, Eq. ~19!.
Shown are the field lines~the contour lines ofA) for a strip with
b/a50.1 and creep exponentn551 at Ha /Hp50.5, 0.25, 0,
20.25, 20.5, and20.75 ~from top to bottom!. Also indicated are
the specimen cross section and the lens-shaped core into whic
opposite flux has not yet penetrated.
d

e
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nt
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the surface planes. For very thin disks the computedBy(r )
coincides with the one calculated directly from the sheet c
rent ~7!. To my knowledge, an analytic expression for th
By(r ) is available only for strips18 but not for disks.17,29,31the

FIG. 8. The thickness-integrated sheet currentJs(r ) for disks
with b/a50.5, 0.1, and 0.05 and creep exponentn551 during flux
penetration, plotted in unitsJca for applied fields Ha /Hp

50.1, 0.2, 0.4, 0.6, 0.8, 0.9, and 1~from right to left, the solid
line with dots!. The bold lines give the radial~tangential! compo-
nent of the magnetic field at the surface,Br(r ,b), which for thin
disks withb!a should coincide with the depicted curvesJs/2 for
r ,a and vanish forr .a ~outside the disk!. The finite thickness 2b
rounds the jumps ofBr(r ) at the flux front and at the edge.

FIG. 9. Profiles of the axial flux densityBy(r ,y) at the surface
y56b ~thin lines! and at the central planey50 ~thick lines!.
Shown are the results for cylinders withb/a52, 1, and 0.5 in an
increasing applied axial field Ha /Hp50.1, 0.2, 0.4, 0.6,
0.8, 0.9, and 1 atn551. The corresponding radial componentBr is
plotted in Fig. 8.
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Comparing Figs. 8–10 to Figs. 7, 13, and 14 of Ref
~which were computed with the same grid size! one notes
that the magnetic field distributions at the upper surface
cylinders in axialHa and of bars in perpendicularHa are
almost identical if the specimen cross section 2a32b is the
same. A small difference is that the deviation of the fie
profiles By on the flat surfacesy56b from that on the
middle planey50 is larger for the disk than for the strip
This can be understood from the fact that the flat surface
disk is surrounded by a current-free vacuum in both thx
and z directions, while the strip surface sees the curre
carrying strip in thez direction and thus behaves more lik
the bulk.

C. Virgin magnetization curves

Figures 11 and 12 show computed virgin magnetizat
curves of bars and cylinders with various aspect ratiosb/a in
the Bean limit (n5101). Plotted is the magnetic mome
M (Ha) in reduced unitsm/msat versus a reduced fieldh
5Ham8(0)/msat, such that the initial slopes and saturati
values of all curves equal unity. Also shown are the limiti
curves for parallel geometryb/a@1, namely, m/msat5h
2h2/4 ~long slab,h<2) andm/msat5h2h2/31h3/27 ~long
cylinder, h<3) with m/msat51 for h>2 or h>3, and per-
pendicular geometry in the thin-film limitb/a!1, namely,
m/msat5tanhh ~thin strip! and m/msat5 f d(h) ~thin circular
disk! with

f d~h!5
2

pS cos21
1

cosh~ph/4!
1

sinh~ uph/4u!

cosh2~ph/4!
D ; ~36!

FIG. 10. As in Fig. 9, but for thinner disks with side ratio
b/a50.25, 0.1, and 0.05.
of

a

t-

n

cf. Eqs. ~4!–~6! and ~11!–~13!. The Bean magnetization
curves for thin strips and disks in reduced units almost co
cide, 0< f d(h)2tanhh,0.011, with maximum deviation a
h51.37. The lower plots in Figs. 11 and 12 show the dev
tion of the computed reduced magnetic moment from
thin-film limit. Note that this deviation is small and non
monotonic as a function ofb/a. The deviation is largest for
h'1 andb/a'0.6.

The saturated magnetic momentmsat5m(Ha→`) and
initial slopem8(0) of the magnetization curves in real uni
are given by the following expressions. In the Bean lim
(n→`) one has, for long bars of lengthl , msat
522Jca

2bl and, for cylinders of length 2b, msat
52(2p/3)Jca

3b; cf. Eq. ~6!. For finite creep exponentsn
,` in the current-voltage lawE5Ec(J/Jc)

n, the saturation
value ofm depends on the ramp rateḂa of the applied field
and is reached exponentially in time ifḂa5const.1 For bars
and strips with lengthl one has1

msat522Jca
2blS Ḃaa

Ec
D 1/n

2n

2n11
. ~37!

For cylinders and disks the result25,51

FIG. 11. Top: virgin magnetization curvesm(Ha) for strips or
bars with side ratiosb/a50.03, 0.1, 0.3, 1, 3, and 7 in increas
ing perpendicular fieldHa in the Bean limit (n5101). The plots are
in reduced unitsm/msat vs h5Ham8(0)/msat such that the initial
slope and the saturation value equal unity. Also shown are the lim
b/a50 @thin strip, m/msat5tanhh, Eq. ~14!# and b/a5` ~long
slab,m/msat5h2h2/4 for h<2, m/msat51 for h.2). Bottom: de-
viation from the limitb50, m/msat2tanhh.
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msat52
2p

3
Jca

3bS Ḃaa

2Ec
D 1/n

3n

3n11
~38!

is obtained by inserting in Eq.~3! the electric fieldE(r ) and
current densityJ(r )5Jc(E/Ec)

1/n of the saturated state,

Esat~r !5
r

2
Ḃa , ~39!

Jsat~r !5JcS r

aD 1/nS Ḃaa

2Ec
D 1/n

. ~40!

The initial slopem8(0) is computed from the surface
screening currentJscr(r ), Eq. ~26!. With Eq. ~3! this yields

m8~0!52pE
0

a

dxE
0

b

dyE
0

a

dx8E
0

b

dy8 r 2Q21~r,r 8!r 8.

~41!

On an appropriate grid with positionsr i and weightswi @cf.
Eq. ~29! and the Appendix# one computes this as

m8~0!52p(
i j

wi r i
2~Qi j wj !

21r j . ~42!

FIG. 12. Top: as in Fig. 11, but for disks and cylinders w
various aspect ratiosb/a in increasing axial field. The reduced uni
and limits forb/a50 @thin disk,m/msat5 f d(h) andb/a5` ~long
cylinder!, m/msat5h2h2/31h3/27 for h<3, m/msat51 for h
.3] follow from Eqs. ~4!–~6! and ~11!–~13!. Bottom: deviation
from the limit b50, m/msat2 f d(h).
To a very good approximation with relative error,1% one
may write the resulting initial slope~or ideal diamagnetic
moment! of cylinders with radiusa and length 2b in an axial
field as

2m8~0!

4a3
5

pb

2a
1

2

3
1

1

3
tanhF1.27

b

a
lnS 11

a

bD G . ~43!

This formula has the correct limitsm8(0)528a3/3 for b
!a and m8(0)522pa2b for b!a; cf. Eqs. ~12! and ~5!.
The last term in Eq.~43! is a small fitted correction. The
computed slopem8(0) for cylinders is plotted in Fig. 13
together with the fit~43!. The corresponding slope for bar
@given by Fig. 15 and Eq.~77! in Ref. 1# in principle can be
calculated analytically by conformal mapping, but for th
cylinder this method does not work.

D. Magnetization loops

Figure 14 shows hysteresis loops of the magnetic mom
m(Ha) of a round cylinder with aspect ratiob/a51 ~square
cross section! for three creep exponentsn551, 11, and 5.
The amplitudesB05m0H0 of the cycled applied field are
H0 /Hp51.5, 1, and 0.5, whereHp is the field ~19! of full
penetration. For cylinders withb/a51 one has Hp
50.8814Jca. In the upper plot the applied field was in
creased and decreased zigzaglike, i.e., at a constant ramp
Ḣa(t)5(2v/p)H0sgn(cosvt), and in the lower plot sinusoi-
dally, Ha(t)5H0sinvt, Ḣa(t)5H0cosvt. In both plots v
51 was chosen, which with our reduced unitsa5Jc5Ec
5m051 means v5Ec /(m0Jca

2) in physical units. As
stated in Sec. II E, the choice of this frequency is irrelev
since any other frequency leads to exactly the same ma
tization loops if the unit of the magnetic field is chang
appropriately. In all loops in Figs. 14–17 the time rang

FIG. 13. The initial slopeum8(0)u of the virgin magnetization
curvem(Ha) of disks and cylinders in an axial fieldHa , equal to
the ideal diamagnetic momentmscr(Ha)5Ham8(0), as afunction
of the aspect ratiob/a. The dots are computed using Eq.~42! and
the lines show the fit formula~43!. The inset shows the full
um8(0)u. The main plot gives the small differenceum8(0)u
2pb/2a23/2, which vanishes in the thin-disk limitb!a and takes
the value 0.42 in the limitb@a.
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from t50 to t52.6p, corresponding to 1.3 cycles includin
the virgin curves (0<t<p/2, 1/4 cycle!.

Remarkably, the stationary situation is reached~i.e., the
memory about the magnetic history is lost! already after 1/4
cycle or even ealier at large amplitudesH0.Hp . This can be
seen from the fact that the loop precisely closes after
complete cycle att52.5p. So for 2.5,t/p,2.6 the de-
picted magnetization curves show two closely coincid
lines, and all loops exhibit inversion symmetry. The rap
loss of magnetic memory is due to the nonlinearity of t
current-voltage law used,E(J)}Jn, with n>5 in these plots.
In the Ohmic casen51, the stationary hysteresis loop
reached exponentially in time, but forn.1 it is reached
faster.

Note that in Fig. 14 the zigzag and sinusoidal appl
fields yield almost the same hysteresis loop ifn is large, in
accordance with the prediction of the critical state model
small difference is that foruḢau5const, the saturationm
→msat is reached exponentially in time@Eq. ~42! of Ref. 1#,
while for Ha5H0sinvt the upper and lower branches of th
magnetization loops are slightly curved, closely fitting t
prediction25

m~Ha!56msat~12Ha
2/H0

2!1/~2n!, ~44!

wheremsat is given by Eq.~38! @or Eq.~37! for the bar# with
Ḃa5vm0H0 inserted. As is shown in Fig. 15, the theoretic
curve ~44! closely fits the upper and lower branches of t

FIG. 14. Magnetization loopsm(Ha) of a cylinder with aspect
ratio b/a51 for creep exponentsn551 ~bold lines!, n511 ~dashed
lines!, andn55 ~dotted lines! at amplitudes of the cycled applie
field H0 /Hp51.5, 1, and 0.5, whereHp50.8814Jca is the field of
full penetration, Eq.~19!. Top: zigzag applied field with piecewis

constant ramp rateḢa(t)5(2v/p)H0sgn(cosvt). Bottom: sinu-
soidal Ha(t)5H0sinvt with same frequencyv5Ec /(m0Jca

2)51
in reduced unitsa5Jc5Ec5m051. The plotted time interval ist
50, . . . ,2.6p, which means 1.3 cycles including the virgin curve
e

d

l

computed magnetization loops. This close coinciden
proves that the slight decrease of the magnetization lo
after the maximum was reached atHa50 is not a direct
consequence of flux creep. In fact this decrease is absen
zigzagHa(t) but occurs with sinusoidalHa(t), where it re-
flects the gradualdecrease of the ramp rate H˙

a(t) after
Ha(t) has passed through zero.52 Therefore, also E

'(r /2)Ḃa andJ}E1/n decrease; cf. Eqs.~39! and ~40!.
Magnetization loops for cylinders and disks with aspe

ratiosb/a53, 0.3, and 0.03 are depicted in Fig. 15 for cre
exponentsn551 andn511 in a sinusoidalHa(t) at ampli-
tudes H0 /Hp51.5, 1, and 0.5 (Hp /Jca50.9824, 0.5757,
0.1260! and frequencyv51 like in Fig. 14. Note that all
these loops are very similar. They are also similar to
corresponding loops of bars. For comparison, Fig. 16 sho
magnetization loops for a bar with a square cross sec
(b/a51, like Fig. 14! in a perpendicular applied field
Ha(t)5H0sinvt at four amplitudesH0 /Hp52, 1.5, 1, and
0.5 (Hp50.7206Jca for this bar! and v5Ec /(m0Jca

2)51
for creep exponentsn55, 11, and 51.

E. Field-dependentJc„B…

Also shown in Fig. 16 is one example for a field
dependent critical current densityJc(B)5Jc0 /(11uBu/B1)
~Kim model! entering the lawE(J)5Ec@J/Jc(B)#n. Here

FIG. 15. Magnetization loopsm(Ha) of cylinders withb/a53
~long cylinder, top!, 0.3 ~short cylinder, middle!, and 0.03~thin
disk, bottom! for creep exponentsn551 ~bold lines! and n511
~dashed lines! in a sinusoidal fieldHa(t)5H0sinvt at amplitudes
H0 /Hp51.5, 1, and 0.5~hereHp /Jca50.9824, 0.5757, 0.1260)
and frequencyv51 like in Fig. 14. The dotted lines give Eq.~44!,
which describes the upper and lower branches ofm(Ha).
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we choseB1 /m05Hp/250.3603Jc0a ~for this bar! and v
5Ec /(m0Jc0a2)51 in units a5Jc05Ec5m051. For such
figures the required local inductionB„r … is most conve-
niently computed from the current densityJ„r … using the
Biot-Savart law and the specimen symmetry. This integ
tion is much more accurate than taking the numerical der
tive of the vector potentialA„r …, and it works even for very
small numbers of grid planes,Nx or Ny ~as small as 3!,
reproducing the field-free central zone with an accuracy
up to 10212. The integral kernel relatingB„r …5¹3A to
Jw(r 8) follows from Eq.~20! as2m0¹ r3Qcyl(r,r 8).

Figure 17 shows two examples for magnetization loops
cylinders with field-dependentJc(B). As in Figs. 14 and 16,
the aspect ratio wasb/a51, creep exponentsn551 andn
55 are shown, and a fieldHa5H0sinvt was applied. For the
upper plot we chose the Kim modelJc(B)5Jc0 /(113b)
with b(r )5uB„r …u/(m0Hp) ~here Hp50.8814Jca), which
means a monotonically decreasingJc(B). In the lower plot,
to simulate the so-called fishtail effect~or peak effect, but-
terfly effect! we chose a nonmonotonic critical current de
sity Jc(B)5Jc0(123b13b2), which has the same initia
slope as the Kim model used in the upper plot. The vir
curves in both plots of Fig. 17 thus look very similar. B
with increasingHa the magnetization in the lower plot goe
through a minimum that reflects the minimum inJc(B).
Note thatJc depends on thelocal flux densityB, which in
general is different from the applied fieldBa5m0Ha . Only

FIG. 16. Magnetization loops of a long bar with square cro
sectionb/a51, as the cylinder in Fig. 14, in a perpendicular a
plied field Ha(t)5H0sinvt at four amplitudesH0 /Hp52, 1.5, 1,
and 0.5 (Hp50.7206Jca for this bar! andv5Ec /(m0Jca

2)51 for
creep exponentsn55 ~solid line!, n511 ~dashed lines!, and n
551 ~dotted lines!. Top: constant critical current densityJc5Jc0

~Bean model!. Bottom: field-dependentJc(B)5Jc0 /(11uBu/B1)
~Kim model! with B1 /m050.3603Jc0a5

1
2 Hp inserted intoE(J)

5Ec@J/Jc(B)#n. Here v5Ec /(m0Jc0a2)51 in units a5Jc05Ec

5m051. The loop forn511, falling between the two depicte
curves, is omitted for clarity.
-
-

f

f

-

n

at large applied fieldsHa@Hp does the relative variation o
B(r ) become small compared to the averageB, which then
approximately equalsBa ; cf. Figs. 9 and 10.

Whereas for constantJc the current density in the pen
etrated regions in the cylinder saturates to6Jc , the
B-dependentJc(B) causes a nonconstantJ in these regions.
Examples for the resulting current profilesJ(r ,y) are shown
in Fig. 18 for the same cylinder as in the upper plot of F
17 @b/a51, Jc(B)5Jc0 /(113uBu/m0Hp)#, at one ampli-
tude H05Hp50.8814Jca and creep exponentn521. For
comparison, in Fig. 19 the profiles are shown for the sa
cylinder but with constantJc5Jc0 . In both plots the profiles
are depicted at fieldsHa /(Jca)50.36, 0.54, 0.88, and 0.60
corresponding to timesvt50.42, 0.66, 1.60, and 2.39. Fo
these plots onlyNr3Ny511311 equidistant grid points
were used, yielding still smooth profiles and smooth mag
tization loops. In the upper plots of Figs. 18 and 19~virgin
curve, Ha,Hp) the field- and current-free central zone
clearly seen. In Fig. 18 the current profiles of the virg
curve have sharp ridges, which are not easily understo
while in the saturated state~third plot from above,Ha
5Hp) the monotonically decreasingJ(r ) is due to the nearly
constant slope of the flux densityB enteringJc(B); cf. Figs.
8–10. In the lowest plot~decreasingHa,Hp) the penetra-
tion of currents of opposite orientation is obvious. In Fig.
the slight curvature of the current profiles~in spite of con-
stantJc) is caused by the finite creep exponentn521; for
n>51 these plateaus look perfectly flat; cf. Figs. 4 and 5
Ref. 1.

s FIG. 17. Magnetization loops of cylinders with field-depende
critical current densityJc(B) for b/a51, creep exponentsn551
~bold lines! and n55 ~dotted lines!, at amplitudes H0 /Hp

52, 1.5, 1, and 0.5 of the applied fieldHa5H0sinvt(Hp

50.8814Jca, v51 as in Figs. 14–16!. Top: Kim model Jc(B)
5Jc0 /(113b) with b(r )5uBu/(m0Hp). Bottom: nonmonotonic
modelJc(B)5Jc0(123b13b2). BothJc(B) have the same initial
slope, but at largeHa the lower plot exhibits a ‘‘fishtail effect.’’
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V. CONCLUDING REMARKS

The magnetic field and current profiles and the magn
moment of finite cylinders in an axial magnetic field a
calculated from first principles. The presented method is v
effective and elegant, since it directly calculates the curr
density inside the cylinder and does not require any appr
mation or cutoff of the magnetic field in the infinite spa
outside the cylinder. This novel method avoids any num
cal differentiation but uses only integrals over the specim
cross section. It is fast and stable and works very well e
on a PC. Our method applies to conductors and super
ductors with axial symmetry, but otherwise with an arbitra
cross section like cylinders of finite length, thin and thi
disks, cones, spheres, and rotational ellipsoids. The spec
may even be inhomogeneous and anisotropic13 as long as
axial symmetry pertains.

In our calculations the material is assumed to be nonm
netic (B5m0H) but conducting, with either a nonlinear re
sistivity or with a linear complex and frequency-depend
resistivity. Both types ofE(J) laws successfully mode
type-II superconductors with pinning and thermally activa
depinning of Abrikosov vortices in different situations. F
the nonlinear case a power lawE(J)5Ec@J/Jc(B)#n(B) was
assumed, but for any otherE(J) curve this method works a
well. For the linear case the results are even more gen
and will be presented in part II~Ref. 2! in the form of com-

FIG. 18. Current profilesJ(r ,y) for the same cylinder with
field-dependentJc(B) as in Fig. 17 top, namely,b/a51 and
Jc(B)5Jc0 /(113uBu/m0Hp), at amplitudeH05Hp50.8814Jca
of Ha5H0sinvt with creep exponentn521. From top to bottom
the applied fields areHa /(Jca)50.36, 0.54, 0.88, and 0.60, co
responding to timesvt50.42, 0.66, 1.60, and 2.39. The used g
has onlyNr3Ny511311 points.
ic
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plex ac susceptibilities which depend only on the geome
~here, on the aspect ratiob/a) but otherwise apply to any
linear and frequency-dependent resistivity.53

While the consideredE(J) dependence may be quite ge
eral, the assumptionB5m0H in our theory~which disregards
the lower critical fieldBc1) cannot be relaxed so far. Th
extension to arbitrary reversible magnetizationB(H) with
finite Bc1 is under way. Therefore, the presented method
far does not allow one to compute geometric surfa
barriers,19,54 though it may simulate surface~or edge! barri-
ers by using an inhomogeneous critical current den
Jc(r ).55 It also cannot describe the ‘‘current string’’ dis
cussed and observed by Indenbomet al.,56 which occurs in
the center of a superconductor strip with finite thickness d
to the abrupt jump ofB(H) at the penetrating flux front
Both interesting phenomena will automatically result fro
an extension of our calculations to arbitraryB(H). For re-
cent progress in this direction and explicit calculations of
edge barrier for flux penetration into superconductors wit
rectangular cross section see Refs. 57–59. See also the
analytical calculations60 of the edge barrier for flux penetra
tion into type-I superconductors.

If one is only interested in the Bean limit, one may com
pute the magnetization curve of short cylinders
Prigozhin’s elegant variational method4 or by static finite
element methods,61 which in principle work also in fully
three-dimensional geometries.62 Part II ~Ref. 2! of this paper
deals with the linear and nonlinear susceptibilities of fin
cylinders calculated by the present method.

FIG. 19. Current profiles as in Fig. 18 but for constantJc .
Otherwise, the same cylinder and same amplitudes are shown
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APPENDIX A: THE INTEGRAL KERNEL

The integral kernelsQ(r,r 8) required above and in Ref.
are Green’s functions of the Laplace equation in particu
geometries. In general, the equation for the vector poten
A„r …

m0J„r …52¹2A„r …, ~A1!

is solved by

A„r …52m0E
V
dV8 Q~r,r 8! J„r … , ~A2!

where the integral*VdV is over the volume in which the
current densityJ„r … flows. In the three-dimensional infinit
space,Q(r,r 8)51/(4pur2r 8u) is well known. For a bar with
infinite extension alongẑ and with an arbitrarily shaped cros
section in a perpendicular field,A and J are alongẑ and
integration overz8 yields

Qbar~r,r 8!5
1

2p
lnur2r 8u, ~A3!

with r5(x,y). For cylinders in an axial field,A and J are
along ŵ and integration overw yields

Qcyl~r,r 8!5 f ~r ,r 8,y2y8!, ~A4!

with f (r ,r 8,y2y8) given by Eq. ~26! and r5(r ,y), r
5Ax21z2. The kernel~A4! is more general than Eq.~25!,
which applies only if the axially symmetric specimen has
additional symmetry planey50. In both bar and cylinder
geometries one may write

A„r …52m0E
S
d2r 8 Q2~r,r 8! J„r 8… , ~A5!

whereQ2(r,r 8) meansQbar or Qcyl . The integral~A5! may
be evaluated numerically by introducing a 2D grid ofN
points r i with weights~grid cell areas! wi . This grid has to
span the cross sectionS of the bar or cylinder~or one-half or
one-quarter of it, depending on the specimen symmetry! and
may be chosen equidistant or nonequidistant, preferably s
that the grid is denser near the specimen surface.

A possible equidistant grid of N5NrNy points
r i5(r i ,yi) with constant weights wi5ab/N is r i
5r k5(k2 1

2 )a/Nr(k51, . . . ,Nr), yi5yl5( l 2 1
2 )b/Ny( l

51, . . . ,Ny). A possible nonequidistant gridr i5(r i ,yi) is
obtained by the substitutionsr 5r (u)5 1

2 (3u2u3)a, y
5y(v)5 1

2 (3v2v3)b, and then tabulatingu50, . . . ,1 and
v50, . . . ,1 on equidistant grids uk5(k2 1

2 )/Nr(k
51, . . . ,Nr) andv l5( l 2 1

2 )/Ny( l 51, . . . ,Ny); this yields a
2D grid of N5Nr3Ny points with weightswi5wrwy ,
.

is
r

r
al

n

ch

wr5drk /dk53
2(12uk

2)a/Nr , and wy5dyl /dl5 3
2 (1

2v l
2)b/Ny , which vanish at the cylinder boundariesr 5a

andy5b.
With an appropriate grid one has, for any sufficien

smooth functionf (r ) defined in the areaS,

E
S
d2r f ~r !'(

i
f ~r i !wi . ~A6!

In particular, Eq.~A5! is approximated by

Ai52m0(
j

Qi j wjJj , ~A7!

with Ai5A(r i), Ji5J(r i), and Qi j 5Q(r i ,r j ). This matrix
equation is easily inverted to give

m0Ji52(
j

~Qi j wj !
21Aj , ~A8!

where (Qi j wj )
21 is the reciprocal matrix ofQi j wj ~no sum-

mation overj ).
The kernelsQbar, Eq. ~A3!, and Qcyl , Eq. ~A4!, have a

logarithmic infinity whenr→r 8. This means that the diago
nal elements of the matrixQi j formally are infinite and thus
have to be defined separately. The optimum choice of th
diagonal terms is an intricate problem which is not y
solved completely. For the 1D problems of thin strips a
thin disks with integral kernelQ(x,x8), maximum accuracy
is achieved by choosing the diagonal termsQii 5Q(xi ,xi)
such that an infinitely extended superconducting thin fi
ideally screens the magnetic field of a coil placed on one s
of the film.33 This definition is identical to choosingQii such
that

(
j

Qi j 5E
S
dx8 Q~xi ,x8! ~A9!

is exactly satisfied.35,36This choice replaces in the 1D kern
the diverging logarithm lnuxi2xju at i 5 j for the strip by35

ln(wi/2p), where wi is the ~in general nonconstant! grid
spacing or weight, and for the disk by36 ln(0.923 63wi /2p),
where33 0.923 635exp(2)/8.

For the 2D problems of bars and cylinders, such a cho
of Qii did not work well as yet, possibly due to limite
numerical accuracy. However, a different choice of theQii
works satisfactorily, namely, equatingQii wi to the integral
of Q(r i ,r 8) over the grid cell areawi centered atr 85r i . For
rectangular grid cells this means that wheni 5 j , one then
replaces in both Eqs.~A3! and~A4! the term (yi2yj )

2 by a
small areae i

2 given by

e i
25expF ln~u21v2!231

u

v
atan

v
u

1
v
u

atan
u

vG , ~A10!

whereu5dx/2 andv5dy/2 are the half widths of thei th
rectangular grid cell with areawi54uv5dx dy. Here I
have used the formula
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f ~u,v !5E
0

u

dxE
0

v
dy ln~x21y2!5uv ln~u21v2!23uv

1u2atan
v
u

1v2atan
u

v
. ~A11!

In particular, for square-shaped grid cells of width 2u52v
5dx5dy one has

e i
25exp~ ln2u2231p/2!50.12dx dy. ~A12!

Formula~A10! is exact for equidistant rectangular grid cel
but it is also a good approximation for grid cells of varyin
size. In the limitb→0, Ny51, these diagonal terms near
reproduce those which follow from condition~A9!.
nd

i-

.
ier

.

J.
,

rie

E

s-
nd
The choice~A10! appears to yield maximum accurac
when one calculates the linear ac susceptibilities of bars
cylinders, Sec. IV E. However, in the calculation of flux pe
etration, the choice~A10! for theQi j leads to large unphysi
cal spatial oscillations of the profiles of the current dens
near the flux front. This artifact is suppressed by choos
larger diagonal terms, e.g., by dividinge i

2 , Eq. ~A10!, by a
factor of up to 8. This finding partly explains why the he
ristic choicee i

250.015dx dy works so well.
A more rigorous choice of the integral kernels, whic

automatically yields finite diagonal elements, is the meth
of finite elements.4 But so far the diagonal elements obtain
in this way proved to be too small and led to artificial
oscillating current profiles. Here again the enhancing of
diagonal terms of the matrix ‘‘by hand’’ suppresses the
oscillations.
v.
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